freebsd-nq/contrib/llvm/utils/TableGen/InstrInfoEmitter.cpp
Dimitry Andric 139f7f9bf5 Upgrade our copy of llvm/clang to trunk r178860, in preparation of the
upcoming 3.3 release (branching and freezing expected in a few weeks).

Preliminary release notes can be found at the usual location:
<http://llvm.org/docs/ReleaseNotes.html>

An MFC is planned once the actual 3.3 release is finished.
2013-04-12 17:57:40 +00:00

425 lines
15 KiB
C++

//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting a description of the target
// instruction set for the code generator.
//
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "CodeGenSchedule.h"
#include "CodeGenTarget.h"
#include "SequenceToOffsetTable.h"
#include "TableGenBackends.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
#include <cstdio>
#include <map>
#include <vector>
using namespace llvm;
namespace {
class InstrInfoEmitter {
RecordKeeper &Records;
CodeGenDAGPatterns CDP;
const CodeGenSchedModels &SchedModels;
public:
InstrInfoEmitter(RecordKeeper &R):
Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {}
// run - Output the instruction set description.
void run(raw_ostream &OS);
private:
void emitEnums(raw_ostream &OS);
typedef std::map<std::vector<std::string>, unsigned> OperandInfoMapTy;
void emitRecord(const CodeGenInstruction &Inst, unsigned Num,
Record *InstrInfo,
std::map<std::vector<Record*>, unsigned> &EL,
const OperandInfoMapTy &OpInfo,
raw_ostream &OS);
// Operand information.
void EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs);
std::vector<std::string> GetOperandInfo(const CodeGenInstruction &Inst);
};
} // End anonymous namespace
static void PrintDefList(const std::vector<Record*> &Uses,
unsigned Num, raw_ostream &OS) {
OS << "static const uint16_t ImplicitList" << Num << "[] = { ";
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
OS << getQualifiedName(Uses[i]) << ", ";
OS << "0 };\n";
}
//===----------------------------------------------------------------------===//
// Operand Info Emission.
//===----------------------------------------------------------------------===//
std::vector<std::string>
InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) {
std::vector<std::string> Result;
for (unsigned i = 0, e = Inst.Operands.size(); i != e; ++i) {
// Handle aggregate operands and normal operands the same way by expanding
// either case into a list of operands for this op.
std::vector<CGIOperandList::OperandInfo> OperandList;
// This might be a multiple operand thing. Targets like X86 have
// registers in their multi-operand operands. It may also be an anonymous
// operand, which has a single operand, but no declared class for the
// operand.
DagInit *MIOI = Inst.Operands[i].MIOperandInfo;
if (!MIOI || MIOI->getNumArgs() == 0) {
// Single, anonymous, operand.
OperandList.push_back(Inst.Operands[i]);
} else {
for (unsigned j = 0, e = Inst.Operands[i].MINumOperands; j != e; ++j) {
OperandList.push_back(Inst.Operands[i]);
Record *OpR = cast<DefInit>(MIOI->getArg(j))->getDef();
OperandList.back().Rec = OpR;
}
}
for (unsigned j = 0, e = OperandList.size(); j != e; ++j) {
Record *OpR = OperandList[j].Rec;
std::string Res;
if (OpR->isSubClassOf("RegisterOperand"))
OpR = OpR->getValueAsDef("RegClass");
if (OpR->isSubClassOf("RegisterClass"))
Res += getQualifiedName(OpR) + "RegClassID, ";
else if (OpR->isSubClassOf("PointerLikeRegClass"))
Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", ";
else
// -1 means the operand does not have a fixed register class.
Res += "-1, ";
// Fill in applicable flags.
