ed6aff7387
Due to some interesting cpp tricks in lockmgr, the LINT kernel shrinks by 924 bytes.
11426 lines
280 KiB
C
11426 lines
280 KiB
C
/*
|
|
* Device driver optimized for the Symbios/LSI 53C896/53C895A/53C1010
|
|
* PCI-SCSI controllers.
|
|
*
|
|
* Copyright (C) 1999-2000 Gerard Roudier <groudier@club-internet.fr>
|
|
*
|
|
* This driver also supports the following Symbios/LSI PCI-SCSI chips:
|
|
* 53C810A, 53C825A, 53C860, 53C875, 53C876, 53C885, 53C895.
|
|
*
|
|
* but does not support earlier chips as the following ones:
|
|
* 53C810, 53C815, 53C825.
|
|
*
|
|
* This driver for FreeBSD-CAM is derived from the Linux sym53c8xx driver.
|
|
* Copyright (C) 1998-1999 Gerard Roudier
|
|
*
|
|
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
|
|
* a port of the FreeBSD ncr driver to Linux-1.2.13.
|
|
*
|
|
* The original ncr driver has been written for 386bsd and FreeBSD by
|
|
* Wolfgang Stanglmeier <wolf@cologne.de>
|
|
* Stefan Esser <se@mi.Uni-Koeln.de>
|
|
* Copyright (C) 1994 Wolfgang Stanglmeier
|
|
*
|
|
* The initialisation code, and part of the code that addresses
|
|
* FreeBSD-CAM services is based on the aic7xxx driver for FreeBSD-CAM
|
|
* written by Justin T. Gibbs.
|
|
*
|
|
* Other major contributions:
|
|
*
|
|
* NVRAM detection and reading.
|
|
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
|
|
*
|
|
*-----------------------------------------------------------------------------
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* $FreeBSD$ */
|
|
|
|
#define SYM_DRIVER_NAME "sym-1.4.3-20000415"
|
|
|
|
#include <pci.h>
|
|
#include <stddef.h> /* For offsetof */
|
|
|
|
#include <sys/param.h>
|
|
/*
|
|
* Only use the BUS stuff for PCI under FreeBSD 4 and later versions.
|
|
* Note that the old BUS stuff also works for FreeBSD 4 and spares
|
|
* about 1.5KB for the driver object file.
|
|
*/
|
|
#if __FreeBSD_version >= 400000
|
|
#define FreeBSD_Bus_Io_Abstraction
|
|
#define FreeBSD_Bus_Dma_Abstraction
|
|
#endif
|
|
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
#include <sys/module.h>
|
|
#include <sys/bus.h>
|
|
#endif
|
|
|
|
#include <sys/proc.h>
|
|
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus_pio.h>
|
|
#include <machine/bus.h>
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
#include <machine/resource.h>
|
|
#include <sys/rman.h>
|
|
#endif
|
|
#include <machine/clock.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_sim.h>
|
|
#include <cam/cam_xpt_sim.h>
|
|
#include <cam/cam_debug.h>
|
|
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_message.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#if 0
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <vm/vm_extern.h>
|
|
#endif
|
|
|
|
/* Short and quite clear integer types */
|
|
typedef int8_t s8;
|
|
typedef int16_t s16;
|
|
typedef int32_t s32;
|
|
typedef u_int8_t u8;
|
|
typedef u_int16_t u16;
|
|
typedef u_int32_t u32;
|
|
|
|
/* Driver configuration and definitions */
|
|
#if 1
|
|
#include "opt_sym.h"
|
|
#include <dev/sym/sym_conf.h>
|
|
#include <dev/sym/sym_defs.h>
|
|
#else
|
|
#include "ncr.h" /* To know if the ncr has been configured */
|
|
#include <pci/sym_conf.h>
|
|
#include <pci/sym_defs.h>
|
|
#endif
|
|
|
|
/*
|
|
* On x86 architecture, write buffers management does not
|
|
* reorder writes to memory. So, preventing compiler from
|
|
* optimizing the code is enough to guarantee some ordering
|
|
* when the CPU is writing data accessed by the PCI chip.
|
|
* On Alpha architecture, explicit barriers are to be used.
|
|
* By the way, the *BSD semantic associates the barrier
|
|
* with some window on the BUS and the corresponding verbs
|
|
* are for now unused. What a strangeness. The driver must
|
|
* ensure that accesses from the CPU to the start and done
|
|
* queues are not reordered by either the compiler or the
|
|
* CPU and uses 'volatile' for this purpose.
|
|
*/
|
|
|
|
#ifdef __alpha__
|
|
#define MEMORY_BARRIER() alpha_mb()
|
|
#else /*__i386__*/
|
|
#define MEMORY_BARRIER() do { ; } while(0)
|
|
#endif
|
|
|
|
/*
|
|
* A la VMS/CAM-3 queue management.
|
|
*/
|
|
|
|
typedef struct sym_quehead {
|
|
struct sym_quehead *flink; /* Forward pointer */
|
|
struct sym_quehead *blink; /* Backward pointer */
|
|
} SYM_QUEHEAD;
|
|
|
|
#define sym_que_init(ptr) do { \
|
|
(ptr)->flink = (ptr); (ptr)->blink = (ptr); \
|
|
} while (0)
|
|
|
|
static __inline struct sym_quehead *sym_que_first(struct sym_quehead *head)
|
|
{
|
|
return (head->flink == head) ? 0 : head->flink;
|
|
}
|
|
|
|
static __inline struct sym_quehead *sym_que_last(struct sym_quehead *head)
|
|
{
|
|
return (head->blink == head) ? 0 : head->blink;
|
|
}
|
|
|
|
static __inline void __sym_que_add(struct sym_quehead * new,
|
|
struct sym_quehead * blink,
|
|
struct sym_quehead * flink)
|
|
{
|
|
flink->blink = new;
|
|
new->flink = flink;
|
|
new->blink = blink;
|
|
blink->flink = new;
|
|
}
|
|
|
|
static __inline void __sym_que_del(struct sym_quehead * blink,
|
|
struct sym_quehead * flink)
|
|
{
|
|
flink->blink = blink;
|
|
blink->flink = flink;
|
|
}
|
|
|
|
static __inline int sym_que_empty(struct sym_quehead *head)
|
|
{
|
|
return head->flink == head;
|
|
}
|
|
|
|
static __inline void sym_que_splice(struct sym_quehead *list,
|
|
struct sym_quehead *head)
|
|
{
|
|
struct sym_quehead *first = list->flink;
|
|
|
|
if (first != list) {
|
|
struct sym_quehead *last = list->blink;
|
|
struct sym_quehead *at = head->flink;
|
|
|
|
first->blink = head;
|
|
head->flink = first;
|
|
|
|
last->flink = at;
|
|
at->blink = last;
|
|
}
|
|
}
|
|
|
|
#define sym_que_entry(ptr, type, member) \
|
|
((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))
|
|
|
|
|
|
#define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink)
|
|
|
|
#define sym_remque(el) __sym_que_del((el)->blink, (el)->flink)
|
|
|
|
#define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink)
|
|
|
|
static __inline struct sym_quehead *sym_remque_head(struct sym_quehead *head)
|
|
{
|
|
struct sym_quehead *elem = head->flink;
|
|
|
|
if (elem != head)
|
|
__sym_que_del(head, elem->flink);
|
|
else
|
|
elem = 0;
|
|
return elem;
|
|
}
|
|
|
|
#define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head)
|
|
|
|
static __inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head)
|
|
{
|
|
struct sym_quehead *elem = head->blink;
|
|
|
|
if (elem != head)
|
|
__sym_que_del(elem->blink, head);
|
|
else
|
|
elem = 0;
|
|
return elem;
|
|
}
|
|
|
|
/*
|
|
* This one may be usefull.
|
|
*/
|
|
#define FOR_EACH_QUEUED_ELEMENT(head, qp) \
|
|
for (qp = (head)->flink; qp != (head); qp = qp->flink)
|
|
/*
|
|
* FreeBSD does not offer our kind of queue in the CAM CCB.
|
|
* So, we have to cast.
|
|
*/
|
|
#define sym_qptr(p) ((struct sym_quehead *) (p))
|
|
|
|
/*
|
|
* Simple bitmap operations.
|
|
*/
|
|
#define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f)))
|
|
#define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f)))
|
|
#define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f)))
|
|
|
|
/*
|
|
* Number of tasks per device we want to handle.
|
|
*/
|
|
#if SYM_CONF_MAX_TAG_ORDER > 8
|
|
#error "more than 256 tags per logical unit not allowed."
|
|
#endif
|
|
#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
|
|
|
|
/*
|
|
* Donnot use more tasks that we can handle.
|
|
*/
|
|
#ifndef SYM_CONF_MAX_TAG
|
|
#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
|
|
#endif
|
|
#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
|
|
#undef SYM_CONF_MAX_TAG
|
|
#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
|
|
#endif
|
|
|
|
/*
|
|
* This one means 'NO TAG for this job'
|
|
*/
|
|
#define NO_TAG (256)
|
|
|
|
/*
|
|
* Number of SCSI targets.
|
|
*/
|
|
#if SYM_CONF_MAX_TARGET > 16
|
|
#error "more than 16 targets not allowed."
|
|
#endif
|
|
|
|
/*
|
|
* Number of logical units per target.
|
|
*/
|
|
#if SYM_CONF_MAX_LUN > 64
|
|
#error "more than 64 logical units per target not allowed."
|
|
#endif
|
|
|
|
/*
|
|
* Asynchronous pre-scaler (ns). Shall be 40 for
|
|
* the SCSI timings to be compliant.
|
|
*/
|
|
#define SYM_CONF_MIN_ASYNC (40)
|
|
|
|
/*
|
|
* Number of entries in the START and DONE queues.
|
|
*
|
|
* We limit to 1 PAGE in order to succeed allocation of
|
|
* these queues. Each entry is 8 bytes long (2 DWORDS).
|
|
*/
|
|
#ifdef SYM_CONF_MAX_START
|
|
#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
|
|
#else
|
|
#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
|
|
#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
|
|
#endif
|
|
|
|
#if SYM_CONF_MAX_QUEUE > PAGE_SIZE/8
|
|
#undef SYM_CONF_MAX_QUEUE
|
|
#define SYM_CONF_MAX_QUEUE PAGE_SIZE/8
|
|
#undef SYM_CONF_MAX_START
|
|
#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
|
|
#endif
|
|
|
|
/*
|
|
* For this one, we want a short name :-)
|
|
*/
|
|
#define MAX_QUEUE SYM_CONF_MAX_QUEUE
|
|
|
|
/*
|
|
* These ones should have been already defined.
|
|
*/
|
|
#ifndef offsetof
|
|
#define offsetof(t, m) ((size_t) (&((t *)0)->m))
|
|
#endif
|
|
#ifndef MIN
|
|
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
|
|
#endif
|
|
|
|
/*
|
|
* Active debugging tags and verbosity.
|
|
*/
|
|
#define DEBUG_ALLOC (0x0001)
|
|
#define DEBUG_PHASE (0x0002)
|
|
#define DEBUG_POLL (0x0004)
|
|
#define DEBUG_QUEUE (0x0008)
|
|
#define DEBUG_RESULT (0x0010)
|
|
#define DEBUG_SCATTER (0x0020)
|
|
#define DEBUG_SCRIPT (0x0040)
|
|
#define DEBUG_TINY (0x0080)
|
|
#define DEBUG_TIMING (0x0100)
|
|
#define DEBUG_NEGO (0x0200)
|
|
#define DEBUG_TAGS (0x0400)
|
|
#define DEBUG_POINTER (0x0800)
|
|
|
|
#if 0
|
|
static int sym_debug = 0;
|
|
#define DEBUG_FLAGS sym_debug
|
|
#else
|
|
/* #define DEBUG_FLAGS (0x0631) */
|
|
#define DEBUG_FLAGS (0x0000)
|
|
|
|
#endif
|
|
#define sym_verbose (np->verbose)
|
|
|
|
/*
|
|
* Copy from main memory to PCI memory space.
|
|
*/
|
|
#ifdef __alpha__
|
|
#define memcpy_to_pci(d, s, n) memcpy_toio((u32)(d), (void *)(s), (n))
|
|
#else /*__i386__*/
|
|
#define memcpy_to_pci(d, s, n) bcopy((s), (void *)(d), (n))
|
|
#endif
|
|
|
|
/*
|
|
* Insert a delay in micro-seconds and milli-seconds.
|
|
*/
|
|
static void UDELAY(long us) { DELAY(us); }
|
|
static void MDELAY(long ms) { while (ms--) UDELAY(1000); }
|
|
|
|
/*
|
|
* Simple power of two buddy-like allocator.
|
|
*
|
|
* This simple code is not intended to be fast, but to
|
|
* provide power of 2 aligned memory allocations.
|
|
* Since the SCRIPTS processor only supplies 8 bit arithmetic,
|
|
* this allocator allows simple and fast address calculations
|
|
* from the SCRIPTS code. In addition, cache line alignment
|
|
* is guaranteed for power of 2 cache line size.
|
|
*
|
|
* This allocator has been developped for the Linux sym53c8xx
|
|
* driver, since this O/S does not provide naturally aligned
|
|
* allocations.
|
|
* It has the vertue to allow the driver to use private pages
|
|
* of memory that will be useful if we ever need to deal with
|
|
* IO MMU for PCI.
|
|
*/
|
|
|
|
#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
|
|
#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
|
|
#if 0
|
|
#define MEMO_FREE_UNUSED /* Free unused pages immediately */
|
|
#endif
|
|
#define MEMO_WARN 1
|
|
#define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
|
|
#define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
|
|
#define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
|
|
|
|
#define get_pages() malloc(MEMO_CLUSTER_SIZE, M_DEVBUF, M_NOWAIT)
|
|
#define free_pages(p) free((p), M_DEVBUF)
|
|
|
|
typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
|
|
|
|
typedef struct m_link { /* Link between free memory chunks */
|
|
struct m_link *next;
|
|
} m_link_s;
|
|
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
typedef struct m_vtob { /* Virtual to Bus address translation */
|
|
struct m_vtob *next;
|
|
bus_dmamap_t dmamap; /* Map for this chunk */
|
|
m_addr_t vaddr; /* Virtual address */
|
|
m_addr_t baddr; /* Bus physical address */
|
|
} m_vtob_s;
|
|
/* Hash this stuff a bit to speed up translations */
|
|
#define VTOB_HASH_SHIFT 5
|
|
#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
|
|
#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
|
|
#define VTOB_HASH_CODE(m) \
|
|
((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
|
|
#endif
|
|
|
|
typedef struct m_pool { /* Memory pool of a given kind */
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
bus_dma_tag_t dev_dmat; /* Identifies the pool */
|
|
bus_dma_tag_t dmat; /* Tag for our fixed allocations */
|
|
m_addr_t (*getp)(struct m_pool *);
|
|
#ifdef MEMO_FREE_UNUSED
|
|
void (*freep)(struct m_pool *, m_addr_t);
|
|
#endif
|
|
#define M_GETP() mp->getp(mp)
|
|
#define M_FREEP(p) mp->freep(mp, p)
|
|
int nump;
|
|
m_vtob_s *(vtob[VTOB_HASH_SIZE]);
|
|
struct m_pool *next;
|
|
#else
|
|
#define M_GETP() get_pages()
|
|
#define M_FREEP(p) free_pages(p)
|
|
#endif /* FreeBSD_Bus_Dma_Abstraction */
|
|
struct m_link h[MEMO_CLUSTER_SHIFT - MEMO_SHIFT + 1];
|
|
} m_pool_s;
|
|
|
|
static void *___sym_malloc(m_pool_s *mp, int size)
|
|
{
|
|
int i = 0;
|
|
int s = (1 << MEMO_SHIFT);
|
|
int j;
|
|
m_addr_t a;
|
|
m_link_s *h = mp->h;
|
|
|
|
if (size > MEMO_CLUSTER_SIZE)
|
|
return 0;
|
|
|
|
while (size > s) {
|
|
s <<= 1;
|
|
++i;
|
|
}
|
|
|
|
j = i;
|
|
while (!h[j].next) {
|
|
if (s == MEMO_CLUSTER_SIZE) {
|
|
h[j].next = (m_link_s *) M_GETP();
|
|
if (h[j].next)
|
|
h[j].next->next = 0;
|
|
break;
|
|
}
|
|
++j;
|
|
s <<= 1;
|
|
}
|
|
a = (m_addr_t) h[j].next;
|
|
if (a) {
|
|
h[j].next = h[j].next->next;
|
|
while (j > i) {
|
|
j -= 1;
|
|
s >>= 1;
|
|
h[j].next = (m_link_s *) (a+s);
|
|
h[j].next->next = 0;
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
printf("___sym_malloc(%d) = %p\n", size, (void *) a);
|
|
#endif
|
|
return (void *) a;
|
|
}
|
|
|
|
static void ___sym_mfree(m_pool_s *mp, void *ptr, int size)
|
|
{
|
|
int i = 0;
|
|
int s = (1 << MEMO_SHIFT);
|
|
m_link_s *q;
|
|
m_addr_t a, b;
|
|
m_link_s *h = mp->h;
|
|
|
|
#ifdef DEBUG
|
|
printf("___sym_mfree(%p, %d)\n", ptr, size);
|
|
#endif
|
|
|
|
if (size > MEMO_CLUSTER_SIZE)
|
|
return;
|
|
|
|
while (size > s) {
|
|
s <<= 1;
|
|
++i;
|
|
}
|
|
|
|
a = (m_addr_t) ptr;
|
|
|
|
while (1) {
|
|
#ifdef MEMO_FREE_UNUSED
|
|
if (s == MEMO_CLUSTER_SIZE) {
|
|
M_FREEP(a);
|
|
break;
|
|
}
|
|
#endif
|
|
b = a ^ s;
|
|
q = &h[i];
|
|
while (q->next && q->next != (m_link_s *) b) {
|
|
q = q->next;
|
|
}
|
|
if (!q->next) {
|
|
((m_link_s *) a)->next = h[i].next;
|
|
h[i].next = (m_link_s *) a;
|
|
break;
|
|
}
|
|
q->next = q->next->next;
|
|
a = a & b;
|
|
s <<= 1;
|
|
++i;
|
|
}
|
|
}
|
|
|
|
static void *__sym_calloc2(m_pool_s *mp, int size, char *name, int uflags)
|
|
{
|
|
void *p;
|
|
|
|
p = ___sym_malloc(mp, size);
|
|
|
|
if (DEBUG_FLAGS & DEBUG_ALLOC)
|
|
printf ("new %-10s[%4d] @%p.\n", name, size, p);
|
|
|
|
if (p)
|
|
bzero(p, size);
|
|
else if (uflags & MEMO_WARN)
|
|
printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
|
|
|
|
return p;
|
|
}
|
|
|
|
#define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, MEMO_WARN)
|
|
|
|
static void __sym_mfree(m_pool_s *mp, void *ptr, int size, char *name)
|
|
{
|
|
if (DEBUG_FLAGS & DEBUG_ALLOC)
|
|
printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
|
|
|
|
___sym_mfree(mp, ptr, size);
|
|
|
|
}
|
|
|
|
/*
|
|
* Default memory pool we donnot need to involve in DMA.
|
|
*/
|
|
#ifndef FreeBSD_Bus_Dma_Abstraction
|
|
/*
|
|
* Without the `bus dma abstraction', all the memory is assumed
|
|
* DMAable and a single pool is all what we need.
|
|
*/
|
|
static m_pool_s mp0;
|
|
|
|
#else
|
|
/*
|
|
* With the `bus dma abstraction', we use a separate pool for
|
|
* memory we donnot need to involve in DMA.
|
|
*/
|
|
static m_addr_t ___mp0_getp(m_pool_s *mp)
|
|
{
|
|
m_addr_t m = (m_addr_t) get_pages();
|
|
if (m)
|
|
++mp->nump;
|
|
return m;
|
|
}
|
|
|
|
#ifdef MEMO_FREE_UNUSED
|
|
static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
|
|
{
|
|
free_pages(m);
|
|
--mp->nump;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MEMO_FREE_UNUSED
|
|
static m_pool_s mp0 = {0, 0, ___mp0_getp, ___mp0_freep};
|
|
#else
|
|
static m_pool_s mp0 = {0, 0, ___mp0_getp};
|
|
#endif
|
|
|
|
#endif /* FreeBSD_Bus_Dma_Abstraction */
|
|
|
|
/*
|
|
* Actual memory allocation routine for non-DMAed memory.
|
|
*/
|
|
static void *sym_calloc(int size, char *name)
|
|
{
|
|
void *m;
|
|
/* Lock */
|
|
m = __sym_calloc(&mp0, size, name);
|
|
/* Unlock */
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* Actual memory allocation routine for non-DMAed memory.
|
|
*/
|
|
static void sym_mfree(void *ptr, int size, char *name)
|
|
{
|
|
/* Lock */
|
|
__sym_mfree(&mp0, ptr, size, name);
|
|
/* Unlock */
|
|
}
|
|
|
|
/*
|
|
* DMAable pools.
|
|
*/
|
|
#ifndef FreeBSD_Bus_Dma_Abstraction
|
|
/*
|
|
* Without `bus dma abstraction', all the memory is DMAable, and
|
|
* only a single pool is needed (vtophys() is our friend).
|
|
*/
|
|
#define __sym_calloc_dma(b, s, n) sym_calloc(s, n)
|
|
#define __sym_mfree_dma(b, p, s, n) sym_mfree(p, s, n)
|
|
#ifdef __alpha__
|
|
#define __vtobus(b, p) alpha_XXX_dmamap((vm_offset_t)(p))
|
|
#else /*__i386__*/
|
|
#define __vtobus(b, p) vtophys(p)
|
|
#endif
|
|
|
|
#else
|
|
/*
|
|
* With `bus dma abstraction', we use a separate pool per parent
|
|
* BUS handle. A reverse table (hashed) is maintained for virtual
|
|
* to BUS address translation.
|
|
*/
|
|
static void getbaddrcb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
bus_addr_t *baddr;
|
|
baddr = (bus_addr_t *)arg;
|
|
*baddr = segs->ds_addr;
|
|
}
|
|
|
|
static m_addr_t ___dma_getp(m_pool_s *mp)
|
|
{
|
|
m_vtob_s *vbp;
|
|
void *vaddr = 0;
|
|
bus_addr_t baddr = 0;
|
|
|
|
vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
|
|
if (!vbp)
|
|
goto out_err;
|
|
|
|
if (bus_dmamem_alloc(mp->dmat, &vaddr,
|
|
BUS_DMA_NOWAIT, &vbp->dmamap))
|
|
goto out_err;
|
|
bus_dmamap_load(mp->dmat, vbp->dmamap, vaddr,
|
|
MEMO_CLUSTER_SIZE, getbaddrcb, &baddr, 0);
|
|
if (baddr) {
|
|
int hc = VTOB_HASH_CODE(vaddr);
|
|
vbp->vaddr = (m_addr_t) vaddr;
|
|
vbp->baddr = (m_addr_t) baddr;
|
|
vbp->next = mp->vtob[hc];
|
|
mp->vtob[hc] = vbp;
|
|
++mp->nump;
|
|
return (m_addr_t) vaddr;
|
|
}
|
|
out_err:
|
|
if (baddr)
|
|
bus_dmamap_unload(mp->dmat, vbp->dmamap);
|
|
if (vaddr)
|
|
bus_dmamem_free(mp->dmat, vaddr, vbp->dmamap);
|
|
if (vbp->dmamap)
|
|
bus_dmamap_destroy(mp->dmat, vbp->dmamap);
|
|
if (vbp)
|
|
__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
|
|
return 0;
|
|
}
|
|
|
|
#ifdef MEMO_FREE_UNUSED
|
|
static void ___dma_freep(m_pool_s *mp, m_addr_t m)
|
|
{
|
|
m_vtob_s **vbpp, *vbp;
|
|
int hc = VTOB_HASH_CODE(m);
|
|
|
|
vbpp = &mp->vtob[hc];
|
|
while (*vbpp && (*vbpp)->vaddr != m)
|
|
vbpp = &(*vbpp)->next;
|
|
if (*vbpp) {
|
|
vbp = *vbpp;
|
|
*vbpp = (*vbpp)->next;
|
|
bus_dmamap_unload(mp->dmat, vbp->dmamap);
|
|
bus_dmamem_free(mp->dmat, (void *) vbp->vaddr, vbp->dmamap);
|
|
bus_dmamap_destroy(mp->dmat, vbp->dmamap);
|
|
__sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
|
|
--mp->nump;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static __inline__ m_pool_s *___get_dma_pool(bus_dma_tag_t dev_dmat)
|
|
{
|
|
m_pool_s *mp;
|
|
for (mp = mp0.next; mp && mp->dev_dmat != dev_dmat; mp = mp->next);
|
|
return mp;
|
|
}
|
|
|
|
static m_pool_s *___cre_dma_pool(bus_dma_tag_t dev_dmat)
|
|
{
|
|
m_pool_s *mp = 0;
|
|
|
|
mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
|
|
if (mp) {
|
|
mp->dev_dmat = dev_dmat;
|
|
if (!bus_dma_tag_create(dev_dmat, 1, MEMO_CLUSTER_SIZE,
|
|
BUS_SPACE_MAXADDR_32BIT,
|
|
BUS_SPACE_MAXADDR_32BIT,
|
|
NULL, NULL, MEMO_CLUSTER_SIZE, 1,
|
|
MEMO_CLUSTER_SIZE, 0, &mp->dmat)) {
|
|
mp->getp = ___dma_getp;
|
|
#ifdef MEMO_FREE_UNUSED
|
|
mp->freep = ___dma_freep;
|
|
#endif
|
|
mp->next = mp0.next;
|
|
mp0.next = mp;
|
|
return mp;
|
|
}
|
|
}
|
|
if (mp)
|
|
__sym_mfree(&mp0, mp, sizeof(*mp), "MPOOL");
|
|
return 0;
|
|
}
|
|
|
|
#ifdef MEMO_FREE_UNUSED
|
|
static void ___del_dma_pool(m_pool_s *p)
|
|
{
|
|
struct m_pool **pp = &mp0.next;
|
|
|
|
while (*pp && *pp != p)
|
|
pp = &(*pp)->next;
|
|
if (*pp) {
|
|
*pp = (*pp)->next;
|
|
bus_dma_tag_destroy(p->dmat);
|
|
__sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void *__sym_calloc_dma(bus_dma_tag_t dev_dmat, int size, char *name)
|
|
{
|
|
struct m_pool *mp;
|
|
void *m = 0;
|
|
|
|
/* Lock */
|
|
mp = ___get_dma_pool(dev_dmat);
|
|
if (!mp)
|
|
mp = ___cre_dma_pool(dev_dmat);
|
|
if (mp)
|
|
m = __sym_calloc(mp, size, name);
|
|
#ifdef MEMO_FREE_UNUSED
|
|
if (mp && !mp->nump)
|
|
___del_dma_pool(mp);
|
|
#endif
|
|
/* Unlock */
|
|
|
|
return m;
|
|
}
|
|
|
|
static void
|
|
__sym_mfree_dma(bus_dma_tag_t dev_dmat, void *m, int size, char *name)
|
|
{
|
|
struct m_pool *mp;
|
|
|
|
/* Lock */
|
|
mp = ___get_dma_pool(dev_dmat);
|
|
if (mp)
|
|
__sym_mfree(mp, m, size, name);
|
|
#ifdef MEMO_FREE_UNUSED
|
|
if (mp && !mp->nump)
|
|
___del_dma_pool(mp);
|
|
#endif
|
|
/* Unlock */
|
|
}
|
|
|
|
static m_addr_t __vtobus(bus_dma_tag_t dev_dmat, void *m)
|
|
{
|
|
m_pool_s *mp;
|
|
int hc = VTOB_HASH_CODE(m);
|
|
m_vtob_s *vp = 0;
|
|
m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
|
|
|
|
/* Lock */
|
|
mp = ___get_dma_pool(dev_dmat);
|
|
if (mp) {
|
|
vp = mp->vtob[hc];
|
|
while (vp && (m_addr_t) vp->vaddr != a)
|
|
vp = vp->next;
|
|
}
|
|
/* Unlock */
|
|
if (!vp)
|
|
panic("sym: VTOBUS FAILED!\n");
|
|
return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
|
|
}
|
|
|
|
#endif /* FreeBSD_Bus_Dma_Abstraction */
|
|
|
|
/*
|
|
* Verbs for DMAable memory handling.
|
|
* The _uvptv_ macro avoids a nasty warning about pointer to volatile
|
|
* being discarded.
|
|
*/
|
|
#define _uvptv_(p) ((void *)((vm_offset_t)(p)))
|
|
#define _sym_calloc_dma(np, s, n) __sym_calloc_dma(np->bus_dmat, s, n)
|
|
#define _sym_mfree_dma(np, p, s, n) \
|
|
__sym_mfree_dma(np->bus_dmat, _uvptv_(p), s, n)
|
|
#define sym_calloc_dma(s, n) _sym_calloc_dma(np, s, n)
|
|
#define sym_mfree_dma(p, s, n) _sym_mfree_dma(np, p, s, n)
|
|
#define _vtobus(np, p) __vtobus(np->bus_dmat, _uvptv_(p))
|
|
#define vtobus(p) _vtobus(np, p)
|
|
|
|
|
|
/*
|
|
* Print a buffer in hexadecimal format.
|
|
*/
|
|
static void sym_printb_hex (u_char *p, int n)
|
|
{
|
|
while (n-- > 0)
|
|
printf (" %x", *p++);
|
|
}
|
|
|
|
/*
|
|
* Same with a label at beginning and .\n at end.
|
|
*/
|
|
static void sym_printl_hex (char *label, u_char *p, int n)
|
|
{
|
|
printf ("%s", label);
|
|
sym_printb_hex (p, n);
|
|
printf (".\n");
|
|
}
|
|
|
|
/*
|
|
* Return a string for SCSI BUS mode.
|
|
*/
|
|
static char *sym_scsi_bus_mode(int mode)
|
|
{
|
|
switch(mode) {
|
|
case SMODE_HVD: return "HVD";
|
|
case SMODE_SE: return "SE";
|
|
case SMODE_LVD: return "LVD";
|
|
}
|
|
return "??";
|
|
}
|
|
|
|
/*
|
|
* Some poor sync table that refers to Tekram NVRAM layout.
|
|
*/
|
|
#ifdef SYM_CONF_NVRAM_SUPPORT
|
|
static u_char Tekram_sync[16] =
|
|
{25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10};
|
|
#endif
|
|
|
|
/*
|
|
* Union of supported NVRAM formats.
|
|
*/
|
|
struct sym_nvram {
|
|
int type;
|
|
#define SYM_SYMBIOS_NVRAM (1)
|
|
#define SYM_TEKRAM_NVRAM (2)
|
|
#ifdef SYM_CONF_NVRAM_SUPPORT
|
|
union {
|
|
Symbios_nvram Symbios;
|
|
Tekram_nvram Tekram;
|
|
} data;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* This one is hopefully useless, but actually useful. :-)
|
|
*/
|
|
#ifndef assert
|
|
#define assert(expression) { \
|
|
if (!(expression)) { \
|
|
(void)panic( \
|
|
"assertion \"%s\" failed: file \"%s\", line %d\n", \
|
|
#expression, \
|
|
__FILE__, __LINE__); \
|
|
} \
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Some provision for a possible big endian support.
|
|
* By the way some Symbios chips also may support some kind
|
|
* of big endian byte ordering.
|
|
* For now, this stuff does not deserve any comments. :)
|
|
*/
|
|
|
|
#define sym_offb(o) (o)
|
|
#define sym_offw(o) (o)
|
|
|
|
#define cpu_to_scr(dw) (dw)
|
|
#define scr_to_cpu(dw) (dw)
|
|
|
|
/*
|
|
* Access to the controller chip.
|
|
*
|
|
* If SYM_CONF_IOMAPPED is defined, the driver will use
|
|
* normal IOs instead of the MEMORY MAPPED IO method
|
|
* recommended by PCI specifications.
|
|
*/
|
|
|
|
/*
|
|
* Define some understable verbs so we will not suffer of
|
|
* having to deal with the stupid PC tokens for IO.
|
|
*/
|
|
#define io_read8(p) scr_to_cpu(inb((p)))
|
|
#define io_read16(p) scr_to_cpu(inw((p)))
|
|
#define io_read32(p) scr_to_cpu(inl((p)))
|
|
#define io_write8(p, v) outb((p), cpu_to_scr(v))
|
|
#define io_write16(p, v) outw((p), cpu_to_scr(v))
|
|
#define io_write32(p, v) outl((p), cpu_to_scr(v))
|
|
|
|
#ifdef __alpha__
|
|
|
|
#define mmio_read8(a) readb(a)
|
|
#define mmio_read16(a) readw(a)
|
|
#define mmio_read32(a) readl(a)
|
|
#define mmio_write8(a, b) writeb(a, b)
|
|
#define mmio_write16(a, b) writew(a, b)
|
|
#define mmio_write32(a, b) writel(a, b)
|
|
|
|
#else /*__i386__*/
|
|
|
|
#define mmio_read8(a) scr_to_cpu((*(volatile unsigned char *) (a)))
|
|
#define mmio_read16(a) scr_to_cpu((*(volatile unsigned short *) (a)))
|
|
#define mmio_read32(a) scr_to_cpu((*(volatile unsigned int *) (a)))
|
|
#define mmio_write8(a, b) (*(volatile unsigned char *) (a)) = cpu_to_scr(b)
|
|
#define mmio_write16(a, b) (*(volatile unsigned short *) (a)) = cpu_to_scr(b)
|
|
#define mmio_write32(a, b) (*(volatile unsigned int *) (a)) = cpu_to_scr(b)
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Normal IO
|
|
*/
|
|
#if defined(SYM_CONF_IOMAPPED)
|
|
|
|
#define INB_OFF(o) io_read8(np->io_port + sym_offb(o))
|
|
#define OUTB_OFF(o, v) io_write8(np->io_port + sym_offb(o), (v))
|
|
|
|
#define INW_OFF(o) io_read16(np->io_port + sym_offw(o))
|
|
#define OUTW_OFF(o, v) io_write16(np->io_port + sym_offw(o), (v))
|
|
|
|
#define INL_OFF(o) io_read32(np->io_port + (o))
|
|
#define OUTL_OFF(o, v) io_write32(np->io_port + (o), (v))
|
|
|
|
#else /* Memory mapped IO */
|
|
|
|
#define INB_OFF(o) mmio_read8(np->mmio_va + sym_offb(o))
|
|
#define OUTB_OFF(o, v) mmio_write8(np->mmio_va + sym_offb(o), (v))
|
|
|
|
#define INW_OFF(o) mmio_read16(np->mmio_va + sym_offw(o))
|
|
#define OUTW_OFF(o, v) mmio_write16(np->mmio_va + sym_offw(o), (v))
|
|
|
|
#define INL_OFF(o) mmio_read32(np->mmio_va + (o))
|
|
#define OUTL_OFF(o, v) mmio_write32(np->mmio_va + (o), (v))
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Common to both normal IO and MMIO.
|
|
*/
|
|
#define INB(r) INB_OFF(offsetof(struct sym_reg,r))
|
|
#define INW(r) INW_OFF(offsetof(struct sym_reg,r))
|
|
#define INL(r) INL_OFF(offsetof(struct sym_reg,r))
|
|
|
|
#define OUTB(r, v) OUTB_OFF(offsetof(struct sym_reg,r), (v))
|
|
#define OUTW(r, v) OUTW_OFF(offsetof(struct sym_reg,r), (v))
|
|
#define OUTL(r, v) OUTL_OFF(offsetof(struct sym_reg,r), (v))
|
|
|
|
#define OUTONB(r, m) OUTB(r, INB(r) | (m))
|
|
#define OUTOFFB(r, m) OUTB(r, INB(r) & ~(m))
|
|
#define OUTONW(r, m) OUTW(r, INW(r) | (m))
|
|
#define OUTOFFW(r, m) OUTW(r, INW(r) & ~(m))
|
|
#define OUTONL(r, m) OUTL(r, INL(r) | (m))
|
|
#define OUTOFFL(r, m) OUTL(r, INL(r) & ~(m))
|
|
|
|
/*
|
|
* Command control block states.
|
|
*/
|
|
#define HS_IDLE (0)
|
|
#define HS_BUSY (1)
|
|
#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
|
|
#define HS_DISCONNECT (3) /* Disconnected by target */
|
|
#define HS_WAIT (4) /* waiting for resource */
|
|
|
|
#define HS_DONEMASK (0x80)
|
|
#define HS_COMPLETE (4|HS_DONEMASK)
|
|
#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
|
|
#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
|
|
#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
|
|
|
|
/*
|
|
* Software Interrupt Codes
|
|
*/
|
|
#define SIR_BAD_SCSI_STATUS (1)
|
|
#define SIR_SEL_ATN_NO_MSG_OUT (2)
|
|
#define SIR_MSG_RECEIVED (3)
|
|
#define SIR_MSG_WEIRD (4)
|
|
#define SIR_NEGO_FAILED (5)
|
|
#define SIR_NEGO_PROTO (6)
|
|
#define SIR_SCRIPT_STOPPED (7)
|
|
#define SIR_REJECT_TO_SEND (8)
|
|
#define SIR_SWIDE_OVERRUN (9)
|
|
#define SIR_SODL_UNDERRUN (10)
|
|
#define SIR_RESEL_NO_MSG_IN (11)
|
|
#define SIR_RESEL_NO_IDENTIFY (12)
|
|
#define SIR_RESEL_BAD_LUN (13)
|
|
#define SIR_TARGET_SELECTED (14)
|
|
#define SIR_RESEL_BAD_I_T_L (15)
|
|
#define SIR_RESEL_BAD_I_T_L_Q (16)
|
|
#define SIR_ABORT_SENT (17)
|
|
#define SIR_RESEL_ABORTED (18)
|
|
#define SIR_MSG_OUT_DONE (19)
|
|
#define SIR_COMPLETE_ERROR (20)
|
|
#define SIR_DATA_OVERRUN (21)
|
|
#define SIR_BAD_PHASE (22)
|
|
#define SIR_MAX (22)
|
|
|
|
/*
|
|
* Extended error bit codes.
|
|
* xerr_status field of struct sym_ccb.
|
|
*/
|
|
#define XE_EXTRA_DATA (1) /* unexpected data phase */
|
|
#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
|
|
#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
|
|
#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
|
|
#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
|
|
|
|
/*
|
|
* Negotiation status.
|
|
* nego_status field of struct sym_ccb.
|
|
*/
|
|
#define NS_SYNC (1)
|
|
#define NS_WIDE (2)
|
|
#define NS_PPR (3)
|
|
|
|
/*
|
|
* A CCB hashed table is used to retrieve CCB address
|
|
* from DSA value.
|
|
*/
|
|
#define CCB_HASH_SHIFT 8
|
|
#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
|
|
#define CCB_HASH_MASK (CCB_HASH_SIZE-1)
|
|
#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
|
|
|
|
/*
|
|
* Device flags.
|
|
*/
|
|
#define SYM_DISC_ENABLED (1)
|
|
#define SYM_TAGS_ENABLED (1<<1)
|
|
#define SYM_SCAN_BOOT_DISABLED (1<<2)
|
|
#define SYM_SCAN_LUNS_DISABLED (1<<3)
|
|
|
|
/*
|
|
* Host adapter miscellaneous flags.
|
|
*/
|
|
#define SYM_AVOID_BUS_RESET (1)
|
|
#define SYM_SCAN_TARGETS_HILO (1<<1)
|
|
|
|
/*
|
|
* Device quirks.
|
|
* Some devices, for example the CHEETAH 2 LVD, disconnects without
|
|
* saving the DATA POINTER then reconnect and terminates the IO.
|
|
* On reselection, the automatic RESTORE DATA POINTER makes the
|
|
* CURRENT DATA POINTER not point at the end of the IO.
|
|
* This behaviour just breaks our calculation of the residual.
|
|
* For now, we just force an AUTO SAVE on disconnection and will
|
|
* fix that in a further driver version.
|
|
*/
|
|
#define SYM_QUIRK_AUTOSAVE 1
|
|
|
|
/*
|
|
* Misc.
|
|
*/
|
|
#define SYM_SNOOP_TIMEOUT (10000000)
|
|
#define SYM_PCI_IO PCIR_MAPS
|
|
#define SYM_PCI_MMIO (PCIR_MAPS + 4)
|
|
#define SYM_PCI_RAM (PCIR_MAPS + 8)
|
|
#define SYM_PCI_RAM64 (PCIR_MAPS + 12)
|
|
|
|
/*
|
|
* Back-pointer from the CAM CCB to our data structures.
|
|
*/
|
|
#define sym_hcb_ptr spriv_ptr0
|
|
/* #define sym_ccb_ptr spriv_ptr1 */
|
|
|
|
/*
|
|
* We mostly have to deal with pointers.
|
|
* Thus these typedef's.
|
|
*/
|
|
typedef struct sym_tcb *tcb_p;
|
|
typedef struct sym_lcb *lcb_p;
|
|
typedef struct sym_ccb *ccb_p;
|
|
typedef struct sym_hcb *hcb_p;
|
|
typedef struct sym_scra *scripta_p;
|
|
typedef struct sym_scrb *scriptb_p;
|
|
|
|
/*
|
|
* Gather negotiable parameters value
|
|
*/
|
|
struct sym_trans {
|
|
u8 period;
|
|
u8 offset;
|
|
u8 width;
|
|
u8 options; /* PPR options */
|
|
};
|
|
|
|
struct sym_tinfo {
|
|
struct sym_trans current;
|
|
struct sym_trans goal;
|
|
struct sym_trans user;
|
|
};
|
|
|
|
#define BUS_8_BIT MSG_EXT_WDTR_BUS_8_BIT
|
|
#define BUS_16_BIT MSG_EXT_WDTR_BUS_16_BIT
|
|
|
|
/*
|
|
* Target Control Block
|
|
*/
|
|
struct sym_tcb {
|
|
/*
|
|
* LUN table used by the SCRIPTS processor.
|
|
* An array of bus addresses is used on reselection.
|
|
* LUN #0 is a special case, since multi-lun devices are rare,
|
|
* and we we want to speed-up the general case and not waste
|
|
* resources.
|
|
*/
|
|
u32 *luntbl; /* LCBs bus address table */
|
|
u32 luntbl_sa; /* bus address of this table */
|
|
u32 lun0_sa; /* bus address of LCB #0 */
|
|
|
|
/*
|
|
* LUN table used by the C code.
|
|
*/
|
|
lcb_p lun0p; /* LCB of LUN #0 (usual case) */
|
|
#if SYM_CONF_MAX_LUN > 1
|
|
lcb_p *lunmp; /* Other LCBs [1..MAX_LUN] */
|
|
#endif
|
|
|
|
/*
|
|
* Bitmap that tells about LUNs that succeeded at least
|
|
* 1 IO and therefore assumed to be a real device.
|
|
* Avoid useless allocation of the LCB structure.
|
|
*/
|
|
u32 lun_map[(SYM_CONF_MAX_LUN+31)/32];
|
|
|
|
/*
|
|
* Bitmap that tells about LUNs that haven't yet an LCB
|
|
* allocated (not discovered or LCB allocation failed).
|
|
*/
|
|
u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32];
|
|
|
|
/*
|
|
* Actual SYNC/WIDE IO registers value for this target.
|
|
* 'sval', 'wval' and 'uval' are read from SCRIPTS and
|
|
* so have alignment constraints.
|
|
*/
|
|
/*0*/ u_char uval; /* -> SCNTL4 register */
|
|
/*1*/ u_char sval; /* -> SXFER io register */
|
|
/*2*/ u_char filler1;
|
|
/*3*/ u_char wval; /* -> SCNTL3 io register */
|
|
|
|
/*
|
|
* Transfer capabilities (SIP)
|
|
*/
|
|
struct sym_tinfo tinfo;
|
|
|
|
/*
|
|
* Keep track of the CCB used for the negotiation in order
|
|
* to ensure that only 1 negotiation is queued at a time.
|
|
*/
|
|
ccb_p nego_cp; /* CCB used for the nego */
|
|
|
|
/*
|
|
* Set when we want to reset the device.
|
|
*/
|
|
u_char to_reset;
|
|
|
|
/*
|
|
* Other user settable limits and options.
|
|
* These limits are read from the NVRAM if present.
|
|
*/
|
|
u_char usrflags;
|
|
u_short usrtags;
|
|
};
|
|
|
|
/*
|
|
* Logical Unit Control Block
|
|
*/
|
|
struct sym_lcb {
|
|
/*
|
|
* SCRIPTS address jumped by SCRIPTS on reselection.
|
|
* For not probed logical units, this address points to
|
|
* SCRIPTS that deal with bad LU handling (must be at
|
|
* offset zero for that reason).
|
|
*/
|
|
/*0*/ u32 resel_sa;
|
|
|
|
/*
|
|
* Task (bus address of a CCB) read from SCRIPTS that points
|
|
* to the unique ITL nexus allowed to be disconnected.
|
|
*/
|
|
u32 itl_task_sa;
|
|
|
|
/*
|
|
* Task table read from SCRIPTS that contains pointers to
|
|
* ITLQ nexuses (bus addresses read from SCRIPTS).
|
|
*/
|
|
u32 *itlq_tbl; /* Kernel virtual address */
|
|
u32 itlq_tbl_sa; /* Bus address used by SCRIPTS */
|
|
|
|
/*
|
|
* Busy CCBs management.
|
|
*/
|
|
u_short busy_itlq; /* Number of busy tagged CCBs */
|
|
u_short busy_itl; /* Number of busy untagged CCBs */
|
|
|
|
/*
|
|
* Circular tag allocation buffer.
|
|
*/
|
|
u_short ia_tag; /* Tag allocation index */
|
|
u_short if_tag; /* Tag release index */
|
|
u_char *cb_tags; /* Circular tags buffer */
|
|
|
|
/*
|
|
* Set when we want to clear all tasks.
|
|
*/
|
|
u_char to_clear;
|
|
|
|
/*
|
|
* Capabilities.
|
|
*/
|
|
u_char user_flags;
|
|
u_char current_flags;
|
|
};
|
|
|
|
/*
|
|
* Action from SCRIPTS on a task.
|
|
* Is part of the CCB, but is also used separately to plug
|
|
* error handling action to perform from SCRIPTS.
|
|
*/
|
|
struct sym_actscr {
|
|
u32 start; /* Jumped by SCRIPTS after selection */
|
|
u32 restart; /* Jumped by SCRIPTS on relection */
|
|
};
|
|
|
|
/*
|
|
* Phase mismatch context.
|
|
*
|
|
* It is part of the CCB and is used as parameters for the
|
|
* DATA pointer. We need two contexts to handle correctly the
|
|
* SAVED DATA POINTER.
|
|
*/
|
|
struct sym_pmc {
|
|
struct sym_tblmove sg; /* Updated interrupted SG block */
|
|
u32 ret; /* SCRIPT return address */
|
|
};
|
|
|
|
/*
|
|
* LUN control block lookup.
|
|
* We use a direct pointer for LUN #0, and a table of
|
|
* pointers which is only allocated for devices that support
|
|
* LUN(s) > 0.
|
|
*/
|
|
#if SYM_CONF_MAX_LUN <= 1
|
|
#define sym_lp(np, tp, lun) (!lun) ? (tp)->lun0p : 0
|
|
#else
|
|
#define sym_lp(np, tp, lun) \
|
|
(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : 0
|
|
#endif
|
|
|
|
/*
|
|
* Status are used by the host and the script processor.
|
|
*
|
|
* The last four bytes (status[4]) are copied to the
|
|
* scratchb register (declared as scr0..scr3) just after the
|
|
* select/reselect, and copied back just after disconnecting.
|
|
* Inside the script the XX_REG are used.
|
|
*/
|
|
|
|
/*
|
|
* Last four bytes (script)
|
|
*/
|
|
#define QU_REG scr0
|
|
#define HS_REG scr1
|
|
#define HS_PRT nc_scr1
|
|
#define SS_REG scr2
|
|
#define SS_PRT nc_scr2
|
|
#define HF_REG scr3
|
|
#define HF_PRT nc_scr3
|
|
|
|
/*
|
|
* Last four bytes (host)
|
|
*/
|
|
#define actualquirks phys.status[0]
|
|
#define host_status phys.status[1]
|
|
#define ssss_status phys.status[2]
|
|
#define host_flags phys.status[3]
|
|
|
|
/*
|
|
* Host flags
|
|
*/
|
|
#define HF_IN_PM0 1u
|
|
#define HF_IN_PM1 (1u<<1)
|
|
#define HF_ACT_PM (1u<<2)
|
|
#define HF_DP_SAVED (1u<<3)
|
|
#define HF_SENSE (1u<<4)
|
|
#define HF_EXT_ERR (1u<<5)
|
|
#define HF_DATA_IN (1u<<6)
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
#define HF_HINT_IARB (1u<<7)
|
|
#endif
|
|
|
|
/*
|
|
* Data Structure Block
|
|
*
|
|
* During execution of a ccb by the script processor, the
|
|
* DSA (data structure address) register points to this
|
|
* substructure of the ccb.
|
|
*/
|
|
struct dsb {
|
|
/*
|
|
* Start and restart SCRIPTS addresses (must be at 0).
|
|
*/
|
|
/*0*/ struct sym_actscr go;
|
|
|
|
/*
|
|
* SCRIPTS jump address that deal with data pointers.
|
|
* 'savep' points to the position in the script responsible
|
|
* for the actual transfer of data.
|
|
* It's written on reception of a SAVE_DATA_POINTER message.
|
|
*/
|
|
u32 savep; /* Jump address to saved data pointer */
|
|
u32 lastp; /* SCRIPTS address at end of data */
|
|
u32 goalp; /* Not used for now */
|
|
|
|
/*
|
|
* Status fields.
