freebsd-nq/lib/libprocstat/libprocstat.c
Matt Macy 9e5787d228 Merge OpenZFS support in to HEAD.
The primary benefit is maintaining a completely shared
code base with the community allowing FreeBSD to receive
new features sooner and with less effort.

I would advise against doing 'zpool upgrade'
or creating indispensable pools using new
features until this change has had a month+
to soak.

Work on merging FreeBSD support in to what was
at the time "ZFS on Linux" began in August 2018.
I first publicly proposed transitioning FreeBSD
to (new) OpenZFS on December 18th, 2018. FreeBSD
support in OpenZFS was finally completed in December
2019. A CFT for downstreaming OpenZFS support in
to FreeBSD was first issued on July 8th. All issues
that were reported have been addressed or, for
a couple of less critical matters there are
pull requests in progress with OpenZFS. iXsystems
has tested and dogfooded extensively internally.
The TrueNAS 12 release is based on OpenZFS with
some additional features that have not yet made
it upstream.

Improvements include:
  project quotas, encrypted datasets,
  allocation classes, vectorized raidz,
  vectorized checksums, various command line
  improvements, zstd compression.

Thanks to those who have helped along the way:
Ryan Moeller, Allan Jude, Zack Welch, and many
others.

Sponsored by:	iXsystems, Inc.
Differential Revision:	https://reviews.freebsd.org/D25872
2020-08-25 02:21:27 +00:00

2641 lines
62 KiB
C

/*-
* SPDX-License-Identifier: BSD-4-Clause
*
* Copyright (c) 2017 Dell EMC
* Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org>
* Copyright (c) 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/elf.h>
#include <sys/time.h>
#include <sys/resourcevar.h>
#define _WANT_UCRED
#include <sys/ucred.h>
#undef _WANT_UCRED
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/vnode.h>
#include <sys/socket.h>
#define _WANT_SOCKET
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/un.h>
#define _WANT_UNPCB
#include <sys/unpcb.h>
#include <sys/sysctl.h>
#include <sys/tty.h>
#include <sys/filedesc.h>
#include <sys/queue.h>
#define _WANT_FILE
#include <sys/file.h>
#include <sys/conf.h>
#include <sys/ksem.h>
#include <sys/mman.h>
#include <sys/capsicum.h>
#include <sys/ptrace.h>
#define _KERNEL
#include <sys/mount.h>
#include <sys/filedesc.h>
#include <sys/pipe.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <fs/devfs/devfs.h>
#include <fs/devfs/devfs_int.h>
#undef _KERNEL
#include <nfs/nfsproto.h>
#include <nfsclient/nfs.h>
#include <nfsclient/nfsnode.h>
#include <vm/vm.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#define _WANT_INPCB
#include <netinet/in_pcb.h>
#include <assert.h>
#include <ctype.h>
#include <err.h>
#include <fcntl.h>
#include <kvm.h>
#include <libutil.h>
#include <limits.h>
#include <paths.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <libprocstat.h>
#include "libprocstat_internal.h"
#include "common_kvm.h"
#include "core.h"
int statfs(const char *, struct statfs *); /* XXX */
#define PROCSTAT_KVM 1
#define PROCSTAT_SYSCTL 2
#define PROCSTAT_CORE 3
static char **getargv(struct procstat *procstat, struct kinfo_proc *kp,
size_t nchr, int env);
static char *getmnton(kvm_t *kd, struct mount *m);
static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core,
int *cntp);
static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core,
unsigned int *cntp);
static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp);
static struct filestat_list *procstat_getfiles_kvm(
struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
static struct filestat_list *procstat_getfiles_sysctl(
struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
static int procstat_get_pipe_info_sysctl(struct filestat *fst,
struct pipestat *pipe, char *errbuf);
static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
struct pipestat *pipe, char *errbuf);
static int procstat_get_pts_info_sysctl(struct filestat *fst,
struct ptsstat *pts, char *errbuf);
static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
struct ptsstat *pts, char *errbuf);
static int procstat_get_sem_info_sysctl(struct filestat *fst,
struct semstat *sem, char *errbuf);
static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
struct semstat *sem, char *errbuf);
static int procstat_get_shm_info_sysctl(struct filestat *fst,
struct shmstat *shm, char *errbuf);
static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
struct shmstat *shm, char *errbuf);
static int procstat_get_socket_info_sysctl(struct filestat *fst,
struct sockstat *sock, char *errbuf);
static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
struct sockstat *sock, char *errbuf);
static int to_filestat_flags(int flags);
static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
struct vnstat *vn, char *errbuf);
static int procstat_get_vnode_info_sysctl(struct filestat *fst,
struct vnstat *vn, char *errbuf);
static gid_t *procstat_getgroups_core(struct procstat_core *core,
unsigned int *count);
static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp,
unsigned int *count);
static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count);
static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid,
int *cntp);
static int procstat_getosrel_core(struct procstat_core *core,
int *osrelp);
static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp,
int *osrelp);
static int procstat_getosrel_sysctl(pid_t pid, int *osrelp);
static int procstat_getpathname_core(struct procstat_core *core,
char *pathname, size_t maxlen);
static int procstat_getpathname_sysctl(pid_t pid, char *pathname,
size_t maxlen);
static int procstat_getrlimit_core(struct procstat_core *core, int which,
struct rlimit* rlimit);
static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp,
int which, struct rlimit* rlimit);
static int procstat_getrlimit_sysctl(pid_t pid, int which,
struct rlimit* rlimit);
static int procstat_getumask_core(struct procstat_core *core,
unsigned short *maskp);
static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp,
unsigned short *maskp);
static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp);
static int vntype2psfsttype(int type);
void
procstat_close(struct procstat *procstat)
{
assert(procstat);
if (procstat->type == PROCSTAT_KVM)
kvm_close(procstat->kd);
else if (procstat->type == PROCSTAT_CORE)
procstat_core_close(procstat->core);
procstat_freeargv(procstat);
procstat_freeenvv(procstat);
free(procstat);
}
struct procstat *
procstat_open_sysctl(void)
{
struct procstat *procstat;
procstat = calloc(1, sizeof(*procstat));
if (procstat == NULL) {
warn("malloc()");
return (NULL);
}
procstat->type = PROCSTAT_SYSCTL;
return (procstat);
}
struct procstat *
procstat_open_kvm(const char *nlistf, const char *memf)
{
struct procstat *procstat;
kvm_t *kd;
char buf[_POSIX2_LINE_MAX];
procstat = calloc(1, sizeof(*procstat));
if (procstat == NULL) {
warn("malloc()");
return (NULL);
}
kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf);
if (kd == NULL) {
warnx("kvm_openfiles(): %s", buf);
free(procstat);
return (NULL);
}
procstat->type = PROCSTAT_KVM;
procstat->kd = kd;
return (procstat);
}
struct procstat *
procstat_open_core(const char *filename)
{
struct procstat *procstat;
struct procstat_core *core;
procstat = calloc(1, sizeof(*procstat));
if (procstat == NULL) {
warn("malloc()");
return (NULL);
}
core = procstat_core_open(filename);
if (core == NULL) {
free(procstat);
return (NULL);
}
procstat->type = PROCSTAT_CORE;
procstat->core = core;
return (procstat);
}
