freebsd-nq/sys/i386/isa/sound/sequencer.c

1989 lines
40 KiB
C

/*
* sound/sequencer.c
*
* The sequencer personality manager.
*
* Copyright by Hannu Savolainen 1993
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer. 2.
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#define SEQUENCER_C
#include "sound_config.h"
#include "midi_ctrl.h"
extern void seq_drain_midi_queues __P((void));
#ifdef CONFIGURE_SOUNDCARD
#ifndef EXCLUDE_SEQUENCER
static int sequencer_ok = 0;
static struct sound_timer_operations *tmr;
static int tmr_no = -1; /* Currently selected timer */
static int pending_timer = -1; /* For timer change operation */
/*
* Local counts for number of synth and MIDI devices. These are initialized
* by the sequencer_open.
*/
static int max_mididev = 0;
static int max_synthdev = 0;
/*
* The seq_mode gives the operating mode of the sequencer:
* 1 = level1 (the default)
* 2 = level2 (extended capabilites)
*/
#define SEQ_1 1
#define SEQ_2 2
static int seq_mode = SEQ_1;
DEFINE_WAIT_QUEUE (seq_sleeper, seq_sleep_flag);
DEFINE_WAIT_QUEUE (midi_sleeper, midi_sleep_flag);
static int midi_opened[MAX_MIDI_DEV] =
{0};
static int midi_written[MAX_MIDI_DEV] =
{0};
unsigned long prev_input_time = 0;
int prev_event_time;
unsigned long seq_time = 0;
#include "tuning.h"
#define EV_SZ 8
#define IEV_SZ 8
static unsigned char *queue = NULL;
static unsigned char *iqueue = NULL;
static volatile int qhead = 0, qtail = 0, qlen = 0;
static volatile int iqhead = 0, iqtail = 0, iqlen = 0;
static volatile int seq_playing = 0;
static int sequencer_busy = 0;
static int output_treshold;
static int pre_event_timeout;
static unsigned synth_open_mask;
static int seq_queue (unsigned char *note, char nonblock);
static void seq_startplay (void);
static int seq_sync (void);
static void seq_reset (void);
static int pmgr_present[MAX_SYNTH_DEV] =
{0};
#if MAX_SYNTH_DEV > 15
#error Too many synthesizer devices enabled.
#endif
int
sequencer_read (int dev, struct fileinfo *file, snd_rw_buf * buf, int count)
{
int c = count, p = 0;
int ev_len;
unsigned long flags;
dev = dev >> 4;
ev_len = seq_mode == SEQ_1 ? 4 : 8;
if (dev) /*
* Patch manager device
*/
return pmgr_read (dev - 1, file, buf, count);
DISABLE_INTR (flags);
if (!iqlen)
{
if (ISSET_FILE_FLAG (file, O_NONBLOCK))
{
RESTORE_INTR (flags);
return RET_ERROR (EAGAIN);
}
DO_SLEEP (midi_sleeper, midi_sleep_flag, pre_event_timeout);
if (!iqlen)
{
RESTORE_INTR (flags);
return 0;
}
}
while (iqlen && c >= ev_len)
{
COPY_TO_USER (buf, p, &iqueue[iqhead * IEV_SZ], ev_len);
p += ev_len;
c -= ev_len;
iqhead = (iqhead + 1) % SEQ_MAX_QUEUE;
iqlen--;
}
RESTORE_INTR (flags);
return count - c;
}
static void
sequencer_midi_output (int dev)
{
/*
* Currently NOP
*/
}
void
seq_copy_to_input (unsigned char *event, int len)
{
unsigned long flags;
/*
* Verify that the len is valid for the current mode.