|
|
*/
|
|
u8 status[4];
|
|
|
|
/*
|
|
* Table data for Script
|
|
*/
|
|
struct sym_tblsel select;
|
|
struct sym_tblmove smsg;
|
|
struct sym_tblmove smsg_ext;
|
|
struct sym_tblmove cmd;
|
|
struct sym_tblmove sense;
|
|
struct sym_tblmove wresid;
|
|
struct sym_tblmove data [SYM_CONF_MAX_SG];
|
|
|
|
/*
|
|
* Phase mismatch contexts.
|
|
* We need two to handle correctly the SAVED DATA POINTER.
|
|
*/
|
|
struct sym_pmc pm0;
|
|
struct sym_pmc pm1;
|
|
};
|
|
|
|
/*
|
|
* Our Command Control Block
|
|
*/
|
|
struct sym_ccb {
|
|
/*
|
|
* This is the data structure which is pointed by the DSA
|
|
* register when it is executed by the script processor.
|
|
* It must be the first entry.
|
|
*/
|
|
struct dsb phys;
|
|
|
|
/*
|
|
* Pointer to CAM ccb and related stuff.
|
|
*/
|
|
union ccb *cam_ccb; /* CAM scsiio ccb */
|
|
u8 cdb_buf[16]; /* Copy of CDB */
|
|
u8 *sns_bbuf; /* Bounce buffer for sense data */
|
|
#define SYM_SNS_BBUF_LEN sizeof(struct scsi_sense_data)
|
|
int data_len; /* Total data length */
|
|
int segments; /* Number of SG segments */
|
|
|
|
/*
|
|
* Miscellaneous status'.
|
|
*/
|
|
u_char nego_status; /* Negotiation status */
|
|
u_char xerr_status; /* Extended error flags */
|
|
u32 extra_bytes; /* Extraneous bytes transferred */
|
|
|
|
/*
|
|
* Message areas.
|
|
* We prepare a message to be sent after selection.
|
|
* We may use a second one if the command is rescheduled
|
|
* due to CHECK_CONDITION or COMMAND TERMINATED.
|
|
* Contents are IDENTIFY and SIMPLE_TAG.
|
|
* While negotiating sync or wide transfer,
|
|
* a SDTR or WDTR message is appended.
|
|
*/
|
|
u_char scsi_smsg [12];
|
|
u_char scsi_smsg2[12];
|
|
|
|
/*
|
|
* Auto request sense related fields.
|
|
*/
|
|
u_char sensecmd[6]; /* Request Sense command */
|
|
u_char sv_scsi_status; /* Saved SCSI status */
|
|
u_char sv_xerr_status; /* Saved extended status */
|
|
int sv_resid; /* Saved residual */
|
|
|
|
/*
|
|
* Map for the DMA of user data.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
void *arg; /* Argument for some callback */
|
|
bus_dmamap_t dmamap; /* DMA map for user data */
|
|
u_char dmamapped;
|
|
#define SYM_DMA_NONE 0
|
|
#define SYM_DMA_READ 1
|
|
#define SYM_DMA_WRITE 2
|
|
#endif
|
|
/*
|
|
* Other fields.
|
|
*/
|
|
u_long ccb_ba; /* BUS address of this CCB */
|
|
u_short tag; /* Tag for this transfer */
|
|
/* NO_TAG means no tag */
|
|
u_char target;
|
|
u_char lun;
|
|
ccb_p link_ccbh; /* Host adapter CCB hash chain */
|
|
SYM_QUEHEAD
|
|
link_ccbq; /* Link to free/busy CCB queue */
|
|
u32 startp; /* Initial data pointer */
|
|
int ext_sg; /* Extreme data pointer, used */
|
|
int ext_ofs; /* to calculate the residual. */
|
|
u_char to_abort; /* Want this IO to be aborted */
|
|
};
|
|
|
|
#define CCB_BA(cp,lbl) (cp->ccb_ba + offsetof(struct sym_ccb, lbl))
|
|
|
|
/*
|
|
* Host Control Block
|
|
*/
|
|
struct sym_hcb {
|
|
/*
|
|
* Idle task and invalid task actions and
|
|
* their bus addresses.
|
|
*/
|
|
struct sym_actscr idletask, notask, bad_itl, bad_itlq;
|
|
vm_offset_t idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
|
|
|
|
/*
|
|
* Dummy lun table to protect us against target
|
|
* returning bad lun number on reselection.
|
|
*/
|
|
u32 *badluntbl; /* Table physical address */
|
|
u32 badlun_sa; /* SCRIPT handler BUS address */
|
|
|
|
/*
|
|
* Bus address of this host control block.
|
|
*/
|
|
u32 hcb_ba;
|
|
|
|
/*
|
|
* Bit 32-63 of the on-chip RAM bus address in LE format.
|
|
* The START_RAM64 script loads the MMRS and MMWS from this
|
|
* field.
|
|
*/
|
|
u32 scr_ram_seg;
|
|
|
|
/*
|
|
* Chip and controller indentification.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
device_t device;
|
|
#else
|
|
pcici_t pci_tag;
|
|
#endif
|
|
int unit;
|
|
char inst_name[8];
|
|
|
|
/*
|
|
* Initial value of some IO register bits.
|
|
* These values are assumed to have been set by BIOS, and may
|
|
* be used to probe adapter implementation differences.
|
|
*/
|
|
u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
|
|
sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
|
|
sv_stest1;
|
|
|
|
/*
|
|
* Actual initial value of IO register bits used by the
|
|
* driver. They are loaded at initialisation according to
|
|
* features that are to be enabled/disabled.
|
|
*/
|
|
u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
|
|
rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
|
|
|
|
/*
|
|
* Target data used by the CPU.
|
|
*/
|
|
struct sym_tcb target[SYM_CONF_MAX_TARGET];
|
|
|
|
/*
|
|
* Target control block bus address array used by the SCRIPT
|
|
* on reselection.
|
|
*/
|
|
u32 *targtbl;
|
|
|
|
/*
|
|
* CAM SIM information for this instance.
|
|
*/
|
|
struct cam_sim *sim;
|
|
struct cam_path *path;
|
|
|
|
/*
|
|
* Allocated hardware resources.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
struct resource *irq_res;
|
|
struct resource *io_res;
|
|
struct resource *mmio_res;
|
|
struct resource *ram_res;
|
|
int ram_id;
|
|
void *intr;
|
|
#endif
|
|
|
|
/*
|
|
* Bus stuff.
|
|
*
|
|
* My understanding of PCI is that all agents must share the
|
|
* same addressing range and model.
|
|
* But some hardware architecture guys provide complex and
|
|
* brain-deaded stuff that makes shit.
|
|
* This driver only support PCI compliant implementations and
|
|
* deals with part of the BUS stuff complexity only to fit O/S
|
|
* requirements.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
bus_space_handle_t io_bsh;
|
|
bus_space_tag_t io_tag;
|
|
bus_space_handle_t mmio_bsh;
|
|
bus_space_tag_t mmio_tag;
|
|
bus_space_handle_t ram_bsh;
|
|
bus_space_tag_t ram_tag;
|
|
#endif
|
|
|
|
/*
|
|
* DMA stuff.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
bus_dma_tag_t bus_dmat; /* DMA tag from parent BUS */
|
|
bus_dma_tag_t data_dmat; /* DMA tag for user data */
|
|
#endif
|
|
/*
|
|
* Virtual and physical bus addresses of the chip.
|
|
*/
|
|
vm_offset_t mmio_va; /* MMIO kernel virtual address */
|
|
vm_offset_t mmio_pa; /* MMIO CPU physical address */
|
|
vm_offset_t mmio_ba; /* MMIO BUS address */
|
|
int mmio_ws; /* MMIO Window size */
|
|
|
|
vm_offset_t ram_va; /* RAM kernel virtual address */
|
|
vm_offset_t ram_pa; /* RAM CPU physical address */
|
|
vm_offset_t ram_ba; /* RAM BUS address */
|
|
int ram_ws; /* RAM window size */
|
|
u32 io_port; /* IO port address */
|
|
|
|
/*
|
|
* SCRIPTS virtual and physical bus addresses.
|
|
* 'script' is loaded in the on-chip RAM if present.
|
|
* 'scripth' stays in main memory for all chips except the
|
|
* 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
|
|
*/
|
|
struct sym_scra *scripta0; /* Copies of script and scripth */
|
|
struct sym_scrb *scriptb0; /* relocated for this host. */
|
|
vm_offset_t scripta_ba; /* Actual script and scripth */
|
|
vm_offset_t scriptb_ba; /* bus addresses. */
|
|
vm_offset_t scriptb0_ba;
|
|
|
|
/*
|
|
* General controller parameters and configuration.
|
|
*/
|
|
u_short device_id; /* PCI device id */
|
|
u_char revision_id; /* PCI device revision id */
|
|
u_int features; /* Chip features map */
|
|
u_char myaddr; /* SCSI id of the adapter */
|
|
u_char maxburst; /* log base 2 of dwords burst */
|
|
u_char maxwide; /* Maximum transfer width */
|
|
u_char minsync; /* Min sync period factor (ST) */
|
|
u_char maxsync; /* Max sync period factor (ST) */
|
|
u_char minsync_dt; /* Min sync period factor (DT) */
|
|
u_char maxsync_dt; /* Max sync period factor (DT) */
|
|
u_char maxoffs; /* Max scsi offset */
|
|
u_char multiplier; /* Clock multiplier (1,2,4) */
|
|
u_char clock_divn; /* Number of clock divisors */
|
|
u_long clock_khz; /* SCSI clock frequency in KHz */
|
|
|
|
/*
|
|
* Start queue management.
|
|
* It is filled up by the host processor and accessed by the
|
|
* SCRIPTS processor in order to start SCSI commands.
|
|
*/
|
|
volatile /* Prevent code optimizations */
|
|
u32 *squeue; /* Start queue virtual address */
|
|
u32 squeue_ba; /* Start queue BUS address */
|
|
u_short squeueput; /* Next free slot of the queue */
|
|
u_short actccbs; /* Number of allocated CCBs */
|
|
|
|
/*
|
|
* Command completion queue.
|
|
* It is the same size as the start queue to avoid overflow.
|
|
*/
|
|
u_short dqueueget; /* Next position to scan */
|
|
volatile /* Prevent code optimizations */
|
|
u32 *dqueue; /* Completion (done) queue */
|
|
|
|
/*
|
|
* Miscellaneous buffers accessed by the scripts-processor.
|
|
* They shall be DWORD aligned, because they may be read or
|
|
* written with a script command.
|
|
*/
|
|
u_char msgout[8]; /* Buffer for MESSAGE OUT */
|
|
u_char msgin [8]; /* Buffer for MESSAGE IN */
|
|
u32 lastmsg; /* Last SCSI message sent */
|
|
u_char scratch; /* Scratch for SCSI receive */
|
|
|
|
/*
|
|
* Miscellaneous configuration and status parameters.
|
|
*/
|
|
u_char usrflags; /* Miscellaneous user flags */
|
|
u_char scsi_mode; /* Current SCSI BUS mode */
|
|
u_char verbose; /* Verbosity for this controller*/
|
|
u32 cache; /* Used for cache test at init. */
|
|
|
|
/*
|
|
* CCB lists and queue.
|
|
*/
|
|
ccb_p ccbh[CCB_HASH_SIZE]; /* CCB hashed by DSA value */
|
|
SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
|
|
SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
|
|
|
|
/*
|
|
* During error handling and/or recovery,
|
|
* active CCBs that are to be completed with
|
|
* error or requeued are moved from the busy_ccbq
|
|
* to the comp_ccbq prior to completion.
|
|
*/
|
|
SYM_QUEHEAD comp_ccbq;
|
|
|
|
/*
|
|
* CAM CCB pending queue.
|
|
*/
|
|
SYM_QUEHEAD cam_ccbq;
|
|
|
|
/*
|
|
* IMMEDIATE ARBITRATION (IARB) control.
|
|
*
|
|
* We keep track in 'last_cp' of the last CCB that has been
|
|
* queued to the SCRIPTS processor and clear 'last_cp' when
|
|
* this CCB completes. If last_cp is not zero at the moment
|
|
* we queue a new CCB, we set a flag in 'last_cp' that is
|
|
* used by the SCRIPTS as a hint for setting IARB.
|
|
* We donnot set more than 'iarb_max' consecutive hints for
|
|
* IARB in order to leave devices a chance to reselect.
|
|
* By the way, any non zero value of 'iarb_max' is unfair. :)
|
|
*/
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
u_short iarb_max; /* Max. # consecutive IARB hints*/
|
|
u_short iarb_count; /* Actual # of these hints */
|
|
ccb_p last_cp;
|
|
#endif
|
|
|
|
/*
|
|
* Command abort handling.
|
|
* We need to synchronize tightly with the SCRIPTS
|
|
* processor in order to handle things correctly.
|
|
*/
|
|
u_char abrt_msg[4]; /* Message to send buffer */
|
|
struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
|
|
struct sym_tblsel abrt_sel; /* Sync params for selection */
|
|
u_char istat_sem; /* Tells the chip to stop (SEM) */
|
|
};
|
|
|
|
#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
|
|
#define SCRIPTA_BA(np,lbl) (np->scripta_ba + offsetof(struct sym_scra, lbl))
|
|
#define SCRIPTB_BA(np,lbl) (np->scriptb_ba + offsetof(struct sym_scrb,lbl))
|
|
#define SCRIPTB0_BA(np,lbl) (np->scriptb0_ba + offsetof(struct sym_scrb,lbl))
|
|
|
|
/*
|
|
* Scripts for SYMBIOS-Processor
|
|
*
|
|
* Use sym_fill_scripts() to create the variable parts.
|
|
* Use sym_bind_script() to make a copy and bind to
|
|
* physical bus addresses.
|
|
* We have to know the offsets of all labels before we reach
|
|
* them (for forward jumps). Therefore we declare a struct
|
|
* here. If you make changes inside the script,
|
|
*
|
|
* DONT FORGET TO CHANGE THE LENGTHS HERE!
|
|
*/
|
|
|
|
/*
|
|
* Script fragments which are loaded into the on-chip RAM
|
|
* of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
|
|
* Must not exceed 4K bytes.
|
|
*/
|
|
struct sym_scra {
|
|
u32 start [ 14];
|
|
u32 getjob_begin [ 4];
|
|
u32 getjob_end [ 4];
|
|
u32 select [ 8];
|
|
u32 wf_sel_done [ 2];
|
|
u32 send_ident [ 2];
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
u32 select2 [ 8];
|
|
#else
|
|
u32 select2 [ 2];
|
|
#endif
|
|
u32 command [ 2];
|
|
u32 dispatch [ 28];
|
|
u32 sel_no_cmd [ 10];
|
|
u32 init [ 6];
|
|
u32 clrack [ 4];
|
|
u32 disp_status [ 4];
|
|
u32 datai_done [ 26];
|
|
u32 datao_done [ 12];
|
|
u32 datai_phase [ 2];
|
|
u32 datao_phase [ 2];
|
|
u32 msg_in [ 2];
|
|
u32 msg_in2 [ 10];
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
u32 status [ 14];
|
|
#else
|
|
u32 status [ 10];
|
|
#endif
|
|
u32 complete [ 8];
|
|
u32 complete2 [ 12];
|
|
u32 complete_error [ 4];
|
|
u32 done [ 14];
|
|
u32 done_end [ 2];
|
|
u32 save_dp [ 8];
|
|
u32 restore_dp [ 4];
|
|
u32 disconnect [ 20];
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
u32 idle [ 4];
|
|
#else
|
|
u32 idle [ 2];
|
|
#endif
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
u32 ungetjob [ 6];
|
|
#else
|
|
u32 ungetjob [ 4];
|
|
#endif
|
|
u32 reselect [ 4];
|
|
u32 reselected [ 20];
|
|
u32 resel_scntl4 [ 28];
|
|
#if SYM_CONF_MAX_TASK*4 > 512
|
|
u32 resel_tag [ 26];
|
|
#elif SYM_CONF_MAX_TASK*4 > 256
|
|
u32 resel_tag [ 20];
|
|
#else
|
|
u32 resel_tag [ 16];
|
|
#endif
|
|
u32 resel_dsa [ 2];
|
|
u32 resel_dsa1 [ 6];
|
|
u32 resel_no_tag [ 6];
|
|
u32 data_in [SYM_CONF_MAX_SG * 2];
|
|
u32 data_in2 [ 4];
|
|
u32 data_out [SYM_CONF_MAX_SG * 2];
|
|
u32 data_out2 [ 4];
|
|
u32 pm0_data [ 12];
|
|
u32 pm0_data_out [ 6];
|
|
u32 pm0_data_end [ 6];
|
|
u32 pm1_data [ 12];
|
|
u32 pm1_data_out [ 6];
|
|
u32 pm1_data_end [ 6];
|
|
};
|
|
|
|
/*
|
|
* Script fragments which stay in main memory for all chips
|
|
* except for chips that support 8K on-chip RAM.
|
|
*/
|
|
struct sym_scrb {
|
|
u32 start64 [ 2];
|
|
u32 no_data [ 2];
|
|
u32 sel_for_abort [ 18];
|
|
u32 sel_for_abort_1 [ 2];
|
|
u32 msg_in_etc [ 14];
|
|
u32 msg_received [ 4];
|
|
u32 msg_weird_seen [ 4];
|
|
u32 msg_extended [ 20];
|
|
u32 msg_bad [ 6];
|
|
u32 msg_weird [ 4];
|
|
u32 msg_weird1 [ 8];
|
|
|
|
u32 wdtr_resp [ 6];
|
|
u32 send_wdtr [ 4];
|
|
u32 sdtr_resp [ 6];
|
|
u32 send_sdtr [ 4];
|
|
u32 ppr_resp [ 6];
|
|
u32 send_ppr [ 4];
|
|
u32 nego_bad_phase [ 4];
|
|
u32 msg_out [ 4];
|
|
u32 msg_out_done [ 4];
|
|
u32 data_ovrun [ 2];
|
|
u32 data_ovrun1 [ 22];
|
|
u32 data_ovrun2 [ 8];
|
|
u32 abort_resel [ 16];
|
|
u32 resend_ident [ 4];
|
|
u32 ident_break [ 4];
|
|
u32 ident_break_atn [ 4];
|
|
u32 sdata_in [ 6];
|
|
u32 resel_bad_lun [ 4];
|
|
u32 bad_i_t_l [ 4];
|
|
u32 bad_i_t_l_q [ 4];
|
|
u32 bad_status [ 6];
|
|
u32 pm_handle [ 20];
|
|
u32 pm_handle1 [ 4];
|
|
u32 pm_save [ 4];
|
|
u32 pm0_save [ 14];
|
|
u32 pm1_save [ 14];
|
|
|
|
/* WSR handling */
|
|
u32 pm_wsr_handle [ 42];
|
|
u32 wsr_ma_helper [ 4];
|
|
|
|
/* Data area */
|
|
u32 zero [ 1];
|
|
u32 scratch [ 1];
|
|
u32 pm0_data_addr [ 1];
|
|
u32 pm1_data_addr [ 1];
|
|
u32 saved_dsa [ 1];
|
|
u32 saved_drs [ 1];
|
|
u32 done_pos [ 1];
|
|
u32 startpos [ 1];
|
|
u32 targtbl [ 1];
|
|
/* End of data area */
|
|
|
|
u32 snooptest [ 6];
|
|
u32 snoopend [ 2];
|
|
};
|
|
|
|
/*
|
|
* Function prototypes.
|
|
*/
|
|
static void sym_fill_scripts (scripta_p scra, scriptb_p scrb);
|
|
static void sym_bind_script (hcb_p np, u32 *src, u32 *dst, int len);
|
|
static void sym_save_initial_setting (hcb_p np);
|
|
static int sym_prepare_setting (hcb_p np, struct sym_nvram *nvram);
|
|
static int sym_prepare_nego (hcb_p np, ccb_p cp, int nego, u_char *msgptr);
|
|
static void sym_put_start_queue (hcb_p np, ccb_p cp);
|
|
static void sym_chip_reset (hcb_p np);
|
|
static void sym_soft_reset (hcb_p np);
|
|
static void sym_start_reset (hcb_p np);
|
|
static int sym_reset_scsi_bus (hcb_p np, int enab_int);
|
|
static int sym_wakeup_done (hcb_p np);
|
|
static void sym_flush_busy_queue (hcb_p np, int cam_status);
|
|
static void sym_flush_comp_queue (hcb_p np, int cam_status);
|
|
static void sym_init (hcb_p np, int reason);
|
|
static int sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp,
|
|
u_char *fakp);
|
|
static void sym_setsync (hcb_p np, ccb_p cp, u_char ofs, u_char per,
|
|
u_char div, u_char fak);
|
|
static void sym_setwide (hcb_p np, ccb_p cp, u_char wide);
|
|
static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
|
|
u_char per, u_char wide, u_char div, u_char fak);
|
|
static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
|
|
u_char per, u_char wide, u_char div, u_char fak);
|
|
static void sym_log_hard_error (hcb_p np, u_short sist, u_char dstat);
|
|
static void sym_intr (void *arg);
|
|
static void sym_poll (struct cam_sim *sim);
|
|
static void sym_recover_scsi_int (hcb_p np, u_char hsts);
|
|
static void sym_int_sto (hcb_p np);
|
|
static void sym_int_udc (hcb_p np);
|
|
static void sym_int_sbmc (hcb_p np);
|
|
static void sym_int_par (hcb_p np, u_short sist);
|
|
static void sym_int_ma (hcb_p np);
|
|
static int sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun,
|
|
int task);
|
|
static void sym_sir_bad_scsi_status (hcb_p np, int num, ccb_p cp);
|
|
static int sym_clear_tasks (hcb_p np, int status, int targ, int lun, int task);
|
|
static void sym_sir_task_recovery (hcb_p np, int num);
|
|
static int sym_evaluate_dp (hcb_p np, ccb_p cp, u32 scr, int *ofs);
|
|
static void sym_modify_dp (hcb_p np, tcb_p tp, ccb_p cp, int ofs);
|
|
static int sym_compute_residual (hcb_p np, ccb_p cp);
|
|
static int sym_show_msg (u_char * msg);
|
|
static void sym_print_msg (ccb_p cp, char *label, u_char *msg);
|
|
static void sym_sync_nego (hcb_p np, tcb_p tp, ccb_p cp);
|
|
static void sym_ppr_nego (hcb_p np, tcb_p tp, ccb_p cp);
|
|
static void sym_wide_nego (hcb_p np, tcb_p tp, ccb_p cp);
|
|
static void sym_nego_default (hcb_p np, tcb_p tp, ccb_p cp);
|
|
static void sym_nego_rejected (hcb_p np, tcb_p tp, ccb_p cp);
|
|
static void sym_int_sir (hcb_p np);
|
|
static void sym_free_ccb (hcb_p np, ccb_p cp);
|
|
static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order);
|
|
static ccb_p sym_alloc_ccb (hcb_p np);
|
|
static ccb_p sym_ccb_from_dsa (hcb_p np, u_long dsa);
|
|
static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln);
|
|
static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln);
|
|
static int sym_snooptest (hcb_p np);
|
|
static void sym_selectclock(hcb_p np, u_char scntl3);
|
|
static void sym_getclock (hcb_p np, int mult);
|
|
static int sym_getpciclock (hcb_p np);
|
|
static void sym_complete_ok (hcb_p np, ccb_p cp);
|
|
static void sym_complete_error (hcb_p np, ccb_p cp);
|
|
static void sym_timeout (void *arg);
|
|
static int sym_abort_scsiio (hcb_p np, union ccb *ccb, int timed_out);
|
|
static void sym_reset_dev (hcb_p np, union ccb *ccb);
|
|
static void sym_action (struct cam_sim *sim, union ccb *ccb);
|
|
static void sym_action1 (struct cam_sim *sim, union ccb *ccb);
|
|
static int sym_setup_cdb (hcb_p np, struct ccb_scsiio *csio, ccb_p cp);
|
|
static void sym_setup_data_and_start (hcb_p np, struct ccb_scsiio *csio,
|
|
ccb_p cp);
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
static int sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
|
|
bus_dma_segment_t *psegs, int nsegs);
|
|
#else
|
|
static int sym_scatter_virtual (hcb_p np, ccb_p cp, vm_offset_t vaddr,
|
|
vm_size_t len);
|
|
static int sym_scatter_sg_virtual (hcb_p np, ccb_p cp,
|
|
bus_dma_segment_t *psegs, int nsegs);
|
|
static int sym_scatter_physical (hcb_p np, ccb_p cp, vm_offset_t paddr,
|
|
vm_size_t len);
|
|
#endif
|
|
static int sym_scatter_sg_physical (hcb_p np, ccb_p cp,
|
|
bus_dma_segment_t *psegs, int nsegs);
|
|
static void sym_action2 (struct cam_sim *sim, union ccb *ccb);
|
|
static void sym_update_trans (hcb_p np, tcb_p tp, struct sym_trans *tip,
|
|
struct ccb_trans_settings *cts);
|
|
static void sym_update_dflags(hcb_p np, u_char *flags,
|
|
struct ccb_trans_settings *cts);
|
|
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
static struct sym_pci_chip *sym_find_pci_chip (device_t dev);
|
|
static int sym_pci_probe (device_t dev);
|
|
static int sym_pci_attach (device_t dev);
|
|
#else
|
|
static struct sym_pci_chip *sym_find_pci_chip (pcici_t tag);
|
|
static const char *sym_pci_probe (pcici_t tag, pcidi_t type);
|
|
static void sym_pci_attach (pcici_t tag, int unit);
|
|
static int sym_pci_attach2 (pcici_t tag, int unit);
|
|
#endif
|
|
|
|
static void sym_pci_free (hcb_p np);
|
|
static int sym_cam_attach (hcb_p np);
|
|
static void sym_cam_free (hcb_p np);
|
|
|
|
static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram);
|
|
static void sym_nvram_setup_target (hcb_p np, int targ, struct sym_nvram *nvp);
|
|
static int sym_read_nvram (hcb_p np, struct sym_nvram *nvp);
|
|
|
|
/*
|
|
* Return the name of the controller.
|
|
*/
|
|
static __inline char *sym_name(hcb_p np)
|
|
{
|
|
return np->inst_name;
|
|
}
|
|
|
|
/*
|
|
* Scripts for SYMBIOS-Processor
|
|
*
|
|
* Use sym_bind_script for binding to physical addresses.
|
|
*
|
|
* HADDR_1 generates a reference to a field of the controller data.
|
|
* PADDR_A generates a reference to another part of script A.
|
|
* PADDR_B generates a reference to another part of script B.
|
|
* RADDR_1 generates a reference to a script processor register.
|
|
* RADDR_2 generates a reference to a script processor register
|
|
* with offset.
|
|
*
|
|
*/
|
|
#define RELOC_SOFTC 0x40000000
|
|
#define RELOC_LABELA 0x50000000
|
|
#define RELOC_REGISTER 0x60000000
|
|
#define RELOC_LABELB 0x80000000
|
|
#define RELOC_MASK 0xf0000000
|
|
|
|
#define HADDR_1(label) (RELOC_SOFTC | offsetof(struct sym_hcb, label))
|
|
#define PADDR_A(label) (RELOC_LABELA | offsetof(struct sym_scra, label))
|
|
#define PADDR_B(label) (RELOC_LABELB | offsetof(struct sym_scrb, label))
|
|
#define RADDR_1(label) (RELOC_REGISTER | REG(label))
|
|
#define RADDR_2(label,ofs) (RELOC_REGISTER | ((REG(label))+(ofs)))
|
|
|
|
#define SCR_DATA_ZERO 0xf00ff00f
|
|
|
|
static struct sym_scra scripta0 = {
|
|
/*--------------------------< START >----------------------------*/ {
|
|
/*
|
|
* Switch the LED on.
|
|
* Will be patched with a NO_OP if LED
|
|
* not needed or not desired.
|
|
*/
|
|
SCR_REG_REG (gpreg, SCR_AND, 0xfe),
|
|
0,
|
|
/*
|
|
* Clear SIGP.
|
|
*/
|
|
SCR_FROM_REG (ctest2),
|
|
0,
|
|
/*
|
|
* Stop here if the C code wants to perform
|
|
* some error recovery procedure manually.
|
|
* (Indicate this by setting SEM in ISTAT)
|
|
*/
|
|
SCR_FROM_REG (istat),
|
|
0,
|
|
/*
|
|
* Report to the C code the next position in
|
|
* the start queue the SCRIPTS will schedule.
|
|
* The C code must not change SCRATCHA.
|
|
*/
|
|
SCR_LOAD_ABS (scratcha, 4),
|
|
PADDR_B (startpos),
|
|
SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
|
|
SIR_SCRIPT_STOPPED,
|
|
/*
|
|
* Start the next job.
|
|
*
|
|
* @DSA = start point for this job.
|
|
* SCRATCHA = address of this job in the start queue.
|
|
*
|
|
* We will restore startpos with SCRATCHA if we fails the
|
|
* arbitration or if it is the idle job.
|
|
*
|
|
* The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
|
|
* is a critical path. If it is partially executed, it then
|
|
* may happen that the job address is not yet in the DSA
|
|
* and the the next queue position points to the next JOB.
|
|
*/
|
|
SCR_LOAD_ABS (dsa, 4),
|
|
PADDR_B (startpos),
|
|
SCR_LOAD_REL (temp, 4),
|
|
4,
|
|
}/*-------------------------< GETJOB_BEGIN >---------------------*/,{
|
|
SCR_STORE_ABS (temp, 4),
|
|
PADDR_B (startpos),
|
|
SCR_LOAD_REL (dsa, 4),
|
|
0,
|
|
}/*-------------------------< GETJOB_END >-----------------------*/,{
|
|
SCR_LOAD_REL (temp, 4),
|
|
0,
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------< SELECT >---------------------------*/,{
|
|
/*
|
|
* DSA contains the address of a scheduled
|
|
* data structure.
|
|
*
|
|
* SCRATCHA contains the address of the start queue
|
|
* entry which points to the next job.
|
|
*
|
|
* Set Initiator mode.
|
|
*
|
|
* (Target mode is left as an exercise for the reader)
|
|
*/
|
|
SCR_CLR (SCR_TRG),
|
|
0,
|
|
/*
|
|
* And try to select this target.
|
|
*/
|
|
SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
|
|
PADDR_A (ungetjob),
|
|
/*
|
|
* Now there are 4 possibilities:
|
|
*
|
|
* (1) The chip looses arbitration.
|
|
* This is ok, because it will try again,
|
|
* when the bus becomes idle.
|
|
* (But beware of the timeout function!)
|
|
*
|
|
* (2) The chip is reselected.
|
|
* Then the script processor takes the jump
|
|
* to the RESELECT label.
|
|
*
|
|
* (3) The chip wins arbitration.
|
|
* Then it will execute SCRIPTS instruction until
|
|
* the next instruction that checks SCSI phase.
|
|
* Then will stop and wait for selection to be
|
|
* complete or selection time-out to occur.
|
|
*
|
|
* After having won arbitration, the SCRIPTS
|
|
* processor is able to execute instructions while
|
|
* the SCSI core is performing SCSI selection.
|
|
*/
|
|
/*
|
|
* load the savep (saved data pointer) into
|
|
* the actual data pointer.
|
|
*/
|
|
SCR_LOAD_REL (temp, 4),
|
|
offsetof (struct sym_ccb, phys.savep),
|
|
/*
|
|
* Initialize the status registers
|
|
*/
|
|
SCR_LOAD_REL (scr0, 4),
|
|
offsetof (struct sym_ccb, phys.status),
|
|
}/*-------------------------< WF_SEL_DONE >----------------------*/,{
|
|
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
|
SIR_SEL_ATN_NO_MSG_OUT,
|
|
}/*-------------------------< SEND_IDENT >-----------------------*/,{
|
|
/*
|
|
* Selection complete.
|
|
* Send the IDENTIFY and possibly the TAG message
|
|
* and negotiation message if present.
|
|
*/
|
|
SCR_MOVE_TBL ^ SCR_MSG_OUT,
|
|
offsetof (struct dsb, smsg),
|
|
}/*-------------------------< SELECT2 >--------------------------*/,{
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* Set IMMEDIATE ARBITRATION if we have been given
|
|
* a hint to do so. (Some job to do after this one).
|
|
*/
|
|
SCR_FROM_REG (HF_REG),
|
|
0,
|
|
SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
|
|
8,
|
|
SCR_REG_REG (scntl1, SCR_OR, IARB),
|
|
0,
|
|
#endif
|
|
/*
|
|
* Anticipate the COMMAND phase.
|
|
* This is the PHASE we expect at this point.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
|
|
PADDR_A (sel_no_cmd),
|
|
}/*-------------------------< COMMAND >--------------------------*/,{
|
|
/*
|
|
* ... and send the command
|
|
*/
|
|
SCR_MOVE_TBL ^ SCR_COMMAND,
|
|
offsetof (struct dsb, cmd),
|
|
}/*-------------------------< DISPATCH >-------------------------*/,{
|
|
/*
|
|
* MSG_IN is the only phase that shall be
|
|
* entered at least once for each (re)selection.
|
|
* So we test it first.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
|
|
PADDR_A (msg_in),
|
|
SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
|
|
PADDR_A (datao_phase),
|
|
SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
|
|
PADDR_A (datai_phase),
|
|
SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
|
|
PADDR_A (status),
|
|
SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
|
|
PADDR_A (command),
|
|
SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
|
|
PADDR_B (msg_out),
|
|
/*
|
|
* Discard as many illegal phases as
|
|
* required and tell the C code about.
|
|
*/
|
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
|
|
16,
|
|
SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
|
|
HADDR_1 (scratch),
|
|
SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
|
|
-16,
|
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
|
|
16,
|
|
SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
|
|
HADDR_1 (scratch),
|
|
SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
|
|
-16,
|
|
SCR_INT,
|
|
SIR_BAD_PHASE,
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< SEL_NO_CMD >-----------------------*/,{
|
|
/*
|
|
* The target does not switch to command
|
|
* phase after IDENTIFY has been sent.
|
|
*
|
|
* If it stays in MSG OUT phase send it
|
|
* the IDENTIFY again.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
|
|
PADDR_B (resend_ident),
|
|
/*
|
|
* If target does not switch to MSG IN phase
|
|
* and we sent a negotiation, assert the
|
|
* failure immediately.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
|
|
PADDR_A (dispatch),
|
|
SCR_FROM_REG (HS_REG),
|
|
0,
|
|
SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
|
|
SIR_NEGO_FAILED,
|
|
/*
|
|
* Jump to dispatcher.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< INIT >-----------------------------*/,{
|
|
/*
|
|
* Wait for the SCSI RESET signal to be
|
|
* inactive before restarting operations,
|
|
* since the chip may hang on SEL_ATN
|
|
* if SCSI RESET is active.
|
|
*/
|
|
SCR_FROM_REG (sstat0),
|
|
0,
|
|
SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
|
|
-16,
|
|
SCR_JUMP,
|
|
PADDR_A (start),
|
|
}/*-------------------------< CLRACK >---------------------------*/,{
|
|
/*
|
|
* Terminate possible pending message phase.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< DISP_STATUS >----------------------*/,{
|
|
/*
|
|
* Anticipate STATUS phase.
|
|
*
|
|
* Does spare 3 SCRIPTS instructions when we have
|
|
* completed the INPUT of the data.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
|
|
PADDR_A (status),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< DATAI_DONE >-----------------------*/,{
|
|
/*
|
|
* If the device still wants to send us data,
|
|
* we must count the extra bytes.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_IN)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* If the SWIDE is not full, jump to dispatcher.
|
|
* We anticipate a STATUS phase.
|
|
*/
|
|
SCR_FROM_REG (scntl2),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (MASK (WSR, WSR)),
|
|
PADDR_A (disp_status),
|
|
/*
|
|
* The SWIDE is full.
|
|
* Clear this condition.
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_OR, WSR),
|
|
0,
|
|
/*
|
|
* We are expecting an IGNORE RESIDUE message
|
|
* from the device, otherwise we are in data
|
|
* overrun condition. Check against MSG_IN phase.
|
|
*/
|
|
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
|
SIR_SWIDE_OVERRUN,
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
|
PADDR_A (disp_status),
|
|
/*
|
|
* We are in MSG_IN phase,
|
|
* Read the first byte of the message.
|
|
* If it is not an IGNORE RESIDUE message,
|
|
* signal overrun and jump to message
|
|
* processing.
|
|
*/
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[0]),
|
|
SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
|
|
SIR_SWIDE_OVERRUN,
|
|
SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
|
|
PADDR_A (msg_in2),
|
|
/*
|
|
* We got the message we expected.
|
|
* Read the 2nd byte, and jump to dispatcher.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[1]),
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (disp_status),
|
|
}/*-------------------------< DATAO_DONE >-----------------------*/,{
|
|
/*
|
|
* If the device wants us to send more data,
|
|
* we must count the extra bytes.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* If the SODL is not full jump to dispatcher.
|
|
* We anticipate a STATUS phase.
|
|
*/
|
|
SCR_FROM_REG (scntl2),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (MASK (WSS, WSS)),
|
|
PADDR_A (disp_status),
|
|
/*
|
|
* The SODL is full, clear this condition.
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_OR, WSS),
|
|
0,
|
|
/*
|
|
* And signal a DATA UNDERRUN condition
|
|
* to the C code.
|
|
*/
|
|
SCR_INT,
|
|
SIR_SODL_UNDERRUN,
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< DATAI_PHASE >----------------------*/,{
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------< DATAO_PHASE >----------------------*/,{
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------< MSG_IN >---------------------------*/,{
|
|
/*
|
|
* Get the first byte of the message.
|
|
*
|
|
* The script processor doesn't negate the
|
|
* ACK signal after this transfer.
|
|
*/
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[0]),
|
|
}/*-------------------------< MSG_IN2 >--------------------------*/,{
|
|
/*
|
|
* Check first against 1 byte messages
|
|
* that we handle from SCRIPTS.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
|
|
PADDR_A (complete),
|
|
SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
|
|
PADDR_A (disconnect),
|
|
SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
|
|
PADDR_A (save_dp),
|
|
SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
|
|
PADDR_A (restore_dp),
|
|
/*
|
|
* We handle all other messages from the
|
|
* C code, so no need to waste on-chip RAM
|
|
* for those ones.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_B (msg_in_etc),
|
|
}/*-------------------------< STATUS >---------------------------*/,{
|
|
/*
|
|
* get the status
|
|
*/
|
|
SCR_MOVE_ABS (1) ^ SCR_STATUS,
|
|
HADDR_1 (scratch),
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
|
|
* since we may have to tamper the start queue from
|
|
* the C code.
|
|
*/
|
|
SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
|
|
8,
|
|
SCR_REG_REG (scntl1, SCR_AND, ~IARB),
|
|
0,
|
|
#endif
|
|
/*
|
|
* save status to scsi_status.
|
|
* mark as complete.
|
|
*/
|
|
SCR_TO_REG (SS_REG),
|
|
0,
|
|
SCR_LOAD_REG (HS_REG, HS_COMPLETE),
|
|
0,
|
|
/*
|
|
* Anticipate the MESSAGE PHASE for
|
|
* the TASK COMPLETE message.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
|
|
PADDR_A (msg_in),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< COMPLETE >-------------------------*/,{
|
|
/*
|
|
* Complete message.
|
|
*
|
|
* Copy the data pointer to LASTP.
|
|
*/
|
|
SCR_STORE_REL (temp, 4),
|
|
offsetof (struct sym_ccb, phys.lastp),
|
|
/*
|
|
* When we terminate the cycle by clearing ACK,
|
|
* the target may disconnect immediately.
|
|
*
|
|
* We don't want to be told of an "unexpected disconnect",
|
|
* so we disable this feature.
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
|
0,
|
|
/*
|
|
* Terminate cycle ...
|
|
*/
|
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
|
0,
|
|
/*
|
|
* ... and wait for the disconnect.
|
|
*/
|
|
SCR_WAIT_DISC,
|
|
0,
|
|
}/*-------------------------< COMPLETE2 >------------------------*/,{
|
|
/*
|
|
* Save host status.
|
|
*/
|
|
SCR_STORE_REL (scr0, 4),
|
|
offsetof (struct sym_ccb, phys.status),
|
|
/*
|
|
* Some bridges may reorder DMA writes to memory.
|
|
* We donnot want the CPU to deal with completions
|
|
* without all the posted write having been flushed
|
|
* to memory. This DUMMY READ should flush posted
|
|
* buffers prior to the CPU having to deal with
|
|
* completions.
|
|
*/
|
|
SCR_LOAD_REL (scr0, 4), /* DUMMY READ */
|
|
offsetof (struct sym_ccb, phys.status),
|
|
|
|
/*
|
|
* If command resulted in not GOOD status,
|
|
* call the C code if needed.
|
|
*/
|
|
SCR_FROM_REG (SS_REG),
|
|
0,
|
|
SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
|
|
PADDR_B (bad_status),
|
|
/*
|
|
* If we performed an auto-sense, call
|
|
* the C code to synchronyze task aborts
|
|
* with UNIT ATTENTION conditions.
|
|
*/
|
|
SCR_FROM_REG (HF_REG),
|
|
0,
|
|
SCR_JUMPR ^ IFTRUE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
|
|
16,
|
|
}/*-------------------------< COMPLETE_ERROR >-------------------*/,{
|
|
SCR_LOAD_ABS (scratcha, 4),
|
|
PADDR_B (startpos),
|
|
SCR_INT,
|
|
SIR_COMPLETE_ERROR,
|
|
}/*-------------------------< DONE >-----------------------------*/,{
|
|
/*
|
|
* Copy the DSA to the DONE QUEUE and
|
|
* signal completion to the host.
|
|
* If we are interrupted between DONE
|
|
* and DONE_END, we must reset, otherwise
|
|
* the completed CCB may be lost.
|
|
*/
|
|
SCR_STORE_ABS (dsa, 4),
|
|
PADDR_B (saved_dsa),
|
|
SCR_LOAD_ABS (dsa, 4),
|
|
PADDR_B (done_pos),
|
|
SCR_LOAD_ABS (scratcha, 4),
|
|
PADDR_B (saved_dsa),
|
|
SCR_STORE_REL (scratcha, 4),
|
|
0,
|
|
/*
|
|
* The instruction below reads the DONE QUEUE next
|
|
* free position from memory.
|
|
* In addition it ensures that all PCI posted writes
|
|
* are flushed and so the DSA value of the done
|
|
* CCB is visible by the CPU before INTFLY is raised.
|
|
*/
|
|
SCR_LOAD_REL (temp, 4),
|
|
4,
|
|
SCR_INT_FLY,
|
|
0,
|
|
SCR_STORE_ABS (temp, 4),
|
|
PADDR_B (done_pos),
|
|
}/*-------------------------< DONE_END >-------------------------*/,{
|
|
SCR_JUMP,
|
|
PADDR_A (start),
|
|
}/*-------------------------< SAVE_DP >--------------------------*/,{
|
|
/*
|
|
* Clear ACK immediately.
|
|
* No need to delay it.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
/*
|
|
* Keep track we received a SAVE DP, so
|
|
* we will switch to the other PM context
|
|
* on the next PM since the DP may point
|
|
* to the current PM context.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
|
|
0,
|
|
/*
|
|
* SAVE_DP message:
|
|
* Copy the data pointer to SAVEP.
|
|
*/
|
|
SCR_STORE_REL (temp, 4),
|
|
offsetof (struct sym_ccb, phys.savep),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< RESTORE_DP >-----------------------*/,{
|
|
/*
|
|
* RESTORE_DP message:
|
|
* Copy SAVEP to actual data pointer.
|
|
*/
|
|
SCR_LOAD_REL (temp, 4),
|
|
offsetof (struct sym_ccb, phys.savep),
|
|
SCR_JUMP,
|
|
PADDR_A (clrack),
|
|
}/*-------------------------< DISCONNECT >-----------------------*/,{
|
|
/*
|
|
* DISCONNECTing ...
|
|
*
|
|
* disable the "unexpected disconnect" feature,
|
|
* and remove the ACK signal.