struct kinfo_proc *
procstat_getprocs(struct procstat *procstat, int what, int arg,
unsigned int *count)
{
struct kinfo_proc *p0, *p;
size_t len, olen;
int name[4];
int cnt;
int error;
assert(procstat);
assert(count);
p = NULL;
if (procstat->type == PROCSTAT_KVM) {
*count = 0;
p0 = kvm_getprocs(procstat->kd, what, arg, &cnt);
if (p0 == NULL || cnt <= 0)
return (NULL);
*count = cnt;
len = *count * sizeof(*p);
p = malloc(len);
if (p == NULL) {
warnx("malloc(%zu)", len);
goto fail;
}
bcopy(p0, p, len);
return (p);
} else if (procstat->type == PROCSTAT_SYSCTL) {
len = 0;
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = what;
name[3] = arg;
error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
if (error < 0 && errno != EPERM) {
warn("sysctl(kern.proc)");
goto fail;
}
if (len == 0) {
warnx("no processes?");
goto fail;
}
do {
len += len / 10;
p = reallocf(p, len);
if (p == NULL) {
warnx("reallocf(%zu)", len);
goto fail;
}
olen = len;
error = sysctl(name, nitems(name), p, &len, NULL, 0);
} while (error < 0 && errno == ENOMEM && olen == len);
if (error < 0 && errno != EPERM) {
warn("sysctl(kern.proc)");
goto fail;
}
/* Perform simple consistency checks. */
if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
warnx("kinfo_proc structure size mismatch (len = %zu)", len);
goto fail;
}
*count = len / sizeof(*p);
return (p);
} else if (procstat->type == PROCSTAT_CORE) {
p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL,
&len);
if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
warnx("kinfo_proc structure size mismatch");
goto fail;
}
*count = len / sizeof(*p);
return (p);
} else {
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
fail:
if (p)
free(p);
return (NULL);
}
void
procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p)
{
if (p != NULL)
free(p);
p = NULL;
}
struct filestat_list *
procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
{
switch(procstat->type) {
case PROCSTAT_KVM:
return (procstat_getfiles_kvm(procstat, kp, mmapped));
case PROCSTAT_SYSCTL:
case PROCSTAT_CORE:
return (procstat_getfiles_sysctl(procstat, kp, mmapped));
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freefiles(struct procstat *procstat, struct filestat_list *head)
{
struct filestat *fst, *tmp;
STAILQ_FOREACH_SAFE(fst, head, next, tmp) {
if (fst->fs_path != NULL)
free(fst->fs_path);
free(fst);
}
free(head);
if (procstat->vmentries != NULL) {
free(procstat->vmentries);
procstat->vmentries = NULL;
}
if (procstat->files != NULL) {
free(procstat->files);
procstat->files = NULL;
}
}
static struct filestat *
filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags,
int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp)
{
struct filestat *entry;
entry = calloc(1, sizeof(*entry));
if (entry == NULL) {
warn("malloc()");
return (NULL);
}
entry->fs_typedep = typedep;
entry->fs_fflags = fflags;
entry->fs_uflags = uflags;
entry->fs_fd = fd;
entry->fs_type = type;
entry->fs_ref_count = refcount;
entry->fs_offset = offset;
entry->fs_path = path;
if (cap_rightsp != NULL)
entry->fs_cap_rights = *cap_rightsp;
else
cap_rights_init(&entry->fs_cap_rights);
return (entry);
}
static struct vnode *
getctty(kvm_t *kd, struct kinfo_proc *kp)
{
struct pgrp pgrp;
struct proc proc;
struct session sess;
int error;
assert(kp);
error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
sizeof(proc));
if (error == 0) {
warnx("can't read proc struct at %p for pid %d",
kp->ki_paddr, kp->ki_pid);
return (NULL);
}
if (proc.p_pgrp == NULL)
return (NULL);
error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp,
sizeof(pgrp));
if (error == 0) {
warnx("can't read pgrp struct at %p for pid %d",
proc.p_pgrp, kp->ki_pid);
return (NULL);
}
error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess,
sizeof(sess));
if (error == 0) {
warnx("can't read session struct at %p for pid %d",
pgrp.pg_session, kp->ki_pid);
return (NULL);
}
return (sess.s_ttyvp);
}
static int
procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest)
{
kvm_t *kd;
kd = (kvm_t *)token;
return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest)));
}
static struct filestat_list *
procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
{
struct file file;
struct filedesc filed;
struct fdescenttbl *fdt;
struct pwd pwd;
unsigned long pwd_addr;
struct vm_map_entry vmentry;
struct vm_object object;
struct vmspace vmspace;
vm_map_entry_t entryp;
vm_object_t objp;
struct vnode *vp;
struct filestat *entry;
struct filestat_list *head;
kvm_t *kd;
void *data;
int fflags;
unsigned int i;
int prot, type;
size_t fdt_size;
unsigned int nfiles;
bool haspwd;
assert(procstat);
kd = procstat->kd;
if (kd == NULL)
return (NULL);
if (kp->ki_fd == NULL)
return (NULL);
if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed,
sizeof(filed))) {
warnx("can't read filedesc at %p", (void *)kp->ki_fd);
return (NULL);
}
haspwd = false;
pwd_addr = (unsigned long)(FILEDESC_KVM_LOAD_PWD(&filed));
if (pwd_addr != 0) {
if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) {
warnx("can't read fd_pwd at %p", (void *)pwd_addr);
return (NULL);
}
haspwd = true;
}
/*
* Allocate list head.
*/
head = malloc(sizeof(*head));
if (head == NULL)
return (NULL);
STAILQ_INIT(head);
/* root directory vnode, if one. */
if (haspwd) {
if (pwd.pwd_rdir) {
entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
/* current working directory vnode. */
if (pwd.pwd_cdir) {
entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
/* jail root, if any. */
if (pwd.pwd_jdir) {
entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
}
/* ktrace vnode, if one */
if (kp->ki_tracep) {
entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
/* text vnode, if one */
if (kp->ki_textvp) {
entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
/* Controlling terminal. */
if ((vp = getctty(kd, kp)) != NULL) {
entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1,
PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles,
sizeof(nfiles))) {
warnx("can't read fd_files at %p", (void *)filed.fd_files);
return (NULL);
}
fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent);
fdt = malloc(fdt_size);
if (fdt == NULL) {
warn("malloc(%zu)", fdt_size);
goto do_mmapped;
}
if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) {
warnx("cannot read file structures at %p", (void *)filed.fd_files);
free(fdt);
goto do_mmapped;
}
for (i = 0; i < nfiles; i++) {
if (fdt->fdt_ofiles[i].fde_file == NULL) {
continue;
}
if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file,
sizeof(struct file))) {
warnx("can't read file %d at %p", i,
(void *)fdt->fdt_ofiles[i].fde_file);
continue;
}
switch (file.f_type) {
case DTYPE_VNODE:
type = PS_FST_TYPE_VNODE;
data = file.f_vnode;
break;
case DTYPE_SOCKET:
type = PS_FST_TYPE_SOCKET;
data = file.f_data;
break;
case DTYPE_PIPE:
type = PS_FST_TYPE_PIPE;
data = file.f_data;
break;
case DTYPE_FIFO:
type = PS_FST_TYPE_FIFO;
data = file.f_vnode;
break;
#ifdef DTYPE_PTS
case DTYPE_PTS:
type = PS_FST_TYPE_PTS;
data = file.f_data;
break;
#endif
case DTYPE_SEM:
type = PS_FST_TYPE_SEM;
data = file.f_data;
break;
case DTYPE_SHM:
type = PS_FST_TYPE_SHM;
data = file.f_data;
break;
case DTYPE_PROCDESC:
type = PS_FST_TYPE_PROCDESC;
data = file.f_data;
break;
case DTYPE_DEV:
type = PS_FST_TYPE_DEV;
data = file.f_data;
break;
default:
continue;
}
/* XXXRW: No capability rights support for kvm yet. */
entry = filestat_new_entry(data, type, i,
to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
free(fdt);
do_mmapped:
/*
* Process mmapped files if requested.
