freebsd-nq/sys/dev/nvdimm/nvdimm.c
Kyle Evans c79cee7136 kernel: provide panicky version of __unreachable
__builtin_unreachable doesn't raise any compile-time warnings/errors on its
own, so problems with its usage can't be easily detected. While it would be
nice for this situation to change and compilers to at least add a warning
for trivial cases where local state means the instruction can't be reached,
this isn't the case at the moment and likely will not happen.

This commit adds an __assert_unreachable, whose intent is incredibly clear:
it asserts that this instruction is unreachable. On INVARIANTS builds, it's
a panic(), and on non-INVARIANTS it expands to  __unreachable().

Existing users of __unreachable() are converted to __assert_unreachable,
to improve debuggability if this assumption is violated.

Reviewed by:	mjg
Differential Revision:	https://reviews.freebsd.org/D23793
2020-05-13 18:07:37 +00:00

414 lines
11 KiB
C

/*-
* Copyright (c) 2017 The FreeBSD Foundation
* All rights reserved.
* Copyright (c) 2018, 2019 Intel Corporation
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_acpi.h"
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bitstring.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/uuid.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <contrib/dev/acpica/include/acuuid.h>
#include <dev/acpica/acpivar.h>
#include <dev/nvdimm/nvdimm_var.h>
#define _COMPONENT ACPI_OEM
ACPI_MODULE_NAME("NVDIMM")
static struct uuid intel_nvdimm_dsm_uuid =
{0x4309AC30,0x0D11,0x11E4,0x91,0x91,{0x08,0x00,0x20,0x0C,0x9A,0x66}};
#define INTEL_NVDIMM_DSM_REV 1
#define INTEL_NVDIMM_DSM_GET_LABEL_SIZE 4
#define INTEL_NVDIMM_DSM_GET_LABEL_DATA 5
static devclass_t nvdimm_devclass;
MALLOC_DEFINE(M_NVDIMM, "nvdimm", "NVDIMM driver memory");
static int
read_label_area_size(struct nvdimm_dev *nv)
{
ACPI_OBJECT *result_buffer;
ACPI_HANDLE handle;
ACPI_STATUS status;
ACPI_BUFFER result;
uint32_t *out;
int error;
handle = nvdimm_root_get_acpi_handle(nv->nv_dev);
if (handle == NULL)
return (ENODEV);
result.Length = ACPI_ALLOCATE_BUFFER;
result.Pointer = NULL;
status = acpi_EvaluateDSM(handle, (uint8_t *)&intel_nvdimm_dsm_uuid,
INTEL_NVDIMM_DSM_REV, INTEL_NVDIMM_DSM_GET_LABEL_SIZE, NULL,
&result);
error = ENXIO;
if (ACPI_SUCCESS(status) && result.Pointer != NULL &&
result.Length >= sizeof(ACPI_OBJECT)) {
result_buffer = result.Pointer;
if (result_buffer->Type == ACPI_TYPE_BUFFER &&
result_buffer->Buffer.Length >= 12) {
out = (uint32_t *)result_buffer->Buffer.Pointer;
nv->label_area_size = out[1];
nv->max_label_xfer = out[2];
error = 0;
}
}
if (result.Pointer != NULL)
AcpiOsFree(result.Pointer);
return (error);
}
static int
read_label_area(struct nvdimm_dev *nv, uint8_t *dest, off_t offset,
off_t length)
{
ACPI_BUFFER result;
ACPI_HANDLE handle;
ACPI_OBJECT params_pkg, params_buf, *result_buf;
ACPI_STATUS status;
uint32_t params[2];
off_t to_read;
int error;
error = 0;
handle = nvdimm_root_get_acpi_handle(nv->nv_dev);
if (offset < 0 || length <= 0 ||
offset + length > nv->label_area_size ||
handle == NULL)
return (ENODEV);
params_pkg.Type = ACPI_TYPE_PACKAGE;
params_pkg.Package.Count = 1;
params_pkg.Package.Elements = &params_buf;
params_buf.Type = ACPI_TYPE_BUFFER;
params_buf.Buffer.Length = sizeof(params);
params_buf.Buffer.Pointer = (UINT8 *)params;
while (length > 0) {
to_read = MIN(length, nv->max_label_xfer);
params[0] = offset;
params[1] = to_read;
result.Length = ACPI_ALLOCATE_BUFFER;
result.Pointer = NULL;
status = acpi_EvaluateDSM(handle,
(uint8_t *)&intel_nvdimm_dsm_uuid, INTEL_NVDIMM_DSM_REV,
INTEL_NVDIMM_DSM_GET_LABEL_DATA, &params_pkg, &result);
if (ACPI_FAILURE(status) ||
result.Length < sizeof(ACPI_OBJECT) ||
result.Pointer == NULL) {
error = ENXIO;
break;
}
result_buf = (ACPI_OBJECT *)result.Pointer;
if (result_buf->Type != ACPI_TYPE_BUFFER ||
result_buf->Buffer.Pointer == NULL ||
result_buf->Buffer.Length != 4 + to_read ||
((uint16_t *)result_buf->Buffer.Pointer)[0] != 0) {
error = ENXIO;
break;
}
bcopy(result_buf->Buffer.Pointer + 4, dest, to_read);
dest += to_read;
offset += to_read;
length -= to_read;
if (result.Pointer != NULL) {
AcpiOsFree(result.Pointer);
result.Pointer = NULL;
}
}
if (result.Pointer != NULL)
AcpiOsFree(result.Pointer);
return (error);
}
static uint64_t
fletcher64(const void *data, size_t length)
{
size_t i;
uint32_t a, b;
const uint32_t *d;
a = 0;
b = 0;
d = (const uint32_t *)data;
length = length / sizeof(uint32_t);
for (i = 0; i < length; i++) {
a += d[i];
b += a;
}
return ((uint64_t)b << 32 | a);
}
static bool
label_index_is_valid(struct nvdimm_label_index *index, uint32_t max_labels,
size_t size, size_t offset)
{
uint64_t checksum;
index = (struct nvdimm_label_index *)((uint8_t *)index + size * offset);
if (strcmp(index->signature, NVDIMM_INDEX_BLOCK_SIGNATURE) != 0)
return false;
checksum = index->checksum;
index->checksum = 0;
if (checksum != fletcher64(index, size) ||
index->this_offset != size * offset || index->this_size != size ||
index->other_offset != size * (offset == 0 ? 1 : 0) ||
index->seq == 0 || index->seq > 3 || index->slot_cnt > max_labels ||
index->label_size != 1)
return false;
return true;
}
static int
read_label(struct nvdimm_dev *nv, int num)
{
struct nvdimm_label_entry *entry, *i, *next;
uint64_t checksum;
off_t offset;
int error;
offset = nv->label_index->label_offset +
num * (128 << nv->label_index->label_size);
entry = malloc(sizeof(*entry), M_NVDIMM, M_WAITOK);
error = read_label_area(nv, (uint8_t *)&entry->label, offset,
sizeof(struct nvdimm_label));
if (error != 0) {
free(entry, M_NVDIMM);
return (error);
}
checksum = entry->label.checksum;
entry->label.checksum = 0;
if (checksum != fletcher64(&entry->label, sizeof(entry->label)) ||
entry->label.slot != num) {
free(entry, M_NVDIMM);
return (ENXIO);
}
/* Insertion ordered by dimm_phys_addr */
if (SLIST_EMPTY(&nv->labels) ||
entry->label.dimm_phys_addr <=
SLIST_FIRST(&nv->labels)->label.dimm_phys_addr) {
SLIST_INSERT_HEAD(&nv->labels, entry, link);
return (0);
}
SLIST_FOREACH_SAFE(i, &nv->labels, link, next) {
if (next == NULL ||
entry->label.dimm_phys_addr <= next->label.dimm_phys_addr) {
SLIST_INSERT_AFTER(i, entry, link);
return (0);
}
}
__assert_unreachable();
}
static int
read_labels(struct nvdimm_dev *nv)
{
struct nvdimm_label_index *indices, *index1;
size_t bitfield_size, index_size, num_labels;
int error, n;
bool index_0_valid, index_1_valid;
for (index_size = 256; ; index_size += 256) {
num_labels = 8 * (index_size -
sizeof(struct nvdimm_label_index));
if (index_size + num_labels * sizeof(struct nvdimm_label) >=
nv->label_area_size)
break;
}
num_labels = (nv->label_area_size - index_size) /
sizeof(struct nvdimm_label);
bitfield_size = roundup2(num_labels, 8) / 8;
indices = malloc(2 * index_size, M_NVDIMM, M_WAITOK);