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
|
0,
|
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
|
0,
|
|
/*
|
|
* Wait for the disconnect.
|
|
*/
|
|
SCR_WAIT_DISC,
|
|
0,
|
|
/*
|
|
* Status is: DISCONNECTED.
|
|
*/
|
|
SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
|
|
0,
|
|
/*
|
|
* Save host status.
|
|
*/
|
|
SCR_STORE_REL (scr0, 4),
|
|
offsetof (struct sym_ccb, phys.status),
|
|
/*
|
|
* If QUIRK_AUTOSAVE is set,
|
|
* do an "save pointer" operation.
|
|
*/
|
|
SCR_FROM_REG (QU_REG),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (MASK (SYM_QUIRK_AUTOSAVE, SYM_QUIRK_AUTOSAVE)),
|
|
PADDR_A (start),
|
|
/*
|
|
* like SAVE_DP message:
|
|
* Remember we saved the data pointer.
|
|
* Copy data pointer to SAVEP.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
|
|
0,
|
|
SCR_STORE_REL (temp, 4),
|
|
offsetof (struct sym_ccb, phys.savep),
|
|
SCR_JUMP,
|
|
PADDR_A (start),
|
|
}/*-------------------------< IDLE >-----------------------------*/,{
|
|
/*
|
|
* Nothing to do?
|
|
* Switch the LED off and wait for reselect.
|
|
* Will be patched with a NO_OP if LED
|
|
* not needed or not desired.
|
|
*/
|
|
SCR_REG_REG (gpreg, SCR_OR, 0x01),
|
|
0,
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
SCR_JUMPR,
|
|
8,
|
|
#endif
|
|
}/*-------------------------< UNGETJOB >-------------------------*/,{
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* Set IMMEDIATE ARBITRATION, for the next time.
|
|
* This will give us better chance to win arbitration
|
|
* for the job we just wanted to do.
|
|
*/
|
|
SCR_REG_REG (scntl1, SCR_OR, IARB),
|
|
0,
|
|
#endif
|
|
/*
|
|
* We are not able to restart the SCRIPTS if we are
|
|
* interrupted and these instruction haven't been
|
|
* all executed. BTW, this is very unlikely to
|
|
* happen, but we check that from the C code.
|
|
*/
|
|
SCR_LOAD_REG (dsa, 0xff),
|
|
0,
|
|
SCR_STORE_ABS (scratcha, 4),
|
|
PADDR_B (startpos),
|
|
}/*-------------------------< RESELECT >-------------------------*/,{
|
|
/*
|
|
* Make sure we are in initiator mode.
|
|
*/
|
|
SCR_CLR (SCR_TRG),
|
|
0,
|
|
/*
|
|
* Sleep waiting for a reselection.
|
|
*/
|
|
SCR_WAIT_RESEL,
|
|
PADDR_A(start),
|
|
}/*-------------------------< RESELECTED >-----------------------*/,{
|
|
/*
|
|
* Switch the LED on.
|
|
* Will be patched with a NO_OP if LED
|
|
* not needed or not desired.
|
|
*/
|
|
SCR_REG_REG (gpreg, SCR_AND, 0xfe),
|
|
0,
|
|
/*
|
|
* load the target id into the sdid
|
|
*/
|
|
SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
|
|
0,
|
|
SCR_TO_REG (sdid),
|
|
0,
|
|
/*
|
|
* Load the target control block address
|
|
*/
|
|
SCR_LOAD_ABS (dsa, 4),
|
|
PADDR_B (targtbl),
|
|
SCR_SFBR_REG (dsa, SCR_SHL, 0),
|
|
0,
|
|
SCR_REG_REG (dsa, SCR_SHL, 0),
|
|
0,
|
|
SCR_REG_REG (dsa, SCR_AND, 0x3c),
|
|
0,
|
|
SCR_LOAD_REL (dsa, 4),
|
|
0,
|
|
/*
|
|
* Load the legacy synchronous transfer registers.
|
|
*/
|
|
SCR_LOAD_REL (scntl3, 1),
|
|
offsetof(struct sym_tcb, wval),
|
|
SCR_LOAD_REL (sxfer, 1),
|
|
offsetof(struct sym_tcb, sval),
|
|
}/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
|
|
/*
|
|
* The C1010 uses a new synchronous timing scheme.
|
|
* Will be patched with a NO_OP if not a C1010.
|
|
*/
|
|
SCR_LOAD_REL (scntl4, 1),
|
|
offsetof(struct sym_tcb, uval),
|
|
/*
|
|
* We expect MESSAGE IN phase.
|
|
* If not, get help from the C code.
|
|
*/
|
|
SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
|
SIR_RESEL_NO_MSG_IN,
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin),
|
|
/*
|
|
* If IDENTIFY LUN #0, use a faster path
|
|
* to find the LCB structure.
|
|
*/
|
|
SCR_JUMPR ^ IFTRUE (MASK (0x80, 0xbf)),
|
|
56,
|
|
/*
|
|
* If message isn't an IDENTIFY,
|
|
* tell the C code about.
|
|
*/
|
|
SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
|
|
SIR_RESEL_NO_IDENTIFY,
|
|
/*
|
|
* It is an IDENTIFY message,
|
|
* Load the LUN control block address.
|
|
*/
|
|
SCR_LOAD_REL (dsa, 4),
|
|
offsetof(struct sym_tcb, luntbl_sa),
|
|
SCR_SFBR_REG (dsa, SCR_SHL, 0),
|
|
0,
|
|
SCR_REG_REG (dsa, SCR_SHL, 0),
|
|
0,
|
|
SCR_REG_REG (dsa, SCR_AND, 0xfc),
|
|
0,
|
|
SCR_LOAD_REL (dsa, 4),
|
|
0,
|
|
SCR_JUMPR,
|
|
8,
|
|
/*
|
|
* LUN 0 special case (but usual one :))
|
|
*/
|
|
SCR_LOAD_REL (dsa, 4),
|
|
offsetof(struct sym_tcb, lun0_sa),
|
|
/*
|
|
* Jump indirectly to the reselect action for this LUN.
|
|
*/
|
|
SCR_LOAD_REL (temp, 4),
|
|
offsetof(struct sym_lcb, resel_sa),
|
|
SCR_RETURN,
|
|
0,
|
|
/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
|
|
}/*-------------------------< RESEL_TAG >------------------------*/,{
|
|
/*
|
|
* ACK the IDENTIFY or TAG previously received.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
/*
|
|
* It shall be a tagged command.
|
|
* Read SIMPLE+TAG.
|
|
* The C code will deal with errors.
|
|
* Agressive optimization, is'nt it? :)
|
|
*/
|
|
SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin),
|
|
/*
|
|
* Load the pointer to the tagged task
|
|
* table for this LUN.
|
|
*/
|
|
SCR_LOAD_REL (dsa, 4),
|
|
offsetof(struct sym_lcb, itlq_tbl_sa),
|
|
/*
|
|
* The SIDL still contains the TAG value.
|
|
* Agressive optimization, isn't it? :):)
|
|
*/
|
|
SCR_REG_SFBR (sidl, SCR_SHL, 0),
|
|
0,
|
|
#if SYM_CONF_MAX_TASK*4 > 512
|
|
SCR_JUMPR ^ IFFALSE (CARRYSET),
|
|
8,
|
|
SCR_REG_REG (dsa1, SCR_OR, 2),
|
|
0,
|
|
SCR_REG_REG (sfbr, SCR_SHL, 0),
|
|
0,
|
|
SCR_JUMPR ^ IFFALSE (CARRYSET),
|
|
8,
|
|
SCR_REG_REG (dsa1, SCR_OR, 1),
|
|
0,
|
|
#elif SYM_CONF_MAX_TASK*4 > 256
|
|
SCR_JUMPR ^ IFFALSE (CARRYSET),
|
|
8,
|
|
SCR_REG_REG (dsa1, SCR_OR, 1),
|
|
0,
|
|
#endif
|
|
/*
|
|
* Retrieve the DSA of this task.
|
|
* JUMP indirectly to the restart point of the CCB.
|
|
*/
|
|
SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
|
|
0,
|
|
SCR_LOAD_REL (dsa, 4),
|
|
0,
|
|
SCR_LOAD_REL (temp, 4),
|
|
offsetof(struct sym_ccb, phys.go.restart),
|
|
SCR_RETURN,
|
|
0,
|
|
/* In normal situations we branch to RESEL_DSA */
|
|
}/*-------------------------< RESEL_DSA >------------------------*/,{
|
|
/*
|
|
* ACK the IDENTIFY or TAG previously received.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
}/*-------------------------< RESEL_DSA1 >-----------------------*/,{
|
|
/*
|
|
* load the savep (saved pointer) into
|
|
* the actual data pointer.
|
|
*/
|
|
SCR_LOAD_REL (temp, 4),
|
|
offsetof (struct sym_ccb, phys.savep),
|
|
/*
|
|
* Initialize the status registers
|
|
*/
|
|
SCR_LOAD_REL (scr0, 4),
|
|
offsetof (struct sym_ccb, phys.status),
|
|
/*
|
|
* Jump to dispatcher.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< RESEL_NO_TAG >---------------------*/,{
|
|
/*
|
|
* Load the DSA with the unique ITL task.
|
|
*/
|
|
SCR_LOAD_REL (dsa, 4),
|
|
offsetof(struct sym_lcb, itl_task_sa),
|
|
/*
|
|
* JUMP indirectly to the restart point of the CCB.
|
|
*/
|
|
SCR_LOAD_REL (temp, 4),
|
|
offsetof(struct sym_ccb, phys.go.restart),
|
|
SCR_RETURN,
|
|
0,
|
|
/* In normal situations we branch to RESEL_DSA */
|
|
}/*-------------------------< DATA_IN >--------------------------*/,{
|
|
/*
|
|
* Because the size depends on the
|
|
* #define SYM_CONF_MAX_SG parameter,
|
|
* it is filled in at runtime.
|
|
*
|
|
* ##===========< i=0; i<SYM_CONF_MAX_SG >=========
|
|
* || SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
* || offsetof (struct dsb, data[ i]),
|
|
* ##==========================================
|
|
*/
|
|
0
|
|
}/*-------------------------< DATA_IN2 >-------------------------*/,{
|
|
SCR_CALL,
|
|
PADDR_A (datai_done),
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun),
|
|
}/*-------------------------< DATA_OUT >-------------------------*/,{
|
|
/*
|
|
* Because the size depends on the
|
|
* #define SYM_CONF_MAX_SG parameter,
|
|
* it is filled in at runtime.
|
|
*
|
|
* ##===========< i=0; i<SYM_CONF_MAX_SG >=========
|
|
* || SCR_CHMOV_TBL ^ SCR_DATA_OUT,
|
|
* || offsetof (struct dsb, data[ i]),
|
|
* ##==========================================
|
|
*/
|
|
0
|
|
}/*-------------------------< DATA_OUT2 >------------------------*/,{
|
|
SCR_CALL,
|
|
PADDR_A (datao_done),
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun),
|
|
}/*-------------------------< PM0_DATA >-------------------------*/,{
|
|
/*
|
|
* Read our host flags to SFBR, so we will be able
|
|
* to check against the data direction we expect.
|
|
*/
|
|
SCR_FROM_REG (HF_REG),
|
|
0,
|
|
/*
|
|
* Check against actual DATA PHASE.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
|
|
PADDR_A (pm0_data_out),
|
|
/*
|
|
* Actual phase is DATA IN.
|
|
* Check against expected direction.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* Keep track we are moving data from the
|
|
* PM0 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
|
|
0,
|
|
/*
|
|
* Move the data to memory.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
offsetof (struct sym_ccb, phys.pm0.sg),
|
|
SCR_JUMP,
|
|
PADDR_A (pm0_data_end),
|
|
}/*-------------------------< PM0_DATA_OUT >---------------------*/,{
|
|
/*
|
|
* Actual phase is DATA OUT.
|
|
* Check against expected direction.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* Keep track we are moving data from the
|
|
* PM0 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
|
|
0,
|
|
/*
|
|
* Move the data from memory.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
|
|
offsetof (struct sym_ccb, phys.pm0.sg),
|
|
}/*-------------------------< PM0_DATA_END >---------------------*/,{
|
|
/*
|
|
* Clear the flag that told we were moving
|
|
* data from the PM0 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
|
|
0,
|
|
/*
|
|
* Return to the previous DATA script which
|
|
* is guaranteed by design (if no bug) to be
|
|
* the main DATA script for this transfer.
|
|
*/
|
|
SCR_LOAD_REL (temp, 4),
|
|
offsetof (struct sym_ccb, phys.pm0.ret),
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------< PM1_DATA >-------------------------*/,{
|
|
/*
|
|
* Read our host flags to SFBR, so we will be able
|
|
* to check against the data direction we expect.
|
|
*/
|
|
SCR_FROM_REG (HF_REG),
|
|
0,
|
|
/*
|
|
* Check against actual DATA PHASE.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
|
|
PADDR_A (pm1_data_out),
|
|
/*
|
|
* Actual phase is DATA IN.
|
|
* Check against expected direction.
|
|
*/
|
|
SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* Keep track we are moving data from the
|
|
* PM1 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
|
|
0,
|
|
/*
|
|
* Move the data to memory.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
offsetof (struct sym_ccb, phys.pm1.sg),
|
|
SCR_JUMP,
|
|
PADDR_A (pm1_data_end),
|
|
}/*-------------------------< PM1_DATA_OUT >---------------------*/,{
|
|
/*
|
|
* Actual phase is DATA OUT.
|
|
* Check against expected direction.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
|
|
PADDR_B (data_ovrun),
|
|
/*
|
|
* Keep track we are moving data from the
|
|
* PM1 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
|
|
0,
|
|
/*
|
|
* Move the data from memory.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_OUT,
|
|
offsetof (struct sym_ccb, phys.pm1.sg),
|
|
}/*-------------------------< PM1_DATA_END >---------------------*/,{
|
|
/*
|
|
* Clear the flag that told we were moving
|
|
* data from the PM1 DATA mini-script.
|
|
*/
|
|
SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
|
|
0,
|
|
/*
|
|
* Return to the previous DATA script which
|
|
* is guaranteed by design (if no bug) to be
|
|
* the main DATA script for this transfer.
|
|
*/
|
|
SCR_LOAD_REL (temp, 4),
|
|
offsetof (struct sym_ccb, phys.pm1.ret),
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------<>-----------------------------------*/
|
|
};
|
|
|
|
static struct sym_scrb scriptb0 = {
|
|
/*--------------------------< START64 >--------------------------*/ {
|
|
/*
|
|
* SCRIPT entry point for the 895A, 896 and 1010.
|
|
* For now, there is no specific stuff for those
|
|
* chips at this point, but this may come.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_A (init),
|
|
}/*-------------------------< NO_DATA >--------------------------*/,{
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun),
|
|
}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
|
|
/*
|
|
* We are jumped here by the C code, if we have
|
|
* some target to reset or some disconnected
|
|
* job to abort. Since error recovery is a serious
|
|
* busyness, we will really reset the SCSI BUS, if
|
|
* case of a SCSI interrupt occuring in this path.
|
|
*/
|
|
|
|
/*
|
|
* Set initiator mode.
|
|
*/
|
|
SCR_CLR (SCR_TRG),
|
|
0,
|
|
/*
|
|
* And try to select this target.
|
|
*/
|
|
SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
|
|
PADDR_A (reselect),
|
|
/*
|
|
* Wait for the selection to complete or
|
|
* the selection to time out.
|
|
*/
|
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
|
-8,
|
|
/*
|
|
* Call the C code.
|
|
*/
|
|
SCR_INT,
|
|
SIR_TARGET_SELECTED,
|
|
/*
|
|
* The C code should let us continue here.
|
|
* Send the 'kiss of death' message.
|
|
* We expect an immediate disconnect once
|
|
* the target has eaten the message.
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
|
0,
|
|
SCR_MOVE_TBL ^ SCR_MSG_OUT,
|
|
offsetof (struct sym_hcb, abrt_tbl),
|
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
|
0,
|
|
SCR_WAIT_DISC,
|
|
0,
|
|
/*
|
|
* Tell the C code that we are done.
|
|
*/
|
|
SCR_INT,
|
|
SIR_ABORT_SENT,
|
|
}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
|
|
/*
|
|
* Jump at scheduler.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_A (start),
|
|
}/*-------------------------< MSG_IN_ETC >-----------------------*/,{
|
|
/*
|
|
* If it is an EXTENDED (variable size message)
|
|
* Handle it.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
|
|
PADDR_B (msg_extended),
|
|
/*
|
|
* Let the C code handle any other
|
|
* 1 byte message.
|
|
*/
|
|
SCR_INT ^ IFTRUE (MASK (0x00, 0xf0)),
|
|
SIR_MSG_RECEIVED,
|
|
SCR_INT ^ IFTRUE (MASK (0x10, 0xf0)),
|
|
SIR_MSG_RECEIVED,
|
|
/*
|
|
* We donnot handle 2 bytes messages from SCRIPTS.
|
|
* So, let the C code deal with these ones too.
|
|
*/
|
|
SCR_INT ^ IFFALSE (MASK (0x20, 0xf0)),
|
|
SIR_MSG_WEIRD,
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[1]),
|
|
SCR_INT,
|
|
SIR_MSG_RECEIVED,
|
|
}/*-------------------------< MSG_RECEIVED >---------------------*/,{
|
|
SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
|
|
0,
|
|
SCR_INT,
|
|
SIR_MSG_RECEIVED,
|
|
}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
|
|
SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */
|
|
0,
|
|
SCR_INT,
|
|
SIR_MSG_WEIRD,
|
|
}/*-------------------------< MSG_EXTENDED >---------------------*/,{
|
|
/*
|
|
* Clear ACK and get the next byte
|
|
* assumed to be the message length.
|
|
*/
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (msgin[1]),
|
|
/*
|
|
* Try to catch some unlikely situations as 0 length
|
|
* or too large the length.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (DATA (0)),
|
|
PADDR_B (msg_weird_seen),
|
|
SCR_TO_REG (scratcha),
|
|
0,
|
|
SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
|
|
0,
|
|
SCR_JUMP ^ IFTRUE (CARRYSET),
|
|
PADDR_B (msg_weird_seen),
|
|
/*
|
|
* We donnot handle extended messages from SCRIPTS.
|
|
* Read the amount of data correponding to the
|
|
* message length and call the C code.
|
|
*/
|
|
SCR_STORE_REL (scratcha, 1),
|
|
offsetof (struct dsb, smsg_ext.size),
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_MOVE_TBL ^ SCR_MSG_IN,
|
|
offsetof (struct dsb, smsg_ext),
|
|
SCR_JUMP,
|
|
PADDR_B (msg_received),
|
|
}/*-------------------------< MSG_BAD >--------------------------*/,{
|
|
/*
|
|
* unimplemented message - reject it.
|
|
*/
|
|
SCR_INT,
|
|
SIR_REJECT_TO_SEND,
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (clrack),
|
|
}/*-------------------------< MSG_WEIRD >------------------------*/,{
|
|
/*
|
|
* weird message received
|
|
* ignore all MSG IN phases and reject it.
|
|
*/
|
|
SCR_INT,
|
|
SIR_REJECT_TO_SEND,
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
|
|
PADDR_A (dispatch),
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
|
|
HADDR_1 (scratch),
|
|
SCR_JUMP,
|
|
PADDR_B (msg_weird1),
|
|
}/*-------------------------< WDTR_RESP >------------------------*/,{
|
|
/*
|
|
* let the target fetch our answer.
|
|
*/
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
|
PADDR_B (nego_bad_phase),
|
|
}/*-------------------------< SEND_WDTR >------------------------*/,{
|
|
/*
|
|
* Send the M_X_WIDE_REQ
|
|
*/
|
|
SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
|
|
HADDR_1 (msgout),
|
|
SCR_JUMP,
|
|
PADDR_B (msg_out_done),
|
|
}/*-------------------------< SDTR_RESP >------------------------*/,{
|
|
/*
|
|
* let the target fetch our answer.
|
|
*/
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
|
PADDR_B (nego_bad_phase),
|
|
}/*-------------------------< SEND_SDTR >------------------------*/,{
|
|
/*
|
|
* Send the M_X_SYNC_REQ
|
|
*/
|
|
SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
|
|
HADDR_1 (msgout),
|
|
SCR_JUMP,
|
|
PADDR_B (msg_out_done),
|
|
}/*-------------------------< PPR_RESP >-------------------------*/,{
|
|
/*
|
|
* let the target fetch our answer.
|
|
*/
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
|
|
PADDR_B (nego_bad_phase),
|
|
}/*-------------------------< SEND_PPR >-------------------------*/,{
|
|
/*
|
|
* Send the M_X_PPR_REQ
|
|
*/
|
|
SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
|
|
HADDR_1 (msgout),
|
|
SCR_JUMP,
|
|
PADDR_B (msg_out_done),
|
|
}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
|
|
SCR_INT,
|
|
SIR_NEGO_PROTO,
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< MSG_OUT >--------------------------*/,{
|
|
/*
|
|
* The target requests a message.
|
|
* We donnot send messages that may
|
|
* require the device to go to bus free.
|
|
*/
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
|
|
HADDR_1 (msgout),
|
|
/*
|
|
* ... wait for the next phase
|
|
* if it's a message out, send it again, ...
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
|
|
PADDR_B (msg_out),
|
|
}/*-------------------------< MSG_OUT_DONE >---------------------*/,{
|
|
/*
|
|
* Let the C code be aware of the
|
|
* sent message and clear the message.
|
|
*/
|
|
SCR_INT,
|
|
SIR_MSG_OUT_DONE,
|
|
/*
|
|
* ... and process the next phase
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< DATA_OVRUN >-----------------------*/,{
|
|
/*
|
|
* Use scratcha to count the extra bytes.
|
|
*/
|
|
SCR_LOAD_ABS (scratcha, 4),
|
|
PADDR_B (zero),
|
|
}/*-------------------------< DATA_OVRUN1 >----------------------*/,{
|
|
/*
|
|
* The target may want to transfer too much data.
|
|
*
|
|
* If phase is DATA OUT write 1 byte and count it.
|
|
*/
|
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
|
|
16,
|
|
SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
|
|
HADDR_1 (scratch),
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun2),
|
|
/*
|
|
* If WSR is set, clear this condition, and
|
|
* count this byte.
|
|
*/
|
|
SCR_FROM_REG (scntl2),
|
|
0,
|
|
SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
|
|
16,
|
|
SCR_REG_REG (scntl2, SCR_OR, WSR),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun2),
|
|
/*
|
|
* Finally check against DATA IN phase.
|
|
* Signal data overrun to the C code
|
|
* and jump to dispatcher if not so.
|
|
* Read 1 byte otherwise and count it.
|
|
*/
|
|
SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
|
|
16,
|
|
SCR_INT,
|
|
SIR_DATA_OVERRUN,
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
|
|
HADDR_1 (scratch),
|
|
}/*-------------------------< DATA_OVRUN2 >----------------------*/,{
|
|
/*
|
|
* Count this byte.
|
|
* This will allow to return a negative
|
|
* residual to user.
|
|
*/
|
|
SCR_REG_REG (scratcha, SCR_ADD, 0x01),
|
|
0,
|
|
SCR_REG_REG (scratcha1, SCR_ADDC, 0),
|
|
0,
|
|
SCR_REG_REG (scratcha2, SCR_ADDC, 0),
|
|
0,
|
|
/*
|
|
* .. and repeat as required.
|
|
*/
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun1),
|
|
}/*-------------------------< ABORT_RESEL >----------------------*/,{
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_CLR (SCR_ACK),
|
|
0,
|
|
/*
|
|
* send the abort/abortag/reset message
|
|
* we expect an immediate disconnect
|
|
*/
|
|
SCR_REG_REG (scntl2, SCR_AND, 0x7f),
|
|
0,
|
|
SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
|
|
HADDR_1 (msgout),
|
|
SCR_CLR (SCR_ACK|SCR_ATN),
|
|
0,
|
|
SCR_WAIT_DISC,
|
|
0,
|
|
SCR_INT,
|
|
SIR_RESEL_ABORTED,
|
|
SCR_JUMP,
|
|
PADDR_A (start),
|
|
}/*-------------------------< RESEND_IDENT >---------------------*/,{
|
|
/*
|
|
* The target stays in MSG OUT phase after having acked
|
|
* Identify [+ Tag [+ Extended message ]]. Targets shall
|
|
* behave this way on parity error.
|
|
* We must send it again all the messages.
|
|
*/
|
|
SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
|
|
0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
|
|
SCR_JUMP,
|
|
PADDR_A (send_ident),
|
|
}/*-------------------------< IDENT_BREAK >----------------------*/,{
|
|
SCR_CLR (SCR_ATN),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (select2),
|
|
}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
|
|
SCR_SET (SCR_ATN),
|
|
0,
|
|
SCR_JUMP,
|
|
PADDR_A (select2),
|
|
}/*-------------------------< SDATA_IN >-------------------------*/,{
|
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
offsetof (struct dsb, sense),
|
|
SCR_CALL,
|
|
PADDR_A (datai_done),
|
|
SCR_JUMP,
|
|
PADDR_B (data_ovrun),
|
|
}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
|
|
/*
|
|
* Message is an IDENTIFY, but lun is unknown.
|
|
* Signal problem to C code for logging the event.
|
|
* Send a M_ABORT to clear all pending tasks.
|
|
*/
|
|
SCR_INT,
|
|
SIR_RESEL_BAD_LUN,
|
|
SCR_JUMP,
|
|
PADDR_B (abort_resel),
|
|
}/*-------------------------< BAD_I_T_L >------------------------*/,{
|
|
/*
|
|
* We donnot have a task for that I_T_L.
|
|
* Signal problem to C code for logging the event.
|
|
* Send a M_ABORT message.
|
|
*/
|
|
SCR_INT,
|
|
SIR_RESEL_BAD_I_T_L,
|
|
SCR_JUMP,
|
|
PADDR_B (abort_resel),
|
|
}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
|
|
/*
|
|
* We donnot have a task that matches the tag.
|
|
* Signal problem to C code for logging the event.
|
|
* Send a M_ABORTTAG message.
|
|
*/
|
|
SCR_INT,
|
|
SIR_RESEL_BAD_I_T_L_Q,
|
|
SCR_JUMP,
|
|
PADDR_B (abort_resel),
|
|
}/*-------------------------< BAD_STATUS >-----------------------*/,{
|
|
/*
|
|
* Anything different from INTERMEDIATE
|
|
* CONDITION MET should be a bad SCSI status,
|
|
* given that GOOD status has already been tested.
|
|
* Call the C code.
|
|
*/
|
|
SCR_LOAD_ABS (scratcha, 4),
|
|
PADDR_B (startpos),
|
|
SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
|
|
SIR_BAD_SCSI_STATUS,
|
|
SCR_RETURN,
|
|
0,
|
|
}/*-------------------------< PM_HANDLE >------------------------*/,{
|
|
/*
|
|
* Phase mismatch handling.
|
|
*
|
|
* Since we have to deal with 2 SCSI data pointers
|
|
* (current and saved), we need at least 2 contexts.
|
|
* Each context (pm0 and pm1) has a saved area, a
|
|
* SAVE mini-script and a DATA phase mini-script.
|
|
*/
|
|
/*
|
|
* Get the PM handling flags.
|
|
*/
|
|
SCR_FROM_REG (HF_REG),
|
|
0,
|
|
/*
|
|
* If no flags (1rst PM for example), avoid
|
|
* all the below heavy flags testing.
|
|
* This makes the normal case a bit faster.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
|
|
PADDR_B (pm_handle1),
|
|
/*
|
|
* If we received a SAVE DP, switch to the
|
|
* other PM context since the savep may point
|
|
* to the current PM context.
|
|
*/
|
|
SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
|
|
8,
|
|
SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
|
|
0,
|
|
/*
|
|
* If we have been interrupt in a PM DATA mini-script,
|
|
* we take the return address from the corresponding
|
|
* saved area.
|
|
* This ensure the return address always points to the
|
|
* main DATA script for this transfer.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
|
|
PADDR_B (pm_handle1),
|
|
SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
|
|
16,
|
|
SCR_LOAD_REL (ia, 4),
|
|
offsetof(struct sym_ccb, phys.pm0.ret),
|
|
SCR_JUMP,
|
|
PADDR_B (pm_save),
|
|
SCR_LOAD_REL (ia, 4),
|
|
offsetof(struct sym_ccb, phys.pm1.ret),
|
|
SCR_JUMP,
|
|
PADDR_B (pm_save),
|
|
}/*-------------------------< PM_HANDLE1 >-----------------------*/,{
|
|
/*
|
|
* Normal case.
|
|
* Update the return address so that it
|
|
* will point after the interrupted MOVE.
|
|
*/
|
|
SCR_REG_REG (ia, SCR_ADD, 8),
|
|
0,
|
|
SCR_REG_REG (ia1, SCR_ADDC, 0),
|
|
0,
|
|
}/*-------------------------< PM_SAVE >--------------------------*/,{
|
|
/*
|
|
* Clear all the flags that told us if we were
|
|
* interrupted in a PM DATA mini-script and/or
|
|
* we received a SAVE DP.
|
|
*/
|
|
SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
|
|
0,
|
|
/*
|
|
* Choose the current PM context.
|
|
*/
|
|
SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
|
|
PADDR_B (pm1_save),
|
|
}/*-------------------------< PM0_SAVE >-------------------------*/,{
|
|
SCR_STORE_REL (ia, 4),
|
|
offsetof(struct sym_ccb, phys.pm0.ret),
|
|
/*
|
|
* If WSR bit is set, either UA and RBC may
|
|
* have to be changed whether the device wants
|
|
* to ignore this residue or not.
|
|
*/
|
|
SCR_FROM_REG (scntl2),
|
|
0,
|
|
SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
|
|
PADDR_B (pm_wsr_handle),
|
|
/*
|
|
* Save the remaining byte count, the updated
|
|
* address and the return address.
|
|
*/
|
|
SCR_STORE_REL (rbc, 4),
|
|
offsetof(struct sym_ccb, phys.pm0.sg.size),
|
|
SCR_STORE_REL (ua, 4),
|
|
offsetof(struct sym_ccb, phys.pm0.sg.addr),
|
|
/*
|
|
* Set the current pointer at the PM0 DATA mini-script.
|
|
*/
|
|
SCR_LOAD_ABS (temp, 4),
|
|
PADDR_B (pm0_data_addr),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< PM1_SAVE >-------------------------*/,{
|
|
SCR_STORE_REL (ia, 4),
|
|
offsetof(struct sym_ccb, phys.pm1.ret),
|
|
/*
|
|
* If WSR bit is set, either UA and RBC may
|
|
* have to be changed whether the device wants
|
|
* to ignore this residue or not.
|
|
*/
|
|
SCR_FROM_REG (scntl2),
|
|
0,
|
|
SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
|
|
PADDR_B (pm_wsr_handle),
|
|
/*
|
|
* Save the remaining byte count, the updated
|
|
* address and the return address.
|
|
*/
|
|
SCR_STORE_REL (rbc, 4),
|
|
offsetof(struct sym_ccb, phys.pm1.sg.size),
|
|
SCR_STORE_REL (ua, 4),
|
|
offsetof(struct sym_ccb, phys.pm1.sg.addr),
|
|
/*
|
|
* Set the current pointer at the PM1 DATA mini-script.
|
|
*/
|
|
SCR_LOAD_ABS (temp, 4),
|
|
PADDR_B (pm1_data_addr),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
|
|
/*
|
|
* Phase mismatch handling from SCRIPT with WSR set.
|
|
* Such a condition can occur if the chip wants to
|
|
* execute a CHMOV(size > 1) when the WSR bit is
|
|
* set and the target changes PHASE.
|
|
*
|
|
* We must move the residual byte to memory.
|
|
*
|
|
* UA contains bit 0..31 of the address to
|
|
* move the residual byte.
|
|
* Move it to the table indirect.
|
|
*/
|
|
SCR_STORE_REL (ua, 4),
|
|
offsetof (struct sym_ccb, phys.wresid.addr),
|
|
/*
|
|
* Increment UA (move address to next position).
|
|
*/
|
|
SCR_REG_REG (ua, SCR_ADD, 1),
|
|
0,
|
|
SCR_REG_REG (ua1, SCR_ADDC, 0),
|
|
0,
|
|
SCR_REG_REG (ua2, SCR_ADDC, 0),
|
|
0,
|
|
SCR_REG_REG (ua3, SCR_ADDC, 0),
|
|
0,
|
|
/*
|
|
* Compute SCRATCHA as:
|
|
* - size to transfer = 1 byte.
|
|
* - bit 24..31 = high address bit [32...39].
|
|
*/
|
|
SCR_LOAD_ABS (scratcha, 4),
|
|
PADDR_B (zero),
|
|
SCR_REG_REG (scratcha, SCR_OR, 1),
|
|
0,
|
|
SCR_FROM_REG (rbc3),
|
|
0,
|
|
SCR_TO_REG (scratcha3),
|
|
0,
|
|
/*
|
|
* Move this value to the table indirect.
|
|
*/
|
|
SCR_STORE_REL (scratcha, 4),
|
|
offsetof (struct sym_ccb, phys.wresid.size),
|
|
/*
|
|
* Wait for a valid phase.
|
|
* While testing with bogus QUANTUM drives, the C1010
|
|
* sometimes raised a spurious phase mismatch with
|
|
* WSR and the CHMOV(1) triggered another PM.
|
|
* Waiting explicitely for the PHASE seemed to avoid
|
|
* the nested phase mismatch. Btw, this didn't happen
|
|
* using my IBM drives.
|
|
*/
|
|
SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
|
|
0,
|
|
/*
|
|
* Perform the move of the residual byte.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
offsetof (struct sym_ccb, phys.wresid),
|
|
/*
|
|
* We can now handle the phase mismatch with UA fixed.
|
|
* RBC[0..23]=0 is a special case that does not require
|
|
* a PM context. The C code also checks against this.
|
|
*/
|
|
SCR_FROM_REG (rbc),
|
|
0,
|
|
SCR_RETURN ^ IFFALSE (DATA (0)),
|
|
0,
|
|
SCR_FROM_REG (rbc1),
|
|
0,
|
|
SCR_RETURN ^ IFFALSE (DATA (0)),
|
|
0,
|
|
SCR_FROM_REG (rbc2),
|
|
0,
|
|
SCR_RETURN ^ IFFALSE (DATA (0)),
|
|
0,
|
|
/*
|
|
* RBC[0..23]=0.
|
|
* Not only we donnot need a PM context, but this would
|
|
* lead to a bogus CHMOV(0). This condition means that
|
|
* the residual was the last byte to move from this CHMOV.
|
|
* So, we just have to move the current data script pointer
|
|
* (i.e. TEMP) to the SCRIPTS address following the
|
|
* interrupted CHMOV and jump to dispatcher.
|
|
*/
|
|
SCR_STORE_ABS (ia, 4),
|
|
PADDR_B (scratch),
|
|
SCR_LOAD_ABS (temp, 4),
|
|
PADDR_B (scratch),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< WSR_MA_HELPER >--------------------*/,{
|
|
/*
|
|
* Helper for the C code when WSR bit is set.
|
|
* Perform the move of the residual byte.
|
|
*/
|
|
SCR_CHMOV_TBL ^ SCR_DATA_IN,
|
|
offsetof (struct sym_ccb, phys.wresid),
|
|
SCR_JUMP,
|
|
PADDR_A (dispatch),
|
|
}/*-------------------------< ZERO >-----------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< SCRATCH >--------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< SAVED_DSA >------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< SAVED_DRS >------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< DONE_POS >-------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< STARTPOS >-------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
}/*-------------------------< TARGTBL >--------------------------*/,{
|
|
SCR_DATA_ZERO,
|
|
|
|
}/*-------------------------< SNOOPTEST >------------------------*/,{
|
|
/*
|
|
* Read the variable from memory.
|
|
*/
|
|
SCR_LOAD_REL (scratcha, 4),
|
|
offsetof(struct sym_hcb, cache),
|
|
/*
|
|
* Write the variable to memory.
|
|
*/
|
|
SCR_STORE_REL (temp, 4),
|
|
offsetof(struct sym_hcb, cache),
|
|
/*
|
|
* Read back the variable from memory.
|
|
*/
|
|
SCR_LOAD_REL (temp, 4),
|
|
offsetof(struct sym_hcb, cache),
|
|
}/*-------------------------< SNOOPEND >-------------------------*/,{
|
|
/*
|
|
* And stop.
|
|
*/
|
|
SCR_INT,
|
|
99,
|
|
}/*-------------------------<>-----------------------------------*/
|
|
};
|
|
|
|
/*
|
|
* Fill in #define dependent parts of the scripts
|
|
*/
|
|
static void sym_fill_scripts (scripta_p scra, scriptb_p scrb)
|
|
{
|
|
int i;
|
|
u32 *p;
|
|
|
|
p = scra->data_in;
|
|
for (i=0; i<SYM_CONF_MAX_SG; i++) {
|
|
*p++ =SCR_CHMOV_TBL ^ SCR_DATA_IN;
|
|
*p++ =offsetof (struct dsb, data[i]);
|
|
};
|
|
assert ((u_long)p == (u_long)&scra->data_in + sizeof (scra->data_in));
|
|
|
|
p = scra->data_out;
|
|
for (i=0; i<SYM_CONF_MAX_SG; i++) {
|
|
*p++ =SCR_CHMOV_TBL ^ SCR_DATA_OUT;
|
|
*p++ =offsetof (struct dsb, data[i]);
|
|
};
|
|
assert ((u_long)p == (u_long)&scra->data_out + sizeof (scra->data_out));
|
|
}
|
|
|
|
/*
|
|
* Copy and bind a script.
|
|
*/
|
|
static void sym_bind_script (hcb_p np, u32 *src, u32 *dst, int len)
|
|
{
|
|
u32 opcode, new, old, tmp1, tmp2;
|
|
u32 *start, *end;
|
|
int relocs;
|
|
int opchanged = 0;
|
|
|
|
start = src;
|
|
end = src + len/4;
|
|
|
|
while (src < end) {
|
|
|
|
opcode = *src++;
|
|
*dst++ = cpu_to_scr(opcode);
|
|
|
|
/*
|
|
* If we forget to change the length
|
|
* in scripts, a field will be
|
|
* padded with 0. This is an illegal
|
|
* command.
|
|
*/
|
|
if (opcode == 0) {
|
|
printf ("%s: ERROR0 IN SCRIPT at %d.\n",
|
|
sym_name(np), (int) (src-start-1));
|
|
MDELAY (10000);
|
|
continue;
|
|
};
|
|
|
|
/*
|
|
* We use the bogus value 0xf00ff00f ;-)
|
|
* to reserve data area in SCRIPTS.
|
|
*/
|
|
if (opcode == SCR_DATA_ZERO) {
|
|
dst[-1] = 0;
|
|
continue;
|
|
}
|
|
|
|
if (DEBUG_FLAGS & DEBUG_SCRIPT)
|
|
printf ("%p: <%x>\n", (src-1), (unsigned)opcode);
|
|
|
|
/*
|
|
* We don't have to decode ALL commands
|
|
*/
|
|
switch (opcode >> 28) {
|
|
case 0xf:
|
|
/*
|
|
* LOAD / STORE DSA relative, don't relocate.
|
|
*/
|
|
relocs = 0;
|
|
break;
|
|
case 0xe:
|
|
/*
|
|
* LOAD / STORE absolute.
|
|
*/
|
|
relocs = 1;
|
|
break;
|
|
case 0xc:
|
|
/*
|
|
* COPY has TWO arguments.
|
|
*/
|
|
relocs = 2;
|
|
tmp1 = src[0];
|
|
tmp2 = src[1];
|
|
if ((tmp1 ^ tmp2) & 3) {
|
|
printf ("%s: ERROR1 IN SCRIPT at %d.\n",
|
|
sym_name(np), (int) (src-start-1));
|
|
MDELAY (1000);
|
|
}
|
|
/*
|
|
* If PREFETCH feature not enabled, remove
|
|
* the NO FLUSH bit if present.
|
|
*/
|
|
if ((opcode & SCR_NO_FLUSH) &&
|
|
!(np->features & FE_PFEN)) {
|
|
dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
|
|
++opchanged;
|
|
}
|
|
break;
|
|
case 0x0:
|
|
/*
|
|
* MOVE/CHMOV (absolute address)
|
|
*/
|
|
if (!(np->features & FE_WIDE))
|
|
dst[-1] = cpu_to_scr(opcode | OPC_MOVE);
|
|
relocs = 1;
|
|
break;
|
|
case 0x1:
|
|
/*
|
|
* MOVE/CHMOV (table indirect)
|
|
*/
|
|
if (!(np->features & FE_WIDE))
|
|
dst[-1] = cpu_to_scr(opcode | OPC_MOVE);
|
|
relocs = 0;
|
|
break;
|
|
case 0x8:
|
|
/*
|
|
* JUMP / CALL
|
|
* dont't relocate if relative :-)
|
|
*/
|
|
if (opcode & 0x00800000)
|
|
relocs = 0;
|
|
else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/
|
|
relocs = 2;
|
|
else
|
|
relocs = 1;
|
|
break;
|
|
case 0x4:
|
|
case 0x5:
|
|
case 0x6:
|
|
case 0x7:
|
|
relocs = 1;
|
|
break;
|
|
default:
|
|
relocs = 0;
|
|
break;
|
|
};
|
|
|
|
if (!relocs) {
|
|
*dst++ = cpu_to_scr(*src++);
|
|
continue;
|
|
}
|
|
while (relocs--) {
|
|
old = *src++;
|
|
|
|
switch (old & RELOC_MASK) {
|
|
case RELOC_REGISTER:
|
|
new = (old & ~RELOC_MASK) + np->mmio_ba;
|
|
break;
|
|
case RELOC_LABELA:
|
|
new = (old & ~RELOC_MASK) + np->scripta_ba;
|
|
break;
|
|
case RELOC_LABELB:
|
|
new = (old & ~RELOC_MASK) + np->scriptb_ba;
|
|
break;
|
|
case RELOC_SOFTC:
|
|
new = (old & ~RELOC_MASK) + np->hcb_ba;
|
|
break;
|
|
case 0:
|
|
/* Don't relocate a 0 address. */
|
|
if (old == 0) {
|
|
new = old;
|
|
break;
|
|
}
|
|
/* fall through */
|
|
default:
|
|
new = 0; /* For 'cc' not to complain */
|
|
panic("sym_bind_script: "
|
|
"weird relocation %x\n", old);
|
|
break;
|
|
}
|
|
|
|
*dst++ = cpu_to_scr(new);
|
|
}
|
|
};
|
|
}
|
|
|
|
/*
|
|
* Print something which allows to retrieve the controler type,
|
|
* unit, target, lun concerned by a kernel message.
|
|
*/
|
|
static void PRINT_TARGET (hcb_p np, int target)
|
|
{
|
|
printf ("%s:%d:", sym_name(np), target);
|
|
}
|
|
|
|
static void PRINT_LUN(hcb_p np, int target, int lun)
|
|
{
|
|
printf ("%s:%d:%d:", sym_name(np), target, lun);
|
|
}
|
|
|
|
static void PRINT_ADDR (ccb_p cp)
|
|
{
|
|
if (cp && cp->cam_ccb)
|
|
xpt_print_path(cp->cam_ccb->ccb_h.path);
|
|
}
|
|
|
|
/*
|
|
* Take into account this ccb in the freeze count.
|
|
* The flag that tells user about avoids doing that
|
|
* more than once for a ccb.
|
|
*/
|
|
static void sym_freeze_cam_ccb(union ccb *ccb)
|
|
{
|
|
if (!(ccb->ccb_h.flags & CAM_DEV_QFRZDIS)) {
|
|
if (!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
|
|
ccb->ccb_h.status |= CAM_DEV_QFRZN;
|
|
xpt_freeze_devq(ccb->ccb_h.path, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the status field of a CAM CCB.
|
|
*/
|
|
static __inline void sym_set_cam_status(union ccb *ccb, cam_status status)
|
|
{
|
|
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
|
|
ccb->ccb_h.status |= status;
|
|
}
|
|
|
|
/*
|
|
* Get the status field of a CAM CCB.
|
|
*/
|
|
static __inline int sym_get_cam_status(union ccb *ccb)
|
|
{
|
|
return ccb->ccb_h.status & CAM_STATUS_MASK;
|
|
}
|
|
|
|
/*
|
|
* Enqueue a CAM CCB.
|
|
*/
|
|
static void sym_enqueue_cam_ccb(hcb_p np, union ccb *ccb)
|
|
{
|
|
assert(!(ccb->ccb_h.status & CAM_SIM_QUEUED));
|
|
ccb->ccb_h.status = CAM_REQ_INPROG;
|
|
|
|
ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb,
|
|
ccb->ccb_h.timeout*hz/1000);
|
|
ccb->ccb_h.status |= CAM_SIM_QUEUED;
|
|
ccb->ccb_h.sym_hcb_ptr = np;
|
|
|
|
sym_insque_tail(sym_qptr(&ccb->ccb_h.sim_links), &np->cam_ccbq);
|
|
}
|
|
|
|
/*
|
|
* Complete a pending CAM CCB.
|
|
*/
|
|
static void sym_xpt_done(hcb_p np, union ccb *ccb)
|
|
{
|
|
if (ccb->ccb_h.status & CAM_SIM_QUEUED) {
|
|
untimeout(sym_timeout, (caddr_t) ccb, ccb->ccb_h.timeout_ch);
|
|
sym_remque(sym_qptr(&ccb->ccb_h.sim_links));
|
|
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
|
|
ccb->ccb_h.sym_hcb_ptr = 0;
|
|
}
|
|
if (ccb->ccb_h.flags & CAM_DEV_QFREEZE)
|
|
sym_freeze_cam_ccb(ccb);
|
|
xpt_done(ccb);
|
|
}
|
|
|
|
static void sym_xpt_done2(hcb_p np, union ccb *ccb, int cam_status)
|
|
{
|
|
sym_set_cam_status(ccb, cam_status);
|
|
sym_xpt_done(np, ccb);
|
|
}
|
|
|
|
/*
|
|
* SYMBIOS chip clock divisor table.
|
|
*
|
|
* Divisors are multiplied by 10,000,000 in order to make
|
|
* calculations more simple.
|
|
*/
|
|
#define _5M 5000000
|
|
static u_long div_10M[] =
|
|
{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
|
|
|
|
/*
|
|
* SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
|
|
* 128 transfers. All chips support at least 16 transfers
|
|
* bursts. The 825A, 875 and 895 chips support bursts of up
|
|
* to 128 transfers and the 895A and 896 support bursts of up
|
|
* to 64 transfers. All other chips support up to 16
|
|
* transfers bursts.
|
|
*
|
|
* For PCI 32 bit data transfers each transfer is a DWORD.
|
|
* It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
|
|
* Only the 896 is able to perform 64 bit data transfers.
|
|
*
|
|
* We use log base 2 (burst length) as internal code, with
|
|
* value 0 meaning "burst disabled".
|
|
*/
|
|
|
|
/*
|
|
* Burst length from burst code.
|
|
*/
|
|
#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
|
|
|
|
/*
|
|
* Burst code from io register bits.
|
|
*/
|
|
#define burst_code(dmode, ctest4, ctest5) \
|
|
(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
|
|
|
|
/*
|
|
* Set initial io register bits from burst code.
|
|
*/
|
|
static __inline void sym_init_burst(hcb_p np, u_char bc)
|
|
{
|
|
np->rv_ctest4 &= ~0x80;
|
|
np->rv_dmode &= ~(0x3 << 6);
|
|
np->rv_ctest5 &= ~0x4;
|
|
|
|
if (!bc) {
|
|
np->rv_ctest4 |= 0x80;
|
|
}
|
|
else {
|
|
--bc;
|
|
np->rv_dmode |= ((bc & 0x3) << 6);
|
|
np->rv_ctest5 |= (bc & 0x4);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Print out the list of targets that have some flag disabled by user.
|
|
*/
|
|
static void sym_print_targets_flag(hcb_p np, int mask, char *msg)
|
|
{
|
|
int cnt;
|
|
int i;
|
|
|
|
for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
|
|
if (i == np->myaddr)
|
|
continue;
|
|
if (np->target[i].usrflags & mask) {
|
|
if (!cnt++)
|
|
printf("%s: %s disabled for targets",
|
|
sym_name(np), msg);
|
|
printf(" %d", i);
|
|
}
|
|
}
|
|
if (cnt)
|
|
printf(".\n");
|
|
}
|
|
|
|
/*
|
|
* Save initial settings of some IO registers.
|
|
* Assumed to have been set by BIOS.
|
|
* We cannot reset the chip prior to reading the
|
|
* IO registers, since informations will be lost.
|
|
* Since the SCRIPTS processor may be running, this
|
|
* is not safe on paper, but it seems to work quite
|
|
* well. :)
|
|
*/
|
|
static void sym_save_initial_setting (hcb_p np)
|
|
{
|
|
np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
|
|
np->sv_scntl3 = INB(nc_scntl3) & 0x07;
|
|
np->sv_dmode = INB(nc_dmode) & 0xce;
|
|
np->sv_dcntl = INB(nc_dcntl) & 0xa8;
|
|
np->sv_ctest3 = INB(nc_ctest3) & 0x01;
|
|
np->sv_ctest4 = INB(nc_ctest4) & 0x80;
|
|
np->sv_gpcntl = INB(nc_gpcntl);
|
|
np->sv_stest1 = INB(nc_stest1);
|
|
np->sv_stest2 = INB(nc_stest2) & 0x20;
|
|
np->sv_stest4 = INB(nc_stest4);
|
|
if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
|
|
np->sv_scntl4 = INB(nc_scntl4);
|
|
np->sv_ctest5 = INB(nc_ctest5) & 0x04;
|
|
}
|
|
else
|
|
np->sv_ctest5 = INB(nc_ctest5) & 0x24;
|
|
}
|
|
|
|
/*
|
|
* Prepare io register values used by sym_init() according
|
|
* to selected and supported features.
|
|
*/
|
|
static int sym_prepare_setting(hcb_p np, struct sym_nvram *nvram)
|
|
{
|
|
u_char burst_max;
|
|
u_long period;
|
|
int i;
|
|
|
|
/*
|
|
* Wide ?
|
|
*/
|
|
np->maxwide = (np->features & FE_WIDE)? 1 : 0;
|
|
|
|
/*
|
|
* Get the frequency of the chip's clock.
|
|
*/
|
|
if (np->features & FE_QUAD)
|
|
np->multiplier = 4;
|
|
else if (np->features & FE_DBLR)
|
|
np->multiplier = 2;
|
|
else
|
|
np->multiplier = 1;
|
|
|
|
np->clock_khz = (np->features & FE_CLK80)? 80000 : 40000;
|
|
np->clock_khz *= np->multiplier;
|
|
|
|
if (np->clock_khz != 40000)
|
|
sym_getclock(np, np->multiplier);
|
|
|
|
/*
|
|
* Divisor to be used for async (timer pre-scaler).
|
|
*/
|
|
i = np->clock_divn - 1;
|
|
while (--i >= 0) {
|
|
if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
|
|
++i;
|
|
break;
|
|
}
|
|
}
|
|
np->rv_scntl3 = i+1;
|
|
|
|
/*
|
|
* The C1010 uses hardwired divisors for async.
|
|
* So, we just throw away, the async. divisor.:-)
|
|
*/
|
|
if (np->features & FE_C10)
|
|
np->rv_scntl3 = 0;
|
|
|
|
/*
|
|
* Minimum synchronous period factor supported by the chip.
|
|
* Btw, 'period' is in tenths of nanoseconds.
|
|
*/
|
|
period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
|
|
if (period <= 250) np->minsync = 10;
|
|
else if (period <= 303) np->minsync = 11;
|
|
else if (period <= 500) np->minsync = 12;
|
|
else np->minsync = (period + 40 - 1) / 40;
|
|
|
|
/*
|
|
* Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
|
|
*/
|
|
if (np->minsync < 25 &&
|
|
!(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
|
|
np->minsync = 25;
|
|
else if (np->minsync < 12 &&
|
|
!(np->features & (FE_ULTRA2|FE_ULTRA3)))
|
|
np->minsync = 12;
|
|
|
|
/*
|
|
* Maximum synchronous period factor supported by the chip.
|
|
*/
|
|
period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
|
|
np->maxsync = period > 2540 ? 254 : period / 10;
|
|
|
|
/*
|
|
* If chip is a C1010, guess the sync limits in DT mode.
|
|
*/
|
|
if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
|
|
if (np->clock_khz == 160000) {
|
|
np->minsync_dt = 9;
|
|
np->maxsync_dt = 50;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 64 bit (53C895A or 53C896) ?
|
|
*/
|
|
if (np->features & FE_64BIT)
|
|
#if BITS_PER_LONG > 32
|
|
np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
|
|
#else
|
|
np->rv_ccntl1 |= (DDAC);
|
|
#endif
|
|
|
|
/*
|
|
* Phase mismatch handled by SCRIPTS (895A/896/1010) ?
|
|
*/
|
|
if (np->features & FE_NOPM)
|
|
np->rv_ccntl0 |= (ENPMJ);
|
|
|
|
/*
|
|
* C1010 Errata.
|
|
* In dual channel mode, contention occurs if internal cycles
|
|
* are used. Disable internal cycles.
|
|
*/
|
|
if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x45)
|
|
np->rv_ccntl0 |= DILS;
|
|
|
|
/*
|
|
* Select burst length (dwords)
|
|
*/
|
|
burst_max = SYM_SETUP_BURST_ORDER;
|
|
if (burst_max == 255)
|
|
burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
|
|
np->sv_ctest5);
|
|
if (burst_max > 7)
|
|
burst_max = 7;
|
|
if (burst_max > np->maxburst)
|
|
burst_max = np->maxburst;
|
|
|
|
/*
|
|
* DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
|
|
* This chip and the 860 Rev 1 may wrongly use PCI cache line
|
|
* based transactions on LOAD/STORE instructions. So we have
|
|
* to prevent these chips from using such PCI transactions in
|
|
* this driver. The generic ncr driver that does not use
|
|
* LOAD/STORE instructions does not need this work-around.
|
|
*/
|
|
if ((np->device_id == PCI_ID_SYM53C810 &&
|
|
np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
|
|
(np->device_id == PCI_ID_SYM53C860 &&
|
|
np->revision_id <= 0x1))
|
|
np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
|
|
|
|
/*
|
|
* Select all supported special features.
|
|
* If we are using on-board RAM for scripts, prefetch (PFEN)
|
|
* does not help, but burst op fetch (BOF) does.
|
|
* Disabling PFEN makes sure BOF will be used.
|
|
*/
|
|
if (np->features & FE_ERL)
|
|
np->rv_dmode |= ERL; /* Enable Read Line */
|
|
if (np->features & FE_BOF)
|
|
np->rv_dmode |= BOF; /* Burst Opcode Fetch */
|
|
if (np->features & FE_ERMP)
|
|
np->rv_dmode |= ERMP; /* Enable Read Multiple */
|
|
#if 1
|
|
if ((np->features & FE_PFEN) && !np->ram_ba)
|
|
#else
|
|
if (np->features & FE_PFEN)
|
|
#endif
|
|
np->rv_dcntl |= PFEN; /* Prefetch Enable */
|
|
if (np->features & FE_CLSE)
|
|
np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
|
|
if (np->features & FE_WRIE)
|
|
np->rv_ctest3 |= WRIE; /* Write and Invalidate */
|
|
if (np->features & FE_DFS)
|
|
np->rv_ctest5 |= DFS; /* Dma Fifo Size */
|
|
|
|
/*
|
|
* Select some other
|
|
*/
|
|
if (SYM_SETUP_PCI_PARITY)
|
|
np->rv_ctest4 |= MPEE; /* Master parity checking */
|
|
if (SYM_SETUP_SCSI_PARITY)
|
|
np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
|
|
|
|
/*
|
|
* Get parity checking, host ID and verbose mode from NVRAM
|
|
*/
|
|
np->myaddr = 255;
|
|
sym_nvram_setup_host (np, nvram);
|
|
|
|
/*
|
|
* Get SCSI addr of host adapter (set by bios?).