*/
if (mmapped) {
if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace,
sizeof(vmspace))) {
warnx("can't read vmspace at %p",
(void *)kp->ki_vmspace);
goto exit;
}
vmentry = vmspace.vm_map.header;
for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader);
entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header;
entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) {
if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP)
continue;
if ((objp = vmentry.object.vm_object) == NULL)
continue;
for (; objp; objp = object.backing_object) {
if (!kvm_read_all(kd, (unsigned long)objp,
&object, sizeof(object))) {
warnx("can't read vm_object at %p",
(void *)objp);
break;
}
}
/* We want only vnode objects. */
if (object.type != OBJT_VNODE)
continue;
prot = vmentry.protection;
fflags = 0;
if (prot & VM_PROT_READ)
fflags = PS_FST_FFLAG_READ;
if ((vmentry.eflags & MAP_ENTRY_COW) == 0 &&
prot & VM_PROT_WRITE)
fflags |= PS_FST_FFLAG_WRITE;
/*
* Create filestat entry.
*/
entry = filestat_new_entry(object.handle,
PS_FST_TYPE_VNODE, -1, fflags,
PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
if (entryp == NULL)
warnx("can't read vm_map_entry");
}
exit:
return (head);
}
/*
* kinfo types to filestat translation.
*/
static int
kinfo_type2fst(int kftype)
{
static struct {
int kf_type;
int fst_type;
} kftypes2fst[] = {
{ KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC },
{ KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO },
{ KF_TYPE_DEV, PS_FST_TYPE_DEV },
{ KF_TYPE_FIFO, PS_FST_TYPE_FIFO },
{ KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE },
{ KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE },
{ KF_TYPE_NONE, PS_FST_TYPE_NONE },
{ KF_TYPE_PIPE, PS_FST_TYPE_PIPE },
{ KF_TYPE_PTS, PS_FST_TYPE_PTS },
{ KF_TYPE_SEM, PS_FST_TYPE_SEM },
{ KF_TYPE_SHM, PS_FST_TYPE_SHM },
{ KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET },
{ KF_TYPE_VNODE, PS_FST_TYPE_VNODE },
{ KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN }
};
#define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst))
unsigned int i;
for (i = 0; i < NKFTYPES; i++)
if (kftypes2fst[i].kf_type == kftype)
break;
if (i == NKFTYPES)
return (PS_FST_TYPE_UNKNOWN);
return (kftypes2fst[i].fst_type);
}
/*
* kinfo flags to filestat translation.
*/
static int
kinfo_fflags2fst(int kfflags)
{
static struct {
int kf_flag;
int fst_flag;
} kfflags2fst[] = {
{ KF_FLAG_APPEND, PS_FST_FFLAG_APPEND },
{ KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC },
{ KF_FLAG_CREAT, PS_FST_FFLAG_CREAT },
{ KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT },
{ KF_FLAG_EXCL, PS_FST_FFLAG_EXCL },
{ KF_FLAG_EXEC, PS_FST_FFLAG_EXEC },
{ KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK },
{ KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC },
{ KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK },
{ KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
{ KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
{ KF_FLAG_READ, PS_FST_FFLAG_READ },
{ KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK },
{ KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC },
{ KF_FLAG_WRITE, PS_FST_FFLAG_WRITE }
};
#define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst))
unsigned int i;
int flags;
flags = 0;
for (i = 0; i < NKFFLAGS; i++)
if ((kfflags & kfflags2fst[i].kf_flag) != 0)
flags |= kfflags2fst[i].fst_flag;
return (flags);
}
static int
kinfo_uflags2fst(int fd)
{
switch (fd) {
case KF_FD_TYPE_CTTY:
return (PS_FST_UFLAG_CTTY);
case KF_FD_TYPE_CWD:
return (PS_FST_UFLAG_CDIR);
case KF_FD_TYPE_JAIL:
return (PS_FST_UFLAG_JAIL);
case KF_FD_TYPE_TEXT:
return (PS_FST_UFLAG_TEXT);
case KF_FD_TYPE_TRACE:
return (PS_FST_UFLAG_TRACE);
case KF_FD_TYPE_ROOT:
return (PS_FST_UFLAG_RDIR);
}
return (0);
}
static struct kinfo_file *
kinfo_getfile_core(struct procstat_core *core, int *cntp)
{
int cnt;
size_t len;
char *buf, *bp, *eb;
struct kinfo_file *kif, *kp, *kf;
buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len);
if (buf == NULL)
return (NULL);
/*
* XXXMG: The code below is just copy&past from libutil.
* The code duplication can be avoided if libutil
* is extended to provide something like:
* struct kinfo_file *kinfo_getfile_from_buf(const char *buf,
* size_t len, int *cntp);
*/
/* Pass 1: count items */
cnt = 0;
bp = buf;
eb = buf + len;
while (bp < eb) {
kf = (struct kinfo_file *)(uintptr_t)bp;
if (kf->kf_structsize == 0)
break;
bp += kf->kf_structsize;
cnt++;
}
kif = calloc(cnt, sizeof(*kif));
if (kif == NULL) {
free(buf);
return (NULL);
}
bp = buf;
eb = buf + len;
kp = kif;
/* Pass 2: unpack */
while (bp < eb) {
kf = (struct kinfo_file *)(uintptr_t)bp;
if (kf->kf_structsize == 0)
break;
/* Copy/expand into pre-zeroed buffer */
memcpy(kp, kf, kf->kf_structsize);
/* Advance to next packed record */
bp += kf->kf_structsize;
/* Set field size to fixed length, advance */
kp->kf_structsize = sizeof(*kp);
kp++;
}
free(buf);
*cntp = cnt;
return (kif); /* Caller must free() return value */
}
static struct filestat_list *
procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp,
int mmapped)
{
struct kinfo_file *kif, *files;
struct kinfo_vmentry *kve, *vmentries;
struct filestat_list *head;
struct filestat *entry;
char *path;
off_t offset;
int cnt, fd, fflags;
int i, type, uflags;
int refcount;
cap_rights_t cap_rights;
assert(kp);
if (kp->ki_fd == NULL)
return (NULL);
switch(procstat->type) {
case PROCSTAT_SYSCTL:
files = kinfo_getfile(kp->ki_pid, &cnt);
break;
case PROCSTAT_CORE:
files = kinfo_getfile_core(procstat->core, &cnt);
break;
default:
assert(!"invalid type");
}
if (files == NULL && errno != EPERM) {
warn("kinfo_getfile()");
return (NULL);
}
procstat->files = files;
/*
* Allocate list head.
*/
head = malloc(sizeof(*head));
if (head == NULL)
return (NULL);
STAILQ_INIT(head);
for (i = 0; i < cnt; i++) {
kif = &files[i];
type = kinfo_type2fst(kif->kf_type);
fd = kif->kf_fd >= 0 ? kif->kf_fd : -1;
fflags = kinfo_fflags2fst(kif->kf_flags);
uflags = kinfo_uflags2fst(kif->kf_fd);
refcount = kif->kf_ref_count;
offset = kif->kf_offset;
if (*kif->kf_path != '\0')
path = strdup(kif->kf_path);
else
path = NULL;
cap_rights = kif->kf_cap_rights;
/*
* Create filestat entry.