Res += "0";
// Ptr value whose register class is resolved via callback.
if (OpR->isSubClassOf("PointerLikeRegClass"))
Res += "|(1<<MCOI::LookupPtrRegClass)";
// Predicate operands. Check to see if the original unexpanded operand
// was of type PredicateOperand.
if (Inst.Operands[i].Rec->isSubClassOf("PredicateOperand"))
Res += "|(1<<MCOI::Predicate)";
// Optional def operands. Check to see if the original unexpanded operand
// was of type OptionalDefOperand.
if (Inst.Operands[i].Rec->isSubClassOf("OptionalDefOperand"))
Res += "|(1<<MCOI::OptionalDef)";
// Fill in operand type.
Res += ", MCOI::";
assert(!Inst.Operands[i].OperandType.empty() && "Invalid operand type.");
Res += Inst.Operands[i].OperandType;
// Fill in constraint info.
Res += ", ";
const CGIOperandList::ConstraintInfo &Constraint =
Inst.Operands[i].Constraints[j];
if (Constraint.isNone())
Res += "0";
else if (Constraint.isEarlyClobber())
Res += "(1 << MCOI::EARLY_CLOBBER)";
else {
assert(Constraint.isTied());
Res += "((" + utostr(Constraint.getTiedOperand()) +
" << 16) | (1 << MCOI::TIED_TO))";
}
Result.push_back(Res);
}
}
return Result;
}
void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS,
OperandInfoMapTy &OperandInfoIDs) {
// ID #0 is for no operand info.
unsigned OperandListNum = 0;
OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum;
OS << "\n";
const CodeGenTarget &Target = CDP.getTargetInfo();
for (CodeGenTarget::inst_iterator II = Target.inst_begin(),
E = Target.inst_end(); II != E; ++II) {
std::vector<std::string> OperandInfo = GetOperandInfo(**II);
unsigned &N = OperandInfoIDs[OperandInfo];
if (N != 0) continue;
N = ++OperandListNum;
OS << "static const MCOperandInfo OperandInfo" << N << "[] = { ";
for (unsigned i = 0, e = OperandInfo.size(); i != e; ++i)
OS << "{ " << OperandInfo[i] << " }, ";
OS << "};\n";
}
}
//===----------------------------------------------------------------------===//
// Main Output.
//===----------------------------------------------------------------------===//
// run - Emit the main instruction description records for the target...
void InstrInfoEmitter::run(raw_ostream &OS) {
emitSourceFileHeader("Target Instruction Enum Values", OS);
emitEnums(OS);
emitSourceFileHeader("Target Instruction Descriptors", OS);
OS << "\n#ifdef GET_INSTRINFO_MC_DESC\n";
OS << "#undef GET_INSTRINFO_MC_DESC\n";
OS << "namespace llvm {\n\n";
CodeGenTarget &Target = CDP.getTargetInfo();
const std::string &TargetName = Target.getName();
Record *InstrInfo = Target.getInstructionSet();
// Keep track of all of the def lists we have emitted already.
std::map<std::vector<Record*>, unsigned> EmittedLists;
unsigned ListNumber = 0;
// Emit all of the instruction's implicit uses and defs.
for (CodeGenTarget::inst_iterator II = Target.inst_begin(),
E = Target.inst_end(); II != E; ++II) {
Record *Inst = (*II)->TheDef;
std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses");
if (!Uses.empty()) {
unsigned &IL = EmittedLists[Uses];
if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS);
}
std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs");
if (!Defs.empty()) {
unsigned &IL = EmittedLists[Defs];
if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS);
}
}
OperandInfoMapTy OperandInfoIDs;
// Emit all of the operand info records.
EmitOperandInfo(OS, OperandInfoIDs);
// Emit all of the MCInstrDesc records in their ENUM ordering.