|
|
*/
|
|
if (np->myaddr == 255) {
|
|
np->myaddr = INB(nc_scid) & 0x07;
|
|
if (!np->myaddr)
|
|
np->myaddr = SYM_SETUP_HOST_ID;
|
|
}
|
|
|
|
/*
|
|
* Prepare initial io register bits for burst length
|
|
*/
|
|
sym_init_burst(np, burst_max);
|
|
|
|
/*
|
|
* Set SCSI BUS mode.
|
|
* - LVD capable chips (895/895A/896/1010) report the
|
|
* current BUS mode through the STEST4 IO register.
|
|
* - For previous generation chips (825/825A/875),
|
|
* user has to tell us how to check against HVD,
|
|
* since a 100% safe algorithm is not possible.
|
|
*/
|
|
np->scsi_mode = SMODE_SE;
|
|
if (np->features & (FE_ULTRA2|FE_ULTRA3))
|
|
np->scsi_mode = (np->sv_stest4 & SMODE);
|
|
else if (np->features & FE_DIFF) {
|
|
if (SYM_SETUP_SCSI_DIFF == 1) {
|
|
if (np->sv_scntl3) {
|
|
if (np->sv_stest2 & 0x20)
|
|
np->scsi_mode = SMODE_HVD;
|
|
}
|
|
else if (nvram->type == SYM_SYMBIOS_NVRAM) {
|
|
if (INB(nc_gpreg) & 0x08)
|
|
np->scsi_mode = SMODE_HVD;
|
|
}
|
|
}
|
|
else if (SYM_SETUP_SCSI_DIFF == 2)
|
|
np->scsi_mode = SMODE_HVD;
|
|
}
|
|
if (np->scsi_mode == SMODE_HVD)
|
|
np->rv_stest2 |= 0x20;
|
|
|
|
/*
|
|
* Set LED support from SCRIPTS.
|
|
* Ignore this feature for boards known to use a
|
|
* specific GPIO wiring and for the 895A or 896
|
|
* that drive the LED directly.
|
|
*/
|
|
if ((SYM_SETUP_SCSI_LED || nvram->type == SYM_SYMBIOS_NVRAM) &&
|
|
!(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
|
|
np->features |= FE_LED0;
|
|
|
|
/*
|
|
* Set irq mode.
|
|
*/
|
|
switch(SYM_SETUP_IRQ_MODE & 3) {
|
|
case 2:
|
|
np->rv_dcntl |= IRQM;
|
|
break;
|
|
case 1:
|
|
np->rv_dcntl |= (np->sv_dcntl & IRQM);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Configure targets according to driver setup.
|
|
* If NVRAM present get targets setup from NVRAM.
|
|
*/
|
|
for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
|
|
tcb_p tp = &np->target[i];
|
|
|
|
tp->tinfo.user.period = np->minsync;
|
|
tp->tinfo.user.offset = np->maxoffs;
|
|
tp->tinfo.user.width = np->maxwide ? BUS_16_BIT : BUS_8_BIT;
|
|
tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
|
|
tp->usrtags = SYM_SETUP_MAX_TAG;
|
|
|
|
sym_nvram_setup_target (np, i, nvram);
|
|
|
|
if (!tp->usrtags)
|
|
tp->usrflags &= ~SYM_TAGS_ENABLED;
|
|
}
|
|
|
|
/*
|
|
* Let user know about the settings.
|
|
*/
|
|
i = nvram->type;
|
|
printf("%s: %s NVRAM, ID %d, Fast-%d, %s, %s\n", sym_name(np),
|
|
i == SYM_SYMBIOS_NVRAM ? "Symbios" :
|
|
(i == SYM_TEKRAM_NVRAM ? "Tekram" : "No"),
|
|
np->myaddr,
|
|
(np->features & FE_ULTRA3) ? 80 :
|
|
(np->features & FE_ULTRA2) ? 40 :
|
|
(np->features & FE_ULTRA) ? 20 : 10,
|
|
sym_scsi_bus_mode(np->scsi_mode),
|
|
(np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
|
|
/*
|
|
* Tell him more on demand.
|
|
*/
|
|
if (sym_verbose) {
|
|
printf("%s: %s IRQ line driver%s\n",
|
|
sym_name(np),
|
|
np->rv_dcntl & IRQM ? "totem pole" : "open drain",
|
|
np->ram_ba ? ", using on-chip SRAM" : "");
|
|
if (np->features & FE_NOPM)
|
|
printf("%s: handling phase mismatch from SCRIPTS.\n",
|
|
sym_name(np));
|
|
}
|
|
/*
|
|
* And still more.
|
|
*/
|
|
if (sym_verbose > 1) {
|
|
printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
|
|
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
|
|
sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
|
|
np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
|
|
|
|
printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
|
|
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
|
|
sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
|
|
np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
|
|
}
|
|
/*
|
|
* Let user be aware of targets that have some disable flags set.
|
|
*/
|
|
sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
|
|
if (sym_verbose)
|
|
sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
|
|
"SCAN FOR LUNS");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Prepare the next negotiation message if needed.
|
|
*
|
|
* Fill in the part of message buffer that contains the
|
|
* negotiation and the nego_status field of the CCB.
|
|
* Returns the size of the message in bytes.
|
|
*/
|
|
|
|
static int sym_prepare_nego(hcb_p np, ccb_p cp, int nego, u_char *msgptr)
|
|
{
|
|
tcb_p tp = &np->target[cp->target];
|
|
int msglen = 0;
|
|
|
|
#if 1
|
|
/*
|
|
* For now, only use PPR with DT option if period factor = 9.
|
|
*/
|
|
if (tp->tinfo.goal.period == 9) {
|
|
tp->tinfo.goal.width = BUS_16_BIT;
|
|
tp->tinfo.goal.options |= PPR_OPT_DT;
|
|
}
|
|
else
|
|
tp->tinfo.goal.options &= ~PPR_OPT_DT;
|
|
#endif
|
|
/*
|
|
* Early C1010 chips need a work-around for DT
|
|
* data transfer to work.
|
|
*/
|
|
if (!(np->features & FE_U3EN))
|
|
tp->tinfo.goal.options = 0;
|
|
/*
|
|
* negotiate using PPR ?
|
|
*/
|
|
if (tp->tinfo.goal.options & PPR_OPT_MASK)
|
|
nego = NS_PPR;
|
|
/*
|
|
* negotiate wide transfers ?
|
|
*/
|
|
else if (tp->tinfo.current.width != tp->tinfo.goal.width)
|
|
nego = NS_WIDE;
|
|
/*
|
|
* negotiate synchronous transfers?
|
|
*/
|
|
else if (tp->tinfo.current.period != tp->tinfo.goal.period ||
|
|
tp->tinfo.current.offset != tp->tinfo.goal.offset)
|
|
nego = NS_SYNC;
|
|
|
|
switch (nego) {
|
|
case NS_SYNC:
|
|
msgptr[msglen++] = M_EXTENDED;
|
|
msgptr[msglen++] = 3;
|
|
msgptr[msglen++] = M_X_SYNC_REQ;
|
|
msgptr[msglen++] = tp->tinfo.goal.period;
|
|
msgptr[msglen++] = tp->tinfo.goal.offset;
|
|
break;
|
|
case NS_WIDE:
|
|
msgptr[msglen++] = M_EXTENDED;
|
|
msgptr[msglen++] = 2;
|
|
msgptr[msglen++] = M_X_WIDE_REQ;
|
|
msgptr[msglen++] = tp->tinfo.goal.width;
|
|
break;
|
|
case NS_PPR:
|
|
msgptr[msglen++] = M_EXTENDED;
|
|
msgptr[msglen++] = 6;
|
|
msgptr[msglen++] = M_X_PPR_REQ;
|
|
msgptr[msglen++] = tp->tinfo.goal.period;
|
|
msgptr[msglen++] = 0;
|
|
msgptr[msglen++] = tp->tinfo.goal.offset;
|
|
msgptr[msglen++] = tp->tinfo.goal.width;
|
|
msgptr[msglen++] = tp->tinfo.goal.options & PPR_OPT_DT;
|
|
break;
|
|
};
|
|
|
|
cp->nego_status = nego;
|
|
|
|
if (nego) {
|
|
tp->nego_cp = cp; /* Keep track a nego will be performed */
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_msg(cp, nego == NS_SYNC ? "sync msgout" :
|
|
nego == NS_WIDE ? "wide msgout" :
|
|
"ppr msgout", msgptr);
|
|
};
|
|
};
|
|
|
|
return msglen;
|
|
}
|
|
|
|
/*
|
|
* Insert a job into the start queue.
|
|
*/
|
|
static void sym_put_start_queue(hcb_p np, ccb_p cp)
|
|
{
|
|
u_short qidx;
|
|
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* If the previously queued CCB is not yet done,
|
|
* set the IARB hint. The SCRIPTS will go with IARB
|
|
* for this job when starting the previous one.
|
|
* We leave devices a chance to win arbitration by
|
|
* not using more than 'iarb_max' consecutive
|
|
* immediate arbitrations.
|
|
*/
|
|
if (np->last_cp && np->iarb_count < np->iarb_max) {
|
|
np->last_cp->host_flags |= HF_HINT_IARB;
|
|
++np->iarb_count;
|
|
}
|
|
else
|
|
np->iarb_count = 0;
|
|
np->last_cp = cp;
|
|
#endif
|
|
|
|
/*
|
|
* Insert first the idle task and then our job.
|
|
* The MB should ensure proper ordering.
|
|
*/
|
|
qidx = np->squeueput + 2;
|
|
if (qidx >= MAX_QUEUE*2) qidx = 0;
|
|
|
|
np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
|
|
MEMORY_BARRIER();
|
|
np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
|
|
|
|
np->squeueput = qidx;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_QUEUE)
|
|
printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
|
|
|
|
/*
|
|
* Script processor may be waiting for reselect.
|
|
* Wake it up.
|
|
*/
|
|
MEMORY_BARRIER();
|
|
OUTB (nc_istat, SIGP|np->istat_sem);
|
|
}
|
|
|
|
|
|
/*
|
|
* Soft reset the chip.
|
|
*
|
|
* Raising SRST when the chip is running may cause
|
|
* problems on dual function chips (see below).
|
|
* On the other hand, LVD devices need some delay
|
|
* to settle and report actual BUS mode in STEST4.
|
|
*/
|
|
static void sym_chip_reset (hcb_p np)
|
|
{
|
|
OUTB (nc_istat, SRST);
|
|
UDELAY (10);
|
|
OUTB (nc_istat, 0);
|
|
UDELAY(2000); /* For BUS MODE to settle */
|
|
}
|
|
|
|
/*
|
|
* Soft reset the chip.
|
|
*
|
|
* Some 896 and 876 chip revisions may hang-up if we set
|
|
* the SRST (soft reset) bit at the wrong time when SCRIPTS
|
|
* are running.
|
|
* So, we need to abort the current operation prior to
|
|
* soft resetting the chip.
|
|
*/
|
|
static void sym_soft_reset (hcb_p np)
|
|
{
|
|
u_char istat;
|
|
int i;
|
|
|
|
OUTB (nc_istat, CABRT);
|
|
for (i = 1000000 ; i ; --i) {
|
|
istat = INB (nc_istat);
|
|
if (istat & SIP) {
|
|
INW (nc_sist);
|
|
continue;
|
|
}
|
|
if (istat & DIP) {
|
|
OUTB (nc_istat, 0);
|
|
INB (nc_dstat);
|
|
break;
|
|
}
|
|
}
|
|
if (!i)
|
|
printf("%s: unable to abort current chip operation.\n",
|
|
sym_name(np));
|
|
sym_chip_reset (np);
|
|
}
|
|
|
|
/*
|
|
* Start reset process.
|
|
*
|
|
* The interrupt handler will reinitialize the chip.
|
|
*/
|
|
static void sym_start_reset(hcb_p np)
|
|
{
|
|
(void) sym_reset_scsi_bus(np, 1);
|
|
}
|
|
|
|
static int sym_reset_scsi_bus(hcb_p np, int enab_int)
|
|
{
|
|
u32 term;
|
|
int retv = 0;
|
|
|
|
sym_soft_reset(np); /* Soft reset the chip */
|
|
if (enab_int)
|
|
OUTW (nc_sien, RST);
|
|
/*
|
|
* Enable Tolerant, reset IRQD if present and
|
|
* properly set IRQ mode, prior to resetting the bus.
|
|
*/
|
|
OUTB (nc_stest3, TE);
|
|
OUTB (nc_dcntl, (np->rv_dcntl & IRQM));
|
|
OUTB (nc_scntl1, CRST);
|
|
UDELAY (200);
|
|
|
|
if (!SYM_SETUP_SCSI_BUS_CHECK)
|
|
goto out;
|
|
/*
|
|
* Check for no terminators or SCSI bus shorts to ground.
|
|
* Read SCSI data bus, data parity bits and control signals.
|
|
* We are expecting RESET to be TRUE and other signals to be
|
|
* FALSE.
|
|
*/
|
|
term = INB(nc_sstat0);
|
|
term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
|
|
term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
|
|
((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
|
|
((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
|
|
INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
|
|
|
|
if (!(np->features & FE_WIDE))
|
|
term &= 0x3ffff;
|
|
|
|
if (term != (2<<7)) {
|
|
printf("%s: suspicious SCSI data while resetting the BUS.\n",
|
|
sym_name(np));
|
|
printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
|
|
"0x%lx, expecting 0x%lx\n",
|
|
sym_name(np),
|
|
(np->features & FE_WIDE) ? "dp1,d15-8," : "",
|
|
(u_long)term, (u_long)(2<<7));
|
|
if (SYM_SETUP_SCSI_BUS_CHECK == 1)
|
|
retv = 1;
|
|
}
|
|
out:
|
|
OUTB (nc_scntl1, 0);
|
|
/* MDELAY(100); */
|
|
return retv;
|
|
}
|
|
|
|
/*
|
|
* The chip may have completed jobs. Look at the DONE QUEUE.
|
|
*/
|
|
static int sym_wakeup_done (hcb_p np)
|
|
{
|
|
ccb_p cp;
|
|
int i, n;
|
|
u_long dsa;
|
|
|
|
n = 0;
|
|
i = np->dqueueget;
|
|
while (1) {
|
|
dsa = scr_to_cpu(np->dqueue[i]);
|
|
if (!dsa)
|
|
break;
|
|
np->dqueue[i] = 0;
|
|
if ((i = i+2) >= MAX_QUEUE*2)
|
|
i = 0;
|
|
|
|
cp = sym_ccb_from_dsa(np, dsa);
|
|
if (cp) {
|
|
sym_complete_ok (np, cp);
|
|
++n;
|
|
}
|
|
else
|
|
printf ("%s: bad DSA (%lx) in done queue.\n",
|
|
sym_name(np), dsa);
|
|
}
|
|
np->dqueueget = i;
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Complete all active CCBs with error.
|
|
* Used on CHIP/SCSI RESET.
|
|
*/
|
|
static void sym_flush_busy_queue (hcb_p np, int cam_status)
|
|
{
|
|
/*
|
|
* Move all active CCBs to the COMP queue
|
|
* and flush this queue.
|
|
*/
|
|
sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
|
|
sym_que_init(&np->busy_ccbq);
|
|
sym_flush_comp_queue(np, cam_status);
|
|
}
|
|
|
|
/*
|
|
* Start chip.
|
|
*
|
|
* 'reason' means:
|
|
* 0: initialisation.
|
|
* 1: SCSI BUS RESET delivered or received.
|
|
* 2: SCSI BUS MODE changed.
|
|
*/
|
|
static void sym_init (hcb_p np, int reason)
|
|
{
|
|
int i;
|
|
u_long phys;
|
|
|
|
/*
|
|
* Reset chip if asked, otherwise just clear fifos.
|
|
*/
|
|
if (reason == 1)
|
|
sym_soft_reset(np);
|
|
else {
|
|
OUTB (nc_stest3, TE|CSF);
|
|
OUTONB (nc_ctest3, CLF);
|
|
}
|
|
|
|
/*
|
|
* Clear Start Queue
|
|
*/
|
|
phys = np->squeue_ba;
|
|
for (i = 0; i < MAX_QUEUE*2; i += 2) {
|
|
np->squeue[i] = cpu_to_scr(np->idletask_ba);
|
|
np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
|
|
}
|
|
np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
|
|
|
|
/*
|
|
* Start at first entry.
|
|
*/
|
|
np->squeueput = 0;
|
|
np->scriptb0->startpos[0] = cpu_to_scr(phys);
|
|
|
|
/*
|
|
* Clear Done Queue
|
|
*/
|
|
phys = vtobus(np->dqueue);
|
|
for (i = 0; i < MAX_QUEUE*2; i += 2) {
|
|
np->dqueue[i] = 0;
|
|
np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
|
|
}
|
|
np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
|
|
|
|
/*
|
|
* Start at first entry.
|
|
*/
|
|
np->scriptb0->done_pos[0] = cpu_to_scr(phys);
|
|
np->dqueueget = 0;
|
|
|
|
/*
|
|
* Wakeup all pending jobs.
|
|
*/
|
|
sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
|
|
|
|
/*
|
|
* Init chip.
|
|
*/
|
|
OUTB (nc_istat, 0x00 ); /* Remove Reset, abort */
|
|
UDELAY (2000); /* The 895 needs time for the bus mode to settle */
|
|
|
|
OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
|
|
/* full arb., ena parity, par->ATN */
|
|
OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
|
|
|
|
sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
|
|
|
|
OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
|
|
OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
|
|
OUTB (nc_istat , SIGP ); /* Signal Process */
|
|
OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
|
|
OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
|
|
|
|
OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
|
|
OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
|
|
OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
|
|
|
|
/* Extended Sreq/Sack filtering not supported on the C10 */
|
|
if (np->features & FE_C10)
|
|
OUTB (nc_stest2, np->rv_stest2);
|
|
else
|
|
OUTB (nc_stest2, EXT|np->rv_stest2);
|
|
|
|
OUTB (nc_stest3, TE); /* TolerANT enable */
|
|
OUTB (nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
|
|
|
|
/*
|
|
* C10101 Errata.
|
|
* Errant SGE's when in narrow. Write bits 4 & 5 of
|
|
* STEST1 register to disable SGE. We probably should do
|
|
* that from SCRIPTS for each selection/reselection, but
|
|
* I just don't want. :)
|
|
*/
|
|
if (np->device_id == PCI_ID_LSI53C1010 && np->revision_id < 0x45)
|
|
OUTB (nc_stest1, INB(nc_stest1) | 0x30);
|
|
|
|
/*
|
|
* DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
|
|
* Disable overlapped arbitration for some dual function devices,
|
|
* regardless revision id (kind of post-chip-design feature. ;-))
|
|
*/
|
|
if (np->device_id == PCI_ID_SYM53C875)
|
|
OUTB (nc_ctest0, (1<<5));
|
|
else if (np->device_id == PCI_ID_SYM53C896)
|
|
np->rv_ccntl0 |= DPR;
|
|
|
|
/*
|
|
* If 64 bit (895A/896/1010) write CCNTL1 to enable 40 bit
|
|
* address table indirect addressing for MOVE.
|
|
* Also write CCNTL0 if 64 bit chip, since this register seems
|
|
* to only be used by 64 bit cores.
|
|
*/
|
|
if (np->features & FE_64BIT) {
|
|
OUTB (nc_ccntl0, np->rv_ccntl0);
|
|
OUTB (nc_ccntl1, np->rv_ccntl1);
|
|
}
|
|
|
|
/*
|
|
* If phase mismatch handled by scripts (895A/896/1010),
|
|
* set PM jump addresses.
|
|
*/
|
|
if (np->features & FE_NOPM) {
|
|
OUTL (nc_pmjad1, SCRIPTB_BA (np, pm_handle));
|
|
OUTL (nc_pmjad2, SCRIPTB_BA (np, pm_handle));
|
|
}
|
|
|
|
/*
|
|
* Enable GPIO0 pin for writing if LED support from SCRIPTS.
|
|
* Also set GPIO5 and clear GPIO6 if hardware LED control.
|
|
*/
|
|
if (np->features & FE_LED0)
|
|
OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01);
|
|
else if (np->features & FE_LEDC)
|
|
OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20);
|
|
|
|
/*
|
|
* enable ints
|
|
*/
|
|
OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
|
|
OUTB (nc_dien , MDPE|BF|SSI|SIR|IID);
|
|
|
|
/*
|
|
* For 895/6 enable SBMC interrupt and save current SCSI bus mode.
|
|
* Try to eat the spurious SBMC interrupt that may occur when
|
|
* we reset the chip but not the SCSI BUS (at initialization).
|
|
*/
|
|
if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
|
|
OUTONW (nc_sien, SBMC);
|
|
if (reason == 0) {
|
|
MDELAY(100);
|
|
INW (nc_sist);
|
|
}
|
|
np->scsi_mode = INB (nc_stest4) & SMODE;
|
|
}
|
|
|
|
/*
|
|
* Fill in target structure.
|
|
* Reinitialize usrsync.
|
|
* Reinitialize usrwide.
|
|
* Prepare sync negotiation according to actual SCSI bus mode.
|
|
*/
|
|
for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
|
|
tcb_p tp = &np->target[i];
|
|
|
|
tp->to_reset = 0;
|
|
tp->sval = 0;
|
|
tp->wval = np->rv_scntl3;
|
|
tp->uval = 0;
|
|
|
|
tp->tinfo.current.period = 0;
|
|
tp->tinfo.current.offset = 0;
|
|
tp->tinfo.current.width = BUS_8_BIT;
|
|
tp->tinfo.current.options = 0;
|
|
}
|
|
|
|
/*
|
|
* Download SCSI SCRIPTS to on-chip RAM if present,
|
|
* and start script processor.
|
|
*/
|
|
if (np->ram_ba) {
|
|
if (sym_verbose > 1)
|
|
printf ("%s: Downloading SCSI SCRIPTS.\n",
|
|
sym_name(np));
|
|
if (np->ram_ws == 8192) {
|
|
memcpy_to_pci(np->ram_va + 4096,
|
|
np->scriptb0, sizeof(struct sym_scrb));
|
|
OUTL (nc_mmws, np->scr_ram_seg);
|
|
OUTL (nc_mmrs, np->scr_ram_seg);
|
|
OUTL (nc_sfs, np->scr_ram_seg);
|
|
phys = SCRIPTB_BA (np, start64);
|
|
}
|
|
else
|
|
phys = SCRIPTA_BA (np, init);
|
|
memcpy_to_pci(np->ram_va,np->scripta0,sizeof(struct sym_scra));
|
|
}
|
|
else
|
|
phys = SCRIPTA_BA (np, init);
|
|
|
|
np->istat_sem = 0;
|
|
|
|
MEMORY_BARRIER();
|
|
OUTL (nc_dsa, np->hcb_ba);
|
|
OUTL (nc_dsp, phys);
|
|
|
|
/*
|
|
* Notify the XPT about the RESET condition.
|
|
*/
|
|
if (reason != 0)
|
|
xpt_async(AC_BUS_RESET, np->path, NULL);
|
|
}
|
|
|
|
/*
|
|
* Get clock factor and sync divisor for a given
|
|
* synchronous factor period.
|
|
*/
|
|
static int
|
|
sym_getsync(hcb_p np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
|
|
{
|
|
u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
|
|
int div = np->clock_divn; /* Number of divisors supported */
|
|
u32 fak; /* Sync factor in sxfer */
|
|
u32 per; /* Period in tenths of ns */
|
|
u32 kpc; /* (per * clk) */
|
|
int ret;
|
|
|
|
/*
|
|
* Compute the synchronous period in tenths of nano-seconds
|
|
*/
|
|
if (dt && sfac <= 9) per = 125;
|
|
else if (sfac <= 10) per = 250;
|
|
else if (sfac == 11) per = 303;
|
|
else if (sfac == 12) per = 500;
|
|
else per = 40 * sfac;
|
|
ret = per;
|
|
|
|
kpc = per * clk;
|
|
if (dt)
|
|
kpc <<= 1;
|
|
|
|
/*
|
|
* For earliest C10, the extra clocks does not apply
|
|
* to CRC cycles, so it may be safe not to use them.
|
|
* Note that this limits the lowest sync data transfer
|
|
* to 5 Mega-transfers per second and may result in
|
|
* using higher clock divisors.
|
|
*/
|
|
#if 1
|
|
if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
|
|
/*
|
|
* Look for the lowest clock divisor that allows an
|
|
* output speed not faster than the period.
|
|
*/
|
|
while (div > 0) {
|
|
--div;
|
|
if (kpc > (div_10M[div] << 2)) {
|
|
++div;
|
|
break;
|
|
}
|
|
}
|
|
fak = 0; /* No extra clocks */
|
|
if (div == np->clock_divn) { /* Are we too fast ? */
|
|
ret = -1;
|
|
}
|
|
*divp = div;
|
|
*fakp = fak;
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Look for the greatest clock divisor that allows an
|
|
* input speed faster than the period.
|
|
*/
|
|
while (div-- > 0)
|
|
if (kpc >= (div_10M[div] << 2)) break;
|
|
|
|
/*
|
|
* Calculate the lowest clock factor that allows an output
|
|
* speed not faster than the period, and the max output speed.
|
|
* If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
|
|
* If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
|
|
*/
|
|
if (dt) {
|
|
fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
|
|
/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
|
|
}
|
|
else {
|
|
fak = (kpc - 1) / div_10M[div] + 1 - 4;
|
|
/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
|
|
}
|
|
|
|
/*
|
|
* Check against our hardware limits, or bugs :).
|
|
*/
|
|
if (fak < 0) {fak = 0; ret = -1;}
|
|
if (fak > 2) {fak = 2; ret = -1;}
|
|
|
|
/*
|
|
* Compute and return sync parameters.
|
|
*/
|
|
*divp = div;
|
|
*fakp = fak;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We received a WDTR.
|
|
* Let everything be aware of the changes.
|
|
*/
|
|
static void sym_setwide(hcb_p np, ccb_p cp, u_char wide)
|
|
{
|
|
struct ccb_trans_settings neg;
|
|
union ccb *ccb = cp->cam_ccb;
|
|
tcb_p tp = &np->target[cp->target];
|
|
|
|
sym_settrans(np, cp, 0, 0, 0, wide, 0, 0);
|
|
|
|
/*
|
|
* Tell the SCSI layer about the new transfer parameters.
|
|
*/
|
|
tp->tinfo.goal.width = tp->tinfo.current.width = wide;
|
|
tp->tinfo.current.offset = 0;
|
|
tp->tinfo.current.period = 0;
|
|
tp->tinfo.current.options = 0;
|
|
neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT;
|
|
neg.sync_period = tp->tinfo.current.period;
|
|
neg.sync_offset = tp->tinfo.current.offset;
|
|
neg.valid = CCB_TRANS_BUS_WIDTH_VALID
|
|
| CCB_TRANS_SYNC_RATE_VALID
|
|
| CCB_TRANS_SYNC_OFFSET_VALID;
|
|
xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
|
|
xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
|
|
}
|
|
|
|
/*
|
|
* We received a SDTR.
|
|
* Let everything be aware of the changes.
|
|
*/
|
|
static void
|
|
sym_setsync(hcb_p np, ccb_p cp, u_char ofs, u_char per, u_char div, u_char fak)
|
|
{
|
|
struct ccb_trans_settings neg;
|
|
union ccb *ccb = cp->cam_ccb;
|
|
tcb_p tp = &np->target[cp->target];
|
|
u_char wide = (cp->phys.select.sel_scntl3 & EWS) ? 1 : 0;
|
|
|
|
sym_settrans(np, cp, 0, ofs, per, wide, div, fak);
|
|
|
|
/*
|
|
* Tell the SCSI layer about the new transfer parameters.
|
|
*/
|
|
tp->tinfo.goal.period = tp->tinfo.current.period = per;
|
|
tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
|
|
tp->tinfo.goal.options = tp->tinfo.current.options = 0;
|
|
neg.sync_period = tp->tinfo.current.period;
|
|
neg.sync_offset = tp->tinfo.current.offset;
|
|
neg.valid = CCB_TRANS_SYNC_RATE_VALID
|
|
| CCB_TRANS_SYNC_OFFSET_VALID;
|
|
xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
|
|
xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
|
|
}
|
|
|
|
/*
|
|
* We received a PPR.
|
|
* Let everything be aware of the changes.
|
|
*/
|
|
static void sym_setpprot(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
|
|
u_char per, u_char wide, u_char div, u_char fak)
|
|
{
|
|
struct ccb_trans_settings neg;
|
|
union ccb *ccb = cp->cam_ccb;
|
|
tcb_p tp = &np->target[cp->target];
|
|
|
|
sym_settrans(np, cp, dt, ofs, per, wide, div, fak);
|
|
|
|
/*
|
|
* Tell the SCSI layer about the new transfer parameters.
|
|
*/
|
|
tp->tinfo.goal.width = tp->tinfo.current.width = wide;
|
|
tp->tinfo.goal.period = tp->tinfo.current.period = per;
|
|
tp->tinfo.goal.offset = tp->tinfo.current.offset = ofs;
|
|
tp->tinfo.goal.options = tp->tinfo.current.options = dt;
|
|
neg.sync_period = tp->tinfo.current.period;
|
|
neg.sync_offset = tp->tinfo.current.offset;
|
|
neg.bus_width = wide ? BUS_16_BIT : BUS_8_BIT;
|
|
neg.valid = CCB_TRANS_BUS_WIDTH_VALID
|
|
| CCB_TRANS_SYNC_RATE_VALID
|
|
| CCB_TRANS_SYNC_OFFSET_VALID;
|
|
xpt_setup_ccb(&neg.ccb_h, ccb->ccb_h.path, /*priority*/1);
|
|
xpt_async(AC_TRANSFER_NEG, ccb->ccb_h.path, &neg);
|
|
}
|
|
|
|
/*
|
|
* Switch trans mode for current job and it's target.
|
|
*/
|
|
static void sym_settrans(hcb_p np, ccb_p cp, u_char dt, u_char ofs,
|
|
u_char per, u_char wide, u_char div, u_char fak)
|
|
{
|
|
SYM_QUEHEAD *qp;
|
|
union ccb *ccb;
|
|
tcb_p tp;
|
|
u_char target = INB (nc_sdid) & 0x0f;
|
|
u_char sval, wval, uval;
|
|
|
|
assert (cp);
|
|
if (!cp) return;
|
|
ccb = cp->cam_ccb;
|
|
assert (ccb);
|
|
if (!ccb) return;
|
|
assert (target == (cp->target & 0xf));
|
|
tp = &np->target[target];
|
|
|
|
sval = tp->sval;
|
|
wval = tp->wval;
|
|
uval = tp->uval;
|
|
|
|
#if 0
|
|
printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
|
|
sval, wval, uval, np->rv_scntl3);
|
|
#endif
|
|
/*
|
|
* Set the offset.
|
|
*/
|
|
if (!(np->features & FE_C10))
|
|
sval = (sval & ~0x1f) | ofs;
|
|
else
|
|
sval = (sval & ~0x3f) | ofs;
|
|
|
|
/*
|
|
* Set the sync divisor and extra clock factor.
|
|
*/
|
|
if (ofs != 0) {
|
|
wval = (wval & ~0x70) | ((div+1) << 4);
|
|
if (!(np->features & FE_C10))
|
|
sval = (sval & ~0xe0) | (fak << 5);
|
|
else {
|
|
uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
|
|
if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
|
|
if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the bus width.
|
|
*/
|
|
wval = wval & ~EWS;
|
|
if (wide != 0)
|
|
wval |= EWS;
|
|
|
|
/*
|
|
* Set misc. ultra enable bits.
|
|
*/
|
|
if (np->features & FE_C10) {
|
|
uval = uval & ~U3EN;
|
|
if (dt) {
|
|
assert(np->features & FE_U3EN);
|
|
uval |= U3EN;
|
|
}
|
|
}
|
|
else {
|
|
wval = wval & ~ULTRA;
|
|
if (per <= 12) wval |= ULTRA;
|
|
}
|
|
|
|
/*
|
|
* Stop there if sync parameters are unchanged.
|
|
*/
|
|
if (tp->sval == sval && tp->wval == wval && tp->uval == uval) return;
|
|
tp->sval = sval;
|
|
tp->wval = wval;
|
|
tp->uval = uval;
|
|
|
|
/*
|
|
* Disable extended Sreq/Sack filtering if per < 50.
|
|
* Not supported on the C1010.
|
|
*/
|
|
if (per < 50 && !(np->features & FE_C10))
|
|
OUTOFFB (nc_stest2, EXT);
|
|
|
|
/*
|
|
* set actual value and sync_status
|
|
*/
|
|
OUTB (nc_sxfer, tp->sval);
|
|
OUTB (nc_scntl3, tp->wval);
|
|
|
|
if (np->features & FE_C10) {
|
|
OUTB (nc_scntl4, tp->uval);
|
|
}
|
|
|
|
/*
|
|
* patch ALL busy ccbs of this target.
|
|
*/
|
|
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
if (cp->target != target)
|
|
continue;
|
|
cp->phys.select.sel_scntl3 = tp->wval;
|
|
cp->phys.select.sel_sxfer = tp->sval;
|
|
if (np->features & FE_C10) {
|
|
cp->phys.select.sel_scntl4 = tp->uval;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* log message for real hard errors
|
|
*
|
|
* sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc).
|
|
* reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
|
|
*
|
|
* exception register:
|
|
* ds: dstat
|
|
* si: sist
|
|
*
|
|
* SCSI bus lines:
|
|
* so: control lines as driven by chip.
|
|
* si: control lines as seen by chip.
|
|
* sd: scsi data lines as seen by chip.
|
|
*
|
|
* wide/fastmode:
|
|
* sxfer: (see the manual)
|
|
* scntl3: (see the manual)
|
|
*
|
|
* current script command:
|
|
* dsp: script adress (relative to start of script).
|
|
* dbc: first word of script command.
|
|
*
|
|
* First 24 register of the chip:
|
|
* r0..rf
|
|
*/
|
|
static void sym_log_hard_error(hcb_p np, u_short sist, u_char dstat)
|
|
{
|
|
u32 dsp;
|
|
int script_ofs;
|
|
int script_size;
|
|
char *script_name;
|
|
u_char *script_base;
|
|
int i;
|
|
|
|
dsp = INL (nc_dsp);
|
|
|
|
if (dsp > np->scripta_ba &&
|
|
dsp <= np->scripta_ba + sizeof(struct sym_scra)) {
|
|
script_ofs = dsp - np->scripta_ba;
|
|
script_size = sizeof(struct sym_scra);
|
|
script_base = (u_char *) np->scripta0;
|
|
script_name = "scripta";
|
|
}
|
|
else if (np->scriptb_ba < dsp &&
|
|
dsp <= np->scriptb_ba + sizeof(struct sym_scrb)) {
|
|
script_ofs = dsp - np->scriptb_ba;
|
|
script_size = sizeof(struct sym_scrb);
|
|
script_base = (u_char *) np->scriptb0;
|
|
script_name = "scriptb";
|
|
} else {
|
|
script_ofs = dsp;
|
|
script_size = 0;
|
|
script_base = 0;
|
|
script_name = "mem";
|
|
}
|
|
|
|
printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
|
|
sym_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
|
|
(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl),
|
|
(unsigned)INB (nc_sbdl), (unsigned)INB (nc_sxfer),
|
|
(unsigned)INB (nc_scntl3), script_name, script_ofs,
|
|
(unsigned)INL (nc_dbc));
|
|
|
|
if (((script_ofs & 3) == 0) &&
|
|
(unsigned)script_ofs < script_size) {
|
|
printf ("%s: script cmd = %08x\n", sym_name(np),
|
|
scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
|
|
}
|
|
|
|
printf ("%s: regdump:", sym_name(np));
|
|
for (i=0; i<24;i++)
|
|
printf (" %02x", (unsigned)INB_OFF(i));
|
|
printf (".\n");
|
|
|
|
/*
|
|
* PCI BUS error, read the PCI ststus register.
|
|
*/
|
|
if (dstat & (MDPE|BF)) {
|
|
u_short pci_sts;
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
pci_sts = pci_read_config(np->device, PCIR_STATUS, 2);
|
|
#else
|
|
pci_sts = pci_cfgread(np->pci_tag, PCIR_STATUS, 2);
|
|
#endif
|
|
if (pci_sts & 0xf900) {
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
pci_write_config(np->device, PCIR_STATUS, pci_sts, 2);
|
|
#else
|
|
pci_cfgwrite(np->pci_tag, PCIR_STATUS, pci_sts, 2);
|
|
#endif
|
|
printf("%s: PCI STATUS = 0x%04x\n",
|
|
sym_name(np), pci_sts & 0xf900);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* chip interrupt handler
|
|
*
|
|
* In normal situations, interrupt conditions occur one at
|
|
* a time. But when something bad happens on the SCSI BUS,
|
|
* the chip may raise several interrupt flags before
|
|
* stopping and interrupting the CPU. The additionnal
|
|
* interrupt flags are stacked in some extra registers
|
|
* after the SIP and/or DIP flag has been raised in the
|
|
* ISTAT. After the CPU has read the interrupt condition
|
|
* flag from SIST or DSTAT, the chip unstacks the other
|
|
* interrupt flags and sets the corresponding bits in
|
|
* SIST or DSTAT. Since the chip starts stacking once the
|
|
* SIP or DIP flag is set, there is a small window of time
|
|
* where the stacking does not occur.
|
|
*
|
|
* Typically, multiple interrupt conditions may happen in
|
|
* the following situations:
|
|
*
|
|
* - SCSI parity error + Phase mismatch (PAR|MA)
|
|
* When an parity error is detected in input phase
|
|
* and the device switches to msg-in phase inside a
|
|
* block MOV.
|
|
* - SCSI parity error + Unexpected disconnect (PAR|UDC)
|
|
* When a stupid device does not want to handle the
|
|
* recovery of an SCSI parity error.
|
|
* - Some combinations of STO, PAR, UDC, ...
|
|
* When using non compliant SCSI stuff, when user is
|
|
* doing non compliant hot tampering on the BUS, when
|
|
* something really bad happens to a device, etc ...
|
|
*
|
|
* The heuristic suggested by SYMBIOS to handle
|
|
* multiple interrupts is to try unstacking all
|
|
* interrupts conditions and to handle them on some
|
|
* priority based on error severity.
|
|
* This will work when the unstacking has been
|
|
* successful, but we cannot be 100 % sure of that,
|
|
* since the CPU may have been faster to unstack than
|
|
* the chip is able to stack. Hmmm ... But it seems that
|
|
* such a situation is very unlikely to happen.
|
|
*
|
|
* If this happen, for example STO caught by the CPU
|
|
* then UDC happenning before the CPU have restarted
|
|
* the SCRIPTS, the driver may wrongly complete the
|
|
* same command on UDC, since the SCRIPTS didn't restart
|
|
* and the DSA still points to the same command.
|
|
* We avoid this situation by setting the DSA to an
|
|
* invalid value when the CCB is completed and before
|
|
* restarting the SCRIPTS.
|
|
*
|
|
* Another issue is that we need some section of our
|
|
* recovery procedures to be somehow uninterruptible but
|
|
* the SCRIPTS processor does not provides such a
|
|
* feature. For this reason, we handle recovery preferently
|
|
* from the C code and check against some SCRIPTS critical
|
|
* sections from the C code.
|
|
*
|
|
* Hopefully, the interrupt handling of the driver is now
|
|
* able to resist to weird BUS error conditions, but donnot
|
|
* ask me for any guarantee that it will never fail. :-)
|
|
* Use at your own decision and risk.
|
|
*/
|
|
|
|
static void sym_intr1 (hcb_p np)
|
|
{
|
|
u_char istat, istatc;
|
|
u_char dstat;
|
|
u_short sist;
|
|
|
|
/*
|
|
* interrupt on the fly ?
|
|
*/
|
|
istat = INB (nc_istat);
|
|
if (istat & INTF) {
|
|
OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem);
|
|
#if 1
|
|
istat = INB (nc_istat); /* DUMMY READ */
|
|
#endif
|
|
if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
|
|
(void)sym_wakeup_done (np);
|
|
};
|
|
|
|
if (!(istat & (SIP|DIP)))
|
|
return;
|
|
|
|
#if 0 /* We should never get this one */
|
|
if (istat & CABRT)
|
|
OUTB (nc_istat, CABRT);
|
|
#endif
|
|
|
|
/*
|
|
* PAR and MA interrupts may occur at the same time,
|
|
* and we need to know of both in order to handle
|
|
* this situation properly. We try to unstack SCSI
|
|
* interrupts for that reason. BTW, I dislike a LOT
|
|
* such a loop inside the interrupt routine.
|
|
* Even if DMA interrupt stacking is very unlikely to
|
|
* happen, we also try unstacking these ones, since
|
|
* this has no performance impact.
|
|
*/
|
|
sist = 0;
|
|
dstat = 0;
|
|
istatc = istat;
|
|
do {
|
|
if (istatc & SIP)
|
|
sist |= INW (nc_sist);
|
|
if (istatc & DIP)
|
|
dstat |= INB (nc_dstat);
|
|
istatc = INB (nc_istat);
|
|
istat |= istatc;
|
|
} while (istatc & (SIP|DIP));
|
|
|
|
if (DEBUG_FLAGS & DEBUG_TINY)
|
|
printf ("<%d|%x:%x|%x:%x>",
|
|
(int)INB(nc_scr0),
|
|
dstat,sist,
|
|
(unsigned)INL(nc_dsp),
|
|
(unsigned)INL(nc_dbc));
|
|
/*
|
|
* First, interrupts we want to service cleanly.
|
|
*
|
|
* Phase mismatch (MA) is the most frequent interrupt
|
|
* for chip earlier than the 896 and so we have to service
|
|
* it as quickly as possible.
|
|
* A SCSI parity error (PAR) may be combined with a phase
|
|
* mismatch condition (MA).
|
|
* Programmed interrupts (SIR) are used to call the C code
|
|
* from SCRIPTS.
|
|
* The single step interrupt (SSI) is not used in this
|
|
* driver.
|
|
*/
|
|
if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
|
|
!(dstat & (MDPE|BF|ABRT|IID))) {
|
|
if (sist & PAR) sym_int_par (np, sist);
|
|
else if (sist & MA) sym_int_ma (np);
|
|
else if (dstat & SIR) sym_int_sir (np);
|
|
else if (dstat & SSI) OUTONB (nc_dcntl, (STD|NOCOM));
|
|
else goto unknown_int;
|
|
return;
|
|
};
|
|
|
|
/*
|
|
* Now, interrupts that donnot happen in normal
|
|
* situations and that we may need to recover from.
|
|
*
|
|
* On SCSI RESET (RST), we reset everything.
|
|
* On SCSI BUS MODE CHANGE (SBMC), we complete all
|
|
* active CCBs with RESET status, prepare all devices
|
|
* for negotiating again and restart the SCRIPTS.
|
|
* On STO and UDC, we complete the CCB with the corres-
|
|
* ponding status and restart the SCRIPTS.
|
|
*/
|
|
if (sist & RST) {
|
|
xpt_print_path(np->path);
|
|
printf("SCSI BUS reset detected.\n");
|
|
sym_init (np, 1);
|
|
return;
|
|
};
|
|
|
|
OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
|
|
OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
|
|
|
|
if (!(sist & (GEN|HTH|SGE)) &&
|
|
!(dstat & (MDPE|BF|ABRT|IID))) {
|
|
if (sist & SBMC) sym_int_sbmc (np);
|
|
else if (sist & STO) sym_int_sto (np);
|
|
else if (sist & UDC) sym_int_udc (np);
|
|
else goto unknown_int;
|
|
return;
|
|
};
|
|
|
|
/*
|
|
* Now, interrupts we are not able to recover cleanly.
|
|
*
|
|
* Log message for hard errors.
|
|
* Reset everything.
|
|
*/
|
|
|
|
sym_log_hard_error(np, sist, dstat);
|
|
|
|
if ((sist & (GEN|HTH|SGE)) ||
|
|
(dstat & (MDPE|BF|ABRT|IID))) {
|
|
sym_start_reset(np);
|
|
return;
|
|
};
|
|
|
|
unknown_int:
|
|
/*
|
|
* We just miss the cause of the interrupt. :(
|
|
* Print a message. The timeout will do the real work.
|
|
*/
|
|
printf( "%s: unknown interrupt(s) ignored, "
|
|
"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
|
|
sym_name(np), istat, dstat, sist);
|
|
}
|
|
|
|
static void sym_intr(void *arg)
|
|
{
|
|
if (DEBUG_FLAGS & DEBUG_TINY) printf ("[");
|
|
sym_intr1((hcb_p) arg);
|
|
if (DEBUG_FLAGS & DEBUG_TINY) printf ("]");
|
|
return;
|
|
}
|
|
|
|
static void sym_poll(struct cam_sim *sim)
|
|
{
|
|
int s = splcam();
|
|
sym_intr(cam_sim_softc(sim));
|
|
splx(s);
|
|
}
|
|
|
|
|
|
/*
|
|
* generic recovery from scsi interrupt
|
|
*
|
|
* The doc says that when the chip gets an SCSI interrupt,
|
|
* it tries to stop in an orderly fashion, by completing
|
|
* an instruction fetch that had started or by flushing
|
|
* the DMA fifo for a write to memory that was executing.
|
|
* Such a fashion is not enough to know if the instruction
|
|
* that was just before the current DSP value has been
|
|
* executed or not.
|
|
*
|
|
* There are some small SCRIPTS sections that deal with
|
|
* the start queue and the done queue that may break any
|
|
* assomption from the C code if we are interrupted
|
|
* inside, so we reset if this happens. Btw, since these
|
|
* SCRIPTS sections are executed while the SCRIPTS hasn't
|
|
* started SCSI operations, it is very unlikely to happen.
|
|
*
|
|
* All the driver data structures are supposed to be
|
|
* allocated from the same 4 GB memory window, so there
|
|
* is a 1 to 1 relationship between DSA and driver data
|
|
* structures. Since we are careful :) to invalidate the
|
|
* DSA when we complete a command or when the SCRIPTS
|
|
* pushes a DSA into a queue, we can trust it when it
|
|
* points to a CCB.
|
|
*/
|
|
static void sym_recover_scsi_int (hcb_p np, u_char hsts)
|
|
{
|
|
u32 dsp = INL (nc_dsp);
|
|
u32 dsa = INL (nc_dsa);
|
|
ccb_p cp = sym_ccb_from_dsa(np, dsa);
|
|
|
|
/*
|
|
* If we haven't been interrupted inside the SCRIPTS
|
|
* critical pathes, we can safely restart the SCRIPTS
|
|
* and trust the DSA value if it matches a CCB.
|
|
*/
|
|
if ((!(dsp > SCRIPTA_BA (np, getjob_begin) &&
|
|
dsp < SCRIPTA_BA (np, getjob_end) + 1)) &&
|
|
(!(dsp > SCRIPTA_BA (np, ungetjob) &&
|
|
dsp < SCRIPTA_BA (np, reselect) + 1)) &&
|
|
(!(dsp > SCRIPTB_BA (np, sel_for_abort) &&
|
|
dsp < SCRIPTB_BA (np, sel_for_abort_1) + 1)) &&
|
|
(!(dsp > SCRIPTA_BA (np, done) &&
|
|
dsp < SCRIPTA_BA (np, done_end) + 1))) {
|
|
OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
|
|
OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
|
|
/*
|
|
* If we have a CCB, let the SCRIPTS call us back for
|
|
* the handling of the error with SCRATCHA filled with
|
|
* STARTPOS. This way, we will be able to freeze the
|
|
* device queue and requeue awaiting IOs.
|
|
*/
|
|
if (cp) {
|
|
cp->host_status = hsts;
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, complete_error));
|
|
}
|
|
/*
|
|
* Otherwise just restart the SCRIPTS.
|
|
*/
|
|
else {
|
|
OUTL (nc_dsa, 0xffffff);
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, start));
|
|
}
|
|
}
|
|
else
|
|
goto reset_all;
|
|
|
|
return;
|
|
|
|
reset_all:
|
|
sym_start_reset(np);
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for selection timeout
|
|
*/
|
|
void sym_int_sto (hcb_p np)
|
|
{
|
|
u32 dsp = INL (nc_dsp);
|
|
|
|
if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
|
|
|
|
if (dsp == SCRIPTA_BA (np, wf_sel_done) + 8)
|
|
sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
|
|
else
|
|
sym_start_reset(np);
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for unexpected disconnect
|
|
*/
|
|
void sym_int_udc (hcb_p np)
|
|
{
|
|
printf ("%s: unexpected disconnect\n", sym_name(np));
|
|
sym_recover_scsi_int(np, HS_UNEXPECTED);
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for SCSI bus mode change
|
|
*
|
|
* spi2-r12 11.2.3 says a transceiver mode change must
|
|
* generate a reset event and a device that detects a reset
|
|
* event shall initiate a hard reset. It says also that a
|
|
* device that detects a mode change shall set data transfer
|
|
* mode to eight bit asynchronous, etc...
|
|
* So, just reinitializing all except chip should be enough.
|
|
*/
|
|
static void sym_int_sbmc (hcb_p np)
|
|
{
|
|
u_char scsi_mode = INB (nc_stest4) & SMODE;
|
|
|
|
/*
|
|
* Notify user.
|
|
*/
|
|
xpt_print_path(np->path);
|
|
printf("SCSI BUS mode change from %s to %s.\n",
|
|
sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
|
|
|
|
/*
|
|
* Should suspend command processing for a few seconds and
|
|
* reinitialize all except the chip.
|
|
*/
|
|
sym_init (np, 2);
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for SCSI parity error.
|
|
*
|
|
* When the chip detects a SCSI parity error and is
|
|
* currently executing a (CH)MOV instruction, it does
|
|
* not interrupt immediately, but tries to finish the
|
|
* transfer of the current scatter entry before
|
|
* interrupting. The following situations may occur:
|
|
*
|
|
* - The complete scatter entry has been transferred
|
|
* without the device having changed phase.
|
|
* The chip will then interrupt with the DSP pointing
|
|
* to the instruction that follows the MOV.