*/
entry = filestat_new_entry(kif, type, fd, fflags, uflags,
refcount, offset, path, &cap_rights);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
if (mmapped != 0) {
vmentries = procstat_getvmmap(procstat, kp, &cnt);
procstat->vmentries = vmentries;
if (vmentries == NULL || cnt == 0)
goto fail;
for (i = 0; i < cnt; i++) {
kve = &vmentries[i];
if (kve->kve_type != KVME_TYPE_VNODE)
continue;
fflags = 0;
if (kve->kve_protection & KVME_PROT_READ)
fflags = PS_FST_FFLAG_READ;
if ((kve->kve_flags & KVME_FLAG_COW) == 0 &&
kve->kve_protection & KVME_PROT_WRITE)
fflags |= PS_FST_FFLAG_WRITE;
offset = kve->kve_offset;
refcount = kve->kve_ref_count;
if (*kve->kve_path != '\0')
path = strdup(kve->kve_path);
else
path = NULL;
entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1,
fflags, PS_FST_UFLAG_MMAP, refcount, offset, path,
NULL);
if (entry != NULL)
STAILQ_INSERT_TAIL(head, entry, next);
}
}
fail:
return (head);
}
int
procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst,
struct pipestat *ps, char *errbuf)
{
assert(ps);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_pipe_info_sysctl(fst, ps, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
struct pipestat *ps, char *errbuf)
{
struct pipe pi;
void *pipep;
assert(kd);
assert(ps);
assert(fst);
bzero(ps, sizeof(*ps));
pipep = fst->fs_typedep;
if (pipep == NULL)
goto fail;
if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) {
warnx("can't read pipe at %p", (void *)pipep);
goto fail;
}
ps->addr = (uintptr_t)pipep;
ps->peer = (uintptr_t)pi.pipe_peer;
ps->buffer_cnt = pi.pipe_buffer.cnt;
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
static int
procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps,
char *errbuf __unused)
{
struct kinfo_file *kif;
assert(ps);
assert(fst);
bzero(ps, sizeof(*ps));
kif = fst->fs_typedep;
if (kif == NULL)
return (1);
ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr;
ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer;
ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt;
return (0);
}
int
procstat_get_pts_info(struct procstat *procstat, struct filestat *fst,
struct ptsstat *pts, char *errbuf)
{
assert(pts);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_pts_info_kvm(procstat->kd, fst, pts,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_pts_info_sysctl(fst, pts, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
struct ptsstat *pts, char *errbuf)
{
struct tty tty;
void *ttyp;
assert(kd);
assert(pts);
assert(fst);
bzero(pts, sizeof(*pts));
ttyp = fst->fs_typedep;
if (ttyp == NULL)
goto fail;
if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) {
warnx("can't read tty at %p", (void *)ttyp);
goto fail;
}
pts->dev = dev2udev(kd, tty.t_dev);
(void)kdevtoname(kd, tty.t_dev, pts->devname);
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
static int
procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts,
char *errbuf __unused)
{
struct kinfo_file *kif;
assert(pts);
assert(fst);
bzero(pts, sizeof(*pts));
kif = fst->fs_typedep;
if (kif == NULL)
return (0);
pts->dev = kif->kf_un.kf_pts.kf_pts_dev;
strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname));
return (0);
}
int
procstat_get_sem_info(struct procstat *procstat, struct filestat *fst,
struct semstat *sem, char *errbuf)
{
assert(sem);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_sem_info_kvm(procstat->kd, fst, sem,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_sem_info_sysctl(fst, sem, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
struct semstat *sem, char *errbuf)
{
struct ksem ksem;
void *ksemp;
char *path;
int i;
assert(kd);
assert(sem);
assert(fst);
bzero(sem, sizeof(*sem));
ksemp = fst->fs_typedep;
if (ksemp == NULL)
goto fail;
if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem,
sizeof(struct ksem))) {
warnx("can't read ksem at %p", (void *)ksemp);
goto fail;
}
sem->mode = S_IFREG | ksem.ks_mode;
sem->value = ksem.ks_value;
if (fst->fs_path == NULL && ksem.ks_path != NULL) {
path = malloc(MAXPATHLEN);
for (i = 0; i < MAXPATHLEN - 1; i++) {
if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i,
path + i, 1))
break;
if (path[i] == '\0')
break;
}
path[i] = '\0';
if (i == 0)
free(path);
else
fst->fs_path = path;
}
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
static int
procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem,
char *errbuf __unused)
{
struct kinfo_file *kif;
assert(sem);
assert(fst);
bzero(sem, sizeof(*sem));
kif = fst->fs_typedep;
if (kif == NULL)
return (0);
sem->value = kif->kf_un.kf_sem.kf_sem_value;
sem->mode = kif->kf_un.kf_sem.kf_sem_mode;
return (0);
}
int
procstat_get_shm_info(struct procstat *procstat, struct filestat *fst,
struct shmstat *shm, char *errbuf)
{
assert(shm);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_shm_info_kvm(procstat->kd, fst, shm,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_shm_info_sysctl(fst, shm, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
struct shmstat *shm, char *errbuf)
{
struct shmfd shmfd;
void *shmfdp;
char *path;
int i;
assert(kd);
assert(shm);
assert(fst);
bzero(shm, sizeof(*shm));
shmfdp = fst->fs_typedep;
if (shmfdp == NULL)
goto fail;
if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd,
sizeof(struct shmfd))) {
warnx("can't read shmfd at %p", (void *)shmfdp);
goto fail;
}
shm->mode = S_IFREG | shmfd.shm_mode;
shm->size = shmfd.shm_size;
if (fst->fs_path == NULL && shmfd.shm_path != NULL) {
path = malloc(MAXPATHLEN);
for (i = 0; i < MAXPATHLEN - 1; i++) {
if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i,
path + i, 1))
break;
if (path[i] == '\0')
break;
}
path[i] = '\0';
if (i == 0)
free(path);
else
fst->fs_path = path;
}
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
static int
procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm,
char *errbuf __unused)
{
struct kinfo_file *kif;
assert(shm);
assert(fst);
bzero(shm, sizeof(*shm));
kif = fst->fs_typedep;
if (kif == NULL)
return (0);
shm->size = kif->kf_un.kf_file.kf_file_size;
shm->mode = kif->kf_un.kf_file.kf_file_mode;
return (0);
}
int
procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst,
struct vnstat *vn, char *errbuf)
{
assert(vn);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_vnode_info_sysctl(fst, vn, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
struct vnstat *vn, char *errbuf)
{
/* Filesystem specific handlers. */
#define FSTYPE(fst) {#fst, fst##_filestat}
struct {
const char *tag;
int (*handler)(kvm_t *kd, struct vnode *vp,
struct vnstat *vn);
} fstypes[] = {
FSTYPE(devfs),
FSTYPE(isofs),
FSTYPE(msdosfs),
FSTYPE(nfs),
FSTYPE(smbfs),
FSTYPE(udf),
FSTYPE(ufs),
#ifdef LIBPROCSTAT_ZFS
FSTYPE(zfs),
#endif
};
#define NTYPES (sizeof(fstypes) / sizeof(*fstypes))
struct vnode vnode;
char tagstr[12];
void *vp;
int error;
unsigned int i;
assert(kd);
assert(vn);
assert(fst);
vp = fst->fs_typedep;
if (vp == NULL)
goto fail;
error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode));
if (error == 0) {
warnx("can't read vnode at %p", (void *)vp);
goto fail;
}
bzero(vn, sizeof(*vn));
vn->vn_type = vntype2psfsttype(vnode.v_type);
if (vnode.v_type == VNON || vnode.v_type == VBAD)
return (0);
error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name,
tagstr, sizeof(tagstr));
if (error == 0) {
warnx("can't read lo_name at %p", (void *)vp);
goto fail;
}
tagstr[sizeof(tagstr) - 1] = '\0';
/*
* Find appropriate handler.