//
OS << "\nextern const MCInstrDesc " << TargetName << "Insts[] = {\n";
const std::vector<const CodeGenInstruction*> &NumberedInstructions =
Target.getInstructionsByEnumValue();
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i)
emitRecord(*NumberedInstructions[i], i, InstrInfo, EmittedLists,
OperandInfoIDs, OS);
OS << "};\n\n";
// Build an array of instruction names
SequenceToOffsetTable<std::string> InstrNames;
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const CodeGenInstruction *Instr = NumberedInstructions[i];
InstrNames.add(Instr->TheDef->getName());
}
InstrNames.layout();
OS << "extern const char " << TargetName << "InstrNameData[] = {\n";
InstrNames.emit(OS, printChar);
OS << "};\n\n";
OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
if (i % 8 == 0)
OS << "\n ";
const CodeGenInstruction *Instr = NumberedInstructions[i];
OS << InstrNames.get(Instr->TheDef->getName()) << "U, ";
}
OS << "\n};\n\n";
// MCInstrInfo initialization routine.
OS << "static inline void Init" << TargetName
<< "MCInstrInfo(MCInstrInfo *II) {\n";
OS << " II->InitMCInstrInfo(" << TargetName << "Insts, "
<< TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, "
<< NumberedInstructions.size() << ");\n}\n\n";
OS << "} // End llvm namespace \n";
OS << "#endif // GET_INSTRINFO_MC_DESC\n\n";
// Create a TargetInstrInfo subclass to hide the MC layer initialization.
OS << "\n#ifdef GET_INSTRINFO_HEADER\n";
OS << "#undef GET_INSTRINFO_HEADER\n";
std::string ClassName = TargetName + "GenInstrInfo";
OS << "namespace llvm {\n";
OS << "struct " << ClassName << " : public TargetInstrInfo {\n"
<< " explicit " << ClassName << "(int SO = -1, int DO = -1);\n"
<< "};\n";
OS << "} // End llvm namespace \n";
OS << "#endif // GET_INSTRINFO_HEADER\n\n";
OS << "\n#ifdef GET_INSTRINFO_CTOR\n";
OS << "#undef GET_INSTRINFO_CTOR\n";
OS << "namespace llvm {\n";
OS << "extern const MCInstrDesc " << TargetName << "Insts[];\n";
OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n";
OS << "extern const char " << TargetName << "InstrNameData[];\n";
OS << ClassName << "::" << ClassName << "(int SO, int DO)\n"
<< " : TargetInstrInfo(SO, DO) {\n"
<< " InitMCInstrInfo(" << TargetName << "Insts, "
<< TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, "
<< NumberedInstructions.size() << ");\n}\n";
OS << "} // End llvm namespace \n";
OS << "#endif // GET_INSTRINFO_CTOR\n\n";
}
void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num,
Record *InstrInfo,
std::map<std::vector<Record*>, unsigned> &EmittedLists,
const OperandInfoMapTy &OpInfo,
raw_ostream &OS) {
int MinOperands = 0;
if (!Inst.Operands.empty())
// Each logical operand can be multiple MI operands.
MinOperands = Inst.Operands.back().MIOperandNo +
Inst.Operands.back().MINumOperands;
OS << " { ";
OS << Num << ",\t" << MinOperands << ",\t"
<< Inst.Operands.NumDefs << ",\t"
<< SchedModels.getSchedClassIdx(Inst) << ",\t"
<< Inst.TheDef->getValueAsInt("Size") << ",\t0";
// Emit all of the target indepedent flags...
if (Inst.isPseudo) OS << "|(1<<MCID::Pseudo)";
if (Inst.isReturn) OS << "|(1<<MCID::Return)";
if (Inst.isBranch) OS << "|(1<<MCID::Branch)";
if (Inst.isIndirectBranch) OS << "|(1<<MCID::IndirectBranch)";
if (Inst.isCompare) OS << "|(1<<MCID::Compare)";
if (Inst.isMoveImm) OS << "|(1<<MCID::MoveImm)";
if (Inst.isBitcast) OS << "|(1<<MCID::Bitcast)";
if (Inst.isSelect) OS << "|(1<<MCID::Select)";
if (Inst.isBarrier) OS << "|(1<<MCID::Barrier)";
if (Inst.hasDelaySlot) OS << "|(1<<MCID::DelaySlot)";
if (Inst.isCall) OS << "|(1<<MCID::Call)";
if (Inst.canFoldAsLoad) OS << "|(1<<MCID::FoldableAsLoad)";
if (Inst.mayLoad) OS << "|(1<<MCID::MayLoad)";
if (Inst.mayStore) OS << "|(1<<MCID::MayStore)";
if (Inst.isPredicable) OS << "|(1<<MCID::Predicable)";
if (Inst.isConvertibleToThreeAddress) OS << "|(1<<MCID::ConvertibleTo3Addr)";
if (Inst.isCommutable) OS << "|(1<<MCID::Commutable)";
if (Inst.isTerminator) OS << "|(1<<MCID::Terminator)";
if (Inst.isReMaterializable) OS << "|(1<<MCID::Rematerializable)";
if (Inst.isNotDuplicable) OS << "|(1<<MCID::NotDuplicable)";
if (Inst.Operands.hasOptionalDef) OS << "|(1<<MCID::HasOptionalDef)";
if (Inst.usesCustomInserter) OS << "|(1<<MCID::UsesCustomInserter)";
if (Inst.hasPostISelHook) OS << "|(1<<MCID::HasPostISelHook)";
if (Inst.Operands.isVariadic)OS << "|(1<<MCID::Variadic)";
if (Inst.hasSideEffects) OS << "|(1<<MCID::UnmodeledSideEffects)";
if (Inst.isAsCheapAsAMove) OS << "|(1<<MCID::CheapAsAMove)";
if (Inst.hasExtraSrcRegAllocReq) OS << "|(1<<MCID::ExtraSrcRegAllocReq)";
if (Inst.hasExtraDefRegAllocReq) OS << "|(1<<MCID::ExtraDefRegAllocReq)";
// Emit all of the target-specific flags...
BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags");
if (!TSF)
PrintFatalError("no TSFlags?");
uint64_t Value = 0;
for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) {
if (BitInit *Bit = dyn_cast<BitInit>(TSF->getBit(i)))
Value |= uint64_t(Bit->getValue()) << i;
else
PrintFatalError("Invalid TSFlags bit in " + Inst.TheDef->getName());
}
OS << ", 0x";
OS.write_hex(Value);
OS << "ULL, ";
// Emit the implicit uses and defs lists...
std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses");
if (UseList.empty())
OS << "NULL, ";
else
OS << "ImplicitList" << EmittedLists[UseList] << ", ";
std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs");
if (DefList.empty())
OS << "NULL, ";
else
OS << "ImplicitList" << EmittedLists[DefList] << ", ";
// Emit the operand info.
std::vector<std::string> OperandInfo = GetOperandInfo(Inst);
if (OperandInfo.empty())
OS << "0";
else
OS << "OperandInfo" << OpInfo.find(OperandInfo)->second;
OS << " }, // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n";
}
// emitEnums - Print out enum values for all of the instructions.
void InstrInfoEmitter::emitEnums(raw_ostream &OS) {
OS << "\n#ifdef GET_INSTRINFO_ENUM\n";
OS << "#undef GET_INSTRINFO_ENUM\n";
OS << "namespace llvm {\n\n";
CodeGenTarget Target(Records);
// We must emit the PHI opcode first...
std::string Namespace = Target.getInstNamespace();
if (Namespace.empty()) {
fprintf(stderr, "No instructions defined!\n");
exit(1);
}
const std::vector<const CodeGenInstruction*> &NumberedInstructions =
Target.getInstructionsByEnumValue();
OS << "namespace " << Namespace << " {\n";
OS << " enum {\n";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
OS << " " << NumberedInstructions[i]->TheDef->getName()
<< "\t= " << i << ",\n";
}
OS << " INSTRUCTION_LIST_END = " << NumberedInstructions.size() << "\n";
OS << " };\n}\n";
OS << "} // End llvm namespace \n";
OS << "#endif // GET_INSTRINFO_ENUM\n\n";
}
namespace llvm {
void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) {
InstrInfoEmitter(RK).run(OS);
EmitMapTable(RK, OS);
}
} // End llvm namespace