|
|
*
|
|
* - A phase mismatch occurs before the MOV finished
|
|
* and phase errors are to be handled by the C code.
|
|
* The chip will then interrupt with both PAR and MA
|
|
* conditions set.
|
|
*
|
|
* - A phase mismatch occurs before the MOV finished and
|
|
* phase errors are to be handled by SCRIPTS.
|
|
* The chip will load the DSP with the phase mismatch
|
|
* JUMP address and interrupt the host processor.
|
|
*/
|
|
static void sym_int_par (hcb_p np, u_short sist)
|
|
{
|
|
u_char hsts = INB (HS_PRT);
|
|
u32 dsp = INL (nc_dsp);
|
|
u32 dbc = INL (nc_dbc);
|
|
u32 dsa = INL (nc_dsa);
|
|
u_char sbcl = INB (nc_sbcl);
|
|
u_char cmd = dbc >> 24;
|
|
int phase = cmd & 7;
|
|
ccb_p cp = sym_ccb_from_dsa(np, dsa);
|
|
|
|
printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
|
|
sym_name(np), hsts, dbc, sbcl);
|
|
|
|
/*
|
|
* Check that the chip is connected to the SCSI BUS.
|
|
*/
|
|
if (!(INB (nc_scntl1) & ISCON)) {
|
|
sym_recover_scsi_int(np, HS_UNEXPECTED);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the nexus is not clearly identified, reset the bus.
|
|
* We will try to do better later.
|
|
*/
|
|
if (!cp)
|
|
goto reset_all;
|
|
|
|
/*
|
|
* Check instruction was a MOV, direction was INPUT and
|
|
* ATN is asserted.
|
|
*/
|
|
if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
|
|
goto reset_all;
|
|
|
|
/*
|
|
* Keep track of the parity error.
|
|
*/
|
|
OUTONB (HF_PRT, HF_EXT_ERR);
|
|
cp->xerr_status |= XE_PARITY_ERR;
|
|
|
|
/*
|
|
* Prepare the message to send to the device.
|
|
*/
|
|
np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
|
|
|
|
/*
|
|
* If the old phase was DATA IN phase, we have to deal with
|
|
* the 3 situations described above.
|
|
* For other input phases (MSG IN and STATUS), the device
|
|
* must resend the whole thing that failed parity checking
|
|
* or signal error. So, jumping to dispatcher should be OK.
|
|
*/
|
|
if (phase == 1) {
|
|
/* Phase mismatch handled by SCRIPTS */
|
|
if (dsp == SCRIPTB_BA (np, pm_handle))
|
|
OUTL (nc_dsp, dsp);
|
|
/* Phase mismatch handled by the C code */
|
|
else if (sist & MA)
|
|
sym_int_ma (np);
|
|
/* No phase mismatch occurred */
|
|
else {
|
|
OUTL (nc_temp, dsp);
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, dispatch));
|
|
}
|
|
}
|
|
else
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, clrack));
|
|
return;
|
|
|
|
reset_all:
|
|
sym_start_reset(np);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for phase errors.
|
|
*
|
|
* We have to construct a new transfer descriptor,
|
|
* to transfer the rest of the current block.
|
|
*/
|
|
static void sym_int_ma (hcb_p np)
|
|
{
|
|
u32 dbc;
|
|
u32 rest;
|
|
u32 dsp;
|
|
u32 dsa;
|
|
u32 nxtdsp;
|
|
u32 *vdsp;
|
|
u32 oadr, olen;
|
|
u32 *tblp;
|
|
u32 newcmd;
|
|
u_int delta;
|
|
u_char cmd;
|
|
u_char hflags, hflags0;
|
|
struct sym_pmc *pm;
|
|
ccb_p cp;
|
|
|
|
dsp = INL (nc_dsp);
|
|
dbc = INL (nc_dbc);
|
|
dsa = INL (nc_dsa);
|
|
|
|
cmd = dbc >> 24;
|
|
rest = dbc & 0xffffff;
|
|
delta = 0;
|
|
|
|
/*
|
|
* locate matching cp if any.
|
|
*/
|
|
cp = sym_ccb_from_dsa(np, dsa);
|
|
|
|
/*
|
|
* Donnot take into account dma fifo and various buffers in
|
|
* INPUT phase since the chip flushes everything before
|
|
* raising the MA interrupt for interrupted INPUT phases.
|
|
* For DATA IN phase, we will check for the SWIDE later.
|
|
*/
|
|
if ((cmd & 7) != 1) {
|
|
u_char ss0, ss2;
|
|
|
|
if (np->features & FE_DFBC)
|
|
delta = INW (nc_dfbc);
|
|
else {
|
|
u32 dfifo;
|
|
|
|
/*
|
|
* Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
|
|
*/
|
|
dfifo = INL(nc_dfifo);
|
|
|
|
/*
|
|
* Calculate remaining bytes in DMA fifo.
|
|
* (CTEST5 = dfifo >> 16)
|
|
*/
|
|
if (dfifo & (DFS << 16))
|
|
delta = ((((dfifo >> 8) & 0x300) |
|
|
(dfifo & 0xff)) - rest) & 0x3ff;
|
|
else
|
|
delta = ((dfifo & 0xff) - rest) & 0x7f;
|
|
}
|
|
|
|
/*
|
|
* The data in the dma fifo has not been transfered to
|
|
* the target -> add the amount to the rest
|
|
* and clear the data.
|
|
* Check the sstat2 register in case of wide transfer.
|
|
*/
|
|
rest += delta;
|
|
ss0 = INB (nc_sstat0);
|
|
if (ss0 & OLF) rest++;
|
|
if (!(np->features & FE_C10))
|
|
if (ss0 & ORF) rest++;
|
|
if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
|
|
ss2 = INB (nc_sstat2);
|
|
if (ss2 & OLF1) rest++;
|
|
if (!(np->features & FE_C10))
|
|
if (ss2 & ORF1) rest++;
|
|
};
|
|
|
|
/*
|
|
* Clear fifos.
|
|
*/
|
|
OUTB (nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
|
|
OUTB (nc_stest3, TE|CSF); /* scsi fifo */
|
|
}
|
|
|
|
/*
|
|
* log the information
|
|
*/
|
|
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
|
|
printf ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)&7,
|
|
(unsigned) rest, (unsigned) delta);
|
|
|
|
/*
|
|
* try to find the interrupted script command,
|
|
* and the address at which to continue.
|
|
*/
|
|
vdsp = 0;
|
|
nxtdsp = 0;
|
|
if (dsp > np->scripta_ba &&
|
|
dsp <= np->scripta_ba + sizeof(struct sym_scra)) {
|
|
vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
|
|
nxtdsp = dsp;
|
|
}
|
|
else if (dsp > np->scriptb_ba &&
|
|
dsp <= np->scriptb_ba + sizeof(struct sym_scrb)) {
|
|
vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
|
|
nxtdsp = dsp;
|
|
}
|
|
|
|
/*
|
|
* log the information
|
|
*/
|
|
if (DEBUG_FLAGS & DEBUG_PHASE) {
|
|
printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
|
|
cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
|
|
};
|
|
|
|
if (!vdsp) {
|
|
printf ("%s: interrupted SCRIPT address not found.\n",
|
|
sym_name (np));
|
|
goto reset_all;
|
|
}
|
|
|
|
if (!cp) {
|
|
printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
|
|
sym_name (np));
|
|
goto reset_all;
|
|
}
|
|
|
|
/*
|
|
* get old startaddress and old length.
|
|
*/
|
|
oadr = scr_to_cpu(vdsp[1]);
|
|
|
|
if (cmd & 0x10) { /* Table indirect */
|
|
tblp = (u32 *) ((char*) &cp->phys + oadr);
|
|
olen = scr_to_cpu(tblp[0]);
|
|
oadr = scr_to_cpu(tblp[1]);
|
|
} else {
|
|
tblp = (u32 *) 0;
|
|
olen = scr_to_cpu(vdsp[0]) & 0xffffff;
|
|
};
|
|
|
|
if (DEBUG_FLAGS & DEBUG_PHASE) {
|
|
printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
|
|
(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
|
|
tblp,
|
|
(unsigned) olen,
|
|
(unsigned) oadr);
|
|
};
|
|
|
|
/*
|
|
* check cmd against assumed interrupted script command.
|
|
*/
|
|
if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
|
|
PRINT_ADDR(cp);
|
|
printf ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
|
|
(unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0]) >> 24);
|
|
|
|
goto reset_all;
|
|
};
|
|
|
|
/*
|
|
* if old phase not dataphase, leave here.
|
|
*/
|
|
if ((cmd & 5) != (cmd & 7)) {
|
|
PRINT_ADDR(cp);
|
|
printf ("phase change %x-%x %d@%08x resid=%d.\n",
|
|
cmd&7, INB(nc_sbcl)&7, (unsigned)olen,
|
|
(unsigned)oadr, (unsigned)rest);
|
|
goto unexpected_phase;
|
|
};
|
|
|
|
/*
|
|
* Choose the correct PM save area.
|
|
*
|
|
* Look at the PM_SAVE SCRIPT if you want to understand
|
|
* this stuff. The equivalent code is implemented in
|
|
* SCRIPTS for the 895A and 896 that are able to handle
|
|
* PM from the SCRIPTS processor.
|
|
*/
|
|
hflags0 = INB (HF_PRT);
|
|
hflags = hflags0;
|
|
|
|
if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
|
|
if (hflags & HF_IN_PM0)
|
|
nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
|
|
else if (hflags & HF_IN_PM1)
|
|
nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
|
|
|
|
if (hflags & HF_DP_SAVED)
|
|
hflags ^= HF_ACT_PM;
|
|
}
|
|
|
|
if (!(hflags & HF_ACT_PM)) {
|
|
pm = &cp->phys.pm0;
|
|
newcmd = SCRIPTA_BA (np, pm0_data);
|
|
}
|
|
else {
|
|
pm = &cp->phys.pm1;
|
|
newcmd = SCRIPTA_BA (np, pm1_data);
|
|
}
|
|
|
|
hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
|
|
if (hflags != hflags0)
|
|
OUTB (HF_PRT, hflags);
|
|
|
|
/*
|
|
* fillin the phase mismatch context
|
|
*/
|
|
pm->sg.addr = cpu_to_scr(oadr + olen - rest);
|
|
pm->sg.size = cpu_to_scr(rest);
|
|
pm->ret = cpu_to_scr(nxtdsp);
|
|
|
|
/*
|
|
* If we have a SWIDE,
|
|
* - prepare the address to write the SWIDE from SCRIPTS,
|
|
* - compute the SCRIPTS address to restart from,
|
|
* - move current data pointer context by one byte.
|
|
*/
|
|
nxtdsp = SCRIPTA_BA (np, dispatch);
|
|
if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
|
|
(INB (nc_scntl2) & WSR)) {
|
|
u32 tmp;
|
|
|
|
/*
|
|
* Set up the table indirect for the MOVE
|
|
* of the residual byte and adjust the data
|
|
* pointer context.
|
|
*/
|
|
tmp = scr_to_cpu(pm->sg.addr);
|
|
cp->phys.wresid.addr = cpu_to_scr(tmp);
|
|
pm->sg.addr = cpu_to_scr(tmp + 1);
|
|
tmp = scr_to_cpu(pm->sg.size);
|
|
cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
|
|
pm->sg.size = cpu_to_scr(tmp - 1);
|
|
|
|
/*
|
|
* If only the residual byte is to be moved,
|
|
* no PM context is needed.
|
|
*/
|
|
if ((tmp&0xffffff) == 1)
|
|
newcmd = pm->ret;
|
|
|
|
/*
|
|
* Prepare the address of SCRIPTS that will
|
|
* move the residual byte to memory.
|
|
*/
|
|
nxtdsp = SCRIPTB_BA (np, wsr_ma_helper);
|
|
}
|
|
|
|
if (DEBUG_FLAGS & DEBUG_PHASE) {
|
|
PRINT_ADDR(cp);
|
|
printf ("PM %x %x %x / %x %x %x.\n",
|
|
hflags0, hflags, newcmd,
|
|
(unsigned)scr_to_cpu(pm->sg.addr),
|
|
(unsigned)scr_to_cpu(pm->sg.size),
|
|
(unsigned)scr_to_cpu(pm->ret));
|
|
}
|
|
|
|
/*
|
|
* Restart the SCRIPTS processor.
|
|
*/
|
|
OUTL (nc_temp, newcmd);
|
|
OUTL (nc_dsp, nxtdsp);
|
|
return;
|
|
|
|
/*
|
|
* Unexpected phase changes that occurs when the current phase
|
|
* is not a DATA IN or DATA OUT phase are due to error conditions.
|
|
* Such event may only happen when the SCRIPTS is using a
|
|
* multibyte SCSI MOVE.
|
|
*
|
|
* Phase change Some possible cause
|
|
*
|
|
* COMMAND --> MSG IN SCSI parity error detected by target.
|
|
* COMMAND --> STATUS Bad command or refused by target.
|
|
* MSG OUT --> MSG IN Message rejected by target.
|
|
* MSG OUT --> COMMAND Bogus target that discards extended
|
|
* negotiation messages.
|
|
*
|
|
* The code below does not care of the new phase and so
|
|
* trusts the target. Why to annoy it ?
|
|
* If the interrupted phase is COMMAND phase, we restart at
|
|
* dispatcher.
|
|
* If a target does not get all the messages after selection,
|
|
* the code assumes blindly that the target discards extended
|
|
* messages and clears the negotiation status.
|
|
* If the target does not want all our response to negotiation,
|
|
* we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
|
|
* bloat for such a should_not_happen situation).
|
|
* In all other situation, we reset the BUS.
|
|
* Are these assumptions reasonnable ? (Wait and see ...)
|
|
*/
|
|
unexpected_phase:
|
|
dsp -= 8;
|
|
nxtdsp = 0;
|
|
|
|
switch (cmd & 7) {
|
|
case 2: /* COMMAND phase */
|
|
nxtdsp = SCRIPTA_BA (np, dispatch);
|
|
break;
|
|
#if 0
|
|
case 3: /* STATUS phase */
|
|
nxtdsp = SCRIPTA_BA (np, dispatch);
|
|
break;
|
|
#endif
|
|
case 6: /* MSG OUT phase */
|
|
/*
|
|
* If the device may want to use untagged when we want
|
|
* tagged, we prepare an IDENTIFY without disc. granted,
|
|
* since we will not be able to handle reselect.
|
|
* Otherwise, we just don't care.
|
|
*/
|
|
if (dsp == SCRIPTA_BA (np, send_ident)) {
|
|
if (cp->tag != NO_TAG && olen - rest <= 3) {
|
|
cp->host_status = HS_BUSY;
|
|
np->msgout[0] = M_IDENTIFY | cp->lun;
|
|
nxtdsp = SCRIPTB_BA (np, ident_break_atn);
|
|
}
|
|
else
|
|
nxtdsp = SCRIPTB_BA (np, ident_break);
|
|
}
|
|
else if (dsp == SCRIPTB_BA (np, send_wdtr) ||
|
|
dsp == SCRIPTB_BA (np, send_sdtr) ||
|
|
dsp == SCRIPTB_BA (np, send_ppr)) {
|
|
nxtdsp = SCRIPTB_BA (np, nego_bad_phase);
|
|
}
|
|
break;
|
|
#if 0
|
|
case 7: /* MSG IN phase */
|
|
nxtdsp = SCRIPTA_BA (np, clrack);
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (nxtdsp) {
|
|
OUTL (nc_dsp, nxtdsp);
|
|
return;
|
|
}
|
|
|
|
reset_all:
|
|
sym_start_reset(np);
|
|
}
|
|
|
|
/*
|
|
* Dequeue from the START queue all CCBs that match
|
|
* a given target/lun/task condition (-1 means all),
|
|
* and move them from the BUSY queue to the COMP queue
|
|
* with CAM_REQUEUE_REQ status condition.
|
|
* This function is used during error handling/recovery.
|
|
* It is called with SCRIPTS not running.
|
|
*/
|
|
static int
|
|
sym_dequeue_from_squeue(hcb_p np, int i, int target, int lun, int task)
|
|
{
|
|
int j;
|
|
ccb_p cp;
|
|
|
|
/*
|
|
* Make sure the starting index is within range.
|
|
*/
|
|
assert((i >= 0) && (i < 2*MAX_QUEUE));
|
|
|
|
/*
|
|
* Walk until end of START queue and dequeue every job
|
|
* that matches the target/lun/task condition.
|
|
*/
|
|
j = i;
|
|
while (i != np->squeueput) {
|
|
cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
|
|
assert(cp);
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/* Forget hints for IARB, they may be no longer relevant */
|
|
cp->host_flags &= ~HF_HINT_IARB;
|
|
#endif
|
|
if ((target == -1 || cp->target == target) &&
|
|
(lun == -1 || cp->lun == lun) &&
|
|
(task == -1 || cp->tag == task)) {
|
|
sym_set_cam_status(cp->cam_ccb, CAM_REQUEUE_REQ);
|
|
sym_remque(&cp->link_ccbq);
|
|
sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
|
|
}
|
|
else {
|
|
if (i != j)
|
|
np->squeue[j] = np->squeue[i];
|
|
if ((j += 2) >= MAX_QUEUE*2) j = 0;
|
|
}
|
|
if ((i += 2) >= MAX_QUEUE*2) i = 0;
|
|
}
|
|
if (i != j) /* Copy back the idle task if needed */
|
|
np->squeue[j] = np->squeue[i];
|
|
np->squeueput = j; /* Update our current start queue pointer */
|
|
|
|
return (i - j) / 2;
|
|
}
|
|
|
|
/*
|
|
* Complete all CCBs queued to the COMP queue.
|
|
*
|
|
* These CCBs are assumed:
|
|
* - Not to be referenced either by devices or
|
|
* SCRIPTS-related queues and datas.
|
|
* - To have to be completed with an error condition
|
|
* or requeued.
|
|
*
|
|
* The device queue freeze count is incremented
|
|
* for each CCB that does not prevent this.
|
|
* This function is called when all CCBs involved
|
|
* in error handling/recovery have been reaped.
|
|
*/
|
|
static void
|
|
sym_flush_comp_queue(hcb_p np, int cam_status)
|
|
{
|
|
SYM_QUEHEAD *qp;
|
|
ccb_p cp;
|
|
|
|
while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
|
|
union ccb *ccb;
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
|
|
/* Leave quiet CCBs waiting for resources */
|
|
if (cp->host_status == HS_WAIT)
|
|
continue;
|
|
ccb = cp->cam_ccb;
|
|
if (cam_status)
|
|
sym_set_cam_status(ccb, cam_status);
|
|
sym_free_ccb(np, cp);
|
|
sym_freeze_cam_ccb(ccb);
|
|
sym_xpt_done(np, ccb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* chip handler for bad SCSI status condition
|
|
*
|
|
* In case of bad SCSI status, we unqueue all the tasks
|
|
* currently queued to the controller but not yet started
|
|
* and then restart the SCRIPTS processor immediately.
|
|
*
|
|
* QUEUE FULL and BUSY conditions are handled the same way.
|
|
* Basically all the not yet started tasks are requeued in
|
|
* device queue and the queue is frozen until a completion.
|
|
*
|
|
* For CHECK CONDITION and COMMAND TERMINATED status, we use
|
|
* the CCB of the failed command to prepare a REQUEST SENSE
|
|
* SCSI command and queue it to the controller queue.
|
|
*
|
|
* SCRATCHA is assumed to have been loaded with STARTPOS
|
|
* before the SCRIPTS called the C code.
|
|
*/
|
|
static void sym_sir_bad_scsi_status(hcb_p np, int num, ccb_p cp)
|
|
{
|
|
tcb_p tp = &np->target[cp->target];
|
|
u32 startp;
|
|
u_char s_status = cp->ssss_status;
|
|
u_char h_flags = cp->host_flags;
|
|
int msglen;
|
|
int nego;
|
|
int i;
|
|
|
|
/*
|
|
* Compute the index of the next job to start from SCRIPTS.
|
|
*/
|
|
i = (INL (nc_scratcha) - np->squeue_ba) / 4;
|
|
|
|
/*
|
|
* The last CCB queued used for IARB hint may be
|
|
* no longer relevant. Forget it.
|
|
*/
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
if (np->last_cp)
|
|
np->last_cp = 0;
|
|
#endif
|
|
|
|
/*
|
|
* Now deal with the SCSI status.
|
|
*/
|
|
switch(s_status) {
|
|
case S_BUSY:
|
|
case S_QUEUE_FULL:
|
|
if (sym_verbose >= 2) {
|
|
PRINT_ADDR(cp);
|
|
printf (s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
|
|
}
|
|
default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
|
|
sym_complete_error (np, cp);
|
|
break;
|
|
case S_TERMINATED:
|
|
case S_CHECK_COND:
|
|
/*
|
|
* If we get an SCSI error when requesting sense, give up.
|
|
*/
|
|
if (h_flags & HF_SENSE) {
|
|
sym_complete_error (np, cp);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Dequeue all queued CCBs for that device not yet started,
|
|
* and restart the SCRIPTS processor immediately.
|
|
*/
|
|
(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, start));
|
|
|
|
/*
|
|
* Save some info of the actual IO.
|
|
* Compute the data residual.
|
|
*/
|
|
cp->sv_scsi_status = cp->ssss_status;
|
|
cp->sv_xerr_status = cp->xerr_status;
|
|
cp->sv_resid = sym_compute_residual(np, cp);
|
|
|
|
/*
|
|
* Prepare all needed data structures for
|
|
* requesting sense data.
|
|
*/
|
|
|
|
/*
|
|
* identify message
|
|
*/
|
|
cp->scsi_smsg2[0] = M_IDENTIFY | cp->lun;
|
|
msglen = 1;
|
|
|
|
/*
|
|
* If we are currently using anything different from
|
|
* async. 8 bit data transfers with that target,
|
|
* start a negotiation, since the device may want
|
|
* to report us a UNIT ATTENTION condition due to
|
|
* a cause we currently ignore, and we donnot want
|
|
* to be stuck with WIDE and/or SYNC data transfer.
|
|
*
|
|
* cp->nego_status is filled by sym_prepare_nego().
|
|
*/
|
|
cp->nego_status = 0;
|
|
nego = 0;
|
|
if (tp->tinfo.current.options & PPR_OPT_MASK)
|
|
nego = NS_PPR;
|
|
else if (tp->tinfo.current.width != BUS_8_BIT)
|
|
nego = NS_WIDE;
|
|
else if (tp->tinfo.current.offset != 0)
|
|
nego = NS_SYNC;
|
|
if (nego)
|
|
msglen +=
|
|
sym_prepare_nego (np,cp, nego, &cp->scsi_smsg2[msglen]);
|
|
/*
|
|
* Message table indirect structure.
|
|
*/
|
|
cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg2));
|
|
cp->phys.smsg.size = cpu_to_scr(msglen);
|
|
|
|
/*
|
|
* sense command
|
|
*/
|
|
cp->phys.cmd.addr = cpu_to_scr(CCB_BA (cp, sensecmd));
|
|
cp->phys.cmd.size = cpu_to_scr(6);
|
|
|
|
/*
|
|
* patch requested size into sense command
|
|
*/
|
|
cp->sensecmd[0] = 0x03;
|
|
cp->sensecmd[1] = cp->lun << 5;
|
|
cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
|
|
cp->data_len = SYM_SNS_BBUF_LEN;
|
|
|
|
/*
|
|
* sense data
|
|
*/
|
|
bzero(cp->sns_bbuf, SYM_SNS_BBUF_LEN);
|
|
cp->phys.sense.addr = cpu_to_scr(vtobus(cp->sns_bbuf));
|
|
cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
|
|
|
|
/*
|
|
* requeue the command.
|
|
*/
|
|
startp = SCRIPTB_BA (np, sdata_in);
|
|
|
|
cp->phys.savep = cpu_to_scr(startp);
|
|
cp->phys.goalp = cpu_to_scr(startp + 16);
|
|
cp->phys.lastp = cpu_to_scr(startp);
|
|
cp->startp = cpu_to_scr(startp);
|
|
|
|
cp->actualquirks = SYM_QUIRK_AUTOSAVE;
|
|
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
|
|
cp->ssss_status = S_ILLEGAL;
|
|
cp->host_flags = (HF_SENSE|HF_DATA_IN);
|
|
cp->xerr_status = 0;
|
|
cp->extra_bytes = 0;
|
|
|
|
cp->phys.go.start =
|
|
cpu_to_scr(SCRIPTA_BA (np, select));
|
|
|
|
/*
|
|
* Requeue the command.
|
|
*/
|
|
sym_put_start_queue(np, cp);
|
|
|
|
/*
|
|
* Give back to upper layer everything we have dequeued.
|
|
*/
|
|
sym_flush_comp_queue(np, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* After a device has accepted some management message
|
|
* as BUS DEVICE RESET, ABORT TASK, etc ..., or when
|
|
* a device signals a UNIT ATTENTION condition, some
|
|
* tasks are thrown away by the device. We are required
|
|
* to reflect that on our tasks list since the device
|
|
* will never complete these tasks.
|
|
*
|
|
* This function move from the BUSY queue to the COMP
|
|
* queue all disconnected CCBs for a given target that
|
|
* match the following criteria:
|
|
* - lun=-1 means any logical UNIT otherwise a given one.
|
|
* - task=-1 means any task, otherwise a given one.
|
|
*/
|
|
static int
|
|
sym_clear_tasks(hcb_p np, int cam_status, int target, int lun, int task)
|
|
{
|
|
SYM_QUEHEAD qtmp, *qp;
|
|
int i = 0;
|
|
ccb_p cp;
|
|
|
|
/*
|
|
* Move the entire BUSY queue to our temporary queue.
|
|
*/
|
|
sym_que_init(&qtmp);
|
|
sym_que_splice(&np->busy_ccbq, &qtmp);
|
|
sym_que_init(&np->busy_ccbq);
|
|
|
|
/*
|
|
* Put all CCBs that matches our criteria into
|
|
* the COMP queue and put back other ones into
|
|
* the BUSY queue.
|
|
*/
|
|
while ((qp = sym_remque_head(&qtmp)) != 0) {
|
|
union ccb *ccb;
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
ccb = cp->cam_ccb;
|
|
if (cp->host_status != HS_DISCONNECT ||
|
|
cp->target != target ||
|
|
(lun != -1 && cp->lun != lun) ||
|
|
(task != -1 &&
|
|
(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
|
|
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
|
|
continue;
|
|
}
|
|
sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
|
|
|
|
/* Preserve the software timeout condition */
|
|
if (sym_get_cam_status(ccb) != CAM_CMD_TIMEOUT)
|
|
sym_set_cam_status(ccb, cam_status);
|
|
++i;
|
|
#if 0
|
|
printf("XXXX TASK @%p CLEARED\n", cp);
|
|
#endif
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* chip handler for TASKS recovery
|
|
*
|
|
* We cannot safely abort a command, while the SCRIPTS
|
|
* processor is running, since we just would be in race
|
|
* with it.
|
|
*
|
|
* As long as we have tasks to abort, we keep the SEM
|
|
* bit set in the ISTAT. When this bit is set, the
|
|
* SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
|
|
* each time it enters the scheduler.
|
|
*
|
|
* If we have to reset a target, clear tasks of a unit,
|
|
* or to perform the abort of a disconnected job, we
|
|
* restart the SCRIPTS for selecting the target. Once
|
|
* selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
|
|
* If it loses arbitration, the SCRIPTS will interrupt again
|
|
* the next time it will enter its scheduler, and so on ...
|
|
*
|
|
* On SIR_TARGET_SELECTED, we scan for the more
|
|
* appropriate thing to do:
|
|
*
|
|
* - If nothing, we just sent a M_ABORT message to the
|
|
* target to get rid of the useless SCSI bus ownership.
|
|
* According to the specs, no tasks shall be affected.
|
|
* - If the target is to be reset, we send it a M_RESET
|
|
* message.
|
|
* - If a logical UNIT is to be cleared , we send the
|
|
* IDENTIFY(lun) + M_ABORT.
|
|
* - If an untagged task is to be aborted, we send the
|
|
* IDENTIFY(lun) + M_ABORT.
|
|
* - If a tagged task is to be aborted, we send the
|
|
* IDENTIFY(lun) + task attributes + M_ABORT_TAG.
|
|
*
|
|
* Once our 'kiss of death' :) message has been accepted
|
|
* by the target, the SCRIPTS interrupts again
|
|
* (SIR_ABORT_SENT). On this interrupt, we complete
|
|
* all the CCBs that should have been aborted by the
|
|
* target according to our message.
|
|
*/
|
|
static void sym_sir_task_recovery(hcb_p np, int num)
|
|
{
|
|
SYM_QUEHEAD *qp;
|
|
ccb_p cp;
|
|
tcb_p tp;
|
|
int target=-1, lun=-1, task;
|
|
int i, k;
|
|
|
|
switch(num) {
|
|
/*
|
|
* The SCRIPTS processor stopped before starting
|
|
* the next command in order to allow us to perform
|
|
* some task recovery.
|
|
*/
|
|
case SIR_SCRIPT_STOPPED:
|
|
/*
|
|
* Do we have any target to reset or unit to clear ?
|
|
*/
|
|
for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
|
|
tp = &np->target[i];
|
|
if (tp->to_reset ||
|
|
(tp->lun0p && tp->lun0p->to_clear)) {
|
|
target = i;
|
|
break;
|
|
}
|
|
if (!tp->lunmp)
|
|
continue;
|
|
for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
|
|
if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
|
|
target = i;
|
|
break;
|
|
}
|
|
}
|
|
if (target != -1)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If not, walk the busy queue for any
|
|
* disconnected CCB to be aborted.
|
|
*/
|
|
if (target == -1) {
|
|
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
|
|
cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
|
|
if (cp->host_status != HS_DISCONNECT)
|
|
continue;
|
|
if (cp->to_abort) {
|
|
target = cp->target;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If some target is to be selected,
|
|
* prepare and start the selection.
|
|
*/
|
|
if (target != -1) {
|
|
tp = &np->target[target];
|
|
np->abrt_sel.sel_id = target;
|
|
np->abrt_sel.sel_scntl3 = tp->wval;
|
|
np->abrt_sel.sel_sxfer = tp->sval;
|
|
OUTL(nc_dsa, np->hcb_ba);
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, sel_for_abort));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now look for a CCB to abort that haven't started yet.
|
|
* Btw, the SCRIPTS processor is still stopped, so
|
|
* we are not in race.
|
|
*/
|
|
i = 0;
|
|
cp = 0;
|
|
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
if (cp->host_status != HS_BUSY &&
|
|
cp->host_status != HS_NEGOTIATE)
|
|
continue;
|
|
if (!cp->to_abort)
|
|
continue;
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* If we are using IMMEDIATE ARBITRATION, we donnot
|
|
* want to cancel the last queued CCB, since the
|
|
* SCRIPTS may have anticipated the selection.
|
|
*/
|
|
if (cp == np->last_cp) {
|
|
cp->to_abort = 0;
|
|
continue;
|
|
}
|
|
#endif
|
|
i = 1; /* Means we have found some */
|
|
break;
|
|
}
|
|
if (!i) {
|
|
/*
|
|
* We are done, so we donnot need
|
|
* to synchronize with the SCRIPTS anylonger.
|
|
* Remove the SEM flag from the ISTAT.
|
|
*/
|
|
np->istat_sem = 0;
|
|
OUTB (nc_istat, SIGP);
|
|
break;
|
|
}
|
|
/*
|
|
* Compute index of next position in the start
|
|
* queue the SCRIPTS intends to start and dequeue
|
|
* all CCBs for that device that haven't been started.
|
|
*/
|
|
i = (INL (nc_scratcha) - np->squeue_ba) / 4;
|
|
i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
|
|
|
|
/*
|
|
* Make sure at least our IO to abort has been dequeued.
|
|
*/
|
|
assert(i && sym_get_cam_status(cp->cam_ccb) == CAM_REQUEUE_REQ);
|
|
|
|
/*
|
|
* Keep track in cam status of the reason of the abort.
|
|
*/
|
|
if (cp->to_abort == 2)
|
|
sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
|
|
else
|
|
sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
|
|
|
|
/*
|
|
* Complete with error everything that we have dequeued.
|
|
*/
|
|
sym_flush_comp_queue(np, 0);
|
|
break;
|
|
/*
|
|
* The SCRIPTS processor has selected a target
|
|
* we may have some manual recovery to perform for.
|
|
*/
|
|
case SIR_TARGET_SELECTED:
|
|
target = (INB (nc_sdid) & 0xf);
|
|
tp = &np->target[target];
|
|
|
|
np->abrt_tbl.addr = vtobus(np->abrt_msg);
|
|
|
|
/*
|
|
* If the target is to be reset, prepare a
|
|
* M_RESET message and clear the to_reset flag
|
|
* since we donnot expect this operation to fail.
|
|
*/
|
|
if (tp->to_reset) {
|
|
np->abrt_msg[0] = M_RESET;
|
|
np->abrt_tbl.size = 1;
|
|
tp->to_reset = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, look for some logical unit to be cleared.
|
|
*/
|
|
if (tp->lun0p && tp->lun0p->to_clear)
|
|
lun = 0;
|
|
else if (tp->lunmp) {
|
|
for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
|
|
if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
|
|
lun = k;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a logical unit is to be cleared, prepare
|
|
* an IDENTIFY(lun) + ABORT MESSAGE.
|
|
*/
|
|
if (lun != -1) {
|
|
lcb_p lp = sym_lp(np, tp, lun);
|
|
lp->to_clear = 0; /* We donnot expect to fail here */
|
|
np->abrt_msg[0] = M_IDENTIFY | lun;
|
|
np->abrt_msg[1] = M_ABORT;
|
|
np->abrt_tbl.size = 2;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, look for some disconnected job to
|
|
* abort for this target.
|
|
*/
|
|
i = 0;
|
|
cp = 0;
|
|
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
if (cp->host_status != HS_DISCONNECT)
|
|
continue;
|
|
if (cp->target != target)
|
|
continue;
|
|
if (!cp->to_abort)
|
|
continue;
|
|
i = 1; /* Means we have some */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we have none, probably since the device has
|
|
* completed the command before we won abitration,
|
|
* send a M_ABORT message without IDENTIFY.
|
|
* According to the specs, the device must just
|
|
* disconnect the BUS and not abort any task.
|
|
*/
|
|
if (!i) {
|
|
np->abrt_msg[0] = M_ABORT;
|
|
np->abrt_tbl.size = 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have some task to abort.
|
|
* Set the IDENTIFY(lun)
|
|
*/
|
|
np->abrt_msg[0] = M_IDENTIFY | cp->lun;
|
|
|
|
/*
|
|
* If we want to abort an untagged command, we
|
|
* will send a IDENTIFY + M_ABORT.
|
|
* Otherwise (tagged command), we will send
|
|
* a IDENTITFY + task attributes + ABORT TAG.
|
|
*/
|
|
if (cp->tag == NO_TAG) {
|
|
np->abrt_msg[1] = M_ABORT;
|
|
np->abrt_tbl.size = 2;
|
|
}
|
|
else {
|
|
np->abrt_msg[1] = cp->scsi_smsg[1];
|
|
np->abrt_msg[2] = cp->scsi_smsg[2];
|
|
np->abrt_msg[3] = M_ABORT_TAG;
|
|
np->abrt_tbl.size = 4;
|
|
}
|
|
/*
|
|
* Keep track of software timeout condition, since the
|
|
* peripheral driver may not count retries on abort
|
|
* conditions not due to timeout.
|
|
*/
|
|
if (cp->to_abort == 2)
|
|
sym_set_cam_status(cp->cam_ccb, CAM_CMD_TIMEOUT);
|
|
cp->to_abort = 0; /* We donnot expect to fail here */
|
|
break;
|
|
|
|
/*
|
|
* The target has accepted our message and switched
|
|
* to BUS FREE phase as we expected.
|
|
*/
|
|
case SIR_ABORT_SENT:
|
|
target = (INB (nc_sdid) & 0xf);
|
|
tp = &np->target[target];
|
|
|
|
/*
|
|
** If we didn't abort anything, leave here.
|
|
*/
|
|
if (np->abrt_msg[0] == M_ABORT)
|
|
break;
|
|
|
|
/*
|
|
* If we sent a M_RESET, then a hardware reset has
|
|
* been performed by the target.
|
|
* - Reset everything to async 8 bit
|
|
* - Tell ourself to negotiate next time :-)
|
|
* - Prepare to clear all disconnected CCBs for
|
|
* this target from our task list (lun=task=-1)
|
|
*/
|
|
lun = -1;
|
|
task = -1;
|
|
if (np->abrt_msg[0] == M_RESET) {
|
|
tp->sval = 0;
|
|
tp->wval = np->rv_scntl3;
|
|
tp->uval = 0;
|
|
tp->tinfo.current.period = 0;
|
|
tp->tinfo.current.offset = 0;
|
|
tp->tinfo.current.width = BUS_8_BIT;
|
|
tp->tinfo.current.options = 0;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, check for the LUN and TASK(s)
|
|
* concerned by the cancelation.
|
|
* If it is not ABORT_TAG then it is CLEAR_QUEUE
|
|
* or an ABORT message :-)
|
|
*/
|
|
else {
|
|
lun = np->abrt_msg[0] & 0x3f;
|
|
if (np->abrt_msg[1] == M_ABORT_TAG)
|
|
task = np->abrt_msg[2];
|
|
}
|
|
|
|
/*
|
|
* Complete all the CCBs the device should have
|
|
* aborted due to our 'kiss of death' message.
|
|
*/
|
|
i = (INL (nc_scratcha) - np->squeue_ba) / 4;
|
|
(void) sym_dequeue_from_squeue(np, i, target, lun, -1);
|
|
(void) sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
|
|
sym_flush_comp_queue(np, 0);
|
|
|
|
/*
|
|
* If we sent a BDR, make uper layer aware of that.
|
|
*/
|
|
if (np->abrt_msg[0] == M_RESET)
|
|
xpt_async(AC_SENT_BDR, np->path, NULL);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Print to the log the message we intend to send.
|
|
*/
|
|
if (num == SIR_TARGET_SELECTED) {
|
|
PRINT_TARGET(np, target);
|
|
sym_printl_hex("control msgout:", np->abrt_msg,
|
|
np->abrt_tbl.size);
|
|
np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
|
|
}
|
|
|
|
/*
|
|
* Let the SCRIPTS processor continue.
|
|
*/
|
|
OUTONB (nc_dcntl, (STD|NOCOM));
|
|
}
|
|
|
|
/*
|
|
* Gerard's alchemy:) that deals with with the data
|
|
* pointer for both MDP and the residual calculation.
|
|
*
|
|
* I didn't want to bloat the code by more than 200
|
|
* lignes for the handling of both MDP and the residual.
|
|
* This has been achieved by using a data pointer
|
|
* representation consisting in an index in the data
|
|
* array (dp_sg) and a negative offset (dp_ofs) that
|
|
* have the following meaning:
|
|
*
|
|
* - dp_sg = SYM_CONF_MAX_SG
|
|
* we are at the end of the data script.
|
|
* - dp_sg < SYM_CONF_MAX_SG
|
|
* dp_sg points to the next entry of the scatter array
|
|
* we want to transfer.
|
|
* - dp_ofs < 0
|
|
* dp_ofs represents the residual of bytes of the
|
|
* previous entry scatter entry we will send first.
|
|
* - dp_ofs = 0
|
|
* no residual to send first.
|
|
*
|
|
* The function sym_evaluate_dp() accepts an arbitray
|
|
* offset (basically from the MDP message) and returns
|
|
* the corresponding values of dp_sg and dp_ofs.
|
|
*/
|
|
|
|
static int sym_evaluate_dp(hcb_p np, ccb_p cp, u32 scr, int *ofs)
|
|
{
|
|
u32 dp_scr;
|
|
int dp_ofs, dp_sg, dp_sgmin;
|
|
int tmp;
|
|
struct sym_pmc *pm;
|
|
|
|
/*
|
|
* Compute the resulted data pointer in term of a script
|
|
* address within some DATA script and a signed byte offset.
|
|
*/
|
|
dp_scr = scr;
|
|
dp_ofs = *ofs;
|
|
if (dp_scr == SCRIPTA_BA (np, pm0_data))
|
|
pm = &cp->phys.pm0;
|
|
else if (dp_scr == SCRIPTA_BA (np, pm1_data))
|
|
pm = &cp->phys.pm1;
|
|
else
|
|
pm = 0;
|
|
|
|
if (pm) {
|
|
dp_scr = scr_to_cpu(pm->ret);
|
|
dp_ofs -= scr_to_cpu(pm->sg.size);
|
|
}
|
|
|
|
/*
|
|
* If we are auto-sensing, then we are done.
|
|
*/
|
|
if (cp->host_flags & HF_SENSE) {
|
|
*ofs = dp_ofs;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deduce the index of the sg entry.
|
|
* Keep track of the index of the first valid entry.
|
|
* If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
|
|
* end of the data.
|
|
*/
|
|
tmp = scr_to_cpu(cp->phys.goalp);
|
|
dp_sg = SYM_CONF_MAX_SG;
|
|
if (dp_scr != tmp)
|
|
dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
|
|
dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
|
|
|
|
/*
|
|
* Move to the sg entry the data pointer belongs to.
|
|
*
|
|
* If we are inside the data area, we expect result to be:
|
|
*
|
|
* Either,
|
|
* dp_ofs = 0 and dp_sg is the index of the sg entry
|
|
* the data pointer belongs to (or the end of the data)
|
|
* Or,
|
|
* dp_ofs < 0 and dp_sg is the index of the sg entry
|
|
* the data pointer belongs to + 1.
|
|
*/
|
|
if (dp_ofs < 0) {
|
|
int n;
|
|
while (dp_sg > dp_sgmin) {
|
|
--dp_sg;
|
|
tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
|
|
n = dp_ofs + (tmp & 0xffffff);
|
|
if (n > 0) {
|
|
++dp_sg;
|
|
break;
|
|
}
|
|
dp_ofs = n;
|
|
}
|
|
}
|
|
else if (dp_ofs > 0) {
|
|
while (dp_sg < SYM_CONF_MAX_SG) {
|
|
tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
|
|
dp_ofs -= (tmp & 0xffffff);
|
|
++dp_sg;
|
|
if (dp_ofs <= 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure the data pointer is inside the data area.
|
|
* If not, return some error.
|
|
*/
|
|
if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
|
|
goto out_err;
|
|
else if (dp_sg > SYM_CONF_MAX_SG ||
|
|
(dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
|
|
goto out_err;
|
|
|
|
/*
|
|
* Save the extreme pointer if needed.
|
|
*/
|
|
if (dp_sg > cp->ext_sg ||
|
|
(dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
|
|
cp->ext_sg = dp_sg;
|
|
cp->ext_ofs = dp_ofs;
|
|
}
|
|
|
|
/*
|
|
* Return data.
|
|
*/
|
|
*ofs = dp_ofs;
|
|
return dp_sg;
|
|
|
|
out_err:
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* chip handler for MODIFY DATA POINTER MESSAGE
|
|
*
|
|
* We also call this function on IGNORE WIDE RESIDUE
|
|
* messages that do not match a SWIDE full condition.
|
|
* Btw, we assume in that situation that such a message
|
|
* is equivalent to a MODIFY DATA POINTER (offset=-1).
|
|
*/
|
|
|
|
static void sym_modify_dp(hcb_p np, tcb_p tp, ccb_p cp, int ofs)
|
|
{
|
|
int dp_ofs = ofs;
|
|
u32 dp_scr = INL (nc_temp);
|
|
u32 dp_ret;
|
|
u32 tmp;
|
|
u_char hflags;
|
|
int dp_sg;
|
|
struct sym_pmc *pm;
|
|
|
|
/*
|
|
* Not supported for auto-sense.
|
|
*/
|
|
if (cp->host_flags & HF_SENSE)
|
|
goto out_reject;
|
|
|
|
/*
|
|
* Apply our alchemy:) (see comments in sym_evaluate_dp()),
|
|
* to the resulted data pointer.
|
|
*/
|
|
dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
|
|
if (dp_sg < 0)
|
|
goto out_reject;
|
|
|
|
/*
|
|
* And our alchemy:) allows to easily calculate the data
|
|
* script address we want to return for the next data phase.
|
|
*/
|
|
dp_ret = cpu_to_scr(cp->phys.goalp);
|
|
dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
|
|
|
|
/*
|
|
* If offset / scatter entry is zero we donnot need
|
|
* a context for the new current data pointer.
|
|
*/
|
|
if (dp_ofs == 0) {
|
|
dp_scr = dp_ret;
|
|
goto out_ok;
|
|
}
|
|
|
|
/*
|
|
* Get a context for the new current data pointer.
|
|
*/
|
|
hflags = INB (HF_PRT);
|
|
|
|
if (hflags & HF_DP_SAVED)
|
|
hflags ^= HF_ACT_PM;
|
|
|
|
if (!(hflags & HF_ACT_PM)) {
|
|
pm = &cp->phys.pm0;
|
|
dp_scr = SCRIPTA_BA (np, pm0_data);
|
|
}
|
|
else {
|
|
pm = &cp->phys.pm1;
|
|
dp_scr = SCRIPTA_BA (np, pm1_data);
|
|
}
|
|
|
|
hflags &= ~(HF_DP_SAVED);
|
|
|
|
OUTB (HF_PRT, hflags);
|
|
|
|
/*
|
|
* Set up the new current data pointer.
|
|
* ofs < 0 there, and for the next data phase, we
|
|
* want to transfer part of the data of the sg entry
|
|
* corresponding to index dp_sg-1 prior to returning
|
|
* to the main data script.
|
|
*/
|
|
pm->ret = cpu_to_scr(dp_ret);
|
|
tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
|
|
tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
|
|
pm->sg.addr = cpu_to_scr(tmp);
|
|
pm->sg.size = cpu_to_scr(-dp_ofs);
|
|
|
|
out_ok:
|
|
OUTL (nc_temp, dp_scr);
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, clrack));
|
|
return;
|
|
|
|
out_reject:
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, msg_bad));
|
|
}
|
|
|
|
|
|
/*
|
|
* chip calculation of the data residual.
|
|
*
|
|
* As I used to say, the requirement of data residual
|
|
* in SCSI is broken, useless and cannot be achieved
|
|
* without huge complexity.
|
|
* But most OSes and even the official CAM require it.
|
|
* When stupidity happens to be so widely spread inside
|
|
* a community, it gets hard to convince.
|
|
*
|
|
* Anyway, I don't care, since I am not going to use
|
|
* any software that considers this data residual as
|
|
* a relevant information. :)
|
|
*/
|
|
|
|
static int sym_compute_residual(hcb_p np, ccb_p cp)
|
|
{
|
|
int dp_sg, dp_sgmin, resid = 0;
|
|
int dp_ofs = 0;
|
|
|
|
/*
|
|
* Check for some data lost or just thrown away.
|
|
* We are not required to be quite accurate in this
|
|
* situation. Btw, if we are odd for output and the
|
|
* device claims some more data, it may well happen
|
|
* than our residual be zero. :-)
|
|
*/
|
|
if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
|
|
if (cp->xerr_status & XE_EXTRA_DATA)
|
|
resid -= cp->extra_bytes;
|
|
if (cp->xerr_status & XE_SODL_UNRUN)
|
|
++resid;
|
|
if (cp->xerr_status & XE_SWIDE_OVRUN)
|
|
--resid;
|
|
}
|
|
|
|
/*
|
|
* If all data has been transferred,
|
|
* there is no residual.
|
|
*/
|
|
if (cp->phys.lastp == cp->phys.goalp)
|
|
return resid;
|
|
|
|
/*
|
|
* If no data transfer occurs, or if the data
|
|
* pointer is weird, return full residual.
|
|
*/
|
|
if (cp->startp == cp->phys.lastp ||
|
|
sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.lastp), &dp_ofs) < 0) {
|
|
return cp->data_len;
|
|
}
|
|
|
|
/*
|
|
* If we were auto-sensing, then we are done.
|
|
*/
|
|
if (cp->host_flags & HF_SENSE) {
|
|
return -dp_ofs;
|
|
}
|
|
|
|
/*
|
|
* We are now full comfortable in the computation
|
|
* of the data residual (2's complement).
|
|
*/
|
|
dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
|
|
resid = -cp->ext_ofs;
|
|
for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
|
|
u_long tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
|
|
resid += (tmp & 0xffffff);
|
|
}
|
|
|
|
/*
|
|
* Hopefully, the result is not too wrong.
|
|
*/
|
|
return resid;
|
|
}
|
|
|
|
/*
|
|
* Print out the containt of a SCSI message.
|
|
*/
|
|
|
|
static int sym_show_msg (u_char * msg)
|
|
{
|
|
u_char i;
|
|
printf ("%x",*msg);
|
|
if (*msg==M_EXTENDED) {
|
|
for (i=1;i<8;i++) {
|
|
if (i-1>msg[1]) break;
|
|
printf ("-%x",msg[i]);
|
|
};
|
|
return (i+1);
|
|
} else if ((*msg & 0xf0) == 0x20) {
|
|
printf ("-%x",msg[1]);
|
|
return (2);
|
|
};
|
|
return (1);
|
|
}
|
|
|
|
static void sym_print_msg (ccb_p cp, char *label, u_char *msg)
|
|
{
|
|
PRINT_ADDR(cp);
|
|
if (label)
|
|
printf ("%s: ", label);
|
|
|
|
(void) sym_show_msg (msg);
|
|
printf (".\n");
|
|
}
|
|
|
|
/*
|
|
* Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
|
|
*
|
|
* When we try to negotiate, we append the negotiation message
|
|
* to the identify and (maybe) simple tag message.
|
|
* The host status field is set to HS_NEGOTIATE to mark this
|
|
* situation.
|
|
*
|
|
* If the target doesn't answer this message immediately
|
|
* (as required by the standard), the SIR_NEGO_FAILED interrupt
|
|
* will be raised eventually.
|
|
* The handler removes the HS_NEGOTIATE status, and sets the
|
|
* negotiated value to the default (async / nowide).