*/
for (i = 0; i < NTYPES; i++)
if (!strcmp(fstypes[i].tag, tagstr)) {
if (fstypes[i].handler(kd, &vnode, vn) != 0) {
goto fail;
}
break;
}
if (i == NTYPES) {
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr);
return (1);
}
vn->vn_mntdir = getmnton(kd, vnode.v_mount);
if ((vnode.v_type == VBLK || vnode.v_type == VCHR) &&
vnode.v_rdev != NULL){
vn->vn_dev = dev2udev(kd, vnode.v_rdev);
(void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname);
} else {
vn->vn_dev = -1;
}
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
/*
* kinfo vnode type to filestat translation.
*/
static int
kinfo_vtype2fst(int kfvtype)
{
static struct {
int kf_vtype;
int fst_vtype;
} kfvtypes2fst[] = {
{ KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD },
{ KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK },
{ KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR },
{ KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR },
{ KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO },
{ KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK },
{ KF_VTYPE_VNON, PS_FST_VTYPE_VNON },
{ KF_VTYPE_VREG, PS_FST_VTYPE_VREG },
{ KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK }
};
#define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst))
unsigned int i;
for (i = 0; i < NKFVTYPES; i++)
if (kfvtypes2fst[i].kf_vtype == kfvtype)
break;
if (i == NKFVTYPES)
return (PS_FST_VTYPE_UNKNOWN);
return (kfvtypes2fst[i].fst_vtype);
}
static int
procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn,
char *errbuf)
{
struct statfs stbuf;
struct kinfo_file *kif;
struct kinfo_vmentry *kve;
char *name, *path;
uint64_t fileid;
uint64_t size;
uint64_t fsid;
uint64_t rdev;
uint16_t mode;
int vntype;
int status;
assert(fst);
assert(vn);
bzero(vn, sizeof(*vn));
if (fst->fs_typedep == NULL)
return (1);
if (fst->fs_uflags & PS_FST_UFLAG_MMAP) {
kve = fst->fs_typedep;
fileid = kve->kve_vn_fileid;
fsid = kve->kve_vn_fsid;
mode = kve->kve_vn_mode;
path = kve->kve_path;
rdev = kve->kve_vn_rdev;
size = kve->kve_vn_size;
vntype = kinfo_vtype2fst(kve->kve_vn_type);
status = kve->kve_status;
} else {
kif = fst->fs_typedep;
fileid = kif->kf_un.kf_file.kf_file_fileid;
fsid = kif->kf_un.kf_file.kf_file_fsid;
mode = kif->kf_un.kf_file.kf_file_mode;
path = kif->kf_path;
rdev = kif->kf_un.kf_file.kf_file_rdev;
size = kif->kf_un.kf_file.kf_file_size;
vntype = kinfo_vtype2fst(kif->kf_vnode_type);
status = kif->kf_status;
}
vn->vn_type = vntype;
if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD)
return (0);
if ((status & KF_ATTR_VALID) == 0) {
if (errbuf != NULL) {
snprintf(errbuf, _POSIX2_LINE_MAX,
"? (no info available)");
}
return (1);
}
if (path && *path) {
statfs(path, &stbuf);
vn->vn_mntdir = strdup(stbuf.f_mntonname);
} else
vn->vn_mntdir = strdup("-");
vn->vn_dev = rdev;
if (vntype == PS_FST_VTYPE_VBLK) {
name = devname(rdev, S_IFBLK);
if (name != NULL)
strlcpy(vn->vn_devname, name,
sizeof(vn->vn_devname));
} else if (vntype == PS_FST_VTYPE_VCHR) {
name = devname(vn->vn_dev, S_IFCHR);
if (name != NULL)
strlcpy(vn->vn_devname, name,
sizeof(vn->vn_devname));
}
vn->vn_fsid = fsid;
vn->vn_fileid = fileid;
vn->vn_size = size;
vn->vn_mode = mode;
return (0);
}
int
procstat_get_socket_info(struct procstat *procstat, struct filestat *fst,
struct sockstat *sock, char *errbuf)
{
assert(sock);
if (procstat->type == PROCSTAT_KVM) {
return (procstat_get_socket_info_kvm(procstat->kd, fst, sock,
errbuf));
} else if (procstat->type == PROCSTAT_SYSCTL ||
procstat->type == PROCSTAT_CORE) {
return (procstat_get_socket_info_sysctl(fst, sock, errbuf));
} else {
warnx("unknown access method: %d", procstat->type);
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
}
static int
procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
struct sockstat *sock, char *errbuf)
{
struct domain dom;
struct inpcb inpcb;
struct protosw proto;
struct socket s;
struct unpcb unpcb;
ssize_t len;
void *so;
assert(kd);
assert(sock);
assert(fst);
bzero(sock, sizeof(*sock));
so = fst->fs_typedep;
if (so == NULL)
goto fail;
sock->so_addr = (uintptr_t)so;
/* fill in socket */
if (!kvm_read_all(kd, (unsigned long)so, &s,
sizeof(struct socket))) {
warnx("can't read sock at %p", (void *)so);
goto fail;
}
/* fill in protosw entry */
if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto,
sizeof(struct protosw))) {
warnx("can't read protosw at %p", (void *)s.so_proto);
goto fail;
}
/* fill in domain */
if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom,
sizeof(struct domain))) {
warnx("can't read domain at %p",
(void *)proto.pr_domain);
goto fail;
}
if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname,
sizeof(sock->dname) - 1)) < 0) {
warnx("can't read domain name at %p", (void *)dom.dom_name);
sock->dname[0] = '\0';
}
else
sock->dname[len] = '\0';
/*
* Fill in known data.
*/
sock->type = s.so_type;
sock->proto = proto.pr_protocol;
sock->dom_family = dom.dom_family;
sock->so_pcb = (uintptr_t)s.so_pcb;
/*
* Protocol specific data.
*/
switch(dom.dom_family) {
case AF_INET:
case AF_INET6:
if (proto.pr_protocol == IPPROTO_TCP) {
if (s.so_pcb) {
if (kvm_read(kd, (u_long)s.so_pcb,
(char *)&inpcb, sizeof(struct inpcb))
!= sizeof(struct inpcb)) {
warnx("can't read inpcb at %p",
(void *)s.so_pcb);
} else
sock->inp_ppcb =
(uintptr_t)inpcb.inp_ppcb;
sock->sendq = s.so_snd.sb_ccc;
sock->recvq = s.so_rcv.sb_ccc;
}
}
break;
case AF_UNIX:
if (s.so_pcb) {
if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb,
sizeof(struct unpcb)) != sizeof(struct unpcb)){
warnx("can't read unpcb at %p",
(void *)s.so_pcb);
} else if (unpcb.unp_conn) {
sock->so_rcv_sb_state = s.so_rcv.sb_state;
sock->so_snd_sb_state = s.so_snd.sb_state;
sock->unp_conn = (uintptr_t)unpcb.unp_conn;
sock->sendq = s.so_snd.sb_ccc;
sock->recvq = s.so_rcv.sb_ccc;
}
}
break;
default:
break;
}
return (0);
fail:
if (errbuf != NULL)
snprintf(errbuf, _POSIX2_LINE_MAX, "error");
return (1);
}
static int
procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock,
char *errbuf __unused)
{
struct kinfo_file *kif;
assert(sock);
assert(fst);
bzero(sock, sizeof(*sock));
kif = fst->fs_typedep;
if (kif == NULL)
return (0);
/*
* Fill in known data.
*/
sock->type = kif->kf_sock_type;
sock->proto = kif->kf_sock_protocol;
sock->dom_family = kif->kf_sock_domain;
sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb;
strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname));
bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local,
kif->kf_un.kf_sock.kf_sa_local.ss_len);
bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer,
kif->kf_un.kf_sock.kf_sa_peer.ss_len);
/*
* Protocol specific data.
