freebsd-nq/sys/dev/nvd/nvd.c
2020-09-01 22:03:32 +00:00

521 lines
14 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (C) 2012-2016 Intel Corporation
* All rights reserved.
* Copyright (C) 2018-2020 Alexander Motin <mav@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <machine/atomic.h>
#include <geom/geom.h>
#include <geom/geom_disk.h>
#include <dev/nvme/nvme.h>
#include <dev/nvme/nvme_private.h>
#include <dev/pci/pcivar.h>
#define NVD_STR "nvd"
struct nvd_disk;
struct nvd_controller;
static disk_ioctl_t nvd_ioctl;
static disk_strategy_t nvd_strategy;
static dumper_t nvd_dump;
static disk_getattr_t nvd_getattr;
static void nvd_done(void *arg, const struct nvme_completion *cpl);
static void nvd_gone(struct nvd_disk *ndisk);
static void *nvd_new_disk(struct nvme_namespace *ns, void *ctrlr);
static void *nvd_new_controller(struct nvme_controller *ctrlr);
static void nvd_controller_fail(void *ctrlr);
static int nvd_load(void);
static void nvd_unload(void);
MALLOC_DEFINE(M_NVD, "nvd", "nvd(4) allocations");
struct nvme_consumer *consumer_handle;
struct nvd_disk {
struct nvd_controller *ctrlr;
struct bio_queue_head bioq;
struct task bioqtask;
struct mtx bioqlock;
struct disk *disk;
struct taskqueue *tq;
struct nvme_namespace *ns;
uint32_t cur_depth;
#define NVD_ODEPTH (1 << 30)
uint32_t ordered_in_flight;
u_int unit;
TAILQ_ENTRY(nvd_disk) global_tailq;
TAILQ_ENTRY(nvd_disk) ctrlr_tailq;
};
struct nvd_controller {
struct nvme_controller *ctrlr;
TAILQ_ENTRY(nvd_controller) tailq;
TAILQ_HEAD(, nvd_disk) disk_head;
};
static struct mtx nvd_lock;
static TAILQ_HEAD(, nvd_controller) ctrlr_head;
static TAILQ_HEAD(disk_list, nvd_disk) disk_head;
static SYSCTL_NODE(_hw, OID_AUTO, nvd, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"nvd driver parameters");
/*
* The NVMe specification does not define a maximum or optimal delete size, so
* technically max delete size is min(full size of the namespace, 2^32 - 1
* LBAs). A single delete for a multi-TB NVMe namespace though may take much
* longer to complete than the nvme(4) I/O timeout period. So choose a sensible
* default here that is still suitably large to minimize the number of overall
* delete operations.
*/
static uint64_t nvd_delete_max = (1024 * 1024 * 1024); /* 1GB */
SYSCTL_UQUAD(_hw_nvd, OID_AUTO, delete_max, CTLFLAG_RDTUN, &nvd_delete_max, 0,
"nvd maximum BIO_DELETE size in bytes");
static int nvd_modevent(module_t mod, int type, void *arg)
{
int error = 0;
switch (type) {
case MOD_LOAD:
error = nvd_load();
break;
case MOD_UNLOAD:
nvd_unload();
break;
default:
break;
}
return (error);
}
moduledata_t nvd_mod = {
NVD_STR,
(modeventhand_t)nvd_modevent,
0
};
DECLARE_MODULE(nvd, nvd_mod, SI_SUB_DRIVERS, SI_ORDER_ANY);
MODULE_VERSION(nvd, 1);
MODULE_DEPEND(nvd, nvme, 1, 1, 1);
static int
nvd_load()
{
if (!nvme_use_nvd)
return 0;
mtx_init(&nvd_lock, "nvd_lock", NULL, MTX_DEF);
TAILQ_INIT(&ctrlr_head);
TAILQ_INIT(&disk_head);
consumer_handle = nvme_register_consumer(nvd_new_disk,
nvd_new_controller, NULL, nvd_controller_fail);
return (consumer_handle != NULL ? 0 : -1);
}
static void
nvd_unload()
{
struct nvd_controller *ctrlr;
struct nvd_disk *ndisk;
if (!nvme_use_nvd)
return;
mtx_lock(&nvd_lock);
while ((ctrlr = TAILQ_FIRST(&ctrlr_head)) != NULL) {
TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
nvd_gone(ndisk);
while (!TAILQ_EMPTY(&ctrlr->disk_head))
msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_unload",0);
free(ctrlr, M_NVD);
}
mtx_unlock(&nvd_lock);
nvme_unregister_consumer(consumer_handle);
mtx_destroy(&nvd_lock);
}
static void
nvd_bio_submit(struct nvd_disk *ndisk, struct bio *bp)
{
int err;
bp->bio_driver1 = NULL;
if (__predict_false(bp->bio_flags & BIO_ORDERED))
atomic_add_int(&ndisk->cur_depth, NVD_ODEPTH);
else
atomic_add_int(&ndisk->cur_depth, 1);
err = nvme_ns_bio_process(ndisk->ns, bp, nvd_done);
if (err) {
if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
atomic_add_int(&ndisk->ordered_in_flight, -1);
wakeup(&ndisk->cur_depth);
} else {
if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
__predict_false(ndisk->ordered_in_flight != 0))
wakeup(&ndisk->cur_depth);
}
bp->bio_error = err;
bp->bio_flags |= BIO_ERROR;
bp->bio_resid = bp->bio_bcount;
biodone(bp);
}
}
static void
nvd_strategy(struct bio *bp)
{
struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
/*
* bio with BIO_ORDERED flag must be executed after all previous
* bios in the queue, and before any successive bios.
*/
if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
if (atomic_fetchadd_int(&ndisk->ordered_in_flight, 1) == 0 &&
ndisk->cur_depth == 0 && bioq_first(&ndisk->bioq) == NULL) {
nvd_bio_submit(ndisk, bp);
return;
}
} else if (__predict_true(ndisk->ordered_in_flight == 0)) {
nvd_bio_submit(ndisk, bp);
return;
}
/*
* There are ordered bios in flight, so we need to submit
* bios through the task queue to enforce ordering.
*/
mtx_lock(&ndisk->bioqlock);
bioq_insert_tail(&ndisk->bioq, bp);
mtx_unlock(&ndisk->bioqlock);
taskqueue_enqueue(ndisk->tq, &ndisk->bioqtask);
}
static void
nvd_gone(struct nvd_disk *ndisk)
{
struct bio *bp;
printf(NVD_STR"%u: detached\n", ndisk->unit);
mtx_lock(&ndisk->bioqlock);
disk_gone(ndisk->disk);
while ((bp = bioq_takefirst(&ndisk->bioq)) != NULL) {
if (__predict_false(bp->bio_flags & BIO_ORDERED))
atomic_add_int(&ndisk->ordered_in_flight, -1);
bp->bio_error = ENXIO;
bp->bio_flags |= BIO_ERROR;
bp->bio_resid = bp->bio_bcount;
biodone(bp);
}
mtx_unlock(&ndisk->bioqlock);
}
static void
nvd_gonecb(struct disk *dp)
{
struct nvd_disk *ndisk = (struct nvd_disk *)dp->d_drv1;
disk_destroy(ndisk->disk);
mtx_lock(&nvd_lock);
TAILQ_REMOVE(&disk_head, ndisk, global_tailq);
TAILQ_REMOVE(&ndisk->ctrlr->disk_head, ndisk, ctrlr_tailq);
if (TAILQ_EMPTY(&ndisk->ctrlr->disk_head))
wakeup(&ndisk->ctrlr->disk_head);
mtx_unlock(&nvd_lock);
taskqueue_free(ndisk->tq);
mtx_destroy(&ndisk->bioqlock);
free(ndisk, M_NVD);
}
static int
nvd_ioctl(struct disk *dp, u_long cmd, void *data, int fflag,
struct thread *td)
{
struct nvd_disk *ndisk = dp->d_drv1;
return (nvme_ns_ioctl_process(ndisk->ns, cmd, data, fflag, td));
}
static int
nvd_dump(void *arg, void *virt, vm_offset_t phys, off_t offset, size_t len)
{
struct disk *dp = arg;
struct nvd_disk *ndisk = dp->d_drv1;
return (nvme_ns_dump(ndisk->ns, virt, offset, len));
}
static int
nvd_getattr(struct bio *bp)
{
struct nvd_disk *ndisk = (struct nvd_disk *)bp->bio_disk->d_drv1;
const struct nvme_namespace_data *nsdata;
u_int i;
if (!strcmp("GEOM::lunid", bp->bio_attribute)) {
nsdata = nvme_ns_get_data(ndisk->ns);
/* Try to return NGUID as lunid. */
for (i = 0; i < sizeof(nsdata->nguid); i++) {
if (nsdata->nguid[i] != 0)
break;
}
if (i < sizeof(nsdata->nguid)) {
if (bp->bio_length < sizeof(nsdata->nguid) * 2 + 1)
return (EFAULT);
for (i = 0; i < sizeof(nsdata->nguid); i++) {
sprintf(&bp->bio_data[i * 2], "%02x",
nsdata->nguid[i]);
}
bp->bio_completed = bp->bio_length;
return (0);
}
/* Try to return EUI64 as lunid. */
for (i = 0; i < sizeof(nsdata->eui64); i++) {
if (nsdata->eui64[i] != 0)
break;
}
if (i < sizeof(nsdata->eui64)) {
if (bp->bio_length < sizeof(nsdata->eui64) * 2 + 1)
return (EFAULT);
for (i = 0; i < sizeof(nsdata->eui64); i++) {
sprintf(&bp->bio_data[i * 2], "%02x",
nsdata->eui64[i]);
}
bp->bio_completed = bp->bio_length;
return (0);
}
}
return (-1);
}
static void
nvd_done(void *arg, const struct nvme_completion *cpl)
{
struct bio *bp = (struct bio *)arg;
struct nvd_disk *ndisk = bp->bio_disk->d_drv1;
if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
atomic_add_int(&ndisk->cur_depth, -NVD_ODEPTH);
atomic_add_int(&ndisk->ordered_in_flight, -1);
wakeup(&ndisk->cur_depth);
} else {
if (atomic_fetchadd_int(&ndisk->cur_depth, -1) == 1 &&
__predict_false(ndisk->ordered_in_flight != 0))
wakeup(&ndisk->cur_depth);
}
biodone(bp);
}
static void
nvd_bioq_process(void *arg, int pending)
{
struct nvd_disk *ndisk = arg;
struct bio *bp;
for (;;) {
mtx_lock(&ndisk->bioqlock);
bp = bioq_takefirst(&ndisk->bioq);
mtx_unlock(&ndisk->bioqlock);
if (bp == NULL)
break;
if (__predict_false(bp->bio_flags & BIO_ORDERED)) {
/*
* bio with BIO_ORDERED flag set must be executed
* after all previous bios.
*/
while (ndisk->cur_depth > 0)
tsleep(&ndisk->cur_depth, 0, "nvdorb", 1);
} else {
/*
* bio with BIO_ORDERED flag set must be completed
* before proceeding with additional bios.
*/
while (ndisk->cur_depth >= NVD_ODEPTH)
tsleep(&ndisk->cur_depth, 0, "nvdora", 1);
}
nvd_bio_submit(ndisk, bp);
}
}
static void *
nvd_new_controller(struct nvme_controller *ctrlr)
{
struct nvd_controller *nvd_ctrlr;
nvd_ctrlr = malloc(sizeof(struct nvd_controller), M_NVD,
M_ZERO | M_WAITOK);
nvd_ctrlr->ctrlr = ctrlr;
TAILQ_INIT(&nvd_ctrlr->disk_head);
mtx_lock(&nvd_lock);
TAILQ_INSERT_TAIL(&ctrlr_head, nvd_ctrlr, tailq);
mtx_unlock(&nvd_lock);
return (nvd_ctrlr);
}
static void *
nvd_new_disk(struct nvme_namespace *ns, void *ctrlr_arg)
{
uint8_t descr[NVME_MODEL_NUMBER_LENGTH+1];
struct nvd_disk *ndisk, *tnd;
struct disk *disk;
struct nvd_controller *ctrlr = ctrlr_arg;
device_t dev = ctrlr->ctrlr->dev;
int unit;
ndisk = malloc(sizeof(struct nvd_disk), M_NVD, M_ZERO | M_WAITOK);
ndisk->ctrlr = ctrlr;
ndisk->ns = ns;
ndisk->cur_depth = 0;
ndisk->ordered_in_flight = 0;
mtx_init(&ndisk->bioqlock, "nvd bioq lock", NULL, MTX_DEF);
bioq_init(&ndisk->bioq);
TASK_INIT(&ndisk->bioqtask, 0, nvd_bioq_process, ndisk);
mtx_lock(&nvd_lock);
unit = 0;
TAILQ_FOREACH(tnd, &disk_head, global_tailq) {
if (tnd->unit > unit)
break;
unit = tnd->unit + 1;
}
ndisk->unit = unit;
if (tnd != NULL)
TAILQ_INSERT_BEFORE(tnd, ndisk, global_tailq);
else
TAILQ_INSERT_TAIL(&disk_head, ndisk, global_tailq);
TAILQ_INSERT_TAIL(&ctrlr->disk_head, ndisk, ctrlr_tailq);
mtx_unlock(&nvd_lock);
ndisk->tq = taskqueue_create("nvd_taskq", M_WAITOK,
taskqueue_thread_enqueue, &ndisk->tq);
taskqueue_start_threads(&ndisk->tq, 1, PI_DISK, "nvd taskq");
disk = ndisk->disk = disk_alloc();
disk->d_strategy = nvd_strategy;
disk->d_ioctl = nvd_ioctl;
disk->d_dump = nvd_dump;
disk->d_getattr = nvd_getattr;
disk->d_gone = nvd_gonecb;
disk->d_name = NVD_STR;
disk->d_unit = ndisk->unit;
disk->d_drv1 = ndisk;
disk->d_sectorsize = nvme_ns_get_sector_size(ns);
disk->d_mediasize = (off_t)nvme_ns_get_size(ns);
disk->d_maxsize = nvme_ns_get_max_io_xfer_size(ns);
disk->d_delmaxsize = (off_t)nvme_ns_get_size(ns);
if (disk->d_delmaxsize > nvd_delete_max)
disk->d_delmaxsize = nvd_delete_max;
disk->d_stripesize = nvme_ns_get_stripesize(ns);
disk->d_flags = DISKFLAG_UNMAPPED_BIO | DISKFLAG_DIRECT_COMPLETION;
if (nvme_ns_get_flags(ns) & NVME_NS_DEALLOCATE_SUPPORTED)
disk->d_flags |= DISKFLAG_CANDELETE;
if (nvme_ns_get_flags(ns) & NVME_NS_FLUSH_SUPPORTED)
disk->d_flags |= DISKFLAG_CANFLUSHCACHE;
/*
* d_ident and d_descr are both far bigger than the length of either
* the serial or model number strings.
*/
nvme_strvis(disk->d_ident, nvme_ns_get_serial_number(ns),
sizeof(disk->d_ident), NVME_SERIAL_NUMBER_LENGTH);
nvme_strvis(descr, nvme_ns_get_model_number(ns), sizeof(descr),
NVME_MODEL_NUMBER_LENGTH);
strlcpy(disk->d_descr, descr, sizeof(descr));
disk->d_hba_vendor = pci_get_vendor(dev);
disk->d_hba_device = pci_get_device(dev);
disk->d_hba_subvendor = pci_get_subvendor(dev);
disk->d_hba_subdevice = pci_get_subdevice(dev);
disk->d_rotation_rate = DISK_RR_NON_ROTATING;
strlcpy(disk->d_attachment, device_get_nameunit(dev),
sizeof(disk->d_attachment));
disk_create(disk, DISK_VERSION);
printf(NVD_STR"%u: <%s> NVMe namespace\n", disk->d_unit, descr);
printf(NVD_STR"%u: %juMB (%ju %u byte sectors)\n", disk->d_unit,
(uintmax_t)disk->d_mediasize / (1024*1024),
(uintmax_t)disk->d_mediasize / disk->d_sectorsize,
disk->d_sectorsize);
return (ndisk);
}
static void
nvd_controller_fail(void *ctrlr_arg)
{
struct nvd_controller *ctrlr = ctrlr_arg;
struct nvd_disk *ndisk;
mtx_lock(&nvd_lock);
TAILQ_REMOVE(&ctrlr_head, ctrlr, tailq);
TAILQ_FOREACH(ndisk, &ctrlr->disk_head, ctrlr_tailq)
nvd_gone(ndisk);
while (!TAILQ_EMPTY(&ctrlr->disk_head))
msleep(&ctrlr->disk_head, &nvd_lock, 0, "nvd_fail", 0);
mtx_unlock(&nvd_lock);
free(ctrlr, M_NVD);
}