|
|
*
|
|
* If we receive a matching answer immediately, we check it
|
|
* for validity, and set the values.
|
|
*
|
|
* If we receive a Reject message immediately, we assume the
|
|
* negotiation has failed, and fall back to standard values.
|
|
*
|
|
* If we receive a negotiation message while not in HS_NEGOTIATE
|
|
* state, it's a target initiated negotiation. We prepare a
|
|
* (hopefully) valid answer, set our parameters, and send back
|
|
* this answer to the target.
|
|
*
|
|
* If the target doesn't fetch the answer (no message out phase),
|
|
* we assume the negotiation has failed, and fall back to default
|
|
* settings (SIR_NEGO_PROTO interrupt).
|
|
*
|
|
* When we set the values, we adjust them in all ccbs belonging
|
|
* to this target, in the controller's register, and in the "phys"
|
|
* field of the controller's struct sym_hcb.
|
|
*/
|
|
|
|
/*
|
|
* chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
|
|
*/
|
|
static void sym_sync_nego(hcb_p np, tcb_p tp, ccb_p cp)
|
|
{
|
|
u_char chg, ofs, per, fak, div;
|
|
int req = 1;
|
|
|
|
/*
|
|
* Synchronous request message received.
|
|
*/
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_msg(cp, "sync msgin", np->msgin);
|
|
};
|
|
|
|
/*
|
|
* request or answer ?
|
|
*/
|
|
if (INB (HS_PRT) == HS_NEGOTIATE) {
|
|
OUTB (HS_PRT, HS_BUSY);
|
|
if (cp->nego_status && cp->nego_status != NS_SYNC)
|
|
goto reject_it;
|
|
req = 0;
|
|
}
|
|
|
|
/*
|
|
* get requested values.
|
|
*/
|
|
chg = 0;
|
|
per = np->msgin[3];
|
|
ofs = np->msgin[4];
|
|
|
|
/*
|
|
* check values against our limits.
|
|
*/
|
|
if (ofs) {
|
|
if (ofs > np->maxoffs)
|
|
{chg = 1; ofs = np->maxoffs;}
|
|
if (req) {
|
|
if (ofs > tp->tinfo.user.offset)
|
|
{chg = 1; ofs = tp->tinfo.user.offset;}
|
|
}
|
|
}
|
|
|
|
if (ofs) {
|
|
if (per < np->minsync)
|
|
{chg = 1; per = np->minsync;}
|
|
if (req) {
|
|
if (per < tp->tinfo.user.period)
|
|
{chg = 1; per = tp->tinfo.user.period;}
|
|
}
|
|
}
|
|
|
|
div = fak = 0;
|
|
if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
|
|
goto reject_it;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
PRINT_ADDR(cp);
|
|
printf ("sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
|
|
ofs, per, div, fak, chg);
|
|
}
|
|
|
|
/*
|
|
* This was an answer message
|
|
*/
|
|
if (req == 0) {
|
|
if (chg) /* Answer wasn't acceptable. */
|
|
goto reject_it;
|
|
sym_setsync (np, cp, ofs, per, div, fak);
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, clrack));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* It was a request. Set value and
|
|
* prepare an answer message
|
|
*/
|
|
sym_setsync (np, cp, ofs, per, div, fak);
|
|
|
|
np->msgout[0] = M_EXTENDED;
|
|
np->msgout[1] = 3;
|
|
np->msgout[2] = M_X_SYNC_REQ;
|
|
np->msgout[3] = per;
|
|
np->msgout[4] = ofs;
|
|
|
|
cp->nego_status = NS_SYNC;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_msg(cp, "sync msgout", np->msgout);
|
|
}
|
|
|
|
np->msgin [0] = M_NOOP;
|
|
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, sdtr_resp));
|
|
return;
|
|
reject_it:
|
|
sym_setsync (np, cp, 0, 0, 0, 0);
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, msg_bad));
|
|
}
|
|
|
|
/*
|
|
* chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
|
|
*/
|
|
static void sym_ppr_nego(hcb_p np, tcb_p tp, ccb_p cp)
|
|
{
|
|
u_char chg, ofs, per, fak, dt, div, wide;
|
|
int req = 1;
|
|
|
|
/*
|
|
* Synchronous request message received.
|
|
*/
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_msg(cp, "ppr msgin", np->msgin);
|
|
};
|
|
|
|
/*
|
|
* request or answer ?
|
|
*/
|
|
if (INB (HS_PRT) == HS_NEGOTIATE) {
|
|
OUTB (HS_PRT, HS_BUSY);
|
|
if (cp->nego_status && cp->nego_status != NS_PPR)
|
|
goto reject_it;
|
|
req = 0;
|
|
}
|
|
|
|
/*
|
|
* get requested values.
|
|
*/
|
|
chg = 0;
|
|
per = np->msgin[3];
|
|
ofs = np->msgin[5];
|
|
wide = np->msgin[6];
|
|
dt = np->msgin[7] & PPR_OPT_DT;
|
|
|
|
/*
|
|
* check values against our limits.
|
|
*/
|
|
if (wide > np->maxwide)
|
|
{chg = 1; wide = np->maxwide;}
|
|
if (!wide || !(np->features & FE_ULTRA3))
|
|
dt &= ~PPR_OPT_DT;
|
|
if (req) {
|
|
if (wide > tp->tinfo.user.width)
|
|
{chg = 1; wide = tp->tinfo.user.width;}
|
|
}
|
|
|
|
if (!(np->features & FE_U3EN)) /* Broken U3EN bit not supported */
|
|
dt &= ~PPR_OPT_DT;
|
|
|
|
if (dt != (np->msgin[7] & PPR_OPT_MASK)) chg = 1;
|
|
|
|
if (ofs) {
|
|
if (ofs > np->maxoffs)
|
|
{chg = 1; ofs = np->maxoffs;}
|
|
if (req) {
|
|
if (ofs > tp->tinfo.user.offset)
|
|
{chg = 1; ofs = tp->tinfo.user.offset;}
|
|
}
|
|
}
|
|
|
|
if (ofs) {
|
|
if (dt) {
|
|
if (per < np->minsync_dt)
|
|
{chg = 1; per = np->minsync_dt;}
|
|
}
|
|
else if (per < np->minsync)
|
|
{chg = 1; per = np->minsync;}
|
|
if (req) {
|
|
if (per < tp->tinfo.user.period)
|
|
{chg = 1; per = tp->tinfo.user.period;}
|
|
}
|
|
}
|
|
|
|
div = fak = 0;
|
|
if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
|
|
goto reject_it;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
PRINT_ADDR(cp);
|
|
printf ("ppr: "
|
|
"dt=%x ofs=%d per=%d wide=%d div=%d fak=%d chg=%d.\n",
|
|
dt, ofs, per, wide, div, fak, chg);
|
|
}
|
|
|
|
/*
|
|
* It was an answer.
|
|
*/
|
|
if (req == 0) {
|
|
if (chg) /* Answer wasn't acceptable */
|
|
goto reject_it;
|
|
sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, clrack));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* It was a request. Set value and
|
|
* prepare an answer message
|
|
*/
|
|
sym_setpprot (np, cp, dt, ofs, per, wide, div, fak);
|
|
|
|
np->msgout[0] = M_EXTENDED;
|
|
np->msgout[1] = 6;
|
|
np->msgout[2] = M_X_PPR_REQ;
|
|
np->msgout[3] = per;
|
|
np->msgout[4] = 0;
|
|
np->msgout[5] = ofs;
|
|
np->msgout[6] = wide;
|
|
np->msgout[7] = dt;
|
|
|
|
cp->nego_status = NS_PPR;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_msg(cp, "ppr msgout", np->msgout);
|
|
}
|
|
|
|
np->msgin [0] = M_NOOP;
|
|
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, ppr_resp));
|
|
return;
|
|
reject_it:
|
|
sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, msg_bad));
|
|
}
|
|
|
|
/*
|
|
* chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
|
|
*/
|
|
static void sym_wide_nego(hcb_p np, tcb_p tp, ccb_p cp)
|
|
{
|
|
u_char chg, wide;
|
|
int req = 1;
|
|
|
|
/*
|
|
* Wide request message received.
|
|
*/
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_msg(cp, "wide msgin", np->msgin);
|
|
};
|
|
|
|
/*
|
|
* Is it an request from the device?
|
|
*/
|
|
if (INB (HS_PRT) == HS_NEGOTIATE) {
|
|
OUTB (HS_PRT, HS_BUSY);
|
|
if (cp->nego_status && cp->nego_status != NS_WIDE)
|
|
goto reject_it;
|
|
req = 0;
|
|
}
|
|
|
|
/*
|
|
* get requested values.
|
|
*/
|
|
chg = 0;
|
|
wide = np->msgin[3];
|
|
|
|
/*
|
|
* check values against driver limits.
|
|
*/
|
|
if (wide > np->maxoffs)
|
|
{chg = 1; wide = np->maxoffs;}
|
|
if (req) {
|
|
if (wide > tp->tinfo.user.width)
|
|
{chg = 1; wide = tp->tinfo.user.width;}
|
|
}
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
PRINT_ADDR(cp);
|
|
printf ("wdtr: wide=%d chg=%d.\n", wide, chg);
|
|
}
|
|
|
|
/*
|
|
* This was an answer message
|
|
*/
|
|
if (req == 0) {
|
|
if (chg) /* Answer wasn't acceptable. */
|
|
goto reject_it;
|
|
sym_setwide (np, cp, wide);
|
|
#if 1
|
|
/*
|
|
* Negotiate for SYNC immediately after WIDE response.
|
|
* This allows to negotiate for both WIDE and SYNC on
|
|
* a single SCSI command (Suggested by Justin Gibbs).
|
|
*/
|
|
if (tp->tinfo.goal.offset) {
|
|
np->msgout[0] = M_EXTENDED;
|
|
np->msgout[1] = 3;
|
|
np->msgout[2] = M_X_SYNC_REQ;
|
|
np->msgout[3] = tp->tinfo.goal.period;
|
|
np->msgout[4] = tp->tinfo.goal.offset;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_msg(cp, "sync msgout", np->msgout);
|
|
}
|
|
|
|
cp->nego_status = NS_SYNC;
|
|
OUTB (HS_PRT, HS_NEGOTIATE);
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, sdtr_resp));
|
|
return;
|
|
}
|
|
#endif
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, clrack));
|
|
return;
|
|
};
|
|
|
|
/*
|
|
* It was a request, set value and
|
|
* prepare an answer message
|
|
*/
|
|
sym_setwide (np, cp, wide);
|
|
|
|
np->msgout[0] = M_EXTENDED;
|
|
np->msgout[1] = 2;
|
|
np->msgout[2] = M_X_WIDE_REQ;
|
|
np->msgout[3] = wide;
|
|
|
|
np->msgin [0] = M_NOOP;
|
|
|
|
cp->nego_status = NS_WIDE;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_msg(cp, "wide msgout", np->msgout);
|
|
}
|
|
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, wdtr_resp));
|
|
return;
|
|
reject_it:
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, msg_bad));
|
|
}
|
|
|
|
/*
|
|
* Reset SYNC or WIDE to default settings.
|
|
*
|
|
* Called when a negotiation does not succeed either
|
|
* on rejection or on protocol error.
|
|
*/
|
|
static void sym_nego_default(hcb_p np, tcb_p tp, ccb_p cp)
|
|
{
|
|
/*
|
|
* any error in negotiation:
|
|
* fall back to default mode.
|
|
*/
|
|
switch (cp->nego_status) {
|
|
case NS_PPR:
|
|
sym_setpprot (np, cp, 0, 0, 0, 0, 0, 0);
|
|
break;
|
|
case NS_SYNC:
|
|
sym_setsync (np, cp, 0, 0, 0, 0);
|
|
break;
|
|
case NS_WIDE:
|
|
sym_setwide (np, cp, 0);
|
|
break;
|
|
};
|
|
np->msgin [0] = M_NOOP;
|
|
np->msgout[0] = M_NOOP;
|
|
cp->nego_status = 0;
|
|
}
|
|
|
|
/*
|
|
* chip handler for MESSAGE REJECT received in response to
|
|
* a WIDE or SYNCHRONOUS negotiation.
|
|
*/
|
|
static void sym_nego_rejected(hcb_p np, tcb_p tp, ccb_p cp)
|
|
{
|
|
sym_nego_default(np, tp, cp);
|
|
OUTB (HS_PRT, HS_BUSY);
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for programmed interrupts.
|
|
*/
|
|
void sym_int_sir (hcb_p np)
|
|
{
|
|
u_char num = INB (nc_dsps);
|
|
u_long dsa = INL (nc_dsa);
|
|
ccb_p cp = sym_ccb_from_dsa(np, dsa);
|
|
u_char target = INB (nc_sdid) & 0x0f;
|
|
tcb_p tp = &np->target[target];
|
|
int tmp;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
|
|
|
|
switch (num) {
|
|
/*
|
|
* Command has been completed with error condition
|
|
* or has been auto-sensed.
|
|
*/
|
|
case SIR_COMPLETE_ERROR:
|
|
sym_complete_error(np, cp);
|
|
return;
|
|
/*
|
|
* The C code is currently trying to recover from something.
|
|
* Typically, user want to abort some command.
|
|
*/
|
|
case SIR_SCRIPT_STOPPED:
|
|
case SIR_TARGET_SELECTED:
|
|
case SIR_ABORT_SENT:
|
|
sym_sir_task_recovery(np, num);
|
|
return;
|
|
/*
|
|
* The device didn't go to MSG OUT phase after having
|
|
* been selected with ATN. We donnot want to handle
|
|
* that.
|
|
*/
|
|
case SIR_SEL_ATN_NO_MSG_OUT:
|
|
printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
|
|
sym_name (np), target);
|
|
goto out_stuck;
|
|
/*
|
|
* The device didn't switch to MSG IN phase after
|
|
* having reseleted the initiator.
|
|
*/
|
|
case SIR_RESEL_NO_MSG_IN:
|
|
printf ("%s:%d: No MSG IN phase after reselection.\n",
|
|
sym_name (np), target);
|
|
goto out_stuck;
|
|
/*
|
|
* After reselection, the device sent a message that wasn't
|
|
* an IDENTIFY.
|
|
*/
|
|
case SIR_RESEL_NO_IDENTIFY:
|
|
printf ("%s:%d: No IDENTIFY after reselection.\n",
|
|
sym_name (np), target);
|
|
goto out_stuck;
|
|
/*
|
|
* The device reselected a LUN we donnot know about.
|
|
*/
|
|
case SIR_RESEL_BAD_LUN:
|
|
np->msgout[0] = M_RESET;
|
|
goto out;
|
|
/*
|
|
* The device reselected for an untagged nexus and we
|
|
* haven't any.
|
|
*/
|
|
case SIR_RESEL_BAD_I_T_L:
|
|
np->msgout[0] = M_ABORT;
|
|
goto out;
|
|
/*
|
|
* The device reselected for a tagged nexus that we donnot
|
|
* have.
|
|
*/
|
|
case SIR_RESEL_BAD_I_T_L_Q:
|
|
np->msgout[0] = M_ABORT_TAG;
|
|
goto out;
|
|
/*
|
|
* The SCRIPTS let us know that the device has grabbed
|
|
* our message and will abort the job.
|
|
*/
|
|
case SIR_RESEL_ABORTED:
|
|
np->lastmsg = np->msgout[0];
|
|
np->msgout[0] = M_NOOP;
|
|
printf ("%s:%d: message %x sent on bad reselection.\n",
|
|
sym_name (np), target, np->lastmsg);
|
|
goto out;
|
|
/*
|
|
* The SCRIPTS let us know that a message has been
|
|
* successfully sent to the device.
|
|
*/
|
|
case SIR_MSG_OUT_DONE:
|
|
np->lastmsg = np->msgout[0];
|
|
np->msgout[0] = M_NOOP;
|
|
/* Should we really care of that */
|
|
if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
|
|
if (cp) {
|
|
cp->xerr_status &= ~XE_PARITY_ERR;
|
|
if (!cp->xerr_status)
|
|
OUTOFFB (HF_PRT, HF_EXT_ERR);
|
|
}
|
|
}
|
|
goto out;
|
|
/*
|
|
* The device didn't send a GOOD SCSI status.
|
|
* We may have some work to do prior to allow
|
|
* the SCRIPTS processor to continue.
|
|
*/
|
|
case SIR_BAD_SCSI_STATUS:
|
|
if (!cp)
|
|
goto out;
|
|
sym_sir_bad_scsi_status(np, num, cp);
|
|
return;
|
|
/*
|
|
* We are asked by the SCRIPTS to prepare a
|
|
* REJECT message.
|
|
*/
|
|
case SIR_REJECT_TO_SEND:
|
|
sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
|
|
np->msgout[0] = M_REJECT;
|
|
goto out;
|
|
/*
|
|
* We have been ODD at the end of a DATA IN
|
|
* transfer and the device didn't send a
|
|
* IGNORE WIDE RESIDUE message.
|
|
* It is a data overrun condition.
|
|
*/
|
|
case SIR_SWIDE_OVERRUN:
|
|
if (cp) {
|
|
OUTONB (HF_PRT, HF_EXT_ERR);
|
|
cp->xerr_status |= XE_SWIDE_OVRUN;
|
|
}
|
|
goto out;
|
|
/*
|
|
* We have been ODD at the end of a DATA OUT
|
|
* transfer.
|
|
* It is a data underrun condition.
|
|
*/
|
|
case SIR_SODL_UNDERRUN:
|
|
if (cp) {
|
|
OUTONB (HF_PRT, HF_EXT_ERR);
|
|
cp->xerr_status |= XE_SODL_UNRUN;
|
|
}
|
|
goto out;
|
|
/*
|
|
* The device wants us to tranfer more data than
|
|
* expected or in the wrong direction.
|
|
* The number of extra bytes is in scratcha.
|
|
* It is a data overrun condition.
|
|
*/
|
|
case SIR_DATA_OVERRUN:
|
|
if (cp) {
|
|
OUTONB (HF_PRT, HF_EXT_ERR);
|
|
cp->xerr_status |= XE_EXTRA_DATA;
|
|
cp->extra_bytes += INL (nc_scratcha);
|
|
}
|
|
goto out;
|
|
/*
|
|
* The device switched to an illegal phase (4/5).
|
|
*/
|
|
case SIR_BAD_PHASE:
|
|
if (cp) {
|
|
OUTONB (HF_PRT, HF_EXT_ERR);
|
|
cp->xerr_status |= XE_BAD_PHASE;
|
|
}
|
|
goto out;
|
|
/*
|
|
* We received a message.
|
|
*/
|
|
case SIR_MSG_RECEIVED:
|
|
if (!cp)
|
|
goto out_stuck;
|
|
switch (np->msgin [0]) {
|
|
/*
|
|
* We received an extended message.
|
|
* We handle MODIFY DATA POINTER, SDTR, WDTR
|
|
* and reject all other extended messages.
|
|
*/
|
|
case M_EXTENDED:
|
|
switch (np->msgin [2]) {
|
|
case M_X_MODIFY_DP:
|
|
if (DEBUG_FLAGS & DEBUG_POINTER)
|
|
sym_print_msg(cp,"modify DP",np->msgin);
|
|
tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
|
|
(np->msgin[5]<<8) + (np->msgin[6]);
|
|
sym_modify_dp(np, tp, cp, tmp);
|
|
return;
|
|
case M_X_SYNC_REQ:
|
|
sym_sync_nego(np, tp, cp);
|
|
return;
|
|
case M_X_PPR_REQ:
|
|
sym_ppr_nego(np, tp, cp);
|
|
return;
|
|
case M_X_WIDE_REQ:
|
|
sym_wide_nego(np, tp, cp);
|
|
return;
|
|
default:
|
|
goto out_reject;
|
|
}
|
|
break;
|
|
/*
|
|
* We received a 1/2 byte message not handled from SCRIPTS.
|
|
* We are only expecting MESSAGE REJECT and IGNORE WIDE
|
|
* RESIDUE messages that haven't been anticipated by
|
|
* SCRIPTS on SWIDE full condition. Unanticipated IGNORE
|
|
* WIDE RESIDUE messages are aliased as MODIFY DP (-1).
|
|
*/
|
|
case M_IGN_RESIDUE:
|
|
if (DEBUG_FLAGS & DEBUG_POINTER)
|
|
sym_print_msg(cp,"ign wide residue", np->msgin);
|
|
sym_modify_dp(np, tp, cp, -1);
|
|
return;
|
|
case M_REJECT:
|
|
if (INB (HS_PRT) == HS_NEGOTIATE)
|
|
sym_nego_rejected(np, tp, cp);
|
|
else {
|
|
PRINT_ADDR(cp);
|
|
printf ("M_REJECT received (%x:%x).\n",
|
|
scr_to_cpu(np->lastmsg), np->msgout[0]);
|
|
}
|
|
goto out_clrack;
|
|
break;
|
|
default:
|
|
goto out_reject;
|
|
}
|
|
break;
|
|
/*
|
|
* We received an unknown message.
|
|
* Ignore all MSG IN phases and reject it.
|
|
*/
|
|
case SIR_MSG_WEIRD:
|
|
sym_print_msg(cp, "WEIRD message received", np->msgin);
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, msg_weird));
|
|
return;
|
|
/*
|
|
* Negotiation failed.
|
|
* Target does not send us the reply.
|
|
* Remove the HS_NEGOTIATE status.
|
|
*/
|
|
case SIR_NEGO_FAILED:
|
|
OUTB (HS_PRT, HS_BUSY);
|
|
/*
|
|
* Negotiation failed.
|
|
* Target does not want answer message.
|
|
*/
|
|
case SIR_NEGO_PROTO:
|
|
sym_nego_default(np, tp, cp);
|
|
goto out;
|
|
};
|
|
|
|
out:
|
|
OUTONB (nc_dcntl, (STD|NOCOM));
|
|
return;
|
|
out_reject:
|
|
OUTL (nc_dsp, SCRIPTB_BA (np, msg_bad));
|
|
return;
|
|
out_clrack:
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, clrack));
|
|
return;
|
|
out_stuck:
|
|
}
|
|
|
|
/*
|
|
* Acquire a control block
|
|
*/
|
|
static ccb_p sym_get_ccb (hcb_p np, u_char tn, u_char ln, u_char tag_order)
|
|
{
|
|
tcb_p tp = &np->target[tn];
|
|
lcb_p lp = sym_lp(np, tp, ln);
|
|
u_short tag = NO_TAG;
|
|
SYM_QUEHEAD *qp;
|
|
ccb_p cp = (ccb_p) 0;
|
|
|
|
/*
|
|
* Look for a free CCB
|
|
*/
|
|
if (sym_que_empty(&np->free_ccbq))
|
|
(void) sym_alloc_ccb(np);
|
|
qp = sym_remque_head(&np->free_ccbq);
|
|
if (!qp)
|
|
goto out;
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
|
|
/*
|
|
* If the LCB is not yet available and the LUN
|
|
* has been probed ok, try to allocate the LCB.
|
|
*/
|
|
if (!lp && sym_is_bit(tp->lun_map, ln)) {
|
|
lp = sym_alloc_lcb(np, tn, ln);
|
|
if (!lp)
|
|
goto out_free;
|
|
}
|
|
|
|
/*
|
|
* If the LCB is not available here, then the
|
|
* logical unit is not yet discovered. For those
|
|
* ones only accept 1 SCSI IO per logical unit,
|
|
* since we cannot allow disconnections.
|
|
*/
|
|
if (!lp) {
|
|
if (!sym_is_bit(tp->busy0_map, ln))
|
|
sym_set_bit(tp->busy0_map, ln);
|
|
else
|
|
goto out_free;
|
|
} else {
|
|
/*
|
|
* If we have been asked for a tagged command.
|
|
*/
|
|
if (tag_order) {
|
|
/*
|
|
* Debugging purpose.
|
|
*/
|
|
assert(lp->busy_itl == 0);
|
|
/*
|
|
* Allocate resources for tags if not yet.
|
|
*/
|
|
if (!lp->cb_tags) {
|
|
sym_alloc_lcb_tags(np, tn, ln);
|
|
if (!lp->cb_tags)
|
|
goto out_free;
|
|
}
|
|
/*
|
|
* Get a tag for this SCSI IO and set up
|
|
* the CCB bus address for reselection,
|
|
* and count it for this LUN.
|
|
* Toggle reselect path to tagged.
|
|
*/
|
|
if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
|
|
tag = lp->cb_tags[lp->ia_tag];
|
|
if (++lp->ia_tag == SYM_CONF_MAX_TASK)
|
|
lp->ia_tag = 0;
|
|
lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
|
|
++lp->busy_itlq;
|
|
lp->resel_sa =
|
|
cpu_to_scr(SCRIPTA_BA (np, resel_tag));
|
|
}
|
|
else
|
|
goto out_free;
|
|
}
|
|
/*
|
|
* This command will not be tagged.
|
|
* If we already have either a tagged or untagged
|
|
* one, refuse to overlap this untagged one.
|
|
*/
|
|
else {
|
|
/*
|
|
* Debugging purpose.
|
|
*/
|
|
assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
|
|
/*
|
|
* Count this nexus for this LUN.
|
|
* Set up the CCB bus address for reselection.
|
|
* Toggle reselect path to untagged.
|
|
*/
|
|
if (++lp->busy_itl == 1) {
|
|
lp->itl_task_sa = cpu_to_scr(cp->ccb_ba);
|
|
lp->resel_sa =
|
|
cpu_to_scr(SCRIPTA_BA (np,resel_no_tag));
|
|
}
|
|
else
|
|
goto out_free;
|
|
}
|
|
}
|
|
/*
|
|
* Put the CCB into the busy queue.
|
|
*/
|
|
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
|
|
|
|
/*
|
|
* Remember all informations needed to free this CCB.
|
|
*/
|
|
cp->to_abort = 0;
|
|
cp->tag = tag;
|
|
cp->target = tn;
|
|
cp->lun = ln;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_TAGS) {
|
|
PRINT_LUN(np, tn, ln);
|
|
printf ("ccb @%p using tag %d.\n", cp, tag);
|
|
}
|
|
|
|
out:
|
|
return cp;
|
|
out_free:
|
|
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
|
|
return (ccb_p) 0;
|
|
}
|
|
|
|
/*
|
|
* Release one control block
|
|
*/
|
|
static void sym_free_ccb (hcb_p np, ccb_p cp)
|
|
{
|
|
tcb_p tp = &np->target[cp->target];
|
|
lcb_p lp = sym_lp(np, tp, cp->lun);
|
|
|
|
if (DEBUG_FLAGS & DEBUG_TAGS) {
|
|
PRINT_LUN(np, cp->target, cp->lun);
|
|
printf ("ccb @%p freeing tag %d.\n", cp, cp->tag);
|
|
}
|
|
|
|
/*
|
|
* If LCB available,
|
|
*/
|
|
if (lp) {
|
|
/*
|
|
* If tagged, release the tag, set the relect path
|
|
*/
|
|
if (cp->tag != NO_TAG) {
|
|
/*
|
|
* Free the tag value.
|
|
*/
|
|
lp->cb_tags[lp->if_tag] = cp->tag;
|
|
if (++lp->if_tag == SYM_CONF_MAX_TASK)
|
|
lp->if_tag = 0;
|
|
/*
|
|
* Make the reselect path invalid,
|
|
* and uncount this CCB.
|
|
*/
|
|
lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
|
|
--lp->busy_itlq;
|
|
} else { /* Untagged */
|
|
/*
|
|
* Make the reselect path invalid,
|
|
* and uncount this CCB.
|
|
*/
|
|
lp->itl_task_sa = cpu_to_scr(np->bad_itl_ba);
|
|
--lp->busy_itl;
|
|
}
|
|
/*
|
|
* If no JOB active, make the LUN reselect path invalid.
|
|
*/
|
|
if (lp->busy_itlq == 0 && lp->busy_itl == 0)
|
|
lp->resel_sa =
|
|
cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
|
|
}
|
|
/*
|
|
* Otherwise, we only accept 1 IO per LUN.
|
|
* Clear the bit that keeps track of this IO.
|
|
*/
|
|
else
|
|
sym_clr_bit(tp->busy0_map, cp->lun);
|
|
|
|
/*
|
|
* We donnot queue more than 1 ccb per target
|
|
* with negotiation at any time. If this ccb was
|
|
* used for negotiation, clear this info in the tcb.
|
|
*/
|
|
if (cp == tp->nego_cp)
|
|
tp->nego_cp = 0;
|
|
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* If we just complete the last queued CCB,
|
|
* clear this info that is no longer relevant.
|
|
*/
|
|
if (cp == np->last_cp)
|
|
np->last_cp = 0;
|
|
#endif
|
|
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
/*
|
|
* Unmap user data from DMA map if needed.
|
|
*/
|
|
if (cp->dmamapped) {
|
|
bus_dmamap_unload(np->data_dmat, cp->dmamap);
|
|
cp->dmamapped = 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Make this CCB available.
|
|
*/
|
|
cp->cam_ccb = 0;
|
|
cp->host_status = HS_IDLE;
|
|
sym_remque(&cp->link_ccbq);
|
|
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
|
|
}
|
|
|
|
/*
|
|
* Allocate a CCB from memory and initialize its fixed part.
|
|
*/
|
|
static ccb_p sym_alloc_ccb(hcb_p np)
|
|
{
|
|
ccb_p cp = 0;
|
|
int hcode;
|
|
|
|
/*
|
|
* Prevent from allocating more CCBs than we can
|
|
* queue to the controller.
|
|
*/
|
|
if (np->actccbs >= SYM_CONF_MAX_START)
|
|
return 0;
|
|
|
|
/*
|
|
* Allocate memory for this CCB.
|
|
*/
|
|
cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
|
|
if (!cp)
|
|
goto out_free;
|
|
|
|
/*
|
|
* Allocate a bounce buffer for sense data.
|
|
*/
|
|
cp->sns_bbuf = sym_calloc_dma(SYM_SNS_BBUF_LEN, "SNS_BBUF");
|
|
if (!cp->sns_bbuf)
|
|
goto out_free;
|
|
|
|
/*
|
|
* Allocate a map for the DMA of user data.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
if (bus_dmamap_create(np->data_dmat, 0, &cp->dmamap))
|
|
goto out_free;
|
|
#endif
|
|
/*
|
|
* Count it.
|
|
*/
|
|
np->actccbs++;
|
|
|
|
/*
|
|
* Compute the bus address of this ccb.
|
|
*/
|
|
cp->ccb_ba = vtobus(cp);
|
|
|
|
/*
|
|
* Insert this ccb into the hashed list.
|
|
*/
|
|
hcode = CCB_HASH_CODE(cp->ccb_ba);
|
|
cp->link_ccbh = np->ccbh[hcode];
|
|
np->ccbh[hcode] = cp;
|
|
|
|
/*
|
|
* Initialyze the start and restart actions.
|
|
*/
|
|
cp->phys.go.start = cpu_to_scr(SCRIPTA_BA (np, idle));
|
|
cp->phys.go.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
|
|
|
|
/*
|
|
* Initilialyze some other fields.
|
|
*/
|
|
cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
|
|
|
|
/*
|
|
* Chain into free ccb queue.
|
|
*/
|
|
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
|
|
|
|
return cp;
|
|
out_free:
|
|
if (cp) {
|
|
if (cp->sns_bbuf)
|
|
sym_mfree_dma(cp->sns_bbuf,SYM_SNS_BBUF_LEN,"SNS_BBUF");
|
|
sym_mfree_dma(cp, sizeof(*cp), "CCB");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Look up a CCB from a DSA value.
|
|
*/
|
|
static ccb_p sym_ccb_from_dsa(hcb_p np, u_long dsa)
|
|
{
|
|
int hcode;
|
|
ccb_p cp;
|
|
|
|
hcode = CCB_HASH_CODE(dsa);
|
|
cp = np->ccbh[hcode];
|
|
while (cp) {
|
|
if (cp->ccb_ba == dsa)
|
|
break;
|
|
cp = cp->link_ccbh;
|
|
}
|
|
|
|
return cp;
|
|
}
|
|
|
|
/*
|
|
* Target control block initialisation.
|
|
* Nothing important to do at the moment.
|
|
*/
|
|
static void sym_init_tcb (hcb_p np, u_char tn)
|
|
{
|
|
/*
|
|
* Check some alignments required by the chip.
|
|
*/
|
|
assert (((offsetof(struct sym_reg, nc_sxfer) ^
|
|
offsetof(struct sym_tcb, sval)) &3) == 0);
|
|
assert (((offsetof(struct sym_reg, nc_scntl3) ^
|
|
offsetof(struct sym_tcb, wval)) &3) == 0);
|
|
}
|
|
|
|
/*
|
|
* Lun control block allocation and initialization.
|
|
*/
|
|
static lcb_p sym_alloc_lcb (hcb_p np, u_char tn, u_char ln)
|
|
{
|
|
tcb_p tp = &np->target[tn];
|
|
lcb_p lp = sym_lp(np, tp, ln);
|
|
|
|
/*
|
|
* Already done, just return.
|
|
*/
|
|
if (lp)
|
|
return lp;
|
|
/*
|
|
* Check against some race.
|
|
*/
|
|
assert(!sym_is_bit(tp->busy0_map, ln));
|
|
|
|
/*
|
|
* Initialize the target control block if not yet.
|
|
*/
|
|
sym_init_tcb (np, tn);
|
|
|
|
/*
|
|
* Allocate the LCB bus address array.
|
|
* Compute the bus address of this table.
|
|
*/
|
|
if (ln && !tp->luntbl) {
|
|
int i;
|
|
|
|
tp->luntbl = sym_calloc_dma(256, "LUNTBL");
|
|
if (!tp->luntbl)
|
|
goto fail;
|
|
for (i = 0 ; i < 64 ; i++)
|
|
tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
|
|
tp->luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
|
|
}
|
|
|
|
/*
|
|
* Allocate the table of pointers for LUN(s) > 0, if needed.
|
|
*/
|
|
if (ln && !tp->lunmp) {
|
|
tp->lunmp = sym_calloc(SYM_CONF_MAX_LUN * sizeof(lcb_p),
|
|
"LUNMP");
|
|
if (!tp->lunmp)
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate the lcb.
|
|
* Make it available to the chip.
|
|
*/
|
|
lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
|
|
if (!lp)
|
|
goto fail;
|
|
if (ln) {
|
|
tp->lunmp[ln] = lp;
|
|
tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
|
|
}
|
|
else {
|
|
tp->lun0p = lp;
|
|
tp->lun0_sa = cpu_to_scr(vtobus(lp));
|
|
}
|
|
|
|
/*
|
|
* Let the itl task point to error handling.
|
|
*/
|
|
lp->itl_task_sa = cpu_to_scr(np->bad_itl_ba);
|
|
|
|
/*
|
|
* Set the reselect pattern to our default. :)
|
|
*/
|
|
lp->resel_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
|
|
|
|
/*
|
|
* Set user capabilities.
|
|
*/
|
|
lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
|
|
|
|
fail:
|
|
return lp;
|
|
}
|
|
|
|
/*
|
|
* Allocate LCB resources for tagged command queuing.
|
|
*/
|
|
static void sym_alloc_lcb_tags (hcb_p np, u_char tn, u_char ln)
|
|
{
|
|
tcb_p tp = &np->target[tn];
|
|
lcb_p lp = sym_lp(np, tp, ln);
|
|
int i;
|
|
|
|
/*
|
|
* If LCB not available, try to allocate it.
|
|
*/
|
|
if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
|
|
goto fail;
|
|
|
|
/*
|
|
* Allocate the task table and and the tag allocation
|
|
* circular buffer. We want both or none.
|
|
*/
|
|
lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
|
|
if (!lp->itlq_tbl)
|
|
goto fail;
|
|
lp->cb_tags = sym_calloc(SYM_CONF_MAX_TASK, "CB_TAGS");
|
|
if (!lp->cb_tags) {
|
|
sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
|
|
lp->itlq_tbl = 0;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Initialize the task table with invalid entries.
|
|
*/
|
|
for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
|
|
lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
|
|
|
|
/*
|
|
* Fill up the tag buffer with tag numbers.
|
|
*/
|
|
for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
|
|
lp->cb_tags[i] = i;
|
|
|
|
/*
|
|
* Make the task table available to SCRIPTS,
|
|
* And accept tagged commands now.
|
|
*/
|
|
lp->itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
|
|
|
|
return;
|
|
fail:
|
|
}
|
|
|
|
/*
|
|
* Test the pci bus snoop logic :-(
|
|
*
|
|
* Has to be called with interrupts disabled.
|
|
*/
|
|
#ifndef SYM_CONF_IOMAPPED
|
|
static int sym_regtest (hcb_p np)
|
|
{
|
|
register volatile u32 data;
|
|
/*
|
|
* chip registers may NOT be cached.
|
|
* write 0xffffffff to a read only register area,
|
|
* and try to read it back.
|
|
*/
|
|
data = 0xffffffff;
|
|
OUTL_OFF(offsetof(struct sym_reg, nc_dstat), data);
|
|
data = INL_OFF(offsetof(struct sym_reg, nc_dstat));
|
|
#if 1
|
|
if (data == 0xffffffff) {
|
|
#else
|
|
if ((data & 0xe2f0fffd) != 0x02000080) {
|
|
#endif
|
|
printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
|
|
(unsigned) data);
|
|
return (0x10);
|
|
};
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
static int sym_snooptest (hcb_p np)
|
|
{
|
|
u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc;
|
|
int i, err=0;
|
|
#ifndef SYM_CONF_IOMAPPED
|
|
err |= sym_regtest (np);
|
|
if (err) return (err);
|
|
#endif
|
|
/*
|
|
* init
|
|
*/
|
|
pc = SCRIPTB0_BA (np, snooptest);
|
|
host_wr = 1;
|
|
sym_wr = 2;
|
|
/*
|
|
* Set memory and register.
|
|
*/
|
|
np->cache = cpu_to_scr(host_wr);
|
|
OUTL (nc_temp, sym_wr);
|
|
/*
|
|
* Start script (exchange values)
|
|
*/
|
|
OUTL (nc_dsa, np->hcb_ba);
|
|
OUTL (nc_dsp, pc);
|
|
/*
|
|
* Wait 'til done (with timeout)
|
|
*/
|
|
for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
|
|
if (INB(nc_istat) & (INTF|SIP|DIP))
|
|
break;
|
|
/*
|
|
* Save termination position.
|
|
*/
|
|
pc = INL (nc_dsp);
|
|
/*
|
|
* Read memory and register.
|
|
*/
|
|
host_rd = scr_to_cpu(np->cache);
|
|
sym_rd = INL (nc_scratcha);
|
|
sym_bk = INL (nc_temp);
|
|
|
|
/*
|
|
* check for timeout
|
|
*/
|
|
if (i>=SYM_SNOOP_TIMEOUT) {
|
|
printf ("CACHE TEST FAILED: timeout.\n");
|
|
return (0x20);
|
|
};
|
|
/*
|
|
* Check termination position.
|
|
*/
|
|
if (pc != SCRIPTB0_BA (np, snoopend)+8) {
|
|
printf ("CACHE TEST FAILED: script execution failed.\n");
|
|
printf ("start=%08lx, pc=%08lx, end=%08lx\n",
|
|
(u_long) SCRIPTB0_BA (np, snooptest), (u_long) pc,
|
|
(u_long) SCRIPTB0_BA (np, snoopend) +8);
|
|
return (0x40);
|
|
};
|
|
/*
|
|
* Show results.
|
|
*/
|
|
if (host_wr != sym_rd) {
|
|
printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
|
|
(int) host_wr, (int) sym_rd);
|
|
err |= 1;
|
|
};
|
|
if (host_rd != sym_wr) {
|
|
printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
|
|
(int) sym_wr, (int) host_rd);
|
|
err |= 2;
|
|
};
|
|
if (sym_bk != sym_wr) {
|
|
printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
|
|
(int) sym_wr, (int) sym_bk);
|
|
err |= 4;
|
|
};
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Determine the chip's clock frequency.
|
|
*
|
|
* This is essential for the negotiation of the synchronous
|
|
* transfer rate.
|
|
*
|
|
* Note: we have to return the correct value.
|
|
* THERE IS NO SAFE DEFAULT VALUE.
|
|
*
|
|
* Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
|
|
* 53C860 and 53C875 rev. 1 support fast20 transfers but
|
|
* do not have a clock doubler and so are provided with a
|
|
* 80 MHz clock. All other fast20 boards incorporate a doubler
|
|
* and so should be delivered with a 40 MHz clock.
|
|
* The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
|
|
* clock and provide a clock quadrupler (160 Mhz).
|
|
*/
|
|
|
|
/*
|
|
* Select SCSI clock frequency
|
|
*/
|
|
static void sym_selectclock(hcb_p np, u_char scntl3)
|
|
{
|
|
/*
|
|
* If multiplier not present or not selected, leave here.
|
|
*/
|
|
if (np->multiplier <= 1) {
|
|
OUTB(nc_scntl3, scntl3);
|
|
return;
|
|
}
|
|
|
|
if (sym_verbose >= 2)
|
|
printf ("%s: enabling clock multiplier\n", sym_name(np));
|
|
|
|
OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
|
|
/*
|
|
* Wait for the LCKFRQ bit to be set if supported by the chip.
|
|
* Otherwise wait 20 micro-seconds.
|
|
*/
|
|
if (np->features & FE_LCKFRQ) {
|
|
int i = 20;
|
|
while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
|
|
UDELAY (20);
|
|
if (!i)
|
|
printf("%s: the chip cannot lock the frequency\n",
|
|
sym_name(np));
|
|
} else
|
|
UDELAY (20);
|
|
OUTB(nc_stest3, HSC); /* Halt the scsi clock */
|
|
OUTB(nc_scntl3, scntl3);
|
|
OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
|
|
OUTB(nc_stest3, 0x00); /* Restart scsi clock */
|
|
}
|
|
|
|
/*
|
|
* calculate SCSI clock frequency (in KHz)
|
|
*/
|
|
static unsigned getfreq (hcb_p np, int gen)
|
|
{
|
|
unsigned int ms = 0;
|
|
unsigned int f;
|
|
|
|
/*
|
|
* Measure GEN timer delay in order
|
|
* to calculate SCSI clock frequency
|
|
*
|
|
* This code will never execute too
|
|
* many loop iterations (if DELAY is
|
|
* reasonably correct). It could get
|
|
* too low a delay (too high a freq.)
|
|
* if the CPU is slow executing the
|
|
* loop for some reason (an NMI, for
|
|
* example). For this reason we will
|
|
* if multiple measurements are to be
|
|
* performed trust the higher delay
|
|
* (lower frequency returned).
|
|
*/
|
|
OUTW (nc_sien , 0); /* mask all scsi interrupts */
|
|
(void) INW (nc_sist); /* clear pending scsi interrupt */
|
|
OUTB (nc_dien , 0); /* mask all dma interrupts */
|
|
(void) INW (nc_sist); /* another one, just to be sure :) */
|
|
OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
|
|
OUTB (nc_stime1, 0); /* disable general purpose timer */
|
|
OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
|
|
while (!(INW(nc_sist) & GEN) && ms++ < 100000)
|
|
UDELAY (1000); /* count ms */
|
|
OUTB (nc_stime1, 0); /* disable general purpose timer */
|
|
/*
|
|
* set prescaler to divide by whatever 0 means
|
|
* 0 ought to choose divide by 2, but appears
|
|
* to set divide by 3.5 mode in my 53c810 ...
|
|
*/
|
|
OUTB (nc_scntl3, 0);
|
|
|
|
/*
|
|
* adjust for prescaler, and convert into KHz
|
|
*/
|
|
f = ms ? ((1 << gen) * 4340) / ms : 0;
|
|
|
|
if (sym_verbose >= 2)
|
|
printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
|
|
sym_name(np), gen, ms, f);
|
|
|
|
return f;
|
|
}
|
|
|
|
static unsigned sym_getfreq (hcb_p np)
|
|
{
|
|
u_int f1, f2;
|
|
int gen = 11;
|
|
|
|
(void) getfreq (np, gen); /* throw away first result */
|
|
f1 = getfreq (np, gen);
|
|
f2 = getfreq (np, gen);
|
|
if (f1 > f2) f1 = f2; /* trust lower result */
|
|
return f1;
|
|
}
|
|
|
|
/*
|
|
* Get/probe chip SCSI clock frequency
|
|
*/
|
|
static void sym_getclock (hcb_p np, int mult)
|
|
{
|
|
unsigned char scntl3 = np->sv_scntl3;
|
|
unsigned char stest1 = np->sv_stest1;
|
|
unsigned f1;
|
|
|
|
/*
|
|
* For the C10 core, assume 40 MHz.
|
|
*/
|
|
if (np->features & FE_C10) {
|
|
np->multiplier = mult;
|
|
np->clock_khz = 40000 * mult;
|
|
return;
|
|
}
|
|
|
|
np->multiplier = 1;
|
|
f1 = 40000;
|
|
/*
|
|
* True with 875/895/896/895A with clock multiplier selected
|
|
*/
|
|
if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
|
|
if (sym_verbose >= 2)
|
|
printf ("%s: clock multiplier found\n", sym_name(np));
|
|
np->multiplier = mult;
|
|
}
|
|
|
|
/*
|
|
* If multiplier not found or scntl3 not 7,5,3,
|
|
* reset chip and get frequency from general purpose timer.
|
|
* Otherwise trust scntl3 BIOS setting.
|
|
*/
|
|
if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
|
|
OUTB (nc_stest1, 0); /* make sure doubler is OFF */
|
|
f1 = sym_getfreq (np);
|
|
|
|
if (sym_verbose)
|
|
printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
|
|
|
|
if (f1 < 45000) f1 = 40000;
|
|
else if (f1 < 55000) f1 = 50000;
|
|
else f1 = 80000;
|
|
|
|
if (f1 < 80000 && mult > 1) {
|
|
if (sym_verbose >= 2)
|
|
printf ("%s: clock multiplier assumed\n",
|
|
sym_name(np));
|
|
np->multiplier = mult;
|
|
}
|
|
} else {
|
|
if ((scntl3 & 7) == 3) f1 = 40000;
|
|
else if ((scntl3 & 7) == 5) f1 = 80000;
|
|
else f1 = 160000;
|
|
|
|
f1 /= np->multiplier;
|
|
}
|
|
|
|
/*
|
|
* Compute controller synchronous parameters.
|
|
*/
|
|
f1 *= np->multiplier;
|
|
np->clock_khz = f1;
|
|
}
|
|
|
|
/*
|
|
* Get/probe PCI clock frequency
|
|
*/
|
|
static int sym_getpciclock (hcb_p np)
|
|
{
|
|
static int f = 0;
|
|
|
|
/* For the C10, this will not work */
|
|
if (!f && !(np->features & FE_C10)) {
|
|
OUTB (nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
|
|
f = (int) sym_getfreq (np);
|
|
OUTB (nc_stest1, 0);
|
|
}
|
|
return f;
|
|
}
|
|
|
|
/*============= DRIVER ACTION/COMPLETION ====================*/
|
|
|
|
/*
|
|
* Print something that tells about extended errors.
|
|
*/
|
|
static void sym_print_xerr(ccb_p cp, int x_status)
|
|
{
|
|
if (x_status & XE_PARITY_ERR) {
|
|
PRINT_ADDR(cp);
|
|
printf ("unrecovered SCSI parity error.\n");
|
|
}
|
|
if (x_status & XE_EXTRA_DATA) {
|
|
PRINT_ADDR(cp);
|
|
printf ("extraneous data discarded.\n");
|
|
}
|
|
if (x_status & XE_BAD_PHASE) {
|
|
PRINT_ADDR(cp);
|
|
printf ("illegal scsi phase (4/5).\n");
|
|
}
|
|
if (x_status & XE_SODL_UNRUN) {
|
|
PRINT_ADDR(cp);
|
|
printf ("ODD transfer in DATA OUT phase.\n");
|
|
}
|
|
if (x_status & XE_SWIDE_OVRUN) {
|
|
PRINT_ADDR(cp);
|
|
printf ("ODD transfer in DATA IN phase.\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Choose the more appropriate CAM status if
|
|
* the IO encountered an extended error.
|
|
*/
|
|
static int sym_xerr_cam_status(int cam_status, int x_status)
|
|
{
|
|
if (x_status) {
|
|
if (x_status & XE_PARITY_ERR)
|
|
cam_status = CAM_UNCOR_PARITY;
|
|
else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
|
|
cam_status = CAM_DATA_RUN_ERR;
|
|
else if (x_status & XE_BAD_PHASE)
|
|
cam_status = CAM_REQ_CMP_ERR;
|
|
else
|
|
cam_status = CAM_REQ_CMP_ERR;
|
|
}
|
|
return cam_status;
|
|
}
|
|
|
|
/*
|
|
* Complete execution of a SCSI command with extented
|
|
* error, SCSI status error, or having been auto-sensed.
|
|
*
|
|
* The SCRIPTS processor is not running there, so we
|
|
* can safely access IO registers and remove JOBs from
|
|
* the START queue.
|
|
* SCRATCHA is assumed to have been loaded with STARTPOS
|
|
* before the SCRIPTS called the C code.
|
|
*/
|
|
static void sym_complete_error (hcb_p np, ccb_p cp)
|
|
{
|
|
struct ccb_scsiio *csio;
|
|
u_int cam_status;
|
|
int i;
|
|
|
|
/*
|
|
* Paranoid check. :)
|
|
*/
|
|
if (!cp || !cp->cam_ccb)
|
|
return;
|
|
|
|
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
|
|
printf ("CCB=%lx STAT=%x/%x/%x DEV=%d/%d\n", (unsigned long)cp,
|
|
cp->host_status, cp->ssss_status, cp->host_flags,
|
|
cp->target, cp->lun);
|
|
MDELAY(100);
|
|
}
|
|
|
|
/*
|
|
* Get command, target and lun pointers.
|
|
*/
|
|
csio = &cp->cam_ccb->csio;
|
|
|
|
/*
|
|
* Check for extended errors.