*/
switch(sock->dom_family) {
case AF_INET:
case AF_INET6:
if (sock->proto == IPPROTO_TCP) {
sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb;
sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
}
break;
case AF_UNIX:
if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) {
sock->so_rcv_sb_state =
kif->kf_un.kf_sock.kf_sock_rcv_sb_state;
sock->so_snd_sb_state =
kif->kf_un.kf_sock.kf_sock_snd_sb_state;
sock->unp_conn =
kif->kf_un.kf_sock.kf_sock_unpconn;
sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
}
break;
default:
break;
}
return (0);
}
/*
* Descriptor flags to filestat translation.
*/
static int
to_filestat_flags(int flags)
{
static struct {
int flag;
int fst_flag;
} fstflags[] = {
{ FREAD, PS_FST_FFLAG_READ },
{ FWRITE, PS_FST_FFLAG_WRITE },
{ O_APPEND, PS_FST_FFLAG_APPEND },
{ O_ASYNC, PS_FST_FFLAG_ASYNC },
{ O_CREAT, PS_FST_FFLAG_CREAT },
{ O_DIRECT, PS_FST_FFLAG_DIRECT },
{ O_EXCL, PS_FST_FFLAG_EXCL },
{ O_EXEC, PS_FST_FFLAG_EXEC },
{ O_EXLOCK, PS_FST_FFLAG_EXLOCK },
{ O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
{ O_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
{ O_SHLOCK, PS_FST_FFLAG_SHLOCK },
{ O_SYNC, PS_FST_FFLAG_SYNC },
{ O_TRUNC, PS_FST_FFLAG_TRUNC }
};
#define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags))
int fst_flags;
unsigned int i;
fst_flags = 0;
for (i = 0; i < NFSTFLAGS; i++)
if (flags & fstflags[i].flag)
fst_flags |= fstflags[i].fst_flag;
return (fst_flags);
}
/*
* Vnode type to filestate translation.
*/
static int
vntype2psfsttype(int type)
{
static struct {
int vtype;
int fst_vtype;
} vt2fst[] = {
{ VBAD, PS_FST_VTYPE_VBAD },
{ VBLK, PS_FST_VTYPE_VBLK },
{ VCHR, PS_FST_VTYPE_VCHR },
{ VDIR, PS_FST_VTYPE_VDIR },
{ VFIFO, PS_FST_VTYPE_VFIFO },
{ VLNK, PS_FST_VTYPE_VLNK },
{ VNON, PS_FST_VTYPE_VNON },
{ VREG, PS_FST_VTYPE_VREG },
{ VSOCK, PS_FST_VTYPE_VSOCK }
};
#define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst))
unsigned int i, fst_type;
fst_type = PS_FST_VTYPE_UNKNOWN;
for (i = 0; i < NVFTYPES; i++) {
if (type == vt2fst[i].vtype) {
fst_type = vt2fst[i].fst_vtype;
break;
}
}
return (fst_type);
}
static char *
getmnton(kvm_t *kd, struct mount *m)
{
struct mount mnt;
static struct mtab {
struct mtab *next;
struct mount *m;
char mntonname[MNAMELEN + 1];
} *mhead = NULL;
struct mtab *mt;
for (mt = mhead; mt != NULL; mt = mt->next)
if (m == mt->m)
return (mt->mntonname);
if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) {
warnx("can't read mount table at %p", (void *)m);
return (NULL);
}
if ((mt = malloc(sizeof (struct mtab))) == NULL)
err(1, NULL);
mt->m = m;
bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN);
mt->mntonname[MNAMELEN] = '\0';
mt->next = mhead;
mhead = mt;
return (mt->mntonname);
}
/*
* Auxiliary structures and functions to get process environment or
* command line arguments.
*/
struct argvec {
char *buf;
size_t bufsize;
char **argv;
size_t argc;
};
static struct argvec *
argvec_alloc(size_t bufsize)
{
struct argvec *av;
av = malloc(sizeof(*av));
if (av == NULL)
return (NULL);
av->bufsize = bufsize;
av->buf = malloc(av->bufsize);
if (av->buf == NULL) {
free(av);
return (NULL);
}
av->argc = 32;
av->argv = malloc(sizeof(char *) * av->argc);
if (av->argv == NULL) {
free(av->buf);
free(av);
return (NULL);
}
return av;
}
static void
argvec_free(struct argvec * av)
{
free(av->argv);
free(av->buf);
free(av);
}
static char **
getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env)
{
int error, name[4], argc, i;
struct argvec *av, **avp;
enum psc_type type;
size_t len;
char *p, **argv;
assert(procstat);
assert(kp);
if (procstat->type == PROCSTAT_KVM) {
warnx("can't use kvm access method");
return (NULL);
}
if (procstat->type != PROCSTAT_SYSCTL &&
procstat->type != PROCSTAT_CORE) {
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
if (nchr == 0 || nchr > ARG_MAX)
nchr = ARG_MAX;
avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv);
av = *avp;
if (av == NULL)
{
av = argvec_alloc(nchr);
if (av == NULL)
{
warn("malloc(%zu)", nchr);
return (NULL);
}
*avp = av;
} else if (av->bufsize < nchr) {
av->buf = reallocf(av->buf, nchr);
if (av->buf == NULL) {
warn("malloc(%zu)", nchr);
return (NULL);
}
}
if (procstat->type == PROCSTAT_SYSCTL) {
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
name[3] = kp->ki_pid;
len = nchr;
error = sysctl(name, nitems(name), av->buf, &len, NULL, 0);
if (error != 0 && errno != ESRCH && errno != EPERM)
warn("sysctl(kern.proc.%s)", env ? "env" : "args");
if (error != 0 || len == 0)
return (NULL);
} else /* procstat->type == PROCSTAT_CORE */ {
type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV;
len = nchr;
if (procstat_core_get(procstat->core, type, av->buf, &len)
== NULL) {
return (NULL);
}
}
argv = av->argv;
argc = av->argc;
i = 0;
for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) {
argv[i++] = p;
if (i < argc)
continue;
/* Grow argv. */
argc += argc;
argv = realloc(argv, sizeof(char *) * argc);
if (argv == NULL) {
warn("malloc(%zu)", sizeof(char *) * argc);
return (NULL);
}
av->argv = argv;
av->argc = argc;
}
argv[i] = NULL;
return (argv);
}
/*
* Return process command line arguments.
*/
char **
procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
{
return (getargv(procstat, p, nchr, 0));
}
/*
* Free the buffer allocated by procstat_getargv().
*/
void
procstat_freeargv(struct procstat *procstat)
{
if (procstat->argv != NULL) {
argvec_free(procstat->argv);
procstat->argv = NULL;
}
}
/*
* Return process environment.
*/
char **
procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
{
return (getargv(procstat, p, nchr, 1));
}
/*
* Free the buffer allocated by procstat_getenvv().
*/
void
procstat_freeenvv(struct procstat *procstat)
{
if (procstat->envv != NULL) {
argvec_free(procstat->envv);
procstat->envv = NULL;
}
}
static struct kinfo_vmentry *
kinfo_getvmmap_core(struct procstat_core *core, int *cntp)
{
int cnt;
size_t len;
char *buf, *bp, *eb;
struct kinfo_vmentry *kiv, *kp, *kv;
buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len);
if (buf == NULL)
return (NULL);
/*
* XXXMG: The code below is just copy&past from libutil.