*/
if (len != 4 && len != 8)
return;
if ((seq_mode == SEQ_1) != (len == 4))
return;
if (iqlen >= (SEQ_MAX_QUEUE - 1))
return; /* Overflow */
DISABLE_INTR (flags);
memcpy (&iqueue[iqtail * IEV_SZ], event, len);
iqlen++;
iqtail = (iqtail + 1) % SEQ_MAX_QUEUE;
if (SOMEONE_WAITING (midi_sleeper, midi_sleep_flag))
{
WAKE_UP (midi_sleeper, midi_sleep_flag);
}
RESTORE_INTR (flags);
#if defined(__FreeBSD__)
if (selinfo[0].si_pid)
selwakeup(&selinfo[0]);
#endif
}
static void
sequencer_midi_input (int dev, unsigned char data)
{
unsigned int tstamp;
unsigned char event[4];
if (data == 0xfe) /* Ignore active sensing */
return;
tstamp = GET_TIME () - seq_time;
if (tstamp != prev_input_time)
{
tstamp = (tstamp << 8) | SEQ_WAIT;
seq_copy_to_input ((unsigned char *) &tstamp, 4);
prev_input_time = tstamp;
}
event[0] = SEQ_MIDIPUTC;
event[1] = data;
event[2] = dev;
event[3] = 0;
seq_copy_to_input (event, 4);
}
void
seq_input_event (unsigned char *event, int len)
{
unsigned long this_time;
if (seq_mode == SEQ_2)
this_time = tmr->get_time (tmr_no);
else
this_time = GET_TIME () - seq_time;
if (this_time != prev_input_time)
{
unsigned char tmp_event[8];
tmp_event[0] = EV_TIMING;
tmp_event[1] = TMR_WAIT_ABS;
tmp_event[2] = 0;
tmp_event[3] = 0;
*(unsigned long *) &tmp_event[4] = this_time;
seq_copy_to_input (tmp_event, 8);
prev_input_time = this_time;
}
seq_copy_to_input (event, len);
}
int
sequencer_write (int dev, struct fileinfo *file, snd_rw_buf * buf, int count)
{
unsigned char event[EV_SZ], ev_code;
int p = 0, c, ev_size;
int err;
int mode = file->mode & O_ACCMODE;
dev = dev >> 4;
DEB (printk ("sequencer_write(dev=%d, count=%d)\n", dev, count));
if (mode == OPEN_READ)
return RET_ERROR (EIO);
if (dev) /*
* Patch manager device
*/
return pmgr_write (dev - 1, file, buf, count);
c = count;
while (c >= 4)
{
COPY_FROM_USER (event, buf, p, 4);
ev_code = event[0];
if (ev_code == SEQ_FULLSIZE)
{
int err;
dev = *(unsigned short *) &event[2];
if (dev < 0 || dev >= max_synthdev)
return RET_ERROR (ENXIO);
if (!(synth_open_mask & (1 << dev)))
return RET_ERROR (ENXIO);
err = synth_devs[dev]->load_patch (dev, *(short *) &event[0], buf, p + 4, c, 0);
if (err < 0)
return err;
return err;
}
if (ev_code >= 128)
{
if (seq_mode == SEQ_2 && ev_code == SEQ_EXTENDED)
{
printk ("Sequencer: Invalid level 2 event %x\n", ev_code);
return RET_ERROR (EINVAL);
}
ev_size = 8;
if (c < ev_size)
{
if (!seq_playing)
seq_startplay ();
return count - c;
}
COPY_FROM_USER (&event[4], buf, p + 4, 4);
}
else
{
if (seq_mode == SEQ_2)
{
printk ("Sequencer: 4 byte event in level 2 mode\n");
return RET_ERROR (EINVAL);
}
ev_size = 4;
}
if (event[0] == SEQ_MIDIPUTC)
{
if (!midi_opened[event[2]])
{
int mode;
int dev = event[2];
if (dev >= max_mididev)
{
printk ("Sequencer Error: Nonexistent MIDI device %d\n", dev);
return RET_ERROR (ENXIO);
}
mode = file->mode & O_ACCMODE;
if ((err = midi_devs[dev]->open (dev, mode,
sequencer_midi_input, sequencer_midi_output)) < 0)
{
seq_reset ();
printk ("Sequencer Error: Unable to open Midi #%d\n", dev);
return err;
}
midi_opened[dev] = 1;
}
}
if (!seq_queue (event, ISSET_FILE_FLAG (file, O_NONBLOCK)))
{
int processed = count - c;
if (!seq_playing)
seq_startplay ();
if (!processed && ISSET_FILE_FLAG (file, O_NONBLOCK))
return RET_ERROR (EAGAIN);
else
return processed;
}
p += ev_size;
c -= ev_size;
}
if (!seq_playing)
seq_startplay ();
return count; /* This will "eat" chunks shorter than 4 bytes (if written
* alone) Should we really do that ?