|
|
*/
|
|
if (cp->xerr_status) {
|
|
if (sym_verbose)
|
|
sym_print_xerr(cp, cp->xerr_status);
|
|
if (cp->host_status == HS_COMPLETE)
|
|
cp->host_status = HS_COMP_ERR;
|
|
}
|
|
|
|
/*
|
|
* Calculate the residual.
|
|
*/
|
|
csio->sense_resid = 0;
|
|
csio->resid = sym_compute_residual(np, cp);
|
|
|
|
if (!SYM_CONF_RESIDUAL_SUPPORT) {/* If user does not want residuals */
|
|
csio->resid = 0; /* throw them away. :) */
|
|
cp->sv_resid = 0;
|
|
}
|
|
|
|
if (cp->host_flags & HF_SENSE) { /* Auto sense */
|
|
csio->scsi_status = cp->sv_scsi_status; /* Restore status */
|
|
csio->sense_resid = csio->resid; /* Swap residuals */
|
|
csio->resid = cp->sv_resid;
|
|
cp->sv_resid = 0;
|
|
if (sym_verbose && cp->sv_xerr_status)
|
|
sym_print_xerr(cp, cp->sv_xerr_status);
|
|
if (cp->host_status == HS_COMPLETE &&
|
|
cp->ssss_status == S_GOOD &&
|
|
cp->xerr_status == 0) {
|
|
cam_status = sym_xerr_cam_status(CAM_SCSI_STATUS_ERROR,
|
|
cp->sv_xerr_status);
|
|
cam_status |= CAM_AUTOSNS_VALID;
|
|
/*
|
|
* Bounce back the sense data to user and
|
|
* fix the residual.
|
|
*/
|
|
bzero(&csio->sense_data, csio->sense_len);
|
|
bcopy(cp->sns_bbuf, &csio->sense_data,
|
|
MIN(csio->sense_len, SYM_SNS_BBUF_LEN));
|
|
csio->sense_resid += csio->sense_len;
|
|
csio->sense_resid -= SYM_SNS_BBUF_LEN;
|
|
#if 0
|
|
/*
|
|
* If the device reports a UNIT ATTENTION condition
|
|
* due to a RESET condition, we should consider all
|
|
* disconnect CCBs for this unit as aborted.
|
|
*/
|
|
if (1) {
|
|
u_char *p;
|
|
p = (u_char *) csio->sense_data;
|
|
if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
|
|
sym_clear_tasks(np, CAM_REQ_ABORTED,
|
|
cp->target,cp->lun, -1);
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
cam_status = CAM_AUTOSENSE_FAIL;
|
|
}
|
|
else if (cp->host_status == HS_COMPLETE) { /* Bad SCSI status */
|
|
csio->scsi_status = cp->ssss_status;
|
|
cam_status = CAM_SCSI_STATUS_ERROR;
|
|
}
|
|
else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
|
|
cam_status = CAM_SEL_TIMEOUT;
|
|
else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
|
|
cam_status = CAM_UNEXP_BUSFREE;
|
|
else { /* Extended error */
|
|
if (sym_verbose) {
|
|
PRINT_ADDR(cp);
|
|
printf ("COMMAND FAILED (%x %x %x).\n",
|
|
cp->host_status, cp->ssss_status,
|
|
cp->xerr_status);
|
|
}
|
|
csio->scsi_status = cp->ssss_status;
|
|
/*
|
|
* Set the most appropriate value for CAM status.
|
|
*/
|
|
cam_status = sym_xerr_cam_status(CAM_REQ_CMP_ERR,
|
|
cp->xerr_status);
|
|
}
|
|
|
|
/*
|
|
* Dequeue all queued CCBs for that device
|
|
* not yet started by SCRIPTS.
|
|
*/
|
|
i = (INL (nc_scratcha) - np->squeue_ba) / 4;
|
|
(void) sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
|
|
|
|
/*
|
|
* Restart the SCRIPTS processor.
|
|
*/
|
|
OUTL (nc_dsp, SCRIPTA_BA (np, start));
|
|
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
/*
|
|
* Synchronize DMA map if needed.
|
|
*/
|
|
if (cp->dmamapped) {
|
|
bus_dmamap_sync(np->data_dmat, cp->dmamap,
|
|
(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
|
|
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
|
|
}
|
|
#endif
|
|
/*
|
|
* Add this one to the COMP queue.
|
|
* Complete all those commands with either error
|
|
* or requeue condition.
|
|
*/
|
|
sym_set_cam_status((union ccb *) csio, cam_status);
|
|
sym_remque(&cp->link_ccbq);
|
|
sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
|
|
sym_flush_comp_queue(np, 0);
|
|
}
|
|
|
|
/*
|
|
* Complete execution of a successful SCSI command.
|
|
*
|
|
* Only successful commands go to the DONE queue,
|
|
* since we need to have the SCRIPTS processor
|
|
* stopped on any error condition.
|
|
* The SCRIPTS processor is running while we are
|
|
* completing successful commands.
|
|
*/
|
|
static void sym_complete_ok (hcb_p np, ccb_p cp)
|
|
{
|
|
struct ccb_scsiio *csio;
|
|
tcb_p tp;
|
|
lcb_p lp;
|
|
|
|
/*
|
|
* Paranoid check. :)
|
|
*/
|
|
if (!cp || !cp->cam_ccb)
|
|
return;
|
|
assert (cp->host_status == HS_COMPLETE);
|
|
|
|
/*
|
|
* Get command, target and lun pointers.
|
|
*/
|
|
csio = &cp->cam_ccb->csio;
|
|
tp = &np->target[cp->target];
|
|
lp = sym_lp(np, tp, cp->lun);
|
|
|
|
/*
|
|
* Assume device discovered on first success.
|
|
*/
|
|
if (!lp)
|
|
sym_set_bit(tp->lun_map, cp->lun);
|
|
|
|
/*
|
|
* If all data have been transferred, given than no
|
|
* extended error did occur, there is no residual.
|
|
*/
|
|
csio->resid = 0;
|
|
if (cp->phys.lastp != cp->phys.goalp)
|
|
csio->resid = sym_compute_residual(np, cp);
|
|
|
|
/*
|
|
* Wrong transfer residuals may be worse than just always
|
|
* returning zero. User can disable this feature from
|
|
* sym_conf.h. Residual support is enabled by default.
|
|
*/
|
|
if (!SYM_CONF_RESIDUAL_SUPPORT)
|
|
csio->resid = 0;
|
|
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
/*
|
|
* Synchronize DMA map if needed.
|
|
*/
|
|
if (cp->dmamapped) {
|
|
bus_dmamap_sync(np->data_dmat, cp->dmamap,
|
|
(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
|
|
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
|
|
}
|
|
#endif
|
|
/*
|
|
* Set status and complete the command.
|
|
*/
|
|
csio->scsi_status = cp->ssss_status;
|
|
sym_set_cam_status((union ccb *) csio, CAM_REQ_CMP);
|
|
sym_free_ccb (np, cp);
|
|
sym_xpt_done(np, (union ccb *) csio);
|
|
}
|
|
|
|
/*
|
|
* Our timeout handler.
|
|
*/
|
|
static void sym_timeout1(void *arg)
|
|
{
|
|
union ccb *ccb = (union ccb *) arg;
|
|
hcb_p np = ccb->ccb_h.sym_hcb_ptr;
|
|
|
|
/*
|
|
* Check that the CAM CCB is still queued.
|
|
*/
|
|
if (!np)
|
|
return;
|
|
|
|
switch(ccb->ccb_h.func_code) {
|
|
case XPT_SCSI_IO:
|
|
(void) sym_abort_scsiio(np, ccb, 1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void sym_timeout(void *arg)
|
|
{
|
|
int s = splcam();
|
|
sym_timeout1(arg);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Abort an SCSI IO.
|
|
*/
|
|
static int sym_abort_scsiio(hcb_p np, union ccb *ccb, int timed_out)
|
|
{
|
|
ccb_p cp;
|
|
SYM_QUEHEAD *qp;
|
|
|
|
/*
|
|
* Look up our CCB control block.
|
|
*/
|
|
cp = 0;
|
|
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
|
|
ccb_p cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
if (cp2->cam_ccb == ccb) {
|
|
cp = cp2;
|
|
break;
|
|
}
|
|
}
|
|
if (!cp || cp->host_status == HS_WAIT)
|
|
return -1;
|
|
|
|
/*
|
|
* If a previous abort didn't succeed in time,
|
|
* perform a BUS reset.
|
|
*/
|
|
if (cp->to_abort) {
|
|
sym_reset_scsi_bus(np, 1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mark the CCB for abort and allow time for.
|
|
*/
|
|
cp->to_abort = timed_out ? 2 : 1;
|
|
ccb->ccb_h.timeout_ch = timeout(sym_timeout, (caddr_t) ccb, 10*hz);
|
|
|
|
/*
|
|
* Tell the SCRIPTS processor to stop and synchronize with us.
|
|
*/
|
|
np->istat_sem = SEM;
|
|
OUTB (nc_istat, SIGP|SEM);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reset a SCSI device (all LUNs of a target).
|
|
*/
|
|
static void sym_reset_dev(hcb_p np, union ccb *ccb)
|
|
{
|
|
tcb_p tp;
|
|
struct ccb_hdr *ccb_h = &ccb->ccb_h;
|
|
|
|
if (ccb_h->target_id == np->myaddr ||
|
|
ccb_h->target_id >= SYM_CONF_MAX_TARGET ||
|
|
ccb_h->target_lun >= SYM_CONF_MAX_LUN) {
|
|
sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
|
|
return;
|
|
}
|
|
|
|
tp = &np->target[ccb_h->target_id];
|
|
|
|
tp->to_reset = 1;
|
|
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
|
|
|
|
np->istat_sem = SEM;
|
|
OUTB (nc_istat, SIGP|SEM);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* SIM action entry point.
|
|
*/
|
|
static void sym_action(struct cam_sim *sim, union ccb *ccb)
|
|
{
|
|
int s = splcam();
|
|
sym_action1(sim, ccb);
|
|
splx(s);
|
|
}
|
|
|
|
static void sym_action1(struct cam_sim *sim, union ccb *ccb)
|
|
{
|
|
hcb_p np;
|
|
tcb_p tp;
|
|
lcb_p lp;
|
|
ccb_p cp;
|
|
int tmp;
|
|
u_char idmsg, *msgptr;
|
|
u_int msglen;
|
|
struct ccb_scsiio *csio;
|
|
struct ccb_hdr *ccb_h;
|
|
|
|
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("sym_action\n"));
|
|
|
|
/*
|
|
* Retrieve our controller data structure.
|
|
*/
|
|
np = (hcb_p) cam_sim_softc(sim);
|
|
|
|
/*
|
|
* The common case is SCSI IO.
|
|
* We deal with other ones elsewhere.
|
|
*/
|
|
if (ccb->ccb_h.func_code != XPT_SCSI_IO) {
|
|
sym_action2(sim, ccb);
|
|
return;
|
|
}
|
|
csio = &ccb->csio;
|
|
ccb_h = &csio->ccb_h;
|
|
|
|
/*
|
|
* Work around races.
|
|
*/
|
|
if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
|
|
xpt_done(ccb);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Minimal checkings, so that we will not
|
|
* go outside our tables.
|
|
*/
|
|
if (ccb_h->target_id == np->myaddr ||
|
|
ccb_h->target_id >= SYM_CONF_MAX_TARGET ||
|
|
ccb_h->target_lun >= SYM_CONF_MAX_LUN) {
|
|
sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Retreive the target and lun descriptors.
|
|
*/
|
|
tp = &np->target[ccb_h->target_id];
|
|
lp = sym_lp(np, tp, ccb_h->target_lun);
|
|
|
|
/*
|
|
* Complete the 1st INQUIRY command with error
|
|
* condition if the device is flagged NOSCAN
|
|
* at BOOT in the NVRAM. This may speed up
|
|
* the boot and maintain coherency with BIOS
|
|
* device numbering. Clearing the flag allows
|
|
* user to rescan skipped devices later.
|
|
* We also return error for devices not flagged
|
|
* for SCAN LUNS in the NVRAM since some mono-lun
|
|
* devices behave badly when asked for some non
|
|
* zero LUN. Btw, this is an absolute hack.:-)
|
|
*/
|
|
if (!(ccb_h->flags & CAM_CDB_PHYS) &&
|
|
(0x12 == ((ccb_h->flags & CAM_CDB_POINTER) ?
|
|
csio->cdb_io.cdb_ptr[0] : csio->cdb_io.cdb_bytes[0]))) {
|
|
if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
|
|
((tp->usrflags & SYM_SCAN_LUNS_DISABLED) &&
|
|
ccb_h->target_lun != 0)) {
|
|
tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
|
|
sym_xpt_done2(np, ccb, CAM_DEV_NOT_THERE);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get a control block for this IO.
|
|
*/
|
|
tmp = ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0);
|
|
cp = sym_get_ccb(np, ccb_h->target_id, ccb_h->target_lun, tmp);
|
|
if (!cp) {
|
|
sym_xpt_done2(np, ccb, CAM_RESRC_UNAVAIL);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Keep track of the IO in our CCB.
|
|
*/
|
|
cp->cam_ccb = ccb;
|
|
|
|
/*
|
|
* Build the IDENTIFY message.
|
|
*/
|
|
idmsg = M_IDENTIFY | cp->lun;
|
|
if (cp->tag != NO_TAG || (lp && (lp->current_flags & SYM_DISC_ENABLED)))
|
|
idmsg |= 0x40;
|
|
|
|
msgptr = cp->scsi_smsg;
|
|
msglen = 0;
|
|
msgptr[msglen++] = idmsg;
|
|
|
|
/*
|
|
* Build the tag message if present.
|
|
*/
|
|
if (cp->tag != NO_TAG) {
|
|
u_char order = csio->tag_action;
|
|
|
|
switch(order) {
|
|
case M_ORDERED_TAG:
|
|
break;
|
|
case M_HEAD_TAG:
|
|
break;
|
|
default:
|
|
order = M_SIMPLE_TAG;
|
|
}
|
|
msgptr[msglen++] = order;
|
|
|
|
/*
|
|
* For less than 128 tags, actual tags are numbered
|
|
* 1,3,5,..2*MAXTAGS+1,since we may have to deal
|
|
* with devices that have problems with #TAG 0 or too
|
|
* great #TAG numbers. For more tags (up to 256),
|
|
* we use directly our tag number.
|
|
*/
|
|
#if SYM_CONF_MAX_TASK > (512/4)
|
|
msgptr[msglen++] = cp->tag;
|
|
#else
|
|
msgptr[msglen++] = (cp->tag << 1) + 1;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Build a negotiation message if needed.
|
|
* (nego_status is filled by sym_prepare_nego())
|
|
*/
|
|
cp->nego_status = 0;
|
|
if (tp->tinfo.current.width != tp->tinfo.goal.width ||
|
|
tp->tinfo.current.period != tp->tinfo.goal.period ||
|
|
tp->tinfo.current.offset != tp->tinfo.goal.offset ||
|
|
#if 0 /* For now only renegotiate, based on width, period and offset */
|
|
tp->tinfo.current.options != tp->tinfo.goal.options) {
|
|
#else
|
|
0) {
|
|
#endif
|
|
if (!tp->nego_cp && lp)
|
|
msglen += sym_prepare_nego(np, cp, 0, msgptr + msglen);
|
|
}
|
|
|
|
/*
|
|
* Fill in our ccb
|
|
*/
|
|
|
|
/*
|
|
* Startqueue
|
|
*/
|
|
cp->phys.go.start = cpu_to_scr(SCRIPTA_BA (np, select));
|
|
cp->phys.go.restart = cpu_to_scr(SCRIPTA_BA (np, resel_dsa));
|
|
|
|
/*
|
|
* select
|
|
*/
|
|
cp->phys.select.sel_id = cp->target;
|
|
cp->phys.select.sel_scntl3 = tp->wval;
|
|
cp->phys.select.sel_sxfer = tp->sval;
|
|
cp->phys.select.sel_scntl4 = tp->uval;
|
|
|
|
/*
|
|
* message
|
|
*/
|
|
cp->phys.smsg.addr = cpu_to_scr(CCB_BA (cp, scsi_smsg));
|
|
cp->phys.smsg.size = cpu_to_scr(msglen);
|
|
|
|
/*
|
|
* command
|
|
*/
|
|
if (sym_setup_cdb(np, csio, cp) < 0) {
|
|
sym_free_ccb(np, cp);
|
|
sym_xpt_done(np, ccb);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* status
|
|
*/
|
|
#if 0 /* Provision */
|
|
cp->actualquirks = tp->quirks;
|
|
#endif
|
|
cp->actualquirks = SYM_QUIRK_AUTOSAVE;
|
|
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
|
|
cp->ssss_status = S_ILLEGAL;
|
|
cp->xerr_status = 0;
|
|
cp->host_flags = 0;
|
|
cp->extra_bytes = 0;
|
|
|
|
/*
|
|
* extreme data pointer.
|
|
* shall be positive, so -1 is lower than lowest.:)
|
|
*/
|
|
cp->ext_sg = -1;
|
|
cp->ext_ofs = 0;
|
|
|
|
/*
|
|
* Build the data descriptor block
|
|
* and start the IO.
|
|
*/
|
|
sym_setup_data_and_start(np, csio, cp);
|
|
}
|
|
|
|
/*
|
|
* Setup buffers and pointers that address the CDB.
|
|
* I bet, physical CDBs will never be used on the planet,
|
|
* since they can be bounced without significant overhead.
|
|
*/
|
|
static int sym_setup_cdb(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
|
|
{
|
|
struct ccb_hdr *ccb_h;
|
|
u32 cmd_ba;
|
|
int cmd_len;
|
|
|
|
ccb_h = &csio->ccb_h;
|
|
|
|
/*
|
|
* CDB is 16 bytes max.
|
|
*/
|
|
if (csio->cdb_len > sizeof(cp->cdb_buf)) {
|
|
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
|
|
return -1;
|
|
}
|
|
cmd_len = csio->cdb_len;
|
|
|
|
if (ccb_h->flags & CAM_CDB_POINTER) {
|
|
/* CDB is a pointer */
|
|
if (!(ccb_h->flags & CAM_CDB_PHYS)) {
|
|
/* CDB pointer is virtual */
|
|
bcopy(csio->cdb_io.cdb_ptr, cp->cdb_buf, cmd_len);
|
|
cmd_ba = CCB_BA (cp, cdb_buf[0]);
|
|
} else {
|
|
/* CDB pointer is physical */
|
|
#if 0
|
|
cmd_ba = ((u32)csio->cdb_io.cdb_ptr) & 0xffffffff;
|
|
#else
|
|
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
|
|
return -1;
|
|
#endif
|
|
}
|
|
} else {
|
|
/* CDB is in the CAM ccb (buffer) */
|
|
bcopy(csio->cdb_io.cdb_bytes, cp->cdb_buf, cmd_len);
|
|
cmd_ba = CCB_BA (cp, cdb_buf[0]);
|
|
}
|
|
|
|
cp->phys.cmd.addr = cpu_to_scr(cmd_ba);
|
|
cp->phys.cmd.size = cpu_to_scr(cmd_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up data pointers used by SCRIPTS.
|
|
*/
|
|
static void __inline__
|
|
sym_setup_data_pointers(hcb_p np, ccb_p cp, int dir)
|
|
{
|
|
u32 lastp, goalp;
|
|
|
|
/*
|
|
* No segments means no data.
|
|
*/
|
|
if (!cp->segments)
|
|
dir = CAM_DIR_NONE;
|
|
|
|
/*
|
|
* Set the data pointer.
|
|
*/
|
|
switch(dir) {
|
|
case CAM_DIR_OUT:
|
|
goalp = SCRIPTA_BA (np, data_out2) + 8;
|
|
lastp = goalp - 8 - (cp->segments * (2*4));
|
|
break;
|
|
case CAM_DIR_IN:
|
|
cp->host_flags |= HF_DATA_IN;
|
|
goalp = SCRIPTA_BA (np, data_in2) + 8;
|
|
lastp = goalp - 8 - (cp->segments * (2*4));
|
|
break;
|
|
case CAM_DIR_NONE:
|
|
default:
|
|
lastp = goalp = SCRIPTB_BA (np, no_data);
|
|
break;
|
|
}
|
|
|
|
cp->phys.lastp = cpu_to_scr(lastp);
|
|
cp->phys.goalp = cpu_to_scr(goalp);
|
|
cp->phys.savep = cpu_to_scr(lastp);
|
|
cp->startp = cp->phys.savep;
|
|
}
|
|
|
|
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
/*
|
|
* Call back routine for the DMA map service.
|
|
* If bounce buffers are used (why ?), we may sleep and then
|
|
* be called there in another context.
|
|
*/
|
|
static void
|
|
sym_execute_ccb(void *arg, bus_dma_segment_t *psegs, int nsegs, int error)
|
|
{
|
|
ccb_p cp;
|
|
hcb_p np;
|
|
union ccb *ccb;
|
|
int s;
|
|
|
|
s = splcam();
|
|
|
|
cp = (ccb_p) arg;
|
|
ccb = cp->cam_ccb;
|
|
np = (hcb_p) cp->arg;
|
|
|
|
/*
|
|
* Deal with weird races.
|
|
*/
|
|
if (sym_get_cam_status(ccb) != CAM_REQ_INPROG)
|
|
goto out_abort;
|
|
|
|
/*
|
|
* Deal with weird errors.
|
|
*/
|
|
if (error) {
|
|
cp->dmamapped = 0;
|
|
sym_set_cam_status(cp->cam_ccb, CAM_REQ_ABORTED);
|
|
goto out_abort;
|
|
}
|
|
|
|
/*
|
|
* Build the data descriptor for the chip.
|
|
*/
|
|
if (nsegs) {
|
|
int retv;
|
|
/* 896 rev 1 requires to be careful about boundaries */
|
|
if (np->device_id == PCI_ID_SYM53C896 && np->revision_id <= 1)
|
|
retv = sym_scatter_sg_physical(np, cp, psegs, nsegs);
|
|
else
|
|
retv = sym_fast_scatter_sg_physical(np,cp, psegs,nsegs);
|
|
if (retv < 0) {
|
|
sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
|
|
goto out_abort;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Synchronize the DMA map only if we have
|
|
* actually mapped the data.
|
|
*/
|
|
if (cp->dmamapped) {
|
|
bus_dmamap_sync(np->data_dmat, cp->dmamap,
|
|
(bus_dmasync_op_t)(cp->dmamapped == SYM_DMA_READ ?
|
|
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
|
|
}
|
|
|
|
/*
|
|
* Set host status to busy state.
|
|
* May have been set back to HS_WAIT to avoid a race.
|
|
*/
|
|
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
|
|
|
|
/*
|
|
* Set data pointers.
|
|
*/
|
|
sym_setup_data_pointers(np, cp, (ccb->ccb_h.flags & CAM_DIR_MASK));
|
|
|
|
/*
|
|
* Enqueue this IO in our pending queue.
|
|
*/
|
|
sym_enqueue_cam_ccb(np, ccb);
|
|
|
|
#if 0
|
|
switch (cp->cdb_buf[0]) {
|
|
case 0x0A: case 0x2A: case 0xAA:
|
|
panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
|
|
MDELAY(10000);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
/*
|
|
* Activate this job.
|
|
*/
|
|
sym_put_start_queue(np, cp);
|
|
out:
|
|
splx(s);
|
|
return;
|
|
out_abort:
|
|
sym_free_ccb(np, cp);
|
|
sym_xpt_done(np, ccb);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* How complex it gets to deal with the data in CAM.
|
|
* The Bus Dma stuff makes things still more complex.
|
|
*/
|
|
static void
|
|
sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
|
|
{
|
|
struct ccb_hdr *ccb_h;
|
|
int dir, retv;
|
|
|
|
ccb_h = &csio->ccb_h;
|
|
|
|
/*
|
|
* Now deal with the data.
|
|
*/
|
|
cp->data_len = csio->dxfer_len;
|
|
cp->arg = np;
|
|
|
|
/*
|
|
* No direction means no data.
|
|
*/
|
|
dir = (ccb_h->flags & CAM_DIR_MASK);
|
|
if (dir == CAM_DIR_NONE) {
|
|
sym_execute_ccb(cp, NULL, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
|
|
/* Single buffer */
|
|
if (!(ccb_h->flags & CAM_DATA_PHYS)) {
|
|
/* Buffer is virtual */
|
|
int s;
|
|
|
|
cp->dmamapped = (dir == CAM_DIR_IN) ?
|
|
SYM_DMA_READ : SYM_DMA_WRITE;
|
|
s = splsoftvm();
|
|
retv = bus_dmamap_load(np->data_dmat, cp->dmamap,
|
|
csio->data_ptr, csio->dxfer_len,
|
|
sym_execute_ccb, cp, 0);
|
|
if (retv == EINPROGRESS) {
|
|
cp->host_status = HS_WAIT;
|
|
xpt_freeze_simq(np->sim, 1);
|
|
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
|
|
}
|
|
splx(s);
|
|
} else {
|
|
/* Buffer is physical */
|
|
struct bus_dma_segment seg;
|
|
|
|
seg.ds_addr = (bus_addr_t) csio->data_ptr;
|
|
sym_execute_ccb(cp, &seg, 1, 0);
|
|
}
|
|
} else {
|
|
/* Scatter/gather list */
|
|
struct bus_dma_segment *segs;
|
|
|
|
if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
|
|
/* The SG list pointer is physical */
|
|
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
|
|
goto out_abort;
|
|
}
|
|
|
|
if (!(ccb_h->flags & CAM_DATA_PHYS)) {
|
|
/* SG buffer pointers are virtual */
|
|
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
|
|
goto out_abort;
|
|
}
|
|
|
|
/* SG buffer pointers are physical */
|
|
segs = (struct bus_dma_segment *)csio->data_ptr;
|
|
sym_execute_ccb(cp, segs, csio->sglist_cnt, 0);
|
|
}
|
|
return;
|
|
out_abort:
|
|
sym_free_ccb(np, cp);
|
|
sym_xpt_done(np, (union ccb *) csio);
|
|
}
|
|
|
|
/*
|
|
* Move the scatter list to our data block.
|
|
*/
|
|
static int
|
|
sym_fast_scatter_sg_physical(hcb_p np, ccb_p cp,
|
|
bus_dma_segment_t *psegs, int nsegs)
|
|
{
|
|
struct sym_tblmove *data;
|
|
bus_dma_segment_t *psegs2;
|
|
|
|
if (nsegs > SYM_CONF_MAX_SG)
|
|
return -1;
|
|
|
|
data = &cp->phys.data[SYM_CONF_MAX_SG-1];
|
|
psegs2 = &psegs[nsegs-1];
|
|
cp->segments = nsegs;
|
|
|
|
while (1) {
|
|
data->addr = cpu_to_scr(psegs2->ds_addr);
|
|
data->size = cpu_to_scr(psegs2->ds_len);
|
|
if (DEBUG_FLAGS & DEBUG_SCATTER) {
|
|
printf ("%s scatter: paddr=%lx len=%ld\n",
|
|
sym_name(np), (long) psegs2->ds_addr,
|
|
(long) psegs2->ds_len);
|
|
}
|
|
if (psegs2 != psegs) {
|
|
--data;
|
|
--psegs2;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#else /* FreeBSD_Bus_Dma_Abstraction */
|
|
|
|
/*
|
|
* How complex it gets to deal with the data in CAM.
|
|
* Variant without the Bus Dma Abstraction option.
|
|
*/
|
|
static void
|
|
sym_setup_data_and_start(hcb_p np, struct ccb_scsiio *csio, ccb_p cp)
|
|
{
|
|
struct ccb_hdr *ccb_h;
|
|
int dir, retv;
|
|
|
|
ccb_h = &csio->ccb_h;
|
|
|
|
/*
|
|
* Now deal with the data.
|
|
*/
|
|
cp->data_len = 0;
|
|
cp->segments = 0;
|
|
|
|
/*
|
|
* No direction means no data.
|
|
*/
|
|
dir = (ccb_h->flags & CAM_DIR_MASK);
|
|
if (dir == CAM_DIR_NONE)
|
|
goto end_scatter;
|
|
|
|
if (!(ccb_h->flags & CAM_SCATTER_VALID)) {
|
|
/* Single buffer */
|
|
if (!(ccb_h->flags & CAM_DATA_PHYS)) {
|
|
/* Buffer is virtual */
|
|
retv = sym_scatter_virtual(np, cp,
|
|
(vm_offset_t) csio->data_ptr,
|
|
(vm_size_t) csio->dxfer_len);
|
|
} else {
|
|
/* Buffer is physical */
|
|
retv = sym_scatter_physical(np, cp,
|
|
(vm_offset_t) csio->data_ptr,
|
|
(vm_size_t) csio->dxfer_len);
|
|
}
|
|
} else {
|
|
/* Scatter/gather list */
|
|
int nsegs;
|
|
struct bus_dma_segment *segs;
|
|
segs = (struct bus_dma_segment *)csio->data_ptr;
|
|
nsegs = csio->sglist_cnt;
|
|
|
|
if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
|
|
/* The SG list pointer is physical */
|
|
sym_set_cam_status(cp->cam_ccb, CAM_REQ_INVALID);
|
|
goto out_abort;
|
|
}
|
|
if (!(ccb_h->flags & CAM_DATA_PHYS)) {
|
|
/* SG buffer pointers are virtual */
|
|
retv = sym_scatter_sg_virtual(np, cp, segs, nsegs);
|
|
} else {
|
|
/* SG buffer pointers are physical */
|
|
retv = sym_scatter_sg_physical(np, cp, segs, nsegs);
|
|
}
|
|
}
|
|
if (retv < 0) {
|
|
sym_set_cam_status(cp->cam_ccb, CAM_REQ_TOO_BIG);
|
|
goto out_abort;
|
|
}
|
|
|
|
end_scatter:
|
|
/*
|
|
* Set data pointers.
|
|
*/
|
|
sym_setup_data_pointers(np, cp, dir);
|
|
|
|
/*
|
|
* Enqueue this IO in our pending queue.
|
|
*/
|
|
sym_enqueue_cam_ccb(np, (union ccb *) csio);
|
|
|
|
/*
|
|
* Activate this job.
|
|
*/
|
|
sym_put_start_queue(np, cp);
|
|
|
|
/*
|
|
* Command is successfully queued.
|
|
*/
|
|
return;
|
|
out_abort:
|
|
sym_free_ccb(np, cp);
|
|
sym_xpt_done(np, (union ccb *) csio);
|
|
}
|
|
|
|
/*
|
|
* Scatter a virtual buffer into bus addressable chunks.
|
|
*/
|
|
static int
|
|
sym_scatter_virtual(hcb_p np, ccb_p cp, vm_offset_t vaddr, vm_size_t len)
|
|
{
|
|
u_long pe, pn;
|
|
u_long n, k;
|
|
int s;
|
|
|
|
cp->data_len += len;
|
|
|
|
pe = vaddr + len;
|
|
n = len;
|
|
s = SYM_CONF_MAX_SG - 1 - cp->segments;
|
|
|
|
while (n && s >= 0) {
|
|
pn = (pe - 1) & ~PAGE_MASK;
|
|
k = pe - pn;
|
|
if (k > n) {
|
|
k = n;
|
|
pn = pe - n;
|
|
}
|
|
if (DEBUG_FLAGS & DEBUG_SCATTER) {
|
|
printf ("%s scatter: va=%lx pa=%lx siz=%ld\n",
|
|
sym_name(np), pn, (u_long) vtobus(pn), k);
|
|
}
|
|
cp->phys.data[s].addr = cpu_to_scr(vtobus(pn));
|
|
cp->phys.data[s].size = cpu_to_scr(k);
|
|
pe = pn;
|
|
n -= k;
|
|
--s;
|
|
}
|
|
cp->segments = SYM_CONF_MAX_SG - 1 - s;
|
|
|
|
return n ? -1 : 0;
|
|
}
|
|
|
|
/*
|
|
* Scatter a SG list with virtual addresses into bus addressable chunks.
|
|
*/
|
|
static int
|
|
sym_scatter_sg_virtual(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
|
|
{
|
|
int i, retv = 0;
|
|
|
|
for (i = nsegs - 1 ; i >= 0 ; --i) {
|
|
retv = sym_scatter_virtual(np, cp,
|
|
psegs[i].ds_addr, psegs[i].ds_len);
|
|
if (retv < 0)
|
|
break;
|
|
}
|
|
return retv;
|
|
}
|
|
|
|
/*
|
|
* Scatter a physical buffer into bus addressable chunks.
|
|
*/
|
|
static int
|
|
sym_scatter_physical(hcb_p np, ccb_p cp, vm_offset_t paddr, vm_size_t len)
|
|
{
|
|
struct bus_dma_segment seg;
|
|
|
|
seg.ds_addr = paddr;
|
|
seg.ds_len = len;
|
|
return sym_scatter_sg_physical(np, cp, &seg, 1);
|
|
}
|
|
|
|
#endif /* FreeBSD_Bus_Dma_Abstraction */
|
|
|
|
/*
|
|
* Scatter a SG list with physical addresses into bus addressable chunks.
|
|
* We need to ensure 16MB boundaries not to be crossed during DMA of
|
|
* each segment, due to some chips being flawed.
|
|
*/
|
|
#define BOUND_MASK ((1UL<<24)-1)
|
|
static int
|
|
sym_scatter_sg_physical(hcb_p np, ccb_p cp, bus_dma_segment_t *psegs, int nsegs)
|
|
{
|
|
u_long ps, pe, pn;
|
|
u_long k;
|
|
int s, t;
|
|
|
|
#ifndef FreeBSD_Bus_Dma_Abstraction
|
|
s = SYM_CONF_MAX_SG - 1 - cp->segments;
|
|
#else
|
|
s = SYM_CONF_MAX_SG - 1;
|
|
#endif
|
|
t = nsegs - 1;
|
|
ps = psegs[t].ds_addr;
|
|
pe = ps + psegs[t].ds_len;
|
|
|
|
while (s >= 0) {
|
|
pn = (pe - 1) & ~BOUND_MASK;
|
|
if (pn <= ps)
|
|
pn = ps;
|
|
k = pe - pn;
|
|
if (DEBUG_FLAGS & DEBUG_SCATTER) {
|
|
printf ("%s scatter: paddr=%lx len=%ld\n",
|
|
sym_name(np), pn, k);
|
|
}
|
|
cp->phys.data[s].addr = cpu_to_scr(pn);
|
|
cp->phys.data[s].size = cpu_to_scr(k);
|
|
#ifndef FreeBSD_Bus_Dma_Abstraction
|
|
cp->data_len += k;
|
|
#endif
|
|
--s;
|
|
if (pn == ps) {
|
|
if (--t < 0)
|
|
break;
|
|
ps = psegs[t].ds_addr;
|
|
pe = ps + psegs[t].ds_len;
|
|
}
|
|
else
|
|
pe = pn;
|
|
}
|
|
|
|
cp->segments = SYM_CONF_MAX_SG - 1 - s;
|
|
|
|
return t >= 0 ? -1 : 0;
|
|
}
|
|
#undef BOUND_MASK
|
|
|
|
/*
|
|
* SIM action for non performance critical stuff.
|
|
*/
|
|
static void sym_action2(struct cam_sim *sim, union ccb *ccb)
|
|
{
|
|
hcb_p np;
|
|
tcb_p tp;
|
|
lcb_p lp;
|
|
struct ccb_hdr *ccb_h;
|
|
|
|
/*
|
|
* Retrieve our controller data structure.
|
|
*/
|
|
np = (hcb_p) cam_sim_softc(sim);
|
|
|
|
ccb_h = &ccb->ccb_h;
|
|
|
|
switch (ccb_h->func_code) {
|
|
case XPT_SET_TRAN_SETTINGS:
|
|
{
|
|
struct ccb_trans_settings *cts;
|
|
|
|
cts = &ccb->cts;
|
|
tp = &np->target[ccb_h->target_id];
|
|
|
|
/*
|
|
* Update our transfer settings (basically WIDE/SYNC).
|
|
* These features are to be handled in a per target
|
|
* basis according to SCSI specifications.
|
|
*/
|
|
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0)
|
|
sym_update_trans(np, tp, &tp->tinfo.user, cts);
|
|
|
|
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
|
|
sym_update_trans(np, tp, &tp->tinfo.goal, cts);
|
|
|
|
/*
|
|
* Update our disconnect and tag settings.
|
|
* SCSI requires CmdQue feature to be handled in a per
|
|
* device (logical unit) basis.
|
|
*/
|
|
lp = sym_lp(np, tp, ccb_h->target_lun);
|
|
if (lp) {
|
|
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0)
|
|
sym_update_dflags(np, &lp->user_flags, cts);
|
|
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
|
|
sym_update_dflags(np, &lp->current_flags, cts);
|
|
}
|
|
|
|
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
|
|
break;
|
|
}
|
|
case XPT_GET_TRAN_SETTINGS:
|
|
{
|
|
struct ccb_trans_settings *cts;
|
|
struct sym_trans *tip;
|
|
u_char dflags;
|
|
|
|
cts = &ccb->cts;
|
|
tp = &np->target[ccb_h->target_id];
|
|
lp = sym_lp(np, tp, ccb_h->target_lun);
|
|
|
|
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
|
|
tip = &tp->tinfo.current;
|
|
dflags = lp ? lp->current_flags : 0;
|
|
}
|
|
else {
|
|
tip = &tp->tinfo.user;
|
|
dflags = lp ? lp->user_flags : tp->usrflags;
|
|
}
|
|
|
|
cts->sync_period = tip->period;
|
|
cts->sync_offset = tip->offset;
|
|
cts->bus_width = tip->width;
|
|
|
|
cts->valid = CCB_TRANS_SYNC_RATE_VALID
|
|
| CCB_TRANS_SYNC_OFFSET_VALID
|
|
| CCB_TRANS_BUS_WIDTH_VALID;
|
|
|
|
if (lp) {
|
|
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
|
|
|
|
if (dflags & SYM_DISC_ENABLED)
|
|
cts->flags |= CCB_TRANS_DISC_ENB;
|
|
|
|
if (dflags & SYM_TAGS_ENABLED)
|
|
cts->flags |= CCB_TRANS_TAG_ENB;
|
|
|
|
cts->valid |= CCB_TRANS_DISC_VALID;
|
|
cts->valid |= CCB_TRANS_TQ_VALID;
|
|
}
|
|
|
|
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
|
|
break;
|
|
}
|
|
case XPT_CALC_GEOMETRY:
|
|
{
|
|
struct ccb_calc_geometry *ccg;
|
|
u32 size_mb;
|
|
u32 secs_per_cylinder;
|
|
int extended;
|
|
|
|
/*
|
|
* Silly DOS geometry.
|
|
*/
|
|
ccg = &ccb->ccg;
|
|
size_mb = ccg->volume_size
|
|
/ ((1024L * 1024L) / ccg->block_size);
|
|
extended = 1;
|
|
|
|
if (size_mb > 1024 && extended) {
|
|
ccg->heads = 255;
|
|
ccg->secs_per_track = 63;
|
|
} else {
|
|
ccg->heads = 64;
|
|
ccg->secs_per_track = 32;
|
|
}
|
|
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
|
|
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
|
|
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
|
|
break;
|
|
}
|
|
case XPT_PATH_INQ:
|
|
{
|
|
struct ccb_pathinq *cpi = &ccb->cpi;
|
|
cpi->version_num = 1;
|
|
cpi->hba_inquiry = PI_MDP_ABLE|PI_SDTR_ABLE|PI_TAG_ABLE;
|
|
if ((np->features & FE_WIDE) != 0)
|
|
cpi->hba_inquiry |= PI_WIDE_16;
|
|
cpi->target_sprt = 0;
|
|
cpi->hba_misc = 0;
|
|
if (np->usrflags & SYM_SCAN_TARGETS_HILO)
|
|
cpi->hba_misc |= PIM_SCANHILO;
|
|
if (np->usrflags & SYM_AVOID_BUS_RESET)
|
|
cpi->hba_misc |= PIM_NOBUSRESET;
|
|
cpi->hba_eng_cnt = 0;
|
|
cpi->max_target = (np->features & FE_WIDE) ? 15 : 7;
|
|
/* Semantic problem:)LUN number max = max number of LUNs - 1 */
|
|
cpi->max_lun = SYM_CONF_MAX_LUN-1;
|
|
if (SYM_SETUP_MAX_LUN < SYM_CONF_MAX_LUN)
|
|
cpi->max_lun = SYM_SETUP_MAX_LUN-1;
|
|
cpi->bus_id = cam_sim_bus(sim);
|
|
cpi->initiator_id = np->myaddr;
|
|
cpi->base_transfer_speed = 3300;
|
|
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
|
|
strncpy(cpi->hba_vid, "Symbios", HBA_IDLEN);
|
|
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
|
|
cpi->unit_number = cam_sim_unit(sim);
|
|
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
|
|
break;
|
|
}
|
|
case XPT_ABORT:
|
|
{
|
|
union ccb *abort_ccb = ccb->cab.abort_ccb;
|
|
switch(abort_ccb->ccb_h.func_code) {
|
|
case XPT_SCSI_IO:
|
|
if (sym_abort_scsiio(np, abort_ccb, 0) == 0) {
|
|
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
|
|
break;
|
|
}
|
|
default:
|
|
sym_xpt_done2(np, ccb, CAM_UA_ABORT);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case XPT_RESET_DEV:
|
|
{
|
|
sym_reset_dev(np, ccb);
|
|
break;
|
|
}
|
|
case XPT_RESET_BUS:
|
|
{
|
|
sym_reset_scsi_bus(np, 0);
|
|
if (sym_verbose) {
|
|
xpt_print_path(np->path);
|
|
printf("SCSI BUS reset delivered.\n");
|
|
}
|
|
sym_init (np, 1);
|
|
sym_xpt_done2(np, ccb, CAM_REQ_CMP);
|
|
break;
|
|
}
|
|
case XPT_ACCEPT_TARGET_IO:
|
|
case XPT_CONT_TARGET_IO:
|
|
case XPT_EN_LUN:
|
|
case XPT_NOTIFY_ACK:
|
|
case XPT_IMMED_NOTIFY:
|
|
case XPT_TERM_IO:
|
|
default:
|
|
sym_xpt_done2(np, ccb, CAM_REQ_INVALID);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update transfer settings of a target.
|
|
*/
|
|
static void sym_update_trans(hcb_p np, tcb_p tp, struct sym_trans *tip,
|
|
struct ccb_trans_settings *cts)
|
|
{
|
|
/*
|
|
* Update the infos.
|
|
*/
|
|
if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
|
|
tip->width = cts->bus_width;
|
|
if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
|
|
tip->offset = cts->sync_offset;
|
|
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
|
|
tip->period = cts->sync_period;
|
|
|
|
/*
|
|
* Scale against out limits.
|
|
*/
|
|
if (tip->width > SYM_SETUP_MAX_WIDE) tip->width =SYM_SETUP_MAX_WIDE;
|
|
if (tip->width > np->maxwide) tip->width = np->maxwide;
|
|
if (tip->offset > SYM_SETUP_MAX_OFFS) tip->offset =SYM_SETUP_MAX_OFFS;
|
|
if (tip->offset > np->maxoffs) tip->offset = np->maxoffs;
|
|
if (tip->period) {
|
|
if (tip->period < SYM_SETUP_MIN_SYNC)
|
|
tip->period = SYM_SETUP_MIN_SYNC;
|
|
if (np->features & FE_ULTRA3) {
|
|
if (tip->period < np->minsync_dt)
|
|
tip->period = np->minsync_dt;
|
|
}
|
|
else {
|
|
if (tip->period < np->minsync)
|
|
tip->period = np->minsync;
|
|
}
|
|
if (tip->period > np->maxsync)
|
|
tip->period = np->maxsync;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update flags for a device (logical unit).
|
|
*/
|
|
static void
|
|
sym_update_dflags(hcb_p np, u_char *flags, struct ccb_trans_settings *cts)
|
|
{
|
|
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
|
|
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
|
|
*flags |= SYM_DISC_ENABLED;
|
|
else
|
|
*flags &= ~SYM_DISC_ENABLED;
|
|
}
|
|
|
|
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
|
|
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
|
|
*flags |= SYM_TAGS_ENABLED;
|
|
else
|
|
*flags &= ~SYM_TAGS_ENABLED;
|
|
}
|
|
}
|
|
|
|
|
|
/*============= DRIVER INITIALISATION ==================*/
|
|
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
|
|
static device_method_t sym_pci_methods[] = {
|
|
DEVMETHOD(device_probe, sym_pci_probe),
|
|
DEVMETHOD(device_attach, sym_pci_attach),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t sym_pci_driver = {
|
|
"sym",
|
|
sym_pci_methods,
|
|
sizeof(struct sym_hcb)
|
|
};
|
|
|
|
static devclass_t sym_devclass;
|
|
|
|
DRIVER_MODULE(sym, pci, sym_pci_driver, sym_devclass, 0, 0);
|
|
|
|
#else /* Pre-FreeBSD_Bus_Io_Abstraction */
|
|
|
|
static u_long sym_unit;
|
|
|
|
static struct pci_device sym_pci_driver = {
|
|
"sym",
|
|
sym_pci_probe,
|
|
sym_pci_attach,
|
|
&sym_unit,
|
|
NULL
|
|
};
|
|
|
|
#if __FreeBSD_version >= 400000
|
|
COMPAT_PCI_DRIVER (sym, sym_pci_driver);
|
|
#else
|
|
DATA_SET (pcidevice_set, sym_pci_driver);
|
|
#endif
|
|
|
|
#endif /* FreeBSD_Bus_Io_Abstraction */
|
|
|
|
static struct sym_pci_chip sym_pci_dev_table[] = {
|
|
{PCI_ID_SYM53C810, 0x0f, "810", 4, 8, 4, 0,
|
|
FE_ERL}
|
|
,
|
|
{PCI_ID_SYM53C810, 0xff, "810a", 4, 8, 4, 1,
|
|
FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
|
|
,
|
|
{PCI_ID_SYM53C825, 0x0f, "825", 6, 8, 4, 0,
|
|
FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
|
|
,
|
|
{PCI_ID_SYM53C825, 0xff, "825a", 6, 8, 4, 2,
|
|
FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
|
|
,
|
|
{PCI_ID_SYM53C860, 0xff, "860", 4, 8, 5, 1,
|
|
FE_ULTRA|FE_CLK80|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
|
|
,
|
|
{PCI_ID_SYM53C875, 0x01, "875", 6, 16, 5, 2,
|
|
FE_WIDE|FE_ULTRA|FE_CLK80|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_DIFF}
|
|
,
|
|
{PCI_ID_SYM53C875, 0xff, "875", 6, 16, 5, 2,
|
|
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_DIFF}
|
|
,
|
|
{PCI_ID_SYM53C875_2, 0xff, "875", 6, 16, 5, 2,
|
|
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_DIFF}
|
|
,
|
|
{PCI_ID_SYM53C885, 0xff, "885", 6, 16, 5, 2,
|
|
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_DIFF}
|
|
,
|
|
{PCI_ID_SYM53C895, 0xff, "895", 6, 31, 7, 2,
|
|
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_LCKFRQ}
|
|
,
|
|
{PCI_ID_SYM53C896, 0xff, "896", 6, 31, 7, 4,
|
|
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
|
|
,
|
|
{PCI_ID_SYM53C895A, 0xff, "895a", 6, 31, 7, 4,
|
|
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
|
|
,
|
|
{PCI_ID_LSI53C1010, 0x00, "1010", 6, 62, 7, 8,
|
|
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_PCI66|FE_CRC|
|
|
FE_C10}
|
|
,
|
|
{PCI_ID_LSI53C1010, 0xff, "1010", 6, 62, 7, 8,
|
|
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
|
|
FE_C10|FE_U3EN}
|
|
,
|
|
{PCI_ID_LSI53C1010_2, 0xff, "1010", 6, 62, 7, 8,
|
|
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_RAM8K|FE_64BIT|FE_IO256|FE_NOPM|FE_LEDC|FE_PCI66|FE_CRC|
|
|
FE_C10|FE_U3EN}
|
|
,
|
|
{PCI_ID_LSI53C1510D, 0xff, "1510d", 6, 31, 7, 4,
|
|
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_IO256|FE_LEDC}
|
|
};
|
|
|
|
#define sym_pci_num_devs \
|
|
(sizeof(sym_pci_dev_table) / sizeof(sym_pci_dev_table[0]))
|
|
|
|
/*
|
|
* Look up the chip table.
|
|
*
|
|
* Return a pointer to the chip entry if found,
|
|
* zero otherwise.
|
|
*/
|
|
static struct sym_pci_chip *
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
sym_find_pci_chip(device_t dev)
|
|
#else
|
|
sym_find_pci_chip(pcici_t pci_tag)
|
|
#endif
|
|
{
|
|
struct sym_pci_chip *chip;
|
|
int i;
|
|
u_short device_id;
|
|
u_char revision;
|
|
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
if (pci_get_vendor(dev) != PCI_VENDOR_NCR)
|
|
return 0;
|
|
|
|
device_id = pci_get_device(dev);
|
|
revision = pci_get_revid(dev);
|
|
#else
|
|
if (pci_cfgread(pci_tag, PCIR_VENDOR, 2) != PCI_VENDOR_NCR)
|
|
return 0;
|
|
|
|
device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
|
|
revision = pci_cfgread(pci_tag, PCIR_REVID, 1);
|
|
#endif
|
|
|
|
for (i = 0; i < sym_pci_num_devs; i++) {
|
|
chip = &sym_pci_dev_table[i];
|
|
if (device_id != chip->device_id)
|
|
continue;
|
|
if (revision > chip->revision_id)
|
|
continue;
|
|
if (FE_LDSTR & chip->features)
|
|
return chip;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Tell upper layer if the chip is supported.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
static int
|
|
sym_pci_probe(device_t dev)
|
|
{
|
|
struct sym_pci_chip *chip;
|
|
|
|
chip = sym_find_pci_chip(dev);
|
|
if (chip) {
|
|
device_set_desc(dev, chip->name);
|
|
return (chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP)? -2000 : 0;
|
|
}
|
|
return ENXIO;
|
|
}
|
|
#else /* Pre-FreeBSD_Bus_Io_Abstraction */
|
|
static const char *
|
|
sym_pci_probe(pcici_t pci_tag, pcidi_t type)
|
|
{
|
|
struct sym_pci_chip *chip;
|
|
|
|
chip = sym_find_pci_chip(pci_tag);
|
|
#if NNCR > 0
|
|
/* Only claim chips we are allowed to take precedence over the ncr */
|
|
if (chip && !(chip->lp_probe_bit & SYM_SETUP_LP_PROBE_MAP))
|
|
#else
|
|
if (chip)
|
|
#endif
|
|
return chip->name;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Attach a sym53c8xx device.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
static int
|
|
sym_pci_attach(device_t dev)
|
|
#else
|
|
static void
|
|
sym_pci_attach(pcici_t pci_tag, int unit)
|
|
{
|
|
int err = sym_pci_attach2(pci_tag, unit);
|
|
if (err)
|
|
printf("sym: failed to attach unit %d - err=%d.\n", unit, err);
|
|
}
|
|
static int
|
|
sym_pci_attach2(pcici_t pci_tag, int unit)
|
|
#endif
|
|
{
|
|
struct sym_pci_chip *chip;
|
|
u_short command;
|
|
u_char cachelnsz;
|
|
struct sym_hcb *np = 0;
|
|
struct sym_nvram nvram;
|
|
int i;
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
bus_dma_tag_t bus_dmat;
|
|
|
|
/*
|
|
* I expected to be told about a parent
|
|
* DMA tag, but didn't find any.