* The code duplication can be avoided if libutil
* is extended to provide something like:
* struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf,
* size_t len, int *cntp);
*/
/* Pass 1: count items */
cnt = 0;
bp = buf;
eb = buf + len;
while (bp < eb) {
kv = (struct kinfo_vmentry *)(uintptr_t)bp;
if (kv->kve_structsize == 0)
break;
bp += kv->kve_structsize;
cnt++;
}
kiv = calloc(cnt, sizeof(*kiv));
if (kiv == NULL) {
free(buf);
return (NULL);
}
bp = buf;
eb = buf + len;
kp = kiv;
/* Pass 2: unpack */
while (bp < eb) {
kv = (struct kinfo_vmentry *)(uintptr_t)bp;
if (kv->kve_structsize == 0)
break;
/* Copy/expand into pre-zeroed buffer */
memcpy(kp, kv, kv->kve_structsize);
/* Advance to next packed record */
bp += kv->kve_structsize;
/* Set field size to fixed length, advance */
kp->kve_structsize = sizeof(*kp);
kp++;
}
free(buf);
*cntp = cnt;
return (kiv); /* Caller must free() return value */
}
struct kinfo_vmentry *
procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp,
unsigned int *cntp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
warnx("kvm method is not supported");
return (NULL);
case PROCSTAT_SYSCTL:
return (kinfo_getvmmap(kp->ki_pid, cntp));
case PROCSTAT_CORE:
return (kinfo_getvmmap_core(procstat->core, cntp));
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freevmmap(struct procstat *procstat __unused,
struct kinfo_vmentry *vmmap)
{
free(vmmap);
}
static gid_t *
procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp)
{
struct proc proc;
struct ucred ucred;
gid_t *groups;
size_t len;
assert(kd != NULL);
assert(kp != NULL);
if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
sizeof(proc))) {
warnx("can't read proc struct at %p for pid %d",
kp->ki_paddr, kp->ki_pid);
return (NULL);
}
if (proc.p_ucred == NOCRED)
return (NULL);
if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred,
sizeof(ucred))) {
warnx("can't read ucred struct at %p for pid %d",
proc.p_ucred, kp->ki_pid);
return (NULL);
}
len = ucred.cr_ngroups * sizeof(gid_t);
groups = malloc(len);
if (groups == NULL) {
warn("malloc(%zu)", len);
return (NULL);
}
if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) {
warnx("can't read groups at %p for pid %d",
ucred.cr_groups, kp->ki_pid);
free(groups);
return (NULL);
}
*cntp = ucred.cr_ngroups;
return (groups);
}
static gid_t *
procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp)
{
int mib[4];
size_t len;
gid_t *groups;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_GROUPS;
mib[3] = pid;
len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t);
groups = malloc(len);
if (groups == NULL) {
warn("malloc(%zu)", len);
return (NULL);
}
if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) {
warn("sysctl: kern.proc.groups: %d", pid);
free(groups);
return (NULL);
}
*cntp = len / sizeof(gid_t);
return (groups);
}
static gid_t *
procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp)
{
size_t len;
gid_t *groups;
groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len);
if (groups == NULL)
return (NULL);
*cntp = len / sizeof(gid_t);
return (groups);
}
gid_t *
procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp,
unsigned int *cntp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
return (procstat_getgroups_kvm(procstat->kd, kp, cntp));
case PROCSTAT_SYSCTL:
return (procstat_getgroups_sysctl(kp->ki_pid, cntp));
case PROCSTAT_CORE:
return (procstat_getgroups_core(procstat->core, cntp));
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freegroups(struct procstat *procstat __unused, gid_t *groups)
{
free(groups);
}
static int
procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp)
{
struct filedesc fd;
assert(kd != NULL);
assert(kp != NULL);
if (kp->ki_fd == NULL)
return (-1);
if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &fd, sizeof(fd))) {
warnx("can't read filedesc at %p for pid %d", kp->ki_fd,
kp->ki_pid);
return (-1);
}
*maskp = fd.fd_cmask;
return (0);
}
static int
procstat_getumask_sysctl(pid_t pid, unsigned short *maskp)
{
int error;
int mib[4];
size_t len;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_UMASK;
mib[3] = pid;
len = sizeof(*maskp);
error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0);
if (error != 0 && errno != ESRCH && errno != EPERM)
warn("sysctl: kern.proc.umask: %d", pid);
return (error);
}
static int
procstat_getumask_core(struct procstat_core *core, unsigned short *maskp)
{
size_t len;
unsigned short *buf;
buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len);
if (buf == NULL)
return (-1);
if (len < sizeof(*maskp)) {
free(buf);
return (-1);
}
*maskp = *buf;
free(buf);
return (0);
}
int
procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp,
unsigned short *maskp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
return (procstat_getumask_kvm(procstat->kd, kp, maskp));
case PROCSTAT_SYSCTL:
return (procstat_getumask_sysctl(kp->ki_pid, maskp));
case PROCSTAT_CORE:
return (procstat_getumask_core(procstat->core, maskp));
default:
warnx("unknown access method: %d", procstat->type);
return (-1);
}
}
static int
procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which,
struct rlimit* rlimit)
{
struct proc proc;
unsigned long offset;
assert(kd != NULL);
assert(kp != NULL);
assert(which >= 0 && which < RLIM_NLIMITS);
if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
sizeof(proc))) {
warnx("can't read proc struct at %p for pid %d",
kp->ki_paddr, kp->ki_pid);
return (-1);
}
if (proc.p_limit == NULL)
return (-1);
offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which;
if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) {
warnx("can't read rlimit struct at %p for pid %d",
(void *)offset, kp->ki_pid);
return (-1);
}
return (0);
}
static int
procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit)
{
int error, name[5];
size_t len;
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_RLIMIT;
name[3] = pid;
name[4] = which;
len = sizeof(struct rlimit);
error = sysctl(name, nitems(name), rlimit, &len, NULL, 0);
if (error < 0 && errno != ESRCH) {
warn("sysctl: kern.proc.rlimit: %d", pid);
return (-1);
}
if (error < 0 || len != sizeof(struct rlimit))
return (-1);
return (0);
}
static int
procstat_getrlimit_core(struct procstat_core *core, int which,
struct rlimit* rlimit)
{
size_t len;
struct rlimit* rlimits;
if (which < 0 || which >= RLIM_NLIMITS) {
errno = EINVAL;
warn("getrlimit: which");
return (-1);
}
rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len);
if (rlimits == NULL)
return (-1);
if (len < sizeof(struct rlimit) * RLIM_NLIMITS) {
free(rlimits);
return (-1);
}
*rlimit = rlimits[which];
free(rlimits);
return (0);
}
int
procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which,
struct rlimit* rlimit)
{
switch(procstat->type) {
case PROCSTAT_KVM:
return (procstat_getrlimit_kvm(procstat->kd, kp, which,
rlimit));
case PROCSTAT_SYSCTL:
return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit));
case PROCSTAT_CORE:
return (procstat_getrlimit_core(procstat->core, which, rlimit));
default:
warnx("unknown access method: %d", procstat->type);
return (-1);
}
}
static int
procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen)
{
int error, name[4];
size_t len;
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_PATHNAME;
name[3] = pid;
len = maxlen;
error = sysctl(name, nitems(name), pathname, &len, NULL, 0);
if (error != 0 && errno != ESRCH)
warn("sysctl: kern.proc.pathname: %d", pid);
if (len == 0)
pathname[0] = '\0';
return (error);
}
static int
procstat_getpathname_core(struct procstat_core *core, char *pathname,
size_t maxlen)
{
struct kinfo_file *files;
int cnt, i, result;
files = kinfo_getfile_core(core, &cnt);
if (files == NULL)
return (-1);
result = -1;
for (i = 0; i < cnt; i++) {
if (files[i].kf_fd != KF_FD_TYPE_TEXT)
continue;
strncpy(pathname, files[i].kf_path, maxlen);
result = 0;
break;
}
free(files);
return (result);
}
int
procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp,
char *pathname, size_t maxlen)
{
switch(procstat->type) {
case PROCSTAT_KVM:
/* XXX: Return empty string. */
if (maxlen > 0)
pathname[0] = '\0';
return (0);
case PROCSTAT_SYSCTL:
return (procstat_getpathname_sysctl(kp->ki_pid, pathname,
maxlen));
case PROCSTAT_CORE:
return (procstat_getpathname_core(procstat->core, pathname,
maxlen));
default:
warnx("unknown access method: %d", procstat->type);
return (-1);
}
}
static int
procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp)
{
struct proc proc;
assert(kd != NULL);
assert(kp != NULL);
if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
sizeof(proc))) {
warnx("can't read proc struct at %p for pid %d",
kp->ki_paddr, kp->ki_pid);
return (-1);
}
*osrelp = proc.p_osrel;
return (0);
}
static int
procstat_getosrel_sysctl(pid_t pid, int *osrelp)
{
int error, name[4];
size_t len;
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_OSREL;
name[3] = pid;
len = sizeof(*osrelp);
error = sysctl(name, nitems(name), osrelp, &len, NULL, 0);
if (error != 0 && errno != ESRCH)
warn("sysctl: kern.proc.osrel: %d", pid);
return (error);
}
static int
procstat_getosrel_core(struct procstat_core *core, int *osrelp)
{
size_t len;
int *buf;
buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len);
if (buf == NULL)
return (-1);
if (len < sizeof(*osrelp)) {
free(buf);
return (-1);
}
*osrelp = *buf;
free(buf);
return (0);
}
int
procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
return (procstat_getosrel_kvm(procstat->kd, kp, osrelp));
case PROCSTAT_SYSCTL:
return (procstat_getosrel_sysctl(kp->ki_pid, osrelp));
case PROCSTAT_CORE:
return (procstat_getosrel_core(procstat->core, osrelp));
default:
warnx("unknown access method: %d", procstat->type);
return (-1);
}
}
#define PROC_AUXV_MAX 256
#if __ELF_WORD_SIZE == 64
static const char *elf32_sv_names[] = {
"Linux ELF32",
"FreeBSD ELF32",
};
static int
is_elf32_sysctl(pid_t pid)
{
int error, name[4];
size_t len, i;
static char sv_name[256];
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_SV_NAME;
name[3] = pid;
len = sizeof(sv_name);
error = sysctl(name, nitems(name), sv_name, &len, NULL, 0);
if (error != 0 || len == 0)
return (0);
for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) {
if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0)
return (1);
}
return (0);
}
static Elf_Auxinfo *
procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp)
{
Elf_Auxinfo *auxv;
Elf32_Auxinfo *auxv32;
void *ptr;
size_t len;
unsigned int i, count;
int name[4];
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_AUXV;
name[3] = pid;
len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo);
auxv = NULL;
auxv32 = malloc(len);
if (auxv32 == NULL) {
warn("malloc(%zu)", len);
goto out;
}
if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) {
if (errno != ESRCH && errno != EPERM)
warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
goto out;
}
count = len / sizeof(Elf_Auxinfo);
auxv = malloc(count * sizeof(Elf_Auxinfo));
if (auxv == NULL) {
warn("malloc(%zu)", count * sizeof(Elf_Auxinfo));
goto out;
}
for (i = 0; i < count; i++) {
/*
* XXX: We expect that values for a_type on a 32-bit platform
* are directly mapped to values on 64-bit one, which is not
* necessarily true.
*/
auxv[i].a_type = auxv32[i].a_type;
ptr = &auxv32[i].a_un;
auxv[i].a_un.a_val = *((uint32_t *)ptr);
}
*cntp = count;
out:
free(auxv32);
return (auxv);
}
#endif /* __ELF_WORD_SIZE == 64 */
static Elf_Auxinfo *
procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp)
{
Elf_Auxinfo *auxv;
int name[4];
size_t len;
#if __ELF_WORD_SIZE == 64
if (is_elf32_sysctl(pid))
return (procstat_getauxv32_sysctl(pid, cntp));
#endif
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_AUXV;
name[3] = pid;
len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo);
auxv = malloc(len);
if (auxv == NULL) {
warn("malloc(%zu)", len);
return (NULL);
}
if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) {
if (errno != ESRCH && errno != EPERM)
warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
free(auxv);
return (NULL);
}
*cntp = len / sizeof(Elf_Auxinfo);
return (auxv);
}
static Elf_Auxinfo *
procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp)
{
Elf_Auxinfo *auxv;
size_t len;
auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len);
if (auxv == NULL)
return (NULL);
*cntp = len / sizeof(Elf_Auxinfo);
return (auxv);
}
Elf_Auxinfo *
procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp,
unsigned int *cntp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
warnx("kvm method is not supported");
return (NULL);
case PROCSTAT_SYSCTL:
return (procstat_getauxv_sysctl(kp->ki_pid, cntp));
case PROCSTAT_CORE:
return (procstat_getauxv_core(procstat->core, cntp));
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv)
{
free(auxv);
}
static struct ptrace_lwpinfo *
procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp)
{
void *buf;
struct ptrace_lwpinfo *pl;
unsigned int cnt;
size_t len;
cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO);
if (cnt == 0)
return (NULL);
len = cnt * sizeof(*pl);
buf = calloc(1, len);
pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len);
if (pl == NULL) {
free(buf);
return (NULL);
}
*cntp = len / sizeof(*pl);
return (pl);
}
struct ptrace_lwpinfo *
procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp)
{
switch (procstat->type) {
case PROCSTAT_KVM:
warnx("kvm method is not supported");
return (NULL);
case PROCSTAT_SYSCTL:
warnx("sysctl method is not supported");
return (NULL);
case PROCSTAT_CORE:
return (procstat_getptlwpinfo_core(procstat->core, cntp));
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freeptlwpinfo(struct procstat *procstat __unused,
struct ptrace_lwpinfo *pl)
{
free(pl);
}
static struct kinfo_kstack *
procstat_getkstack_sysctl(pid_t pid, int *cntp)
{
struct kinfo_kstack *kkstp;
int error, name[4];
size_t len;
name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_KSTACK;
name[3] = pid;
len = 0;
error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) {
warn("sysctl: kern.proc.kstack: %d", pid);
return (NULL);
}
if (error == -1 && errno == ENOENT) {
warnx("sysctl: kern.proc.kstack unavailable"
" (options DDB or options STACK required in kernel)");
return (NULL);
}
if (error == -1)
return (NULL);
kkstp = malloc(len);
if (kkstp == NULL) {
warn("malloc(%zu)", len);
return (NULL);
}
if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1) {
warn("sysctl: kern.proc.pid: %d", pid);
free(kkstp);
return (NULL);
}
*cntp = len / sizeof(*kkstp);
return (kkstp);
}
struct kinfo_kstack *
procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp,
unsigned int *cntp)
{
switch(procstat->type) {
case PROCSTAT_KVM:
warnx("kvm method is not supported");
return (NULL);
case PROCSTAT_SYSCTL:
return (procstat_getkstack_sysctl(kp->ki_pid, cntp));
case PROCSTAT_CORE:
warnx("core method is not supported");
return (NULL);
default:
warnx("unknown access method: %d", procstat->type);
return (NULL);
}
}
void
procstat_freekstack(struct procstat *procstat __unused,
struct kinfo_kstack *kkstp)
{
free(kkstp);
}