index1 = (void *)((uint8_t *)indices + index_size);
error = read_label_area(nv, (void *)indices, 0, 2 * index_size);
if (error != 0) {
free(indices, M_NVDIMM);
return (error);
}
index_0_valid = label_index_is_valid(indices, num_labels, index_size,
0);
index_1_valid = label_index_is_valid(indices, num_labels, index_size,
1);
if (!index_0_valid && !index_1_valid) {
free(indices, M_NVDIMM);
return (ENXIO);
}
if (index_0_valid && index_1_valid) {
if (((int)indices->seq - (int)index1->seq + 3) % 3 == 1) {
/* index 0 was more recently updated */
index_1_valid = false;
} else {
/*
* either index 1 was more recently updated,
* or the sequence numbers are equal, in which
* case the specification says the block with
* the higher offset is to be treated as valid
*/
index_0_valid = false;
}
}
nv->label_index = malloc(index_size, M_NVDIMM, M_WAITOK);
bcopy(index_0_valid ? indices : index1, nv->label_index, index_size);
free(indices, M_NVDIMM);
bit_ffc_at((bitstr_t *)nv->label_index->free, 0,
nv->label_index->slot_cnt, &n);
while (n >= 0) {
read_label(nv, n);
bit_ffc_at((bitstr_t *)nv->label_index->free, n + 1,
nv->label_index->slot_cnt, &n);
}
return (0);
}
struct nvdimm_dev *
nvdimm_find_by_handle(nfit_handle_t nv_handle)
{
struct nvdimm_dev *res;
device_t *dimms;
int i, error, num_dimms;
res = NULL;
error = devclass_get_devices(nvdimm_devclass, &dimms, &num_dimms);
if (error != 0)
return (NULL);
for (i = 0; i < num_dimms; i++) {
if (nvdimm_root_get_device_handle(dimms[i]) == nv_handle) {
res = device_get_softc(dimms[i]);
break;
}
}
free(dimms, M_TEMP);
return (res);
}
static int
nvdimm_probe(device_t dev)
{
return (BUS_PROBE_NOWILDCARD);
}
static int
nvdimm_attach(device_t dev)
{
struct nvdimm_dev *nv;
ACPI_TABLE_NFIT *nfitbl;
ACPI_HANDLE handle;
ACPI_STATUS status;
int error;
nv = device_get_softc(dev);
handle = nvdimm_root_get_acpi_handle(dev);
MPASS(handle != NULL);
nv->nv_dev = dev;
nv->nv_handle = nvdimm_root_get_device_handle(dev);
status = AcpiGetTable(ACPI_SIG_NFIT, 1, (ACPI_TABLE_HEADER **)&nfitbl);
if (ACPI_FAILURE(status)) {
if (bootverbose)
device_printf(dev, "cannot get NFIT\n");
return (ENXIO);
}
acpi_nfit_get_flush_addrs(nfitbl, nv->nv_handle, &nv->nv_flush_addr,
&nv->nv_flush_addr_cnt);
AcpiPutTable(&nfitbl->Header);
error = read_label_area_size(nv);
if (error == 0) {
/*
* Ignoring errors reading labels. Not all NVDIMMs
* support labels and namespaces.
*/
read_labels(nv);
}
return (0);
}
static int
nvdimm_detach(device_t dev)
{
struct nvdimm_dev *nv;
struct nvdimm_label_entry *label, *next;
nv = device_get_softc(dev);
free(nv->nv_flush_addr, M_NVDIMM);
free(nv->label_index, M_NVDIMM);
SLIST_FOREACH_SAFE(label, &nv->labels, link, next) {
SLIST_REMOVE_HEAD(&nv->labels, link);
free(label, M_NVDIMM);
}
return (0);
}
static int
nvdimm_suspend(device_t dev)
{
return (0);
}
static int
nvdimm_resume(device_t dev)
{
return (0);
}
static device_method_t nvdimm_methods[] = {
DEVMETHOD(device_probe, nvdimm_probe),
DEVMETHOD(device_attach, nvdimm_attach),
DEVMETHOD(device_detach, nvdimm_detach),
DEVMETHOD(device_suspend, nvdimm_suspend),
DEVMETHOD(device_resume, nvdimm_resume),
DEVMETHOD_END
};
static driver_t nvdimm_driver = {
"nvdimm",
nvdimm_methods,
sizeof(struct nvdimm_dev),
};
DRIVER_MODULE(nvdimm, nvdimm_acpi_root, nvdimm_driver, nvdimm_devclass, NULL,
NULL);
MODULE_DEPEND(nvdimm, acpi, 1, 1, 1);