3300 lines
84 KiB
C

/*-
* Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
* Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Some hw specific parts of this pmap were derived or influenced
* by NetBSD's ibm4xx pmap module. More generic code is shared with
* a few other pmap modules from the FreeBSD tree.
*/
/*
* VM layout notes:
*
* Kernel and user threads run within one common virtual address space
* defined by AS=0.
*
* Virtual address space layout:
* -----------------------------
* 0x0000_0000 - 0xafff_ffff : user process
* 0xb000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.)
* 0xc000_0000 - 0xc0ff_ffff : kernel reserved
* 0xc000_0000 - data_end : kernel code+data, env, metadata etc.
* 0xc100_0000 - 0xfeef_ffff : KVA
* 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
* 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
* 0xc200_4000 - 0xc200_8fff : guard page + kstack0
* 0xc200_9000 - 0xfeef_ffff : actual free KVA space
* 0xfef0_0000 - 0xffff_ffff : I/O devices region
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/ktr.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/msgbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_kern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_param.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/uma.h>
#include <machine/cpu.h>
#include <machine/pcb.h>
#include <machine/platform.h>
#include <machine/tlb.h>
#include <machine/spr.h>
#include <machine/md_var.h>
#include <machine/mmuvar.h>
#include <machine/pmap.h>
#include <machine/pte.h>
#include "mmu_if.h"
#ifdef DEBUG
#define debugf(fmt, args...) printf(fmt, ##args)
#else
#define debugf(fmt, args...)
#endif
#define TODO panic("%s: not implemented", __func__);
extern int dumpsys_minidump;
extern unsigned char _etext[];
extern unsigned char _end[];
extern uint32_t *bootinfo;
#ifdef SMP
extern uint32_t bp_ntlb1s;
#endif
vm_paddr_t kernload;
vm_offset_t kernstart;
vm_size_t kernsize;
/* Message buffer and tables. */
static vm_offset_t data_start;
static vm_size_t data_end;
/* Phys/avail memory regions. */
static struct mem_region *availmem_regions;
static int availmem_regions_sz;
static struct mem_region *physmem_regions;
static int physmem_regions_sz;
/* Reserved KVA space and mutex for mmu_booke_zero_page. */
static vm_offset_t zero_page_va;
static struct mtx zero_page_mutex;
static struct mtx tlbivax_mutex;
/*
* Reserved KVA space for mmu_booke_zero_page_idle. This is used
* by idle thred only, no lock required.
*/
static vm_offset_t zero_page_idle_va;
/* Reserved KVA space and mutex for mmu_booke_copy_page. */
static vm_offset_t copy_page_src_va;
static vm_offset_t copy_page_dst_va;
static struct mtx copy_page_mutex;
/**************************************************************************/
/* PMAP */
/**************************************************************************/
static void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
vm_prot_t, boolean_t);
unsigned int kptbl_min; /* Index of the first kernel ptbl. */
unsigned int kernel_ptbls; /* Number of KVA ptbls. */
/*
* If user pmap is processed with mmu_booke_remove and the resident count
* drops to 0, there are no more pages to remove, so we need not continue.
*/
#define PMAP_REMOVE_DONE(pmap) \
((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
extern void tid_flush(tlbtid_t);
/**************************************************************************/
/* TLB and TID handling */
/**************************************************************************/
/* Translation ID busy table */
static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
/*
* TLB0 capabilities (entry, way numbers etc.). These can vary between e500
* core revisions and should be read from h/w registers during early config.
*/
uint32_t tlb0_entries;
uint32_t tlb0_ways;
uint32_t tlb0_entries_per_way;
#define TLB0_ENTRIES (tlb0_entries)
#define TLB0_WAYS (tlb0_ways)
#define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way)
#define TLB1_ENTRIES 16
/* In-ram copy of the TLB1 */
static tlb_entry_t tlb1[TLB1_ENTRIES];
/* Next free entry in the TLB1 */
static unsigned int tlb1_idx;
static vm_offset_t tlb1_map_base = VM_MAX_KERNEL_ADDRESS;
static tlbtid_t tid_alloc(struct pmap *);
static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
static int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
static void tlb1_write_entry(unsigned int);
static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t);
static vm_size_t tsize2size(unsigned int);
static unsigned int size2tsize(vm_size_t);
static unsigned int ilog2(unsigned int);
static void set_mas4_defaults(void);
static inline void tlb0_flush_entry(vm_offset_t);
static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
/**************************************************************************/
/* Page table management */
/**************************************************************************/
static struct rwlock_padalign pvh_global_lock;
/* Data for the pv entry allocation mechanism */
static uma_zone_t pvzone;
static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
#define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */
#ifndef PMAP_SHPGPERPROC
#define PMAP_SHPGPERPROC 200
#endif
static void ptbl_init(void);
static struct ptbl_buf *ptbl_buf_alloc(void);
static void ptbl_buf_free(struct ptbl_buf *);
static void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
static void ptbl_free(mmu_t, pmap_t, unsigned int);
static void ptbl_hold(mmu_t, pmap_t, unsigned int);
static int ptbl_unhold(mmu_t, pmap_t, unsigned int);
static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
static void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
static pv_entry_t pv_alloc(void);
static void pv_free(pv_entry_t);
static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
#define PTBL_BUFS (128 * 16)
struct ptbl_buf {
TAILQ_ENTRY(ptbl_buf) link; /* list link */
vm_offset_t kva; /* va of mapping */
};
/* ptbl free list and a lock used for access synchronization. */
static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
static struct mtx ptbl_buf_freelist_lock;
/* Base address of kva space allocated fot ptbl bufs. */
static vm_offset_t ptbl_buf_pool_vabase;
/* Pointer to ptbl_buf structures. */
static struct ptbl_buf *ptbl_bufs;
void pmap_bootstrap_ap(volatile uint32_t *);
/*
* Kernel MMU interface
*/
static void mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
static void mmu_booke_clear_modify(mmu_t, vm_page_t);
static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
vm_size_t, vm_offset_t);
static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
static void mmu_booke_copy_pages(mmu_t, vm_page_t *,
vm_offset_t, vm_page_t *, vm_offset_t, int);
static void mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
vm_prot_t, boolean_t);
static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
vm_page_t, vm_prot_t);
static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
vm_prot_t);
static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
vm_prot_t);
static void mmu_booke_init(mmu_t);
static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t);
static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t);
static int mmu_booke_ts_referenced(mmu_t, vm_page_t);
static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t,
int);
static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t,
vm_paddr_t *);
static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
vm_object_t, vm_pindex_t, vm_size_t);
static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
static void mmu_booke_page_init(mmu_t, vm_page_t);
static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
static void mmu_booke_pinit(mmu_t, pmap_t);
static void mmu_booke_pinit0(mmu_t, pmap_t);
static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
vm_prot_t);
static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
static void mmu_booke_qremove(mmu_t, vm_offset_t, int);
static void mmu_booke_release(mmu_t, pmap_t);
static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
static void mmu_booke_remove_all(mmu_t, vm_page_t);
static void mmu_booke_remove_write(mmu_t, vm_page_t);
static void mmu_booke_zero_page(mmu_t, vm_page_t);
static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
static void mmu_booke_zero_page_idle(mmu_t, vm_page_t);
static void mmu_booke_activate(mmu_t, struct thread *);
static void mmu_booke_deactivate(mmu_t, struct thread *);
static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t);
static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t);
static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t);
static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
static void mmu_booke_kremove(mmu_t, vm_offset_t);
static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
vm_size_t);
static vm_offset_t mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
vm_size_t, vm_size_t *);
static void mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
vm_size_t, vm_offset_t);
static struct pmap_md *mmu_booke_scan_md(mmu_t, struct pmap_md *);
static mmu_method_t mmu_booke_methods[] = {
/* pmap dispatcher interface */
MMUMETHOD(mmu_change_wiring, mmu_booke_change_wiring),
MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify),
MMUMETHOD(mmu_copy, mmu_booke_copy),
MMUMETHOD(mmu_copy_page, mmu_booke_copy_page),
MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages),
MMUMETHOD(mmu_enter, mmu_booke_enter),
MMUMETHOD(mmu_enter_object, mmu_booke_enter_object),
MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick),
MMUMETHOD(mmu_extract, mmu_booke_extract),
MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold),
MMUMETHOD(mmu_init, mmu_booke_init),
MMUMETHOD(mmu_is_modified, mmu_booke_is_modified),
MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable),
MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced),
MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced),
MMUMETHOD(mmu_map, mmu_booke_map),
MMUMETHOD(mmu_mincore, mmu_booke_mincore),
MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt),
MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
MMUMETHOD(mmu_page_init, mmu_booke_page_init),
MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
MMUMETHOD(mmu_pinit, mmu_booke_pinit),
MMUMETHOD(mmu_pinit0, mmu_booke_pinit0),
MMUMETHOD(mmu_protect, mmu_booke_protect),
MMUMETHOD(mmu_qenter, mmu_booke_qenter),
MMUMETHOD(mmu_qremove, mmu_booke_qremove),
MMUMETHOD(mmu_release, mmu_booke_release),
MMUMETHOD(mmu_remove, mmu_booke_remove),
MMUMETHOD(mmu_remove_all, mmu_booke_remove_all),
MMUMETHOD(mmu_remove_write, mmu_booke_remove_write),
MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache),
MMUMETHOD(mmu_zero_page, mmu_booke_zero_page),
MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area),
MMUMETHOD(mmu_zero_page_idle, mmu_booke_zero_page_idle),
MMUMETHOD(mmu_activate, mmu_booke_activate),
MMUMETHOD(mmu_deactivate, mmu_booke_deactivate),
/* Internal interfaces */
MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap),
MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
MMUMETHOD(mmu_mapdev, mmu_booke_mapdev),
MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr),
MMUMETHOD(mmu_kenter, mmu_booke_kenter),
MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr),
MMUMETHOD(mmu_kextract, mmu_booke_kextract),
/* MMUMETHOD(mmu_kremove, mmu_booke_kremove), */
MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev),
/* dumpsys() support */
MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map),
MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap),
MMUMETHOD(mmu_scan_md, mmu_booke_scan_md),
{ 0, 0 }
};
MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0);
static __inline uint32_t
tlb_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
{
uint32_t attrib;
int i;
if (ma != VM_MEMATTR_DEFAULT) {
switch (ma) {
case VM_MEMATTR_UNCACHEABLE:
return (PTE_I | PTE_G);
case VM_MEMATTR_WRITE_COMBINING:
case VM_MEMATTR_WRITE_BACK:
case VM_MEMATTR_PREFETCHABLE:
return (PTE_I);
case VM_MEMATTR_WRITE_THROUGH:
return (PTE_W | PTE_M);
}
}
/*
* Assume the page is cache inhibited and access is guarded unless
* it's in our available memory array.
*/
attrib = _TLB_ENTRY_IO;
for (i = 0; i < physmem_regions_sz; i++) {
if ((pa >= physmem_regions[i].mr_start) &&
(pa < (physmem_regions[i].mr_start +
physmem_regions[i].mr_size))) {
attrib = _TLB_ENTRY_MEM;
break;
}
}
return (attrib);
}
static inline void
tlb_miss_lock(void)
{
#ifdef SMP
struct pcpu *pc;
if (!smp_started)
return;
STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
if (pc != pcpup) {
CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
"tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
("tlb_miss_lock: tried to lock self"));
tlb_lock(pc->pc_booke_tlb_lock);
CTR1(KTR_PMAP, "%s: locked", __func__);
}
}
#endif
}
static inline void
tlb_miss_unlock(void)
{
#ifdef SMP
struct pcpu *pc;
if (!smp_started)
return;
STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
if (pc != pcpup) {
CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
__func__, pc->pc_cpuid);
tlb_unlock(pc->pc_booke_tlb_lock);
CTR1(KTR_PMAP, "%s: unlocked", __func__);
}
}
#endif
}
/* Return number of entries in TLB0. */
static __inline void
tlb0_get_tlbconf(void)
{
uint32_t tlb0_cfg;
tlb0_cfg = mfspr(SPR_TLB0CFG);
tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
tlb0_entries_per_way = tlb0_entries / tlb0_ways;
}
/* Initialize pool of kva ptbl buffers. */
static void
ptbl_init(void)
{
int i;
CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
(uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
__func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
TAILQ_INIT(&ptbl_buf_freelist);
for (i = 0; i < PTBL_BUFS; i++) {
ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
}
}
/* Get a ptbl_buf from the freelist. */
static struct ptbl_buf *
ptbl_buf_alloc(void)
{
struct ptbl_buf *buf;
mtx_lock(&ptbl_buf_freelist_lock);
buf = TAILQ_FIRST(&ptbl_buf_freelist);
if (buf != NULL)
TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
mtx_unlock(&ptbl_buf_freelist_lock);
CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
return (buf);
}
/* Return ptbl buff to free pool. */
static void
ptbl_buf_free(struct ptbl_buf *buf)
{
CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
mtx_lock(&ptbl_buf_freelist_lock);
TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
mtx_unlock(&ptbl_buf_freelist_lock);
}
/*
* Search the list of allocated ptbl bufs and find on list of allocated ptbls
*/
static void
ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
{
struct ptbl_buf *pbuf;
CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
if (pbuf->kva == (vm_offset_t)ptbl) {
/* Remove from pmap ptbl buf list. */
TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
/* Free corresponding ptbl buf. */
ptbl_buf_free(pbuf);
break;
}
}
/* Allocate page table. */
static pte_t *
ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
{
vm_page_t mtbl[PTBL_PAGES];
vm_page_t m;
struct ptbl_buf *pbuf;
unsigned int pidx;
pte_t *ptbl;
int i;
CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
(pmap == kernel_pmap), pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_alloc: invalid pdir_idx"));
KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
("pte_alloc: valid ptbl entry exists!"));
pbuf = ptbl_buf_alloc();
if (pbuf == NULL)
panic("pte_alloc: couldn't alloc kernel virtual memory");
ptbl = (pte_t *)pbuf->kva;
CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
/* Allocate ptbl pages, this will sleep! */
for (i = 0; i < PTBL_PAGES; i++) {
pidx = (PTBL_PAGES * pdir_idx) + i;
while ((m = vm_page_alloc(NULL, pidx,
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
VM_WAIT;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
}
mtbl[i] = m;
}
/* Map allocated pages into kernel_pmap. */
mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
/* Zero whole ptbl. */
bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
/* Add pbuf to the pmap ptbl bufs list. */
TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
return (ptbl);
}
/* Free ptbl pages and invalidate pdir entry. */
static void
ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
{
pte_t *ptbl;
vm_paddr_t pa;
vm_offset_t va;
vm_page_t m;
int i;
CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
(pmap == kernel_pmap), pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_free: invalid pdir_idx"));
ptbl = pmap->pm_pdir[pdir_idx];
CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
/*
* Invalidate the pdir entry as soon as possible, so that other CPUs
* don't attempt to look up the page tables we are releasing.
*/
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
pmap->pm_pdir[pdir_idx] = NULL;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
for (i = 0; i < PTBL_PAGES; i++) {
va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
pa = pte_vatopa(mmu, kernel_pmap, va);
m = PHYS_TO_VM_PAGE(pa);
vm_page_free_zero(m);
atomic_subtract_int(&cnt.v_wire_count, 1);
mmu_booke_kremove(mmu, va);
}
ptbl_free_pmap_ptbl(pmap, ptbl);
}
/*
* Decrement ptbl pages hold count and attempt to free ptbl pages.
* Called when removing pte entry from ptbl.
*
* Return 1 if ptbl pages were freed.
*/
static int
ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
{
pte_t *ptbl;
vm_paddr_t pa;
vm_page_t m;
int i;
CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
(pmap == kernel_pmap), pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_unhold: invalid pdir_idx"));
KASSERT((pmap != kernel_pmap),
("ptbl_unhold: unholding kernel ptbl!"));
ptbl = pmap->pm_pdir[pdir_idx];
//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
("ptbl_unhold: non kva ptbl"));
/* decrement hold count */
for (i = 0; i < PTBL_PAGES; i++) {
pa = pte_vatopa(mmu, kernel_pmap,
(vm_offset_t)ptbl + (i * PAGE_SIZE));
m = PHYS_TO_VM_PAGE(pa);
m->wire_count--;
}
/*
* Free ptbl pages if there are no pte etries in this ptbl.
* wire_count has the same value for all ptbl pages, so check the last
* page.
*/
if (m->wire_count == 0) {
ptbl_free(mmu, pmap, pdir_idx);
//debugf("ptbl_unhold: e (freed ptbl)\n");
return (1);
}
return (0);
}
/*
* Increment hold count for ptbl pages. This routine is used when a new pte
* entry is being inserted into the ptbl.
*/
static void
ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
{
vm_paddr_t pa;
pte_t *ptbl;
vm_page_t m;
int i;
CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
pdir_idx);
KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
("ptbl_hold: invalid pdir_idx"));
KASSERT((pmap != kernel_pmap),
("ptbl_hold: holding kernel ptbl!"));
ptbl = pmap->pm_pdir[pdir_idx];
KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
for (i = 0; i < PTBL_PAGES; i++) {
pa = pte_vatopa(mmu, kernel_pmap,
(vm_offset_t)ptbl + (i * PAGE_SIZE));
m = PHYS_TO_VM_PAGE(pa);
m->wire_count++;
}
}
/* Allocate pv_entry structure. */
pv_entry_t
pv_alloc(void)
{
pv_entry_t pv;
pv_entry_count++;
if (pv_entry_count > pv_entry_high_water)
pagedaemon_wakeup();
pv = uma_zalloc(pvzone, M_NOWAIT);
return (pv);
}
/* Free pv_entry structure. */
static __inline void
pv_free(pv_entry_t pve)
{
pv_entry_count--;
uma_zfree(pvzone, pve);
}
/* Allocate and initialize pv_entry structure. */
static void
pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pv_entry_t pve;
//int su = (pmap == kernel_pmap);
//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
// (u_int32_t)pmap, va, (u_int32_t)m);
pve = pv_alloc();
if (pve == NULL)
panic("pv_insert: no pv entries!");
pve->pv_pmap = pmap;
pve->pv_va = va;
/* add to pv_list */
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
rw_assert(&pvh_global_lock, RA_WLOCKED);
TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
//debugf("pv_insert: e\n");
}
/* Destroy pv entry. */
static void
pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pv_entry_t pve;
//int su = (pmap == kernel_pmap);
//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
rw_assert(&pvh_global_lock, RA_WLOCKED);
/* find pv entry */
TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
/* remove from pv_list */
TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
if (TAILQ_EMPTY(&m->md.pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
/* free pv entry struct */
pv_free(pve);
break;
}
}
//debugf("pv_remove: e\n");
}
/*
* Clean pte entry, try to free page table page if requested.
*
* Return 1 if ptbl pages were freed, otherwise return 0.
*/
static int
pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
vm_page_t m;
pte_t *ptbl;
pte_t *pte;
//int su = (pmap == kernel_pmap);
//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
// su, (u_int32_t)pmap, va, flags);
ptbl = pmap->pm_pdir[pdir_idx];
KASSERT(ptbl, ("pte_remove: null ptbl"));
pte = &ptbl[ptbl_idx];
if (pte == NULL || !PTE_ISVALID(pte))
return (0);
if (PTE_ISWIRED(pte))
pmap->pm_stats.wired_count--;
/* Handle managed entry. */
if (PTE_ISMANAGED(pte)) {
/* Get vm_page_t for mapped pte. */
m = PHYS_TO_VM_PAGE(PTE_PA(pte));
if (PTE_ISMODIFIED(pte))
vm_page_dirty(m);
if (PTE_ISREFERENCED(pte))
vm_page_aflag_set(m, PGA_REFERENCED);
pv_remove(pmap, va, m);
}
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(va);
pte->flags = 0;
pte->rpn = 0;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
pmap->pm_stats.resident_count--;
if (flags & PTBL_UNHOLD) {
//debugf("pte_remove: e (unhold)\n");
return (ptbl_unhold(mmu, pmap, pdir_idx));
}
//debugf("pte_remove: e\n");
return (0);
}
/*
* Insert PTE for a given page and virtual address.
*/
static void
pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
pte_t *ptbl, *pte;
CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
pmap == kernel_pmap, pmap, va);
/* Get the page table pointer. */
ptbl = pmap->pm_pdir[pdir_idx];
if (ptbl == NULL) {
/* Allocate page table pages. */
ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
} else {
/*
* Check if there is valid mapping for requested
* va, if there is, remove it.
*/
pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
if (PTE_ISVALID(pte)) {
pte_remove(mmu, pmap, va, PTBL_HOLD);
} else {
/*
* pte is not used, increment hold count
* for ptbl pages.
*/
if (pmap != kernel_pmap)
ptbl_hold(mmu, pmap, pdir_idx);
}
}
/*
* Insert pv_entry into pv_list for mapped page if part of managed
* memory.
*/
if ((m->oflags & VPO_UNMANAGED) == 0) {
flags |= PTE_MANAGED;
/* Create and insert pv entry. */
pv_insert(pmap, va, m);
}
pmap->pm_stats.resident_count++;
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(va);
if (pmap->pm_pdir[pdir_idx] == NULL) {
/*
* If we just allocated a new page table, hook it in
* the pdir.
*/
pmap->pm_pdir[pdir_idx] = ptbl;
}
pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
pte->flags |= (PTE_VALID | flags);
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
/* Return the pa for the given pmap/va. */
static vm_paddr_t
pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
{
vm_paddr_t pa = 0;
pte_t *pte;
pte = pte_find(mmu, pmap, va);
if ((pte != NULL) && PTE_ISVALID(pte))
pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
return (pa);
}
/* Get a pointer to a PTE in a page table. */
static pte_t *
pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
if (pmap->pm_pdir[pdir_idx])
return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
return (NULL);
}
/**************************************************************************/
/* PMAP related */
/**************************************************************************/
/*
* This is called during booke_init, before the system is really initialized.
*/
static void
mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
{
vm_offset_t phys_kernelend;
struct mem_region *mp, *mp1;
int cnt, i, j;
u_int s, e, sz;
u_int phys_avail_count;
vm_size_t physsz, hwphyssz, kstack0_sz;
vm_offset_t kernel_pdir, kstack0, va;
vm_paddr_t kstack0_phys;
void *dpcpu;
pte_t *pte;
debugf("mmu_booke_bootstrap: entered\n");
/* Initialize invalidation mutex */
mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
/* Read TLB0 size and associativity. */
tlb0_get_tlbconf();
/*
* Align kernel start and end address (kernel image).
* Note that kernel end does not necessarily relate to kernsize.
* kernsize is the size of the kernel that is actually mapped.
* Also note that "start - 1" is deliberate. With SMP, the
* entry point is exactly a page from the actual load address.
* As such, trunc_page() has no effect and we're off by a page.
* Since we always have the ELF header between the load address
* and the entry point, we can safely subtract 1 to compensate.
*/
kernstart = trunc_page(start - 1);
data_start = round_page(kernelend);
data_end = data_start;
/*
* Addresses of preloaded modules (like file systems) use
* physical addresses. Make sure we relocate those into
* virtual addresses.
*/
preload_addr_relocate = kernstart - kernload;
/* Allocate the dynamic per-cpu area. */
dpcpu = (void *)data_end;
data_end += DPCPU_SIZE;
/* Allocate space for the message buffer. */
msgbufp = (struct msgbuf *)data_end;
data_end += msgbufsize;
debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
data_end);
data_end = round_page(data_end);
/* Allocate space for ptbl_bufs. */
ptbl_bufs = (struct ptbl_buf *)data_end;
data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
data_end);
data_end = round_page(data_end);
/* Allocate PTE tables for kernel KVA. */
kernel_pdir = data_end;
kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
PDIR_SIZE - 1) / PDIR_SIZE;
data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
debugf(" kernel ptbls: %d\n", kernel_ptbls);
debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
debugf(" data_end: 0x%08x\n", data_end);
if (data_end - kernstart > kernsize) {
kernsize += tlb1_mapin_region(kernstart + kernsize,
kernload + kernsize, (data_end - kernstart) - kernsize);
}
data_end = kernstart + kernsize;
debugf(" updated data_end: 0x%08x\n", data_end);
/*
* Clear the structures - note we can only do it safely after the
* possible additional TLB1 translations are in place (above) so that
* all range up to the currently calculated 'data_end' is covered.
*/
dpcpu_init(dpcpu, 0);
memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
/*******************************************************/
/* Set the start and end of kva. */
/*******************************************************/
virtual_avail = round_page(data_end);
virtual_end = VM_MAX_KERNEL_ADDRESS;
/* Allocate KVA space for page zero/copy operations. */
zero_page_va = virtual_avail;
virtual_avail += PAGE_SIZE;
zero_page_idle_va = virtual_avail;
virtual_avail += PAGE_SIZE;
copy_page_src_va = virtual_avail;
virtual_avail += PAGE_SIZE;
copy_page_dst_va = virtual_avail;
virtual_avail += PAGE_SIZE;
debugf("zero_page_va = 0x%08x\n", zero_page_va);
debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
/* Initialize page zero/copy mutexes. */
mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
/* Allocate KVA space for ptbl bufs. */
ptbl_buf_pool_vabase = virtual_avail;
virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
ptbl_buf_pool_vabase, virtual_avail);
/* Calculate corresponding physical addresses for the kernel region. */
phys_kernelend = kernload + kernsize;
debugf("kernel image and allocated data:\n");
debugf(" kernload = 0x%08x\n", kernload);
debugf(" kernstart = 0x%08x\n", kernstart);
debugf(" kernsize = 0x%08x\n", kernsize);
if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
panic("mmu_booke_bootstrap: phys_avail too small");
/*
* Remove kernel physical address range from avail regions list. Page
* align all regions. Non-page aligned memory isn't very interesting
* to us. Also, sort the entries for ascending addresses.
*/
/* Retrieve phys/avail mem regions */
mem_regions(&physmem_regions, &physmem_regions_sz,
&availmem_regions, &availmem_regions_sz);
sz = 0;
cnt = availmem_regions_sz;
debugf("processing avail regions:\n");
for (mp = availmem_regions; mp->mr_size; mp++) {
s = mp->mr_start;
e = mp->mr_start + mp->mr_size;
debugf(" %08x-%08x -> ", s, e);
/* Check whether this region holds all of the kernel. */
if (s < kernload && e > phys_kernelend) {
availmem_regions[cnt].mr_start = phys_kernelend;
availmem_regions[cnt++].mr_size = e - phys_kernelend;
e = kernload;
}
/* Look whether this regions starts within the kernel. */
if (s >= kernload && s < phys_kernelend) {
if (e <= phys_kernelend)
goto empty;
s = phys_kernelend;
}
/* Now look whether this region ends within the kernel. */
if (e > kernload && e <= phys_kernelend) {
if (s >= kernload)
goto empty;
e = kernload;
}
/* Now page align the start and size of the region. */
s = round_page(s);
e = trunc_page(e);
if (e < s)
e = s;
sz = e - s;
debugf("%08x-%08x = %x\n", s, e, sz);
/* Check whether some memory is left here. */
if (sz == 0) {
empty:
memmove(mp, mp + 1,
(cnt - (mp - availmem_regions)) * sizeof(*mp));
cnt--;
mp--;
continue;
}
/* Do an insertion sort. */
for (mp1 = availmem_regions; mp1 < mp; mp1++)
if (s < mp1->mr_start)
break;
if (mp1 < mp) {
memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
mp1->mr_start = s;
mp1->mr_size = sz;
} else {
mp->mr_start = s;
mp->mr_size = sz;
}
}
availmem_regions_sz = cnt;
/*******************************************************/
/* Steal physical memory for kernel stack from the end */
/* of the first avail region */
/*******************************************************/
kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
kstack0_phys = availmem_regions[0].mr_start +
availmem_regions[0].mr_size;
kstack0_phys -= kstack0_sz;
availmem_regions[0].mr_size -= kstack0_sz;
/*******************************************************/
/* Fill in phys_avail table, based on availmem_regions */
/*******************************************************/
phys_avail_count = 0;
physsz = 0;
hwphyssz = 0;
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
debugf("fill in phys_avail:\n");
for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
availmem_regions[i].mr_start,
availmem_regions[i].mr_start +
availmem_regions[i].mr_size,
availmem_regions[i].mr_size);
if (hwphyssz != 0 &&
(physsz + availmem_regions[i].mr_size) >= hwphyssz) {
debugf(" hw.physmem adjust\n");
if (physsz < hwphyssz) {
phys_avail[j] = availmem_regions[i].mr_start;
phys_avail[j + 1] =
availmem_regions[i].mr_start +
hwphyssz - physsz;
physsz = hwphyssz;
phys_avail_count++;
}
break;
}
phys_avail[j] = availmem_regions[i].mr_start;
phys_avail[j + 1] = availmem_regions[i].mr_start +
availmem_regions[i].mr_size;
phys_avail_count++;
physsz += availmem_regions[i].mr_size;
}
physmem = btoc(physsz);
/* Calculate the last available physical address. */
for (i = 0; phys_avail[i + 2] != 0; i += 2)
;
Maxmem = powerpc_btop(phys_avail[i + 1]);
debugf("Maxmem = 0x%08lx\n", Maxmem);
debugf("phys_avail_count = %d\n", phys_avail_count);
debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
physmem);
/*******************************************************/
/* Initialize (statically allocated) kernel pmap. */
/*******************************************************/
PMAP_LOCK_INIT(kernel_pmap);
kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
debugf("kernel pdir range: 0x%08x - 0x%08x\n",
kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
/* Initialize kernel pdir */
for (i = 0; i < kernel_ptbls; i++)
kernel_pmap->pm_pdir[kptbl_min + i] =
(pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
for (i = 0; i < MAXCPU; i++) {
kernel_pmap->pm_tid[i] = TID_KERNEL;
/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
tidbusy[i][0] = kernel_pmap;
}
/*
* Fill in PTEs covering kernel code and data. They are not required
* for address translation, as this area is covered by static TLB1
* entries, but for pte_vatopa() to work correctly with kernel area
* addresses.
*/
for (va = kernstart; va < data_end; va += PAGE_SIZE) {
pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
pte->rpn = kernload + (va - kernstart);
pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
PTE_VALID;
}
/* Mark kernel_pmap active on all CPUs */
CPU_FILL(&kernel_pmap->pm_active);
/*
* Initialize the global pv list lock.
*/
rw_init(&pvh_global_lock, "pmap pv global");
/*******************************************************/
/* Final setup */
/*******************************************************/
/* Enter kstack0 into kernel map, provide guard page */
kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
thread0.td_kstack = kstack0;
thread0.td_kstack_pages = KSTACK_PAGES;
debugf("kstack_sz = 0x%08x\n", kstack0_sz);
debugf("kstack0_phys at 0x%08x - 0x%08x\n",
kstack0_phys, kstack0_phys + kstack0_sz);
debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
for (i = 0; i < KSTACK_PAGES; i++) {
mmu_booke_kenter(mmu, kstack0, kstack0_phys);
kstack0 += PAGE_SIZE;
kstack0_phys += PAGE_SIZE;
}
debugf("virtual_avail = %08x\n", virtual_avail);
debugf("virtual_end = %08x\n", virtual_end);
debugf("mmu_booke_bootstrap: exit\n");
}
void
pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
{
int i;
/*
* Finish TLB1 configuration: the BSP already set up its TLB1 and we
* have the snapshot of its contents in the s/w tlb1[] table, so use
* these values directly to (re)program AP's TLB1 hardware.
*/
for (i = bp_ntlb1s; i < tlb1_idx; i++) {
/* Skip invalid entries */
if (!(tlb1[i].mas1 & MAS1_VALID))
continue;
tlb1_write_entry(i);
}
set_mas4_defaults();
}
/*
* Get the physical page address for the given pmap/virtual address.
*/
static vm_paddr_t
mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
{
vm_paddr_t pa;
PMAP_LOCK(pmap);
pa = pte_vatopa(mmu, pmap, va);
PMAP_UNLOCK(pmap);
return (pa);
}
/*
* Extract the physical page address associated with the given
* kernel virtual address.
*/
static vm_paddr_t
mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
{
int i;
/* Check TLB1 mappings */
for (i = 0; i < tlb1_idx; i++) {
if (!(tlb1[i].mas1 & MAS1_VALID))
continue;
if (va >= tlb1[i].virt && va < tlb1[i].virt + tlb1[i].size)
return (tlb1[i].phys + (va - tlb1[i].virt));
}
return (pte_vatopa(mmu, kernel_pmap, va));
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
*/
static void
mmu_booke_init(mmu_t mmu)
{
int shpgperproc = PMAP_SHPGPERPROC;
/*
* Initialize the address space (zone) for the pv entries. Set a
* high water mark so that the system can recover from excessive
* numbers of pv entries.
*/
pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
pv_entry_high_water = 9 * (pv_entry_max / 10);
uma_zone_reserve_kva(pvzone, pv_entry_max);
/* Pre-fill pvzone with initial number of pv entries. */
uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
/* Initialize ptbl allocation. */
ptbl_init();
}
/*
* Map a list of wired pages into kernel virtual address space. This is
* intended for temporary mappings which do not need page modification or
* references recorded. Existing mappings in the region are overwritten.
*/
static void
mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
va += PAGE_SIZE;
m++;
}
}
/*
* Remove page mappings from kernel virtual address space. Intended for
* temporary mappings entered by mmu_booke_qenter.
*/
static void
mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
mmu_booke_kremove(mmu, va);
va += PAGE_SIZE;
}
}
/*
* Map a wired page into kernel virtual address space.
*/
static void
mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
{
mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
}
static void
mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
uint32_t flags;
pte_t *pte;
KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
(va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
flags |= tlb_calc_wimg(pa, ma);
pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
if (PTE_ISVALID(pte)) {
CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
/* Flush entry from TLB0 */
tlb0_flush_entry(va);
}
pte->rpn = pa & ~PTE_PA_MASK;
pte->flags = flags;
//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
// "pa=0x%08x rpn=0x%08x flags=0x%08x\n",
// pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
/* Flush the real memory from the instruction cache. */
if ((flags & (PTE_I | PTE_G)) == 0) {
__syncicache((void *)va, PAGE_SIZE);
}
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
/*
* Remove a page from kernel page table.
*/
static void
mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
{
unsigned int pdir_idx = PDIR_IDX(va);
unsigned int ptbl_idx = PTBL_IDX(va);
pte_t *pte;
// CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
(va <= VM_MAX_KERNEL_ADDRESS)),
("mmu_booke_kremove: invalid va"));
pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
if (!PTE_ISVALID(pte)) {
CTR1(KTR_PMAP, "%s: invalid pte", __func__);
return;
}
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
/* Invalidate entry in TLB0, update PTE. */
tlb0_flush_entry(va);
pte->flags = 0;
pte->rpn = 0;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
/*
* Initialize pmap associated with process 0.
*/
static void
mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
{
PMAP_LOCK_INIT(pmap);
mmu_booke_pinit(mmu, pmap);
PCPU_SET(curpmap, pmap);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
static void
mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
{
int i;
CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
curthread->td_proc->p_pid, curthread->td_proc->p_comm);
KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
for (i = 0; i < MAXCPU; i++)
pmap->pm_tid[i] = TID_NONE;
CPU_ZERO(&kernel_pmap->pm_active);
bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
TAILQ_INIT(&pmap->pm_ptbl_list);
}
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by mmu_booke_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
static void
mmu_booke_release(mmu_t mmu, pmap_t pmap)
{
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
}
/*
* Insert the given physical page at the specified virtual address in the
* target physical map with the protection requested. If specified the page
* will be wired down.
*/
static void
mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, boolean_t wired)
{
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
static void
mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, boolean_t wired)
{
pte_t *pte;
vm_paddr_t pa;
uint32_t flags;
int su, sync;
pa = VM_PAGE_TO_PHYS(m);
su = (pmap == kernel_pmap);
sync = 0;
//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
// "pa=0x%08x prot=0x%08x wired=%d)\n",
// (u_int32_t)pmap, su, pmap->pm_tid,
// (u_int32_t)m, va, pa, prot, wired);
if (su) {
KASSERT(((va >= virtual_avail) &&
(va <= VM_MAX_KERNEL_ADDRESS)),
("mmu_booke_enter_locked: kernel pmap, non kernel va"));
} else {
KASSERT((va <= VM_MAXUSER_ADDRESS),
("mmu_booke_enter_locked: user pmap, non user va"));
}
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
VM_OBJECT_ASSERT_LOCKED(m->object);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* If there is an existing mapping, and the physical address has not
* changed, must be protection or wiring change.
*/
if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
(PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
/*
* Before actually updating pte->flags we calculate and
* prepare its new value in a helper var.
*/
flags = pte->flags;
flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
/* Wiring change, just update stats. */
if (wired) {
if (!PTE_ISWIRED(pte)) {
flags |= PTE_WIRED;
pmap->pm_stats.wired_count++;
}
} else {
if (PTE_ISWIRED(pte)) {
flags &= ~PTE_WIRED;
pmap->pm_stats.wired_count--;
}
}
if (prot & VM_PROT_WRITE) {
/* Add write permissions. */
flags |= PTE_SW;
if (!su)
flags |= PTE_UW;
if ((flags & PTE_MANAGED) != 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
} else {
/* Handle modified pages, sense modify status. */
/*
* The PTE_MODIFIED flag could be set by underlying
* TLB misses since we last read it (above), possibly
* other CPUs could update it so we check in the PTE
* directly rather than rely on that saved local flags
* copy.
*/
if (PTE_ISMODIFIED(pte))
vm_page_dirty(m);
}
if (prot & VM_PROT_EXECUTE) {
flags |= PTE_SX;
if (!su)
flags |= PTE_UX;
/*
* Check existing flags for execute permissions: if we
* are turning execute permissions on, icache should
* be flushed.
*/
if ((pte->flags & (PTE_UX | PTE_SX)) == 0)
sync++;
}
flags &= ~PTE_REFERENCED;
/*
* The new flags value is all calculated -- only now actually
* update the PTE.
*/
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(va);
pte->flags = flags;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
} else {
/*
* If there is an existing mapping, but it's for a different
* physical address, pte_enter() will delete the old mapping.
*/
//if ((pte != NULL) && PTE_ISVALID(pte))
// debugf("mmu_booke_enter_locked: replace\n");
//else
// debugf("mmu_booke_enter_locked: new\n");
/* Now set up the flags and install the new mapping. */
flags = (PTE_SR | PTE_VALID);
flags |= PTE_M;
if (!su)
flags |= PTE_UR;
if (prot & VM_PROT_WRITE) {
flags |= PTE_SW;
if (!su)
flags |= PTE_UW;
if ((m->oflags & VPO_UNMANAGED) == 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
}
if (prot & VM_PROT_EXECUTE) {
flags |= PTE_SX;
if (!su)
flags |= PTE_UX;
}
/* If its wired update stats. */
if (wired) {
pmap->pm_stats.wired_count++;
flags |= PTE_WIRED;
}
pte_enter(mmu, pmap, m, va, flags);
/* Flush the real memory from the instruction cache. */
if (prot & VM_PROT_EXECUTE)
sync++;
}
if (sync && (su || pmap == PCPU_GET(curpmap))) {
__syncicache((void *)va, PAGE_SIZE);
sync = 0;
}
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
static void
mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
{
vm_page_t m;
vm_pindex_t diff, psize;
VM_OBJECT_ASSERT_LOCKED(m_start->object);
psize = atop(end - start);
m = m_start;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
m = TAILQ_NEXT(m, listq);
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
static void
mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot)
{
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
mmu_booke_enter_locked(mmu, pmap, va, m,
prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly rounded to the page size.
*/
static void
mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
{
pte_t *pte;
uint8_t hold_flag;
int su = (pmap == kernel_pmap);
//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
// su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
if (su) {
KASSERT(((va >= virtual_avail) &&
(va <= VM_MAX_KERNEL_ADDRESS)),
("mmu_booke_remove: kernel pmap, non kernel va"));
} else {
KASSERT((va <= VM_MAXUSER_ADDRESS),
("mmu_booke_remove: user pmap, non user va"));
}
if (PMAP_REMOVE_DONE(pmap)) {
//debugf("mmu_booke_remove: e (empty)\n");
return;
}
hold_flag = PTBL_HOLD_FLAG(pmap);
//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
for (; va < endva; va += PAGE_SIZE) {
pte = pte_find(mmu, pmap, va);
if ((pte != NULL) && PTE_ISVALID(pte))
pte_remove(mmu, pmap, va, hold_flag);
}
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
//debugf("mmu_booke_remove: e\n");
}
/*
* Remove physical page from all pmaps in which it resides.
*/
static void
mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
{
pv_entry_t pv, pvn;
uint8_t hold_flag;
rw_wlock(&pvh_global_lock);
for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
pvn = TAILQ_NEXT(pv, pv_link);
PMAP_LOCK(pv->pv_pmap);
hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
PMAP_UNLOCK(pv->pv_pmap);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(&pvh_global_lock);
}
/*
* Map a range of physical addresses into kernel virtual address space.
*/
static vm_offset_t
mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
vm_paddr_t pa_end, int prot)
{
vm_offset_t sva = *virt;
vm_offset_t va = sva;
//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
// sva, pa_start, pa_end);
while (pa_start < pa_end) {
mmu_booke_kenter(mmu, va, pa_start);
va += PAGE_SIZE;
pa_start += PAGE_SIZE;
}
*virt = va;
//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
return (sva);
}
/*
* The pmap must be activated before it's address space can be accessed in any
* way.
*/
static void
mmu_booke_activate(mmu_t mmu, struct thread *td)
{
pmap_t pmap;
u_int cpuid;
pmap = &td->td_proc->p_vmspace->vm_pmap;
CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
__func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
sched_pin();
cpuid = PCPU_GET(cpuid);
CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
PCPU_SET(curpmap, pmap);
if (pmap->pm_tid[cpuid] == TID_NONE)
tid_alloc(pmap);
/* Load PID0 register with pmap tid value. */
mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
__asm __volatile("isync");
sched_unpin();
CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
}
/*
* Deactivate the specified process's address space.
*/
static void
mmu_booke_deactivate(mmu_t mmu, struct thread *td)
{
pmap_t pmap;
pmap = &td->td_proc->p_vmspace->vm_pmap;
CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
__func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
PCPU_SET(curpmap, NULL);
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
static void
mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
{
}
/*
* Set the physical protection on the specified range of this map as requested.
*/
static void
mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
vm_prot_t prot)
{
vm_offset_t va;
vm_page_t m;
pte_t *pte;
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
mmu_booke_remove(mmu, pmap, sva, eva);
return;
}
if (prot & VM_PROT_WRITE)
return;
PMAP_LOCK(pmap);
for (va = sva; va < eva; va += PAGE_SIZE) {
if ((pte = pte_find(mmu, pmap, va)) != NULL) {
if (PTE_ISVALID(pte)) {
m = PHYS_TO_VM_PAGE(PTE_PA(pte));
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
/* Handle modified pages. */
if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
vm_page_dirty(m);
tlb0_flush_entry(va);
pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
}
}
PMAP_UNLOCK(pmap);
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
static void
mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
{
pv_entry_t pv;
pte_t *pte;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("mmu_booke_remove_write: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* set by another thread while the object is locked. Thus,
* if PGA_WRITEABLE is clear, no page table entries need updating.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
if (PTE_ISVALID(pte)) {
m = PHYS_TO_VM_PAGE(PTE_PA(pte));
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
/* Handle modified pages. */
if (PTE_ISMODIFIED(pte))
vm_page_dirty(m);
/* Flush mapping from TLB0. */
pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
}
PMAP_UNLOCK(pv->pv_pmap);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(&pvh_global_lock);
}
static void
mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
{
pte_t *pte;
pmap_t pmap;
vm_page_t m;
vm_offset_t addr;
vm_paddr_t pa = 0;
int active, valid;
va = trunc_page(va);
sz = round_page(sz);
rw_wlock(&pvh_global_lock);
pmap = PCPU_GET(curpmap);
active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
while (sz > 0) {
PMAP_LOCK(pm);
pte = pte_find(mmu, pm, va);
valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
if (valid)
pa = PTE_PA(pte);
PMAP_UNLOCK(pm);
if (valid) {
if (!active) {
/* Create a mapping in the active pmap. */
addr = 0;
m = PHYS_TO_VM_PAGE(pa);
PMAP_LOCK(pmap);
pte_enter(mmu, pmap, m, addr,
PTE_SR | PTE_VALID | PTE_UR);
__syncicache((void *)addr, PAGE_SIZE);
pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
PMAP_UNLOCK(pmap);
} else
__syncicache((void *)va, PAGE_SIZE);
}
va += PAGE_SIZE;
sz -= PAGE_SIZE;
}
rw_wunlock(&pvh_global_lock);
}
/*
* Atomically extract and hold the physical page with the given
* pmap and virtual address pair if that mapping permits the given
* protection.
*/
static vm_page_t
mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
vm_prot_t prot)
{
pte_t *pte;
vm_page_t m;
uint32_t pte_wbit;
vm_paddr_t pa;
m = NULL;
pa = 0;
PMAP_LOCK(pmap);
retry:
pte = pte_find(mmu, pmap, va);
if ((pte != NULL) && PTE_ISVALID(pte)) {
if (pmap == kernel_pmap)
pte_wbit = PTE_SW;
else
pte_wbit = PTE_UW;
if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
if (vm_page_pa_tryrelock(pmap, PTE_PA(pte), &pa))
goto retry;
m = PHYS_TO_VM_PAGE(PTE_PA(pte));
vm_page_hold(m);
}
}
PA_UNLOCK_COND(pa);
PMAP_UNLOCK(pmap);
return (m);
}
/*
* Initialize a vm_page's machine-dependent fields.
*/
static void
mmu_booke_page_init(mmu_t mmu, vm_page_t m)
{
TAILQ_INIT(&m->md.pv_list);
}
/*
* mmu_booke_zero_page_area zeros the specified hardware page by
* mapping it into virtual memory and using bzero to clear
* its contents.
*
* off and size must reside within a single page.
*/
static void
mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
{
vm_offset_t va;
/* XXX KASSERT off and size are within a single page? */
mtx_lock(&zero_page_mutex);
va = zero_page_va;
mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
bzero((caddr_t)va + off, size);
mmu_booke_kremove(mmu, va);
mtx_unlock(&zero_page_mutex);
}
/*
* mmu_booke_zero_page zeros the specified hardware page.
*/
static void
mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
{
mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
}
/*
* mmu_booke_copy_page copies the specified (machine independent) page by
* mapping the page into virtual memory and using memcopy to copy the page,
* one machine dependent page at a time.
*/
static void
mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
{
vm_offset_t sva, dva;
sva = copy_page_src_va;
dva = copy_page_dst_va;
mtx_lock(&copy_page_mutex);
mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
mmu_booke_kremove(mmu, dva);
mmu_booke_kremove(mmu, sva);
mtx_unlock(&copy_page_mutex);
}
static inline void
mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
{
void *a_cp, *b_cp;
vm_offset_t a_pg_offset, b_pg_offset;
int cnt;
mtx_lock(&copy_page_mutex);
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
mmu_booke_kenter(mmu, copy_page_src_va,
VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
a_cp = (char *)copy_page_src_va + a_pg_offset;
b_pg_offset = b_offset & PAGE_MASK;
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
mmu_booke_kenter(mmu, copy_page_dst_va,
VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
b_cp = (char *)copy_page_dst_va + b_pg_offset;
bcopy(a_cp, b_cp, cnt);
mmu_booke_kremove(mmu, copy_page_dst_va);
mmu_booke_kremove(mmu, copy_page_src_va);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
mtx_unlock(&copy_page_mutex);
}
/*
* mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
* into virtual memory and using bzero to clear its contents. This is intended
* to be called from the vm_pagezero process only and outside of Giant. No
* lock is required.
*/
static void
mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
{
vm_offset_t va;
va = zero_page_idle_va;
mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
bzero((caddr_t)va, PAGE_SIZE);
mmu_booke_kremove(mmu, va);
}
/*
* Return whether or not the specified physical page was modified
* in any of physical maps.
*/
static boolean_t
mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
{
pte_t *pte;
pv_entry_t pv;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("mmu_booke_is_modified: page %p is not managed", m));
rv = FALSE;
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
* is clear, no PTEs can be modified.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return (rv);
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
PTE_ISVALID(pte)) {
if (PTE_ISMODIFIED(pte))
rv = TRUE;
}
PMAP_UNLOCK(pv->pv_pmap);
if (rv)
break;
}
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* Return whether or not the specified virtual address is eligible
* for prefault.
*/
static boolean_t
mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
{
return (FALSE);
}
/*
* Return whether or not the specified physical page was referenced
* in any physical maps.
*/
static boolean_t
mmu_booke_is_referenced(mmu_t mmu, vm_page_t m)
{
pte_t *pte;
pv_entry_t pv;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("mmu_booke_is_referenced: page %p is not managed", m));
rv = FALSE;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
PTE_ISVALID(pte)) {
if (PTE_ISREFERENCED(pte))
rv = TRUE;
}
PMAP_UNLOCK(pv->pv_pmap);
if (rv)
break;
}
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* Clear the modify bits on the specified physical page.
*/
static void
mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
{
pte_t *pte;
pv_entry_t pv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("mmu_booke_clear_modify: page %p is not managed", m));
VM_OBJECT_ASSERT_WLOCKED(m->object);
KASSERT(!vm_page_xbusied(m),
("mmu_booke_clear_modify: page %p is exclusive busied", m));
/*
* If the page is not PG_AWRITEABLE, then no PTEs can be modified.
* If the object containing the page is locked and the page is not
* exclusive busied, then PG_AWRITEABLE cannot be concurrently set.
*/
if ((m->aflags & PGA_WRITEABLE) == 0)
return;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
PTE_ISVALID(pte)) {
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
tlb0_flush_entry(pv->pv_va);
pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
PTE_REFERENCED);
}
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
}
PMAP_UNLOCK(pv->pv_pmap);
}
rw_wunlock(&pvh_global_lock);
}
/*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* XXX: The exact number of bits to check and clear is a matter that
* should be tested and standardized at some point in the future for
* optimal aging of shared pages.
*/
static int
mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
{
pte_t *pte;
pv_entry_t pv;
int count;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("mmu_booke_ts_referenced: page %p is not managed", m));
count = 0;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL &&
PTE_ISVALID(pte)) {
if (PTE_ISREFERENCED(pte)) {
mtx_lock_spin(&tlbivax_mutex);
tlb_miss_lock();
tlb0_flush_entry(pv->pv_va);
pte->flags &= ~PTE_REFERENCED;
tlb_miss_unlock();
mtx_unlock_spin(&tlbivax_mutex);
if (++count > 4) {
PMAP_UNLOCK(pv->pv_pmap);
break;
}
}
}
PMAP_UNLOCK(pv->pv_pmap);
}
rw_wunlock(&pvh_global_lock);
return (count);
}
/*
* Change wiring attribute for a map/virtual-address pair.
*/
static void
mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
{
pte_t *pte;
PMAP_LOCK(pmap);
if ((pte = pte_find(mmu, pmap, va)) != NULL) {
if (wired) {
if (!PTE_ISWIRED(pte)) {
pte->flags |= PTE_WIRED;
pmap->pm_stats.wired_count++;
}
} else {
if (PTE_ISWIRED(pte)) {
pte->flags &= ~PTE_WIRED;
pmap->pm_stats.wired_count--;
}
}
}
PMAP_UNLOCK(pmap);
}
/*
* Return true if the pmap's pv is one of the first 16 pvs linked to from this
* page. This count may be changed upwards or downwards in the future; it is
* only necessary that true be returned for a small subset of pmaps for proper
* page aging.
*/
static boolean_t
mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
{
pv_entry_t pv;
int loops;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("mmu_booke_page_exists_quick: page %p is not managed", m));
loops = 0;
rv = FALSE;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
if (pv->pv_pmap == pmap) {
rv = TRUE;
break;
}
if (++loops >= 16)
break;
}
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* Return the number of managed mappings to the given physical page that are
* wired.
*/
static int
mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
{
pv_entry_t pv;
pte_t *pte;
int count = 0;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (count);
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
PMAP_LOCK(pv->pv_pmap);
if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
count++;
PMAP_UNLOCK(pv->pv_pmap);
}
rw_wunlock(&pvh_global_lock);
return (count);
}
static int
mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
{
int i;
vm_offset_t va;
/*
* This currently does not work for entries that
* overlap TLB1 entries.
*/
for (i = 0; i < tlb1_idx; i ++) {
if (tlb1_iomapped(i, pa, size, &va) == 0)
return (0);
}
return (EFAULT);
}
vm_offset_t
mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
vm_size_t *sz)
{
vm_paddr_t pa, ppa;
vm_offset_t va;
vm_size_t gran;
/* Raw physical memory dumps don't have a virtual address. */
if (md->md_vaddr == ~0UL) {
/* We always map a 256MB page at 256M. */
gran = 256 * 1024 * 1024;
pa = md->md_paddr + ofs;
ppa = pa & ~(gran - 1);
ofs = pa - ppa;
va = gran;
tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
if (*sz > (gran - ofs))
*sz = gran - ofs;
return (va + ofs);
}
/* Minidumps are based on virtual memory addresses. */
va = md->md_vaddr + ofs;
if (va >= kernstart + kernsize) {
gran = PAGE_SIZE - (va & PAGE_MASK);
if (*sz > gran)
*sz = gran;
}
return (va);
}
void
mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
vm_offset_t va)
{
/* Raw physical memory dumps don't have a virtual address. */
if (md->md_vaddr == ~0UL) {
tlb1_idx--;
tlb1[tlb1_idx].mas1 = 0;
tlb1[tlb1_idx].mas2 = 0;
tlb1[tlb1_idx].mas3 = 0;
tlb1_write_entry(tlb1_idx);
return;
}
/* Minidumps are based on virtual memory addresses. */
/* Nothing to do... */
}
struct pmap_md *
mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
{
static struct pmap_md md;
pte_t *pte;
vm_offset_t va;
if (dumpsys_minidump) {
md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */
if (prev == NULL) {
/* 1st: kernel .data and .bss. */
md.md_index = 1;
md.md_vaddr = trunc_page((uintptr_t)_etext);
md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
return (&md);
}
switch (prev->md_index) {
case 1:
/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
md.md_index = 2;
md.md_vaddr = data_start;
md.md_size = data_end - data_start;
break;
case 2:
/* 3rd: kernel VM. */
va = prev->md_vaddr + prev->md_size;
/* Find start of next chunk (from va). */
while (va < virtual_end) {
/* Don't dump the buffer cache. */
if (va >= kmi.buffer_sva &&
va < kmi.buffer_eva) {
va = kmi.buffer_eva;
continue;
}
pte = pte_find(mmu, kernel_pmap, va);
if (pte != NULL && PTE_ISVALID(pte))
break;
va += PAGE_SIZE;
}
if (va < virtual_end) {
md.md_vaddr = va;
va += PAGE_SIZE;
/* Find last page in chunk. */
while (va < virtual_end) {
/* Don't run into the buffer cache. */
if (va == kmi.buffer_sva)
break;
pte = pte_find(mmu, kernel_pmap, va);
if (pte == NULL || !PTE_ISVALID(pte))
break;
va += PAGE_SIZE;
}
md.md_size = va - md.md_vaddr;
break;
}
md.md_index = 3;
/* FALLTHROUGH */
default:
return (NULL);
}
} else { /* minidumps */
mem_regions(&physmem_regions, &physmem_regions_sz,
&availmem_regions, &availmem_regions_sz);
if (prev == NULL) {
/* first physical chunk. */
md.md_paddr = physmem_regions[0].mr_start;
md.md_size = physmem_regions[0].mr_size;
md.md_vaddr = ~0UL;
md.md_index = 1;
} else if (md.md_index < physmem_regions_sz) {
md.md_paddr = physmem_regions[md.md_index].mr_start;
md.md_size = physmem_regions[md.md_index].mr_size;
md.md_vaddr = ~0UL;
md.md_index++;
} else {
/* There's no next physical chunk. */
return (NULL);
}
}
return (&md);
}
/*
* Map a set of physical memory pages into the kernel virtual address space.
* Return a pointer to where it is mapped. This routine is intended to be used
* for mapping device memory, NOT real memory.
*/
static void *
mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
{
return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
}
static void *
mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
{
void *res;
uintptr_t va;
vm_size_t sz;
int i;
/*
* Check if this is premapped in TLB1. Note: this should probably also
* check whether a sequence of TLB1 entries exist that match the
* requirement, but now only checks the easy case.
*/
if (ma == VM_MEMATTR_DEFAULT) {
for (i = 0; i < tlb1_idx; i++) {
if (!(tlb1[i].mas1 & MAS1_VALID))
continue;
if (pa >= tlb1[i].phys &&
(pa + size) <= (tlb1[i].phys + tlb1[i].size))
return (void *)(tlb1[i].virt +
(pa - tlb1[i].phys));
}
}
size = roundup(size, PAGE_SIZE);
/*
* We leave a hole for device direct mapping between the maximum user
* address (0x8000000) and the minimum KVA address (0xc0000000). If
* devices are in there, just map them 1:1. If not, map them to the
* device mapping area about VM_MAX_KERNEL_ADDRESS. These mapped
* addresses should be pulled from an allocator, but since we do not
* ever free TLB1 entries, it is safe just to increment a counter.
* Note that there isn't a lot of address space here (128 MB) and it
* is not at all difficult to imagine running out, since that is a 4:1
* compression from the 0xc0000000 - 0xf0000000 address space that gets
* mapped there.
*/
if (pa >= (VM_MAXUSER_ADDRESS + PAGE_SIZE) &&
(pa + size - 1) < VM_MIN_KERNEL_ADDRESS)
va = pa;
else
va = atomic_fetchadd_int(&tlb1_map_base, size);
res = (void *)va;
do {
sz = 1 << (ilog2(size) & ~1);
if (bootverbose)
printf("Wiring VA=%x to PA=%x (size=%x), "
"using TLB1[%d]\n", va, pa, sz, tlb1_idx);
tlb1_set_entry(va, pa, sz, tlb_calc_wimg(pa, ma));
size -= sz;
pa += sz;
va += sz;
} while (size > 0);
return (res);
}
/*
* 'Unmap' a range mapped by mmu_booke_mapdev().
*/
static void
mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
{
#ifdef SUPPORTS_SHRINKING_TLB1
vm_offset_t base, offset;
/*
* Unmap only if this is inside kernel virtual space.
*/
if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
base = trunc_page(va);
offset = va & PAGE_MASK;
size = roundup(offset + size, PAGE_SIZE);
kva_free(base, size);
}
#endif
}
/*
* mmu_booke_object_init_pt preloads the ptes for a given object into the
* specified pmap. This eliminates the blast of soft faults on process startup
* and immediately after an mmap.
*/
static void
mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
vm_object_t object, vm_pindex_t pindex, vm_size_t size)
{
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
("mmu_booke_object_init_pt: non-device object"));
}
/*
* Perform the pmap work for mincore.
*/
static int
mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
vm_paddr_t *locked_pa)
{
/* XXX: this should be implemented at some point */
return (0);
}
/**************************************************************************/
/* TID handling */
/**************************************************************************/
/*
* Allocate a TID. If necessary, steal one from someone else.
* The new TID is flushed from the TLB before returning.
*/
static tlbtid_t
tid_alloc(pmap_t pmap)
{
tlbtid_t tid;
int thiscpu;
KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
thiscpu = PCPU_GET(cpuid);
tid = PCPU_GET(tid_next);
if (tid > TID_MAX)
tid = TID_MIN;
PCPU_SET(tid_next, tid + 1);
/* If we are stealing TID then clear the relevant pmap's field */
if (tidbusy[thiscpu][tid] != NULL) {
CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
/* Flush all entries from TLB0 matching this TID. */
tid_flush(tid);
}
tidbusy[thiscpu][tid] = pmap;
pmap->pm_tid[thiscpu] = tid;
__asm __volatile("msync; isync");
CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
PCPU_GET(tid_next));
return (tid);
}
/**************************************************************************/
/* TLB0 handling */
/**************************************************************************/
static void
tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
uint32_t mas7)
{
int as;
char desc[3];
tlbtid_t tid;
vm_size_t size;
unsigned int tsize;
desc[2] = '\0';
if (mas1 & MAS1_VALID)
desc[0] = 'V';
else
desc[0] = ' ';
if (mas1 & MAS1_IPROT)
desc[1] = 'P';
else
desc[1] = ' ';
as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
tid = MAS1_GETTID(mas1);
tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
size = 0;
if (tsize)
size = tsize2size(tsize);
debugf("%3d: (%s) [AS=%d] "
"sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
"mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
}
/* Convert TLB0 va and way number to tlb0[] table index. */
static inline unsigned int
tlb0_tableidx(vm_offset_t va, unsigned int way)
{
unsigned int idx;
idx = (way * TLB0_ENTRIES_PER_WAY);
idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
return (idx);
}
/*
* Invalidate TLB0 entry.
*/
static inline void
tlb0_flush_entry(vm_offset_t va)
{
CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
mtx_assert(&tlbivax_mutex, MA_OWNED);
__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
__asm __volatile("isync; msync");
__asm __volatile("tlbsync; msync");
CTR1(KTR_PMAP, "%s: e", __func__);
}
/* Print out contents of the MAS registers for each TLB0 entry */
void
tlb0_print_tlbentries(void)
{
uint32_t mas0, mas1, mas2, mas3, mas7;
int entryidx, way, idx;
debugf("TLB0 entries:\n");
for (way = 0; way < TLB0_WAYS; way ++)
for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
mtspr(SPR_MAS0, mas0);
__asm __volatile("isync");
mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
mtspr(SPR_MAS2, mas2);
__asm __volatile("isync; tlbre");
mas1 = mfspr(SPR_MAS1);
mas2 = mfspr(SPR_MAS2);
mas3 = mfspr(SPR_MAS3);
mas7 = mfspr(SPR_MAS7);
idx = tlb0_tableidx(mas2, way);
tlb_print_entry(idx, mas1, mas2, mas3, mas7);
}
}
/**************************************************************************/
/* TLB1 handling */
/**************************************************************************/
/*
* TLB1 mapping notes:
*
* TLB1[0] Kernel text and data.
* TLB1[1-15] Additional kernel text and data mappings (if required), PCI
* windows, other devices mappings.
*/
/*
* Write given entry to TLB1 hardware.
* Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
*/
static void
tlb1_write_entry(unsigned int idx)
{
uint32_t mas0, mas7;
//debugf("tlb1_write_entry: s\n");
/* Clear high order RPN bits */
mas7 = 0;
/* Select entry */
mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
mtspr(SPR_MAS0, mas0);
__asm __volatile("isync");
mtspr(SPR_MAS1, tlb1[idx].mas1);
__asm __volatile("isync");
mtspr(SPR_MAS2, tlb1[idx].mas2);
__asm __volatile("isync");
mtspr(SPR_MAS3, tlb1[idx].mas3);
__asm __volatile("isync");
mtspr(SPR_MAS7, mas7);
__asm __volatile("isync; tlbwe; isync; msync");
//debugf("tlb1_write_entry: e\n");
}
/*
* Return the largest uint value log such that 2^log <= num.
*/
static unsigned int
ilog2(unsigned int num)
{
int lz;
__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
return (31 - lz);
}
/*
* Convert TLB TSIZE value to mapped region size.
*/
static vm_size_t
tsize2size(unsigned int tsize)
{
/*
* size = 4^tsize KB
* size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
*/
return ((1 << (2 * tsize)) * 1024);
}
/*
* Convert region size (must be power of 4) to TLB TSIZE value.
*/
static unsigned int
size2tsize(vm_size_t size)
{
return (ilog2(size) / 2 - 5);
}
/*
* Register permanent kernel mapping in TLB1.
*
* Entries are created starting from index 0 (current free entry is
* kept in tlb1_idx) and are not supposed to be invalidated.
*/
static int
tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
uint32_t flags)
{
uint32_t ts, tid;
int tsize, index;
index = atomic_fetchadd_int(&tlb1_idx, 1);
if (index >= TLB1_ENTRIES) {
printf("tlb1_set_entry: TLB1 full!\n");
return (-1);
}
/* Convert size to TSIZE */
tsize = size2tsize(size);
tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
/* XXX TS is hard coded to 0 for now as we only use single address space */
ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
/*
* Atomicity is preserved by the atomic increment above since nothing
* is ever removed from tlb1.
*/
tlb1[index].phys = pa;
tlb1[index].virt = va;
tlb1[index].size = size;
tlb1[index].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
tlb1[index].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
tlb1[index].mas2 = (va & MAS2_EPN_MASK) | flags;
/* Set supervisor RWX permission bits */
tlb1[index].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
tlb1_write_entry(index);
/*
* XXX in general TLB1 updates should be propagated between CPUs,
* since current design assumes to have the same TLB1 set-up on all
* cores.
*/
return (0);
}
/*
* Map in contiguous RAM region into the TLB1 using maximum of
* KERNEL_REGION_MAX_TLB_ENTRIES entries.
*
* If necessary round up last entry size and return total size
* used by all allocated entries.
*/
vm_size_t
tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
{
vm_size_t pgs[KERNEL_REGION_MAX_TLB_ENTRIES];
vm_size_t mapped, pgsz, base, mask;
int idx, nents;
/* Round up to the next 1M */
size = (size + (1 << 20) - 1) & ~((1 << 20) - 1);
mapped = 0;
idx = 0;
base = va;
pgsz = 64*1024*1024;
while (mapped < size) {
while (mapped < size && idx < KERNEL_REGION_MAX_TLB_ENTRIES) {
while (pgsz > (size - mapped))
pgsz >>= 2;
pgs[idx++] = pgsz;
mapped += pgsz;
}
/* We under-map. Correct for this. */
if (mapped < size) {
while (pgs[idx - 1] == pgsz) {
idx--;
mapped -= pgsz;
}
/* XXX We may increase beyond out starting point. */
pgsz <<= 2;
pgs[idx++] = pgsz;
mapped += pgsz;
}
}
nents = idx;
mask = pgs[0] - 1;
/* Align address to the boundary */
if (va & mask) {
va = (va + mask) & ~mask;
pa = (pa + mask) & ~mask;
}
for (idx = 0; idx < nents; idx++) {
pgsz = pgs[idx];
debugf("%u: %x -> %x, size=%x\n", idx, pa, va, pgsz);
tlb1_set_entry(va, pa, pgsz, _TLB_ENTRY_MEM);
pa += pgsz;
va += pgsz;
}
mapped = (va - base);
printf("mapped size 0x%08x (wasted space 0x%08x)\n",
mapped, mapped - size);
return (mapped);
}
/*
* TLB1 initialization routine, to be called after the very first
* assembler level setup done in locore.S.
*/
void
tlb1_init()
{
uint32_t mas0, mas1, mas2, mas3;
uint32_t tsz;
u_int i;
if (bootinfo != NULL && bootinfo[0] != 1) {
tlb1_idx = *((uint16_t *)(bootinfo + 8));
} else
tlb1_idx = 1;
/* The first entry/entries are used to map the kernel. */
for (i = 0; i < tlb1_idx; i++) {
mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
mtspr(SPR_MAS0, mas0);
__asm __volatile("isync; tlbre");
mas1 = mfspr(SPR_MAS1);
if ((mas1 & MAS1_VALID) == 0)
continue;
mas2 = mfspr(SPR_MAS2);
mas3 = mfspr(SPR_MAS3);
tlb1[i].mas1 = mas1;
tlb1[i].mas2 = mfspr(SPR_MAS2);
tlb1[i].mas3 = mas3;
tlb1[i].virt = mas2 & MAS2_EPN_MASK;
tlb1[i].phys = mas3 & MAS3_RPN;
if (i == 0)
kernload = mas3 & MAS3_RPN;
tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
tlb1[i].size = (tsz > 0) ? tsize2size(tsz) : 0;
kernsize += tlb1[i].size;
}
#ifdef SMP
bp_ntlb1s = tlb1_idx;
#endif
/* Purge the remaining entries */
for (i = tlb1_idx; i < TLB1_ENTRIES; i++)
tlb1_write_entry(i);
/* Setup TLB miss defaults */
set_mas4_defaults();
}
vm_offset_t
pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
{
vm_paddr_t pa_base;
vm_offset_t va, sz;
int i;
KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
for (i = 0; i < tlb1_idx; i++) {
if (!(tlb1[i].mas1 & MAS1_VALID))
continue;
if (pa >= tlb1[i].phys && (pa + size) <=
(tlb1[i].phys + tlb1[i].size))
return (tlb1[i].virt + (pa - tlb1[i].phys));
}
pa_base = trunc_page(pa);
size = roundup(size + (pa - pa_base), PAGE_SIZE);
tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
va = tlb1_map_base + (pa - pa_base);
do {
sz = 1 << (ilog2(size) & ~1);
tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_IO);
size -= sz;
pa_base += sz;
tlb1_map_base += sz;
} while (size > 0);
#ifdef SMP
bp_ntlb1s = tlb1_idx;
#endif
return (va);
}
/*
* Setup MAS4 defaults.
* These values are loaded to MAS0-2 on a TLB miss.
*/
static void
set_mas4_defaults(void)
{
uint32_t mas4;
/* Defaults: TLB0, PID0, TSIZED=4K */
mas4 = MAS4_TLBSELD0;
mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
#ifdef SMP
mas4 |= MAS4_MD;
#endif
mtspr(SPR_MAS4, mas4);
__asm __volatile("isync");
}
/*
* Print out contents of the MAS registers for each TLB1 entry
*/
void
tlb1_print_tlbentries(void)
{
uint32_t mas0, mas1, mas2, mas3, mas7;
int i;
debugf("TLB1 entries:\n");
for (i = 0; i < TLB1_ENTRIES; i++) {
mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
mtspr(SPR_MAS0, mas0);
__asm __volatile("isync; tlbre");
mas1 = mfspr(SPR_MAS1);
mas2 = mfspr(SPR_MAS2);
mas3 = mfspr(SPR_MAS3);
mas7 = mfspr(SPR_MAS7);
tlb_print_entry(i, mas1, mas2, mas3, mas7);
}
}
/*
* Print out contents of the in-ram tlb1 table.
*/
void
tlb1_print_entries(void)
{
int i;
debugf("tlb1[] table entries:\n");
for (i = 0; i < TLB1_ENTRIES; i++)
tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
}
/*
* Return 0 if the physical IO range is encompassed by one of the
* the TLB1 entries, otherwise return related error code.
*/
static int
tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
{
uint32_t prot;
vm_paddr_t pa_start;
vm_paddr_t pa_end;
unsigned int entry_tsize;
vm_size_t entry_size;
*va = (vm_offset_t)NULL;
/* Skip invalid entries */
if (!(tlb1[i].mas1 & MAS1_VALID))
return (EINVAL);
/*
* The entry must be cache-inhibited, guarded, and r/w
* so it can function as an i/o page
*/
prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
if (prot != (MAS2_I | MAS2_G))
return (EPERM);
prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
if (prot != (MAS3_SR | MAS3_SW))
return (EPERM);
/* The address should be within the entry range. */
entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
entry_size = tsize2size(entry_tsize);
pa_start = tlb1[i].mas3 & MAS3_RPN;
pa_end = pa_start + entry_size - 1;
if ((pa < pa_start) || ((pa + size) > pa_end))
return (ERANGE);
/* Return virtual address of this mapping. */
*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
return (0);
}