|
|
*/
|
|
bus_dmat = NULL;
|
|
#endif
|
|
|
|
/*
|
|
* Only probed devices should be attached.
|
|
* We just enjoy being paranoid. :)
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
chip = sym_find_pci_chip(dev);
|
|
#else
|
|
chip = sym_find_pci_chip(pci_tag);
|
|
#endif
|
|
if (chip == NULL)
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Allocate immediately the host control block,
|
|
* since we are only expecting to succeed. :)
|
|
* We keep track in the HCB of all the resources that
|
|
* are to be released on error.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
np = __sym_calloc_dma(bus_dmat, sizeof(*np), "HCB");
|
|
if (np)
|
|
np->bus_dmat = bus_dmat;
|
|
else
|
|
goto attach_failed;
|
|
#else
|
|
np = sym_calloc_dma(sizeof(*np), "HCB");
|
|
if (!np)
|
|
goto attach_failed;
|
|
#endif
|
|
|
|
/*
|
|
* Copy some useful infos to the HCB.
|
|
*/
|
|
np->hcb_ba = vtobus(np);
|
|
np->verbose = bootverbose;
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
np->device = dev;
|
|
np->unit = device_get_unit(dev);
|
|
np->device_id = pci_get_device(dev);
|
|
np->revision_id = pci_get_revid(dev);
|
|
#else
|
|
np->pci_tag = pci_tag;
|
|
np->unit = unit;
|
|
np->device_id = pci_cfgread(pci_tag, PCIR_DEVICE, 2);
|
|
np->revision_id = pci_cfgread(pci_tag, PCIR_REVID, 1);
|
|
#endif
|
|
np->features = chip->features;
|
|
np->clock_divn = chip->nr_divisor;
|
|
np->maxoffs = chip->offset_max;
|
|
np->maxburst = chip->burst_max;
|
|
|
|
/*
|
|
* Edit its name.
|
|
*/
|
|
snprintf(np->inst_name, sizeof(np->inst_name), "sym%d", np->unit);
|
|
|
|
/*
|
|
* Allocate a tag for the DMA of user data.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
if (bus_dma_tag_create(np->bus_dmat, 1, (1<<24),
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
|
|
NULL, NULL,
|
|
BUS_SPACE_MAXSIZE, SYM_CONF_MAX_SG,
|
|
(1<<24), 0, &np->data_dmat)) {
|
|
device_printf(dev, "failed to create DMA tag.\n");
|
|
goto attach_failed;
|
|
}
|
|
#endif
|
|
/*
|
|
* Read and apply some fix-ups to the PCI COMMAND
|
|
* register. We want the chip to be enabled for:
|
|
* - BUS mastering
|
|
* - PCI parity checking (reporting would also be fine)
|
|
* - Write And Invalidate.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
command = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
#else
|
|
command = pci_cfgread(pci_tag, PCIR_COMMAND, 2);
|
|
#endif
|
|
command |= PCIM_CMD_BUSMASTEREN;
|
|
command |= PCIM_CMD_PERRESPEN;
|
|
command |= /* PCIM_CMD_MWIEN */ 0x0010;
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
pci_write_config(dev, PCIR_COMMAND, command, 2);
|
|
#else
|
|
pci_cfgwrite(pci_tag, PCIR_COMMAND, command, 2);
|
|
#endif
|
|
|
|
/*
|
|
* Let the device know about the cache line size,
|
|
* if it doesn't yet.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
|
|
#else
|
|
cachelnsz = pci_cfgread(pci_tag, PCIR_CACHELNSZ, 1);
|
|
#endif
|
|
if (!cachelnsz) {
|
|
cachelnsz = 8;
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
pci_write_config(dev, PCIR_CACHELNSZ, cachelnsz, 1);
|
|
#else
|
|
pci_cfgwrite(pci_tag, PCIR_CACHELNSZ, cachelnsz, 1);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Alloc/get/map/retrieve everything that deals with MMIO.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
if ((command & PCIM_CMD_MEMEN) != 0) {
|
|
int regs_id = SYM_PCI_MMIO;
|
|
np->mmio_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id,
|
|
0, ~0, 1, RF_ACTIVE);
|
|
}
|
|
if (!np->mmio_res) {
|
|
device_printf(dev, "failed to allocate MMIO resources\n");
|
|
goto attach_failed;
|
|
}
|
|
np->mmio_bsh = rman_get_bushandle(np->mmio_res);
|
|
np->mmio_tag = rman_get_bustag(np->mmio_res);
|
|
np->mmio_pa = rman_get_start(np->mmio_res);
|
|
np->mmio_va = (vm_offset_t) rman_get_virtual(np->mmio_res);
|
|
np->mmio_ba = np->mmio_pa;
|
|
#else
|
|
if ((command & PCIM_CMD_MEMEN) != 0) {
|
|
vm_offset_t vaddr, paddr;
|
|
if (!pci_map_mem(pci_tag, SYM_PCI_MMIO, &vaddr, &paddr)) {
|
|
printf("%s: failed to map MMIO window\n", sym_name(np));
|
|
goto attach_failed;
|
|
}
|
|
np->mmio_va = vaddr;
|
|
np->mmio_pa = paddr;
|
|
np->mmio_ba = paddr;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Allocate the IRQ.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
i = 0;
|
|
np->irq_res = bus_alloc_resource(dev, SYS_RES_IRQ, &i,
|
|
0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
|
|
if (!np->irq_res) {
|
|
device_printf(dev, "failed to allocate IRQ resource\n");
|
|
goto attach_failed;
|
|
}
|
|
#endif
|
|
|
|
#ifdef SYM_CONF_IOMAPPED
|
|
/*
|
|
* User want us to use normal IO with PCI.
|
|
* Alloc/get/map/retrieve everything that deals with IO.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
|
|
int regs_id = SYM_PCI_IO;
|
|
np->io_res = bus_alloc_resource(dev, SYS_RES_IOPORT, ®s_id,
|
|
0, ~0, 1, RF_ACTIVE);
|
|
}
|
|
if (!np->io_res) {
|
|
device_printf(dev, "failed to allocate IO resources\n");
|
|
goto attach_failed;
|
|
}
|
|
np->io_bsh = rman_get_bushandle(np->io_res);
|
|
np->io_tag = rman_get_bustag(np->io_res);
|
|
np->io_port = rman_get_start(np->io_res);
|
|
#else
|
|
if ((command & PCI_COMMAND_IO_ENABLE) != 0) {
|
|
pci_port_t io_port;
|
|
if (!pci_map_port (pci_tag, SYM_PCI_IO, &io_port)) {
|
|
printf("%s: failed to map IO window\n", sym_name(np));
|
|
goto attach_failed;
|
|
}
|
|
np->io_port = io_port;
|
|
}
|
|
#endif
|
|
|
|
#endif /* SYM_CONF_IOMAPPED */
|
|
|
|
/*
|
|
* If the chip has RAM.
|
|
* Alloc/get/map/retrieve the corresponding resources.
|
|
*/
|
|
if ((np->features & (FE_RAM|FE_RAM8K)) &&
|
|
(command & PCIM_CMD_MEMEN) != 0) {
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
int regs_id = SYM_PCI_RAM;
|
|
if (np->features & FE_64BIT)
|
|
regs_id = SYM_PCI_RAM64;
|
|
np->ram_res = bus_alloc_resource(dev, SYS_RES_MEMORY, ®s_id,
|
|
0, ~0, 1, RF_ACTIVE);
|
|
if (!np->ram_res) {
|
|
device_printf(dev,"failed to allocate RAM resources\n");
|
|
goto attach_failed;
|
|
}
|
|
np->ram_id = regs_id;
|
|
np->ram_bsh = rman_get_bushandle(np->ram_res);
|
|
np->ram_tag = rman_get_bustag(np->ram_res);
|
|
np->ram_pa = rman_get_start(np->ram_res);
|
|
np->ram_va = (vm_offset_t) rman_get_virtual(np->ram_res);
|
|
np->ram_ba = np->ram_pa;
|
|
#else
|
|
vm_offset_t vaddr, paddr;
|
|
int regs_id = SYM_PCI_RAM;
|
|
if (np->features & FE_64BIT)
|
|
regs_id = SYM_PCI_RAM64;
|
|
if (!pci_map_mem(pci_tag, regs_id, &vaddr, &paddr)) {
|
|
printf("%s: failed to map RAM window\n", sym_name(np));
|
|
goto attach_failed;
|
|
}
|
|
np->ram_va = vaddr;
|
|
np->ram_pa = paddr;
|
|
np->ram_ba = paddr;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Save setting of some IO registers, so we will
|
|
* be able to probe specific implementations.
|
|
*/
|
|
sym_save_initial_setting (np);
|
|
|
|
/*
|
|
* Reset the chip now, since it has been reported
|
|
* that SCSI clock calibration may not work properly
|
|
* if the chip is currently active.
|
|
*/
|
|
sym_chip_reset (np);
|
|
|
|
/*
|
|
* Try to read the user set-up.
|
|
*/
|
|
(void) sym_read_nvram(np, &nvram);
|
|
|
|
/*
|
|
* Prepare controller and devices settings, according
|
|
* to chip features, user set-up and driver set-up.
|
|
*/
|
|
(void) sym_prepare_setting(np, &nvram);
|
|
|
|
/*
|
|
* Check the PCI clock frequency.
|
|
* Must be performed after prepare_setting since it destroys
|
|
* STEST1 that is used to probe for the clock doubler.
|
|
*/
|
|
i = sym_getpciclock(np);
|
|
if (i > 37000)
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
device_printf(dev, "PCI BUS clock seems too high: %u KHz.\n",i);
|
|
#else
|
|
printf("%s: PCI BUS clock seems too high: %u KHz.\n",
|
|
sym_name(np), i);
|
|
#endif
|
|
|
|
/*
|
|
* Allocate the start queue.
|
|
*/
|
|
np->squeue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
|
|
if (!np->squeue)
|
|
goto attach_failed;
|
|
np->squeue_ba = vtobus(np->squeue);
|
|
|
|
/*
|
|
* Allocate the done queue.
|
|
*/
|
|
np->dqueue = (u32 *) sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
|
|
if (!np->dqueue)
|
|
goto attach_failed;
|
|
|
|
/*
|
|
* Allocate the target bus address array.
|
|
*/
|
|
np->targtbl = (u32 *) sym_calloc_dma(256, "TARGTBL");
|
|
if (!np->targtbl)
|
|
goto attach_failed;
|
|
|
|
/*
|
|
* Allocate SCRIPTS areas.
|
|
*/
|
|
np->scripta0 = (struct sym_scra *)
|
|
sym_calloc_dma(sizeof(struct sym_scra), "SCRIPTA0");
|
|
np->scriptb0 = (struct sym_scrb *)
|
|
sym_calloc_dma(sizeof(struct sym_scrb), "SCRIPTB0");
|
|
if (!np->scripta0 || !np->scriptb0)
|
|
goto attach_failed;
|
|
|
|
/*
|
|
* Initialyze the CCB free and busy queues.
|
|
* Allocate some CCB. We need at least ONE.
|
|
*/
|
|
sym_que_init(&np->free_ccbq);
|
|
sym_que_init(&np->busy_ccbq);
|
|
sym_que_init(&np->comp_ccbq);
|
|
if (!sym_alloc_ccb(np))
|
|
goto attach_failed;
|
|
|
|
/*
|
|
* Initialyze the CAM CCB pending queue.
|
|
*/
|
|
sym_que_init(&np->cam_ccbq);
|
|
|
|
/*
|
|
* Fill-up variable-size parts of the SCRIPTS.
|
|
*/
|
|
sym_fill_scripts(&scripta0, &scriptb0);
|
|
|
|
/*
|
|
* Calculate BUS addresses where we are going
|
|
* to load the SCRIPTS.
|
|
*/
|
|
np->scripta_ba = vtobus(np->scripta0);
|
|
np->scriptb_ba = vtobus(np->scriptb0);
|
|
np->scriptb0_ba = np->scriptb_ba;
|
|
|
|
if (np->ram_ba) {
|
|
np->scripta_ba = np->ram_ba;
|
|
if (np->features & FE_RAM8K) {
|
|
np->ram_ws = 8192;
|
|
np->scriptb_ba = np->scripta_ba + 4096;
|
|
#if BITS_PER_LONG > 32
|
|
np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
|
|
#endif
|
|
}
|
|
else
|
|
np->ram_ws = 4096;
|
|
}
|
|
|
|
/*
|
|
* Bind SCRIPTS with physical addresses usable by the
|
|
* SCRIPTS processor (as seen from the BUS = BUS addresses).
|
|
*/
|
|
sym_bind_script(np, (u32 *) &scripta0,
|
|
(u32 *) np->scripta0, sizeof(struct sym_scra));
|
|
sym_bind_script(np, (u32 *) &scriptb0,
|
|
(u32 *) np->scriptb0, sizeof(struct sym_scrb));
|
|
|
|
/*
|
|
* Patch some variables in SCRIPTS.
|
|
* These ones are loaded by the SCRIPTS processor.
|
|
*/
|
|
np->scriptb0->pm0_data_addr[0] = cpu_to_scr(SCRIPTA_BA (np, pm0_data));
|
|
np->scriptb0->pm1_data_addr[0] = cpu_to_scr(SCRIPTA_BA (np, pm1_data));
|
|
|
|
|
|
/*
|
|
* Still some for removing LED support.
|
|
*/
|
|
if (!(np->features & FE_LED0)) {
|
|
np->scripta0->idle[0] = cpu_to_scr(SCR_NO_OP);
|
|
np->scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP);
|
|
np->scripta0->start[0] = cpu_to_scr(SCR_NO_OP);
|
|
}
|
|
|
|
/*
|
|
* Remove the load of SCNTL4 on reselection if not a C10.
|
|
*/
|
|
if (!(np->features & FE_C10)) {
|
|
np->scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP);
|
|
np->scripta0->resel_scntl4[1] = cpu_to_scr(0);
|
|
}
|
|
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* If user does not want to use IMMEDIATE ARBITRATION
|
|
* when we are reselected while attempting to arbitrate,
|
|
* patch the SCRIPTS accordingly with a SCRIPT NO_OP.
|
|
*/
|
|
if (!SYM_CONF_SET_IARB_ON_ARB_LOST)
|
|
np->scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP);
|
|
|
|
/*
|
|
* If user wants IARB to be set when we win arbitration
|
|
* and have other jobs, compute the max number of consecutive
|
|
* settings of IARB hints before we leave devices a chance to
|
|
* arbitrate for reselection.
|
|
*/
|
|
#ifdef SYM_SETUP_IARB_MAX
|
|
np->iarb_max = SYM_SETUP_IARB_MAX;
|
|
#else
|
|
np->iarb_max = 4;
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Prepare the idle and invalid task actions.
|
|
*/
|
|
np->idletask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
|
|
np->idletask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
|
|
np->idletask_ba = vtobus(&np->idletask);
|
|
|
|
np->notask.start = cpu_to_scr(SCRIPTA_BA (np, idle));
|
|
np->notask.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
|
|
np->notask_ba = vtobus(&np->notask);
|
|
|
|
np->bad_itl.start = cpu_to_scr(SCRIPTA_BA (np, idle));
|
|
np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA (np, bad_i_t_l));
|
|
np->bad_itl_ba = vtobus(&np->bad_itl);
|
|
|
|
np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA (np, idle));
|
|
np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA (np,bad_i_t_l_q));
|
|
np->bad_itlq_ba = vtobus(&np->bad_itlq);
|
|
|
|
/*
|
|
* Allocate and prepare the lun JUMP table that is used
|
|
* for a target prior the probing of devices (bad lun table).
|
|
* A private table will be allocated for the target on the
|
|
* first INQUIRY response received.
|
|
*/
|
|
np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
|
|
if (!np->badluntbl)
|
|
goto attach_failed;
|
|
|
|
np->badlun_sa = cpu_to_scr(SCRIPTB_BA (np, resel_bad_lun));
|
|
for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
|
|
np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
|
|
|
|
/*
|
|
* Prepare the bus address array that contains the bus
|
|
* address of each target control bloc.
|
|
* For now, assume all logical unit are wrong. :)
|
|
*/
|
|
np->scriptb0->targtbl[0] = cpu_to_scr(vtobus(np->targtbl));
|
|
for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
|
|
np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
|
|
np->target[i].luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
|
|
np->target[i].lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
|
|
}
|
|
|
|
/*
|
|
* Now check the cache handling of the pci chipset.
|
|
*/
|
|
if (sym_snooptest (np)) {
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
device_printf(dev, "CACHE INCORRECTLY CONFIGURED.\n");
|
|
#else
|
|
printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
|
|
#endif
|
|
goto attach_failed;
|
|
};
|
|
|
|
/*
|
|
* Now deal with CAM.
|
|
* Hopefully, we will succeed with that one.:)
|
|
*/
|
|
if (!sym_cam_attach(np))
|
|
goto attach_failed;
|
|
|
|
/*
|
|
* Sigh! we are done.
|
|
*/
|
|
return 0;
|
|
|
|
/*
|
|
* We have failed.
|
|
* We will try to free all the resources we have
|
|
* allocated, but if we are a boot device, this
|
|
* will not help that much.;)
|
|
*/
|
|
attach_failed:
|
|
if (np)
|
|
sym_pci_free(np);
|
|
return ENXIO;
|
|
}
|
|
|
|
/*
|
|
* Free everything that have been allocated for this device.
|
|
*/
|
|
static void sym_pci_free(hcb_p np)
|
|
{
|
|
SYM_QUEHEAD *qp;
|
|
ccb_p cp;
|
|
tcb_p tp;
|
|
lcb_p lp;
|
|
int target, lun;
|
|
int s;
|
|
|
|
/*
|
|
* First free CAM resources.
|
|
*/
|
|
s = splcam();
|
|
sym_cam_free(np);
|
|
splx(s);
|
|
|
|
/*
|
|
* Now every should be quiet for us to
|
|
* free other resources.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
if (np->ram_res)
|
|
bus_release_resource(np->device, SYS_RES_MEMORY,
|
|
np->ram_id, np->ram_res);
|
|
if (np->mmio_res)
|
|
bus_release_resource(np->device, SYS_RES_MEMORY,
|
|
SYM_PCI_MMIO, np->mmio_res);
|
|
if (np->io_res)
|
|
bus_release_resource(np->device, SYS_RES_IOPORT,
|
|
SYM_PCI_IO, np->io_res);
|
|
if (np->irq_res)
|
|
bus_release_resource(np->device, SYS_RES_IRQ,
|
|
0, np->irq_res);
|
|
#else
|
|
/*
|
|
* YEAH!!!
|
|
* It seems there is no means to free MMIO resources.
|
|
*/
|
|
#endif
|
|
|
|
if (np->scriptb0)
|
|
sym_mfree_dma(np->scriptb0, sizeof(struct sym_scrb),"SCRIPTB0");
|
|
if (np->scripta0)
|
|
sym_mfree_dma(np->scripta0, sizeof(struct sym_scra),"SCRIPTA0");
|
|
if (np->squeue)
|
|
sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
|
|
if (np->dqueue)
|
|
sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
|
|
|
|
while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
bus_dmamap_destroy(np->data_dmat, cp->dmamap);
|
|
#endif
|
|
sym_mfree_dma(cp->sns_bbuf, SYM_SNS_BBUF_LEN, "SNS_BBUF");
|
|
sym_mfree_dma(cp, sizeof(*cp), "CCB");
|
|
}
|
|
|
|
if (np->badluntbl)
|
|
sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
|
|
|
|
for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
|
|
tp = &np->target[target];
|
|
for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
|
|
lp = sym_lp(np, tp, lun);
|
|
if (!lp)
|
|
continue;
|
|
if (lp->itlq_tbl)
|
|
sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
|
|
"ITLQ_TBL");
|
|
if (lp->cb_tags)
|
|
sym_mfree(lp->cb_tags, SYM_CONF_MAX_TASK,
|
|
"CB_TAGS");
|
|
sym_mfree_dma(lp, sizeof(*lp), "LCB");
|
|
}
|
|
#if SYM_CONF_MAX_LUN > 1
|
|
if (tp->lunmp)
|
|
sym_mfree(tp->lunmp, SYM_CONF_MAX_LUN*sizeof(lcb_p),
|
|
"LUNMP");
|
|
#endif
|
|
}
|
|
if (np->targtbl)
|
|
sym_mfree_dma(np->targtbl, 256, "TARGTBL");
|
|
#ifdef FreeBSD_Bus_Dma_Abstraction
|
|
if (np->data_dmat)
|
|
bus_dma_tag_destroy(np->data_dmat);
|
|
#endif
|
|
sym_mfree_dma(np, sizeof(*np), "HCB");
|
|
}
|
|
|
|
/*
|
|
* Allocate CAM resources and register a bus to CAM.
|
|
*/
|
|
int sym_cam_attach(hcb_p np)
|
|
{
|
|
struct cam_devq *devq = 0;
|
|
struct cam_sim *sim = 0;
|
|
struct cam_path *path = 0;
|
|
int err, s;
|
|
|
|
s = splcam();
|
|
|
|
/*
|
|
* Establish our interrupt handler.
|
|
*/
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
err = bus_setup_intr(np->device, np->irq_res, INTR_TYPE_CAM,
|
|
sym_intr, np, &np->intr);
|
|
if (err) {
|
|
device_printf(np->device, "bus_setup_intr() failed: %d\n",
|
|
err);
|
|
goto fail;
|
|
}
|
|
#else
|
|
err = 0;
|
|
if (!pci_map_int (np->pci_tag, sym_intr, np, &cam_imask)) {
|
|
printf("%s: failed to map interrupt\n", sym_name(np));
|
|
goto fail;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Create the device queue for our sym SIM.
|
|
*/
|
|
devq = cam_simq_alloc(SYM_CONF_MAX_START);
|
|
if (!devq)
|
|
goto fail;
|
|
|
|
/*
|
|
* Construct our SIM entry.
|
|
*/
|
|
sim = cam_sim_alloc(sym_action, sym_poll, "sym", np, np->unit,
|
|
1, SYM_SETUP_MAX_TAG, devq);
|
|
if (!sim)
|
|
goto fail;
|
|
devq = 0;
|
|
|
|
if (xpt_bus_register(sim, 0) != CAM_SUCCESS)
|
|
goto fail;
|
|
np->sim = sim;
|
|
sim = 0;
|
|
|
|
if (xpt_create_path(&path, 0,
|
|
cam_sim_path(np->sim), CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
|
|
goto fail;
|
|
}
|
|
np->path = path;
|
|
|
|
/*
|
|
* Hmmm... This should be useful, but I donnot want to
|
|
* know about.
|
|
*/
|
|
#if __FreeBSD_version < 400000
|
|
#ifdef __alpha__
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
alpha_register_pci_scsi(pci_get_bus(np->device),
|
|
pci_get_slot(np->device), np->sim);
|
|
#else
|
|
alpha_register_pci_scsi(pci_tag->bus, pci_tag->slot, np->sim);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if 0
|
|
/*
|
|
* Establish our async notification handler.
|
|
*/
|
|
{
|
|
struct ccb_setasync csa;
|
|
xpt_setup_ccb(&csa.ccb_h, np->path, 5);
|
|
csa.ccb_h.func_code = XPT_SASYNC_CB;
|
|
csa.event_enable = AC_LOST_DEVICE;
|
|
csa.callback = sym_async;
|
|
csa.callback_arg = np->sim;
|
|
xpt_action((union ccb *)&csa);
|
|
}
|
|
#endif
|
|
/*
|
|
* Start the chip now, without resetting the BUS, since
|
|
* it seems that this must stay under control of CAM.
|
|
* With LVD/SE capable chips and BUS in SE mode, we may
|
|
* get a spurious SMBC interrupt.
|
|
*/
|
|
sym_init (np, 0);
|
|
|
|
splx(s);
|
|
return 1;
|
|
fail:
|
|
if (sim)
|
|
cam_sim_free(sim, FALSE);
|
|
if (devq)
|
|
cam_simq_free(devq);
|
|
|
|
sym_cam_free(np);
|
|
|
|
splx(s);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free everything that deals with CAM.
|
|
*/
|
|
void sym_cam_free(hcb_p np)
|
|
{
|
|
#ifdef FreeBSD_Bus_Io_Abstraction
|
|
if (np->intr)
|
|
bus_teardown_intr(np->device, np->irq_res, np->intr);
|
|
#else
|
|
/* pci_unmap_int(np->pci_tag); */ /* Does nothing */
|
|
#endif
|
|
|
|
if (np->sim) {
|
|
xpt_bus_deregister(cam_sim_path(np->sim));
|
|
cam_sim_free(np->sim, /*free_devq*/ TRUE);
|
|
}
|
|
if (np->path)
|
|
xpt_free_path(np->path);
|
|
}
|
|
|
|
/*============ OPTIONNAL NVRAM SUPPORT =================*/
|
|
|
|
/*
|
|
* Get host setup from NVRAM.
|
|
*/
|
|
static void sym_nvram_setup_host (hcb_p np, struct sym_nvram *nvram)
|
|
{
|
|
#ifdef SYM_CONF_NVRAM_SUPPORT
|
|
/*
|
|
* Get parity checking, host ID, verbose mode
|
|
* and miscellaneous host flags from NVRAM.
|
|
*/
|
|
switch(nvram->type) {
|
|
case SYM_SYMBIOS_NVRAM:
|
|
if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE))
|
|
np->rv_scntl0 &= ~0x0a;
|
|
np->myaddr = nvram->data.Symbios.host_id & 0x0f;
|
|
if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS)
|
|
np->verbose += 1;
|
|
if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO)
|
|
np->usrflags |= SYM_SCAN_TARGETS_HILO;
|
|
if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET)
|
|
np->usrflags |= SYM_AVOID_BUS_RESET;
|
|
break;
|
|
case SYM_TEKRAM_NVRAM:
|
|
np->myaddr = nvram->data.Tekram.host_id & 0x0f;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Get target setup from NVRAM.
|
|
*/
|
|
#ifdef SYM_CONF_NVRAM_SUPPORT
|
|
static void sym_Symbios_setup_target(hcb_p np,int target, Symbios_nvram *nvram);
|
|
static void sym_Tekram_setup_target(hcb_p np,int target, Tekram_nvram *nvram);
|
|
#endif
|
|
|
|
static void
|
|
sym_nvram_setup_target (hcb_p np, int target, struct sym_nvram *nvp)
|
|
{
|
|
#ifdef SYM_CONF_NVRAM_SUPPORT
|
|
switch(nvp->type) {
|
|
case SYM_SYMBIOS_NVRAM:
|
|
sym_Symbios_setup_target (np, target, &nvp->data.Symbios);
|
|
break;
|
|
case SYM_TEKRAM_NVRAM:
|
|
sym_Tekram_setup_target (np, target, &nvp->data.Tekram);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef SYM_CONF_NVRAM_SUPPORT
|
|
/*
|
|
* Get target set-up from Symbios format NVRAM.
|
|
*/
|
|
static void
|
|
sym_Symbios_setup_target(hcb_p np, int target, Symbios_nvram *nvram)
|
|
{
|
|
tcb_p tp = &np->target[target];
|
|
Symbios_target *tn = &nvram->target[target];
|
|
|
|
tp->tinfo.user.period = tn->sync_period ? (tn->sync_period + 3) / 4 : 0;
|
|
tp->tinfo.user.width = tn->bus_width == 0x10 ? BUS_16_BIT : BUS_8_BIT;
|
|
tp->usrtags =
|
|
(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? SYM_SETUP_MAX_TAG : 0;
|
|
|
|
if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE))
|
|
tp->usrflags &= ~SYM_DISC_ENABLED;
|
|
if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME))
|
|
tp->usrflags |= SYM_SCAN_BOOT_DISABLED;
|
|
if (!(tn->flags & SYMBIOS_SCAN_LUNS))
|
|
tp->usrflags |= SYM_SCAN_LUNS_DISABLED;
|
|
}
|
|
|
|
/*
|
|
* Get target set-up from Tekram format NVRAM.
|
|
*/
|
|
static void
|
|
sym_Tekram_setup_target(hcb_p np, int target, Tekram_nvram *nvram)
|
|
{
|
|
tcb_p tp = &np->target[target];
|
|
struct Tekram_target *tn = &nvram->target[target];
|
|
int i;
|
|
|
|
if (tn->flags & TEKRAM_SYNC_NEGO) {
|
|
i = tn->sync_index & 0xf;
|
|
tp->tinfo.user.period = Tekram_sync[i];
|
|
}
|
|
|
|
tp->tinfo.user.width =
|
|
(tn->flags & TEKRAM_WIDE_NEGO) ? BUS_16_BIT : BUS_8_BIT;
|
|
|
|
if (tn->flags & TEKRAM_TAGGED_COMMANDS) {
|
|
tp->usrtags = 2 << nvram->max_tags_index;
|
|
}
|
|
|
|
if (tn->flags & TEKRAM_DISCONNECT_ENABLE)
|
|
tp->usrflags |= SYM_DISC_ENABLED;
|
|
|
|
/* If any device does not support parity, we will not use this option */
|
|
if (!(tn->flags & TEKRAM_PARITY_CHECK))
|
|
np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */
|
|
}
|
|
|
|
#ifdef SYM_CONF_DEBUG_NVRAM
|
|
/*
|
|
* Dump Symbios format NVRAM for debugging purpose.
|
|
*/
|
|
void sym_display_Symbios_nvram(hcb_p np, Symbios_nvram *nvram)
|
|
{
|
|
int i;
|
|
|
|
/* display Symbios nvram host data */
|
|
printf("%s: HOST ID=%d%s%s%s%s%s%s\n",
|
|
sym_name(np), nvram->host_id & 0x0f,
|
|
(nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
|
|
(nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"",
|
|
(nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"",
|
|
(nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"",
|
|
(nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"",
|
|
(nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :"");
|
|
|
|
/* display Symbios nvram drive data */
|
|
for (i = 0 ; i < 15 ; i++) {
|
|
struct Symbios_target *tn = &nvram->target[i];
|
|
printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n",
|
|
sym_name(np), i,
|
|
(tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "",
|
|
(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "",
|
|
(tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "",
|
|
(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "",
|
|
tn->bus_width,
|
|
tn->sync_period / 4,
|
|
tn->timeout);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Dump TEKRAM format NVRAM for debugging purpose.
|
|
*/
|
|
static u_char Tekram_boot_delay[7] __initdata = {3, 5, 10, 20, 30, 60, 120};
|
|
void sym_display_Tekram_nvram(hcb_p np, Tekram_nvram *nvram)
|
|
{
|
|
int i, tags, boot_delay;
|
|
char *rem;
|
|
|
|
/* display Tekram nvram host data */
|
|
tags = 2 << nvram->max_tags_index;
|
|
boot_delay = 0;
|
|
if (nvram->boot_delay_index < 6)
|
|
boot_delay = Tekram_boot_delay[nvram->boot_delay_index];
|
|
switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) {
|
|
default:
|
|
case 0: rem = ""; break;
|
|
case 1: rem = " REMOVABLE=boot device"; break;
|
|
case 2: rem = " REMOVABLE=all"; break;
|
|
}
|
|
|
|
printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n",
|
|
sym_name(np), nvram->host_id & 0x0f,
|
|
(nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"",
|
|
(nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES" :"",
|
|
(nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"",
|
|
(nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"",
|
|
(nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"",
|
|
(nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"",
|
|
(nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"",
|
|
(nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"",
|
|
rem, boot_delay, tags);
|
|
|
|
/* display Tekram nvram drive data */
|
|
for (i = 0; i <= 15; i++) {
|
|
int sync, j;
|
|
struct Tekram_target *tn = &nvram->target[i];
|
|
j = tn->sync_index & 0xf;
|
|
sync = Tekram_sync[j];
|
|
printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n",
|
|
sym_name(np), i,
|
|
(tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "",
|
|
(tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "",
|
|
(tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "",
|
|
(tn->flags & TEKRAM_START_CMD) ? " START" : "",
|
|
(tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "",
|
|
(tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "",
|
|
sync);
|
|
}
|
|
}
|
|
#endif /* SYM_CONF_DEBUG_NVRAM */
|
|
#endif /* SYM_CONF_NVRAM_SUPPORT */
|
|
|
|
|
|
/*
|
|
* Try reading Symbios or Tekram NVRAM
|
|
*/
|
|
#ifdef SYM_CONF_NVRAM_SUPPORT
|
|
static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram);
|
|
static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram);
|
|
#endif
|
|
|
|
int sym_read_nvram(hcb_p np, struct sym_nvram *nvp)
|
|
{
|
|
#ifdef SYM_CONF_NVRAM_SUPPORT
|
|
/*
|
|
* Try to read SYMBIOS nvram.
|
|
* Try to read TEKRAM nvram if Symbios nvram not found.
|
|
*/
|
|
if (SYM_SETUP_SYMBIOS_NVRAM &&
|
|
!sym_read_Symbios_nvram (np, &nvp->data.Symbios))
|
|
nvp->type = SYM_SYMBIOS_NVRAM;
|
|
else if (SYM_SETUP_TEKRAM_NVRAM &&
|
|
!sym_read_Tekram_nvram (np, &nvp->data.Tekram))
|
|
nvp->type = SYM_TEKRAM_NVRAM;
|
|
else
|
|
nvp->type = 0;
|
|
#else
|
|
nvp->type = 0;
|
|
#endif
|
|
return nvp->type;
|
|
}
|
|
|
|
|
|
#ifdef SYM_CONF_NVRAM_SUPPORT
|
|
/*
|
|
* 24C16 EEPROM reading.
|
|
*
|
|
* GPOI0 - data in/data out
|
|
* GPIO1 - clock
|
|
* Symbios NVRAM wiring now also used by Tekram.
|
|
*/
|
|
|
|
#define SET_BIT 0
|
|
#define CLR_BIT 1
|
|
#define SET_CLK 2
|
|
#define CLR_CLK 3
|
|
|
|
/*
|
|
* Set/clear data/clock bit in GPIO0
|
|
*/
|
|
static void S24C16_set_bit(hcb_p np, u_char write_bit, u_char *gpreg,
|
|
int bit_mode)
|
|
{
|
|
UDELAY (5);
|
|
switch (bit_mode){
|
|
case SET_BIT:
|
|
*gpreg |= write_bit;
|
|
break;
|
|
case CLR_BIT:
|
|
*gpreg &= 0xfe;
|
|
break;
|
|
case SET_CLK:
|
|
*gpreg |= 0x02;
|
|
break;
|
|
case CLR_CLK:
|
|
*gpreg &= 0xfd;
|
|
break;
|
|
|
|
}
|
|
OUTB (nc_gpreg, *gpreg);
|
|
UDELAY (5);
|
|
}
|
|
|
|
/*
|
|
* Send START condition to NVRAM to wake it up.
|
|
*/
|
|
static void S24C16_start(hcb_p np, u_char *gpreg)
|
|
{
|
|
S24C16_set_bit(np, 1, gpreg, SET_BIT);
|
|
S24C16_set_bit(np, 0, gpreg, SET_CLK);
|
|
S24C16_set_bit(np, 0, gpreg, CLR_BIT);
|
|
S24C16_set_bit(np, 0, gpreg, CLR_CLK);
|
|
}
|
|
|
|
/*
|
|
* Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!!
|
|
*/
|
|
static void S24C16_stop(hcb_p np, u_char *gpreg)
|
|
{
|
|
S24C16_set_bit(np, 0, gpreg, SET_CLK);
|
|
S24C16_set_bit(np, 1, gpreg, SET_BIT);
|
|
}
|
|
|
|
/*
|
|
* Read or write a bit to the NVRAM,
|
|
* read if GPIO0 input else write if GPIO0 output
|
|
*/
|
|
static void S24C16_do_bit(hcb_p np, u_char *read_bit, u_char write_bit,
|
|
u_char *gpreg)
|
|
{
|
|
S24C16_set_bit(np, write_bit, gpreg, SET_BIT);
|
|
S24C16_set_bit(np, 0, gpreg, SET_CLK);
|
|
if (read_bit)
|
|
*read_bit = INB (nc_gpreg);
|
|
S24C16_set_bit(np, 0, gpreg, CLR_CLK);
|
|
S24C16_set_bit(np, 0, gpreg, CLR_BIT);
|
|
}
|
|
|
|
/*
|
|
* Output an ACK to the NVRAM after reading,
|
|
* change GPIO0 to output and when done back to an input
|
|
*/
|
|
static void S24C16_write_ack(hcb_p np, u_char write_bit, u_char *gpreg,
|
|
u_char *gpcntl)
|
|
{
|
|
OUTB (nc_gpcntl, *gpcntl & 0xfe);
|
|
S24C16_do_bit(np, 0, write_bit, gpreg);
|
|
OUTB (nc_gpcntl, *gpcntl);
|
|
}
|
|
|
|
/*
|
|
* Input an ACK from NVRAM after writing,
|
|
* change GPIO0 to input and when done back to an output
|
|
*/
|
|
static void S24C16_read_ack(hcb_p np, u_char *read_bit, u_char *gpreg,
|
|
u_char *gpcntl)
|
|
{
|
|
OUTB (nc_gpcntl, *gpcntl | 0x01);
|
|
S24C16_do_bit(np, read_bit, 1, gpreg);
|
|
OUTB (nc_gpcntl, *gpcntl);
|
|
}
|
|
|
|
/*
|
|
* WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK,
|
|
* GPIO0 must already be set as an output
|
|
*/
|
|
static void S24C16_write_byte(hcb_p np, u_char *ack_data, u_char write_data,
|
|
u_char *gpreg, u_char *gpcntl)
|
|
{
|
|
int x;
|
|
|
|
for (x = 0; x < 8; x++)
|
|
S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg);
|
|
|
|
S24C16_read_ack(np, ack_data, gpreg, gpcntl);
|
|
}
|
|
|
|
/*
|
|
* READ a byte from the NVRAM and then send an ACK to say we have got it,
|
|
* GPIO0 must already be set as an input
|
|
*/
|
|
static void S24C16_read_byte(hcb_p np, u_char *read_data, u_char ack_data,
|
|
u_char *gpreg, u_char *gpcntl)
|
|
{
|
|
int x;
|
|
u_char read_bit;
|
|
|
|
*read_data = 0;
|
|
for (x = 0; x < 8; x++) {
|
|
S24C16_do_bit(np, &read_bit, 1, gpreg);
|
|
*read_data |= ((read_bit & 0x01) << (7 - x));
|
|
}
|
|
|
|
S24C16_write_ack(np, ack_data, gpreg, gpcntl);
|
|
}
|
|
|
|
/*
|
|
* Read 'len' bytes starting at 'offset'.
|
|
*/
|
|
static int sym_read_S24C16_nvram (hcb_p np, int offset, u_char *data, int len)
|
|
{
|
|
u_char gpcntl, gpreg;
|
|
u_char old_gpcntl, old_gpreg;
|
|
u_char ack_data;
|
|
int retv = 1;
|
|
int x;
|
|
|
|
/* save current state of GPCNTL and GPREG */
|
|
old_gpreg = INB (nc_gpreg);
|
|
old_gpcntl = INB (nc_gpcntl);
|
|
gpcntl = old_gpcntl & 0xfc;
|
|
|
|
/* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */
|
|
OUTB (nc_gpreg, old_gpreg);
|
|
OUTB (nc_gpcntl, gpcntl);
|
|
|
|
/* this is to set NVRAM into a known state with GPIO0/1 both low */
|
|
gpreg = old_gpreg;
|
|
S24C16_set_bit(np, 0, &gpreg, CLR_CLK);
|
|
S24C16_set_bit(np, 0, &gpreg, CLR_BIT);
|
|
|
|
/* now set NVRAM inactive with GPIO0/1 both high */
|
|
S24C16_stop(np, &gpreg);
|
|
|
|
/* activate NVRAM */
|
|
S24C16_start(np, &gpreg);
|
|
|
|
/* write device code and random address MSB */
|
|
S24C16_write_byte(np, &ack_data,
|
|
0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
|
|
if (ack_data & 0x01)
|
|
goto out;
|
|
|
|
/* write random address LSB */
|
|
S24C16_write_byte(np, &ack_data,
|
|
offset & 0xff, &gpreg, &gpcntl);
|
|
if (ack_data & 0x01)
|
|
goto out;
|
|
|
|
/* regenerate START state to set up for reading */
|
|
S24C16_start(np, &gpreg);
|
|
|
|
/* rewrite device code and address MSB with read bit set (lsb = 0x01) */
|
|
S24C16_write_byte(np, &ack_data,
|
|
0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl);
|
|
if (ack_data & 0x01)
|
|
goto out;
|
|
|
|
/* now set up GPIO0 for inputting data */
|
|
gpcntl |= 0x01;
|
|
OUTB (nc_gpcntl, gpcntl);
|
|
|
|
/* input all requested data - only part of total NVRAM */
|
|
for (x = 0; x < len; x++)
|
|
S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl);
|
|
|
|
/* finally put NVRAM back in inactive mode */
|
|
gpcntl &= 0xfe;
|
|
OUTB (nc_gpcntl, gpcntl);
|
|
S24C16_stop(np, &gpreg);
|
|
retv = 0;
|
|
out:
|
|
/* return GPIO0/1 to original states after having accessed NVRAM */
|
|
OUTB (nc_gpcntl, old_gpcntl);
|
|
OUTB (nc_gpreg, old_gpreg);
|
|
|
|
return retv;
|
|
}
|
|
|
|
#undef SET_BIT 0
|
|
#undef CLR_BIT 1
|
|
#undef SET_CLK 2
|
|
#undef CLR_CLK 3
|
|
|
|
/*
|
|
* Try reading Symbios NVRAM.
|
|
* Return 0 if OK.
|
|
*/
|
|
static int sym_read_Symbios_nvram (hcb_p np, Symbios_nvram *nvram)
|
|
{
|
|
static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0};
|
|
u_char *data = (u_char *) nvram;
|
|
int len = sizeof(*nvram);
|
|
u_short csum;
|
|
int x;
|
|
|
|
/* probe the 24c16 and read the SYMBIOS 24c16 area */
|
|
if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len))
|
|
return 1;
|
|
|
|
/* check valid NVRAM signature, verify byte count and checksum */
|
|
if (nvram->type != 0 ||
|
|
bcmp(nvram->trailer, Symbios_trailer, 6) ||
|
|
nvram->byte_count != len - 12)
|
|
return 1;
|
|
|
|
/* verify checksum */
|
|
for (x = 6, csum = 0; x < len - 6; x++)
|
|
csum += data[x];
|
|
if (csum != nvram->checksum)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 93C46 EEPROM reading.
|
|
*
|
|
* GPOI0 - data in
|
|
* GPIO1 - data out
|
|
* GPIO2 - clock
|
|
* GPIO4 - chip select
|
|
*
|
|
* Used by Tekram.
|
|
*/
|
|
|
|
/*
|
|
* Pulse clock bit in GPIO0
|
|
*/
|
|
static void T93C46_Clk(hcb_p np, u_char *gpreg)
|
|
{
|
|
OUTB (nc_gpreg, *gpreg | 0x04);
|
|
UDELAY (2);
|
|
OUTB (nc_gpreg, *gpreg);
|
|
}
|
|
|
|
/*
|
|
* Read bit from NVRAM
|
|
*/
|
|
static void T93C46_Read_Bit(hcb_p np, u_char *read_bit, u_char *gpreg)
|
|
{
|
|
UDELAY (2);
|
|
T93C46_Clk(np, gpreg);
|
|
*read_bit = INB (nc_gpreg);
|
|
}
|
|
|
|
/*
|
|
* Write bit to GPIO0
|
|
*/
|
|
static void T93C46_Write_Bit(hcb_p np, u_char write_bit, u_char *gpreg)
|
|
{
|
|
if (write_bit & 0x01)
|
|
*gpreg |= 0x02;
|
|
else
|
|
*gpreg &= 0xfd;
|
|
|
|
*gpreg |= 0x10;
|
|
|
|
OUTB (nc_gpreg, *gpreg);
|
|
UDELAY (2);
|
|
|
|
T93C46_Clk(np, gpreg);
|
|
}
|
|
|
|
/*
|
|
* Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!!
|
|
*/
|
|
static void T93C46_Stop(hcb_p np, u_char *gpreg)
|
|
{
|
|
*gpreg &= 0xef;
|
|
OUTB (nc_gpreg, *gpreg);
|
|
UDELAY (2);
|
|
|
|
T93C46_Clk(np, gpreg);
|
|
}
|
|
|
|
/*
|
|
* Send read command and address to NVRAM
|
|
*/
|
|
static void T93C46_Send_Command(hcb_p np, u_short write_data,
|
|
u_char *read_bit, u_char *gpreg)
|
|
{
|
|
int x;
|
|
|
|
/* send 9 bits, start bit (1), command (2), address (6) */
|
|
for (x = 0; x < 9; x++)
|
|
T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg);
|
|
|
|
*read_bit = INB (nc_gpreg);
|
|
}
|
|
|
|
/*
|
|
* READ 2 bytes from the NVRAM
|
|
*/
|
|
static void T93C46_Read_Word(hcb_p np, u_short *nvram_data, u_char *gpreg)
|
|
{
|
|
int x;
|
|
u_char read_bit;
|
|
|
|
*nvram_data = 0;
|
|
for (x = 0; x < 16; x++) {
|
|
T93C46_Read_Bit(np, &read_bit, gpreg);
|
|
|
|
if (read_bit & 0x01)
|
|
*nvram_data |= (0x01 << (15 - x));
|
|
else
|
|
*nvram_data &= ~(0x01 << (15 - x));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read Tekram NvRAM data.
|
|
*/
|
|
static int T93C46_Read_Data(hcb_p np, u_short *data,int len,u_char *gpreg)
|
|
{
|
|
u_char read_bit;
|
|
int x;
|
|
|
|
for (x = 0; x < len; x++) {
|
|
|
|
/* output read command and address */
|
|
T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg);
|
|
if (read_bit & 0x01)
|
|
return 1; /* Bad */
|
|
T93C46_Read_Word(np, &data[x], gpreg);
|
|
T93C46_Stop(np, gpreg);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try reading 93C46 Tekram NVRAM.
|
|
*/
|
|
static int sym_read_T93C46_nvram (hcb_p np, Tekram_nvram *nvram)
|
|
{
|
|
u_char gpcntl, gpreg;
|
|
u_char old_gpcntl, old_gpreg;
|
|
int retv = 1;
|
|
|
|
/* save current state of GPCNTL and GPREG */
|
|
old_gpreg = INB (nc_gpreg);
|
|
old_gpcntl = INB (nc_gpcntl);
|
|
|
|
/* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in,
|
|
1/2/4 out */
|
|
gpreg = old_gpreg & 0xe9;
|
|
OUTB (nc_gpreg, gpreg);
|
|
gpcntl = (old_gpcntl & 0xe9) | 0x09;
|
|
OUTB (nc_gpcntl, gpcntl);
|
|
|
|
/* input all of NVRAM, 64 words */
|
|
retv = T93C46_Read_Data(np, (u_short *) nvram,
|
|
sizeof(*nvram) / sizeof(short), &gpreg);
|
|
|
|
/* return GPIO0/1/2/4 to original states after having accessed NVRAM */
|
|
OUTB (nc_gpcntl, old_gpcntl);
|
|
OUTB (nc_gpreg, old_gpreg);
|
|
|
|
return retv;
|
|
}
|
|
|
|
/*
|
|
* Try reading Tekram NVRAM.
|
|
* Return 0 if OK.
|
|
*/
|
|
static int sym_read_Tekram_nvram (hcb_p np, Tekram_nvram *nvram)
|
|
{
|
|
u_char *data = (u_char *) nvram;
|
|
int len = sizeof(*nvram);
|
|
u_short csum;
|
|
int x;
|
|
|
|
switch (np->device_id) {
|
|
case PCI_ID_SYM53C885:
|
|
case PCI_ID_SYM53C895:
|
|
case PCI_ID_SYM53C896:
|
|
x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
|
|
data, len);
|
|
break;
|
|
case PCI_ID_SYM53C875:
|
|
x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS,
|
|
data, len);
|
|
if (!x)
|
|
break;
|
|
default:
|
|
x = sym_read_T93C46_nvram(np, nvram);
|
|
break;
|
|
}
|
|
if (x)
|
|
return 1;
|
|
|
|
/* verify checksum */
|
|
for (x = 0, csum = 0; x < len - 1; x += 2)
|
|
csum += data[x] + (data[x+1] << 8);
|
|
if (csum != 0x1234)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* SYM_CONF_NVRAM_SUPPORT */
|