*/
}
static int
seq_queue (unsigned char *note, char nonblock)
{
/*
* Test if there is space in the queue
*/
if (qlen >= SEQ_MAX_QUEUE)
if (!seq_playing)
seq_startplay (); /*
* Give chance to drain the queue
*/
if (!nonblock && qlen >= SEQ_MAX_QUEUE && !SOMEONE_WAITING (seq_sleeper, seq_sleep_flag))
{
/*
* Sleep until there is enough space on the queue
*/
DO_SLEEP (seq_sleeper, seq_sleep_flag, 0);
}
if (qlen >= SEQ_MAX_QUEUE)
{
return 0; /*
* To be sure
*/
}
memcpy (&queue[qtail * EV_SZ], note, EV_SZ);
qtail = (qtail + 1) % SEQ_MAX_QUEUE;
qlen++;
return 1;
}
static int
extended_event (unsigned char *q)
{
int dev = q[2];
if (dev < 0 || dev >= max_synthdev)
return RET_ERROR (ENXIO);
if (!(synth_open_mask & (1 << dev)))
return RET_ERROR (ENXIO);
switch (q[1])
{
case SEQ_NOTEOFF:
synth_devs[dev]->kill_note (dev, q[3], q[4], q[5]);
break;
case SEQ_NOTEON:
if (q[4] > 127 && q[4] != 255)
return 0;
synth_devs[dev]->start_note (dev, q[3], q[4], q[5]);
break;
case SEQ_PGMCHANGE:
synth_devs[dev]->set_instr (dev, q[3], q[4]);
break;
case SEQ_AFTERTOUCH:
synth_devs[dev]->aftertouch (dev, q[3], q[4]);
break;
case SEQ_BALANCE:
synth_devs[dev]->panning (dev, q[3], (char) q[4]);
break;
case SEQ_CONTROLLER:
synth_devs[dev]->controller (dev, q[3], q[4], *(short *) &q[5]);
break;
case SEQ_VOLMODE:
if (synth_devs[dev]->volume_method != NULL)
synth_devs[dev]->volume_method (dev, q[3]);
break;
default:
return RET_ERROR (EINVAL);
}
return 0;
}
static int
find_voice (int dev, int chn, int note)
{
unsigned short key;
int i;
key = (chn << 8) | (note + 1);
for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++)
if (synth_devs[dev]->alloc.map[i] == key)
return i;
return -1;
}
static int
alloc_voice (int dev, int chn, int note)
{
unsigned short key;
int voice;
key = (chn << 8) | (note + 1);
voice = synth_devs[dev]->alloc_voice (dev, chn, note,
&synth_devs[dev]->alloc);
synth_devs[dev]->alloc.map[voice] = key;
synth_devs[dev]->alloc.alloc_times[voice] =
synth_devs[dev]->alloc.timestamp++;
return voice;
}
static void
seq_chn_voice_event (unsigned char *event)
{
unsigned char dev = event[1];
unsigned char cmd = event[2];
unsigned char chn = event[3];
unsigned char note = event[4];
unsigned char parm = event[5];
int voice = -1;
if ((int) dev > max_synthdev)
return;
if (!(synth_open_mask & (1 << dev)))
return;
if (!synth_devs[dev])
return;
if (seq_mode == SEQ_2)
{
if (synth_devs[dev]->alloc_voice)
voice = find_voice (dev, chn, note);
if (cmd == MIDI_NOTEON && parm == 0)
{
cmd = MIDI_NOTEOFF;
parm = 64;
}
}
switch (cmd)
{
case MIDI_NOTEON:
if (note > 127 && note != 255) /* Not a seq2 feature */
return;
if (voice == -1 && seq_mode == SEQ_2 && synth_devs[dev]->alloc_voice)
{ /* Internal synthesizer (FM, GUS, etc) */
voice = alloc_voice (dev, chn, note);
}
if (voice == -1)
voice = chn;
if (seq_mode == SEQ_2 && dev < num_synths)
{
/*
* The MIDI channel 10 is a percussive channel. Use the note
* number to select the proper patch (128 to 255) to play.
*/
if (chn == 9)
{
synth_devs[dev]->set_instr (dev, voice, 128 + note);
note = 60; /* Middle C */
}
}
if (seq_mode == SEQ_2)
{
synth_devs[dev]->setup_voice (dev, voice, chn);
}
synth_devs[dev]->start_note (dev, voice, note, parm);
break;
case MIDI_NOTEOFF:
if (voice == -1)
voice = chn;
synth_devs[dev]->kill_note (dev, voice, note, parm);
break;
case MIDI_KEY_PRESSURE:
if (voice == -1)
voice = chn;
synth_devs[dev]->aftertouch (dev, voice, parm);
break;
default:;
}
}
static void
seq_chn_common_event (unsigned char *event)
{
unsigned char dev = event[1];
unsigned char cmd = event[2];
unsigned char chn = event[3];
unsigned char p1 = event[4];
/* unsigned char p2 = event[5]; */
unsigned short w14 = *(short *) &event[6];
if ((int) dev > max_synthdev)
return;
if (!(synth_open_mask & (1 << dev)))
return;
if (!synth_devs[dev])
return;
switch (cmd)
{
case MIDI_PGM_CHANGE:
if (seq_mode == SEQ_2)
{
synth_devs[dev]->chn_info[chn].pgm_num = p1;
if (dev >= num_synths)
synth_devs[dev]->set_instr (dev, chn, p1);
}
else
synth_devs[dev]->set_instr (dev, chn, p1);
break;
case MIDI_CTL_CHANGE:
if (seq_mode == SEQ_2)
{
if (chn > 15 || p1 > 127)
break;
synth_devs[dev]->chn_info[chn].controllers[p1] = w14 & 0x7f;
if (dev < num_synths)
{
int val = w14 & 0x7f;
int i, key;
if (p1 < 64) /* Combine MSB and LSB */
{
val = ((synth_devs[dev]->
chn_info[chn].controllers[p1 & ~32] & 0x7f) << 7)
| (synth_devs[dev]->
chn_info[chn].controllers[p1 | 32] & 0x7f);
p1 &= ~32;
}
/* Handle all playing notes on this channel */
key = (chn << 8);
for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++)
if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key)
synth_devs[dev]->controller (dev, i, p1, val);
}
else
synth_devs[dev]->controller (dev, chn, p1, w14);
}
else /* Mode 1 */
synth_devs[dev]->controller (dev, chn, p1, w14);
break;
case MIDI_PITCH_BEND:
if (seq_mode == SEQ_2)
{
synth_devs[dev]->chn_info[chn].bender_value = w14;
if (dev < num_synths)
{ /* Handle all playing notes on this channel */
int i, key;
key = (chn << 8);
for (i = 0; i < synth_devs[dev]->alloc.max_voice; i++)
if ((synth_devs[dev]->alloc.map[i] & 0xff00) == key)
synth_devs[dev]->bender (dev, i, w14);
}
else
synth_devs[dev]->bender (dev, chn, w14);
}
else /* MODE 1 */
synth_devs[dev]->bender (dev, chn, w14);
break;
default:;
}
}
static int
seq_timing_event (unsigned char *event)
{
unsigned char cmd = event[1];
unsigned int parm = *(int *) &event[4];
if (seq_mode == SEQ_2)
{
int ret;
if ((ret = tmr->event (tmr_no, event)) == TIMER_ARMED)
{
if ((SEQ_MAX_QUEUE - qlen) >= output_treshold)
{
unsigned long flags;
DISABLE_INTR (flags);
if (SOMEONE_WAITING (seq_sleeper, seq_sleep_flag))
{
WAKE_UP (seq_sleeper, seq_sleep_flag);
}
RESTORE_INTR (flags);
#if defined(__FreeBSD__)
/* must issue a wakeup for anyone waiting (select) XXX */
#endif
}
}
return ret;
}
switch (cmd)
{
case TMR_WAIT_REL:
parm += prev_event_time;
/*
* NOTE! No break here. Execution of TMR_WAIT_REL continues in the
* next case (TMR_WAIT_ABS)
*/
case TMR_WAIT_ABS:
if (parm > 0)
{
long time;
seq_playing = 1;
time = parm;
prev_event_time = time;
request_sound_timer (time);
if ((SEQ_MAX_QUEUE - qlen) >= output_treshold)
{
unsigned long flags;
DISABLE_INTR (flags);
if (SOMEONE_WAITING (seq_sleeper, seq_sleep_flag))
{
WAKE_UP (seq_sleeper, seq_sleep_flag);
}
RESTORE_INTR (flags);
#if defined(__FreeBSD__)
/* must issue a wakeup for select XXX */
#endif
}
return TIMER_ARMED;
}
break;
case TMR_START:
seq_time = GET_TIME ();
prev_input_time = 0;
prev_event_time = 0;
break;
case TMR_STOP:
break;
case TMR_CONTINUE:
break;
case TMR_TEMPO:
break;
case TMR_ECHO:
if (seq_mode == SEQ_2)
seq_copy_to_input (event, 8);
else
{
parm = (parm << 8 | SEQ_ECHO);
seq_copy_to_input ((unsigned char *) &parm, 4);
}
break;
default:;
}
return TIMER_NOT_ARMED;
}
static void
seq_local_event (unsigned char *event)
{
/* unsigned char cmd = event[1]; */
printk ("seq_local_event() called. WHY????????\n");
}
static int
play_event (unsigned char *q)
{
/*
* NOTE! This routine returns
* 0 = normal event played.
* 1 = Timer armed. Suspend playback until timer callback.
* 2 = MIDI output buffer full. Restore queue and suspend until timer
*/
unsigned long *delay;
switch (q[0])
{
case SEQ_NOTEOFF:
if (synth_open_mask & (1 << 0))
if (synth_devs[0])
synth_devs[0]->kill_note (0, q[1], 255, q[3]);
break;
case SEQ_NOTEON:
if (q[4] < 128 || q[4] == 255)
if (synth_open_mask & (1 << 0))
if (synth_devs[0])
synth_devs[0]->start_note (0, q[1], q[2], q[3]);
break;
case SEQ_WAIT:
delay = (unsigned long *) q; /*
* Bytes 1 to 3 are containing the *
* delay in GET_TIME()
*/
*delay = (*delay >> 8) & 0xffffff;
if (*delay > 0)
{
long time;
seq_playing = 1;
time = *delay;
prev_event_time = time;
request_sound_timer (time);
if ((SEQ_MAX_QUEUE - qlen) >= output_treshold)
{
unsigned long flags;
DISABLE_INTR (flags);
if (SOMEONE_WAITING (seq_sleeper, seq_sleep_flag))
{
WAKE_UP (seq_sleeper, seq_sleep_flag);
}
RESTORE_INTR (flags);
#if defined(__FreeBSD__)
/* must issue a wakeup for selects XXX */
#endif
}
/*
* The timer is now active and will reinvoke this function
* after the timer expires. Return to the caller now.
*/
return 1;
}
break;
case SEQ_PGMCHANGE:
if (synth_open_mask & (1 << 0))
if (synth_devs[0])
synth_devs[0]->set_instr (0, q[1], q[2]);
break;
case SEQ_SYNCTIMER: /*
* Reset timer
*/
seq_time = GET_TIME ();
prev_input_time = 0;
prev_event_time = 0;
break;
case SEQ_MIDIPUTC: /*
* Put a midi character
*/
if (midi_opened[q[2]])
{
int dev;
dev = q[2];
if (!midi_devs[dev]->putc (dev, q[1]))
{
/*
* Output FIFO is full. Wait one timer cycle and try again.
*/
seq_playing = 1;
request_sound_timer (-1);
return 2;
}
else
midi_written[dev] = 1;
}
break;
case SEQ_ECHO:
seq_copy_to_input (q, 4); /*
* Echo back to the process
*/
break;
case SEQ_PRIVATE:
if ((int) q[1] < max_synthdev)
synth_devs[q[1]]->hw_control (q[1], q);
break;
case SEQ_EXTENDED:
extended_event (q);
break;
case EV_CHN_VOICE:
seq_chn_voice_event (q);
break;
case EV_CHN_COMMON:
seq_chn_common_event (q);
break;
case EV_TIMING:
if (seq_timing_event (q) == TIMER_ARMED)
{
return 1;
}
break;
case EV_SEQ_LOCAL:
seq_local_event (q);
break;
default:;
}
return 0;
}
static void
seq_startplay (void)
{
unsigned long flags;
int this_one, action;
while (qlen > 0)
{
DISABLE_INTR (flags);
qhead = ((this_one = qhead) + 1) % SEQ_MAX_QUEUE;
qlen--;
RESTORE_INTR (flags);
seq_playing = 1;
if ((action = play_event (&queue[this_one * EV_SZ])))
{ /* Suspend playback. Next timer routine invokes this routine again */
if (action == 2)
{
qlen++;
qhead = this_one;
}
return;
}
}
seq_playing = 0;
if ((SEQ_MAX_QUEUE - qlen) >= output_treshold)
{
unsigned long flags;
DISABLE_INTR (flags);
if (SOMEONE_WAITING (seq_sleeper, seq_sleep_flag))
{
WAKE_UP (seq_sleeper, seq_sleep_flag);
}
RESTORE_INTR (flags);
#if defined(__FreeBSD__)
/* must issue a wakeup for selects XXX */
#endif
}
}
static void
reset_controllers (int dev, unsigned char *controller, int update_dev)
{
int i;
for (i = 0; i < 128; i++)
controller[i] = ctrl_def_values[i];
}
static void
setup_mode2 (void)
{
int dev;
max_synthdev = num_synths;
for (dev = 0; dev < num_midis; dev++)
if (midi_devs[dev]->converter != NULL)
{
synth_devs[max_synthdev++] =
midi_devs[dev]->converter;
}
for (dev = 0; dev < max_synthdev; dev++)
{
int chn;
for (chn = 0; chn < 16; chn++)
{
synth_devs[dev]->chn_info[chn].pgm_num = 0;
reset_controllers (dev,
synth_devs[dev]->chn_info[chn].controllers,
0);
synth_devs[dev]->chn_info[chn].bender_value = (1 << 7); /* Neutral */
}
}
max_mididev = 0;
seq_mode = SEQ_2;
}
int
sequencer_open (int dev, struct fileinfo *file)
{
int retval, mode, i;
int level, tmp;
level = ((dev & 0x0f) == SND_DEV_SEQ2) ? 2 : 1;
dev = dev >> 4;
mode = file->mode & O_ACCMODE;
DEB (printk ("sequencer_open(dev=%d)\n", dev));
if (!sequencer_ok)
{
printk ("Soundcard: Sequencer not initialized\n");
return RET_ERROR (ENXIO);
}
if (dev) /*
* Patch manager device
*/
{
int err;
dev--;
if (dev >= MAX_SYNTH_DEV)
return RET_ERROR (ENXIO);
if (pmgr_present[dev])
return RET_ERROR (EBUSY);
if ((err = pmgr_open (dev)) < 0)
return err; /*
* Failed
*/
pmgr_present[dev] = 1;
return err;
}
if (sequencer_busy)
{
printk ("Sequencer busy\n");
return RET_ERROR (EBUSY);
}
max_mididev = num_midis;
max_synthdev = num_synths;
pre_event_timeout = 0;
seq_mode = SEQ_1;
if (pending_timer != -1)
{
tmr_no = pending_timer;
pending_timer = -1;
}
if (tmr_no == -1) /* Not selected yet */
{
int i, best;
best = -1;
for (i = 0; i < num_sound_timers; i++)
if (sound_timer_devs[i]->priority > best)
{
tmr_no = i;
best = sound_timer_devs[i]->priority;
}
if (tmr_no == -1) /* Should not be */
tmr_no = 0;
}
tmr = sound_timer_devs[tmr_no];
if (level == 2)
{
if (tmr == NULL)
{
printk ("sequencer: No timer for level 2\n");
return RET_ERROR (ENXIO);
}
setup_mode2 ();
}
if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE))
if (!max_mididev)
{
printk ("Sequencer: No Midi devices. Input not possible\n");
return RET_ERROR (ENXIO);
}
if (!max_synthdev && !max_mididev)
return RET_ERROR (ENXIO);
synth_open_mask = 0;
for (i = 0; i < max_mididev; i++)
{
midi_opened[i] = 0;
midi_written[i] = 0;
}
/*
* if (mode == OPEN_WRITE || mode == OPEN_READWRITE)
*/
for (i = 0; i < max_synthdev; i++) /*
* Open synth devices
*/
if ((tmp = synth_devs[i]->open (i, mode)) < 0)
{
printk ("Sequencer: Warning! Cannot open synth device #%d (%d)\n", i, tmp);
if (synth_devs[i]->midi_dev)
printk ("(Maps to MIDI dev #%d)\n", synth_devs[i]->midi_dev);
}
else
{
synth_open_mask |= (1 << i);
if (synth_devs[i]->midi_dev) /*
* Is a midi interface
*/
midi_opened[synth_devs[i]->midi_dev] = 1;
}
seq_time = GET_TIME ();
prev_input_time = 0;
prev_event_time = 0;
if (seq_mode == SEQ_1 && (mode == OPEN_READ || mode == OPEN_READWRITE))
{ /*
* Initialize midi input devices
*/
for (i = 0; i < max_mididev; i++)
if (!midi_opened[i])
{
if ((retval = midi_devs[i]->open (i, mode,
sequencer_midi_input, sequencer_midi_output)) >= 0)
midi_opened[i] = 1;
}
}
if (seq_mode == SEQ_2)
{
tmr->open (tmr_no, seq_mode);
}
sequencer_busy = 1;
RESET_WAIT_QUEUE (seq_sleeper, seq_sleep_flag);
RESET_WAIT_QUEUE (midi_sleeper, midi_sleep_flag);
output_treshold = SEQ_MAX_QUEUE / 2;
for (i = 0; i < num_synths; i++)
if (pmgr_present[i])
pmgr_inform (i, PM_E_OPENED, 0, 0, 0, 0);
return 0;
}
void
seq_drain_midi_queues (void)
{
int i, n;
/*
* Give the Midi drivers time to drain their output queues
*/
n = 1;
while (!PROCESS_ABORTING (seq_sleeper, seq_sleep_flag) && n)
{
n = 0;
for (i = 0; i < max_mididev; i++)
if (midi_opened[i] && midi_written[i])
if (midi_devs[i]->buffer_status != NULL)
if (midi_devs[i]->buffer_status (i))
n++;
/*
* Let's have a delay
*/
if (n)
{
DO_SLEEP (seq_sleeper, seq_sleep_flag, HZ / 10);
}
}
}
void
sequencer_release (int dev, struct fileinfo *file)
{
int i;
int mode = file->mode & O_ACCMODE;
dev = dev >> 4;
DEB (printk ("sequencer_release(dev=%d)\n", dev));
if (dev) /*
* Patch manager device
*/
{
dev--;
pmgr_release (dev);
pmgr_present[dev] = 0;
return;
}
/*
* * Wait until the queue is empty (if we don't have nonblock)
*/
if (mode != OPEN_READ && !ISSET_FILE_FLAG (file, O_NONBLOCK))
while (!PROCESS_ABORTING (seq_sleeper, seq_sleep_flag) && qlen)
{
seq_sync ();
}
if (mode != OPEN_READ)
seq_drain_midi_queues (); /*
* Ensure the output queues are empty
*/
seq_reset ();
if (mode != OPEN_READ)
seq_drain_midi_queues (); /*
* Flush the all notes off messages
*/
for (i = 0; i < max_synthdev; i++)
if (synth_open_mask & (1 << i)) /*
* Actually opened
*/
if (synth_devs[i])
{
synth_devs[i]->close (i);
if (synth_devs[i]->midi_dev)
midi_opened[synth_devs[i]->midi_dev] = 0;
}
for (i = 0; i < num_synths; i++)
if (pmgr_present[i])
pmgr_inform (i, PM_E_CLOSED, 0, 0, 0, 0);
for (i = 0; i < max_mididev; i++)
if (midi_opened[i])
midi_devs[i]->close (i);
if (seq_mode == SEQ_2)
tmr->close (tmr_no);
sequencer_busy = 0;
}
static int
seq_sync (void)
{
unsigned long flags;
if (qlen && !seq_playing && !PROCESS_ABORTING (seq_sleeper, seq_sleep_flag))
seq_startplay ();
DISABLE_INTR (flags);
if (qlen && !SOMEONE_WAITING (seq_sleeper, seq_sleep_flag))
{
DO_SLEEP (seq_sleeper, seq_sleep_flag, 0);
}
RESTORE_INTR (flags);
return qlen;
}
static void
midi_outc (int dev, unsigned char data)
{
/*
* NOTE! Calls sleep(). Don't call this from interrupt.
*/
int n;
unsigned long flags;
/*
* This routine sends one byte to the Midi channel.
* If the output Fifo is full, it waits until there
* is space in the queue
*/
n = 3 * HZ; /* Timeout */
DISABLE_INTR (flags);
while (n && !midi_devs[dev]->putc (dev, data))
{
DO_SLEEP (seq_sleeper, seq_sleep_flag, 4);
n--;
}
RESTORE_INTR (flags);
}
static void
seq_reset (void)
{
/*
* NOTE! Calls sleep(). Don't call this from interrupt.
*/
int i;
int chn;
unsigned long flags;
sound_stop_timer ();
seq_time = GET_TIME ();
prev_input_time = 0;
prev_event_time = 0;
qlen = qhead = qtail = 0;
iqlen = iqhead = iqtail = 0;
for (i = 0; i < max_synthdev; i++)
if (synth_open_mask & (1 << i))
if (synth_devs[i])
synth_devs[i]->reset (i);
if (seq_mode == SEQ_2)
{
for (chn = 0; chn < 16; chn++)
for (i = 0; i < max_synthdev; i++)
if (synth_open_mask & (1 << i))
if (synth_devs[i])
{
synth_devs[i]->controller (i, chn, 123, 0); /* All notes off */
synth_devs[i]->controller (i, chn, 121, 0); /* Reset all ctl */
synth_devs[i]->bender (i, chn, 1 << 13); /* Bender off */
}
}
else
/* seq_mode == SEQ_1 */
{
for (i = 0; i < max_mididev; i++)
if (midi_written[i]) /*
* Midi used. Some notes may still be playing
*/
{
/*
* Sending just a ACTIVE SENSING message should be enough to stop all
* playing notes. Since there are devices not recognizing the
* active sensing, we have to send some all notes off messages also.
*/
midi_outc (i, 0xfe);
for (chn = 0; chn < 16; chn++)
{
midi_outc (i,
(unsigned char) (0xb0 + (chn & 0x0f))); /* control change */
midi_outc (i, 0x7b); /* All notes off */
midi_outc (i, 0); /* Dummy parameter */
}
midi_devs[i]->close (i);
midi_written[i] = 0;
midi_opened[i] = 0;
}
}
seq_playing = 0;
DISABLE_INTR (flags);
if (SOMEONE_WAITING (seq_sleeper, seq_sleep_flag))
{
/* printk ("Sequencer Warning: Unexpected sleeping process - Waking up\n"); */
WAKE_UP (seq_sleeper, seq_sleep_flag);
}
RESTORE_INTR (flags);
}
static void
seq_panic (void)
{
/*
* This routine is called by the application in case the user
* wants to reset the system to the default state.
*/
seq_reset ();
/*
* Since some of the devices don't recognize the active sensing and
* all notes off messages, we have to shut all notes manually.
*
* TO BE IMPLEMENTED LATER
*/
/*
* Also return the controllers to their default states
*/
}
int
sequencer_ioctl (int dev, struct fileinfo *file,
unsigned int cmd, unsigned int arg)
{
int midi_dev, orig_dev;
int mode = file->mode & O_ACCMODE;
orig_dev = dev = dev >> 4;
switch (cmd)
{
case SNDCTL_TMR_TIMEBASE:
case SNDCTL_TMR_TEMPO:
case SNDCTL_TMR_START:
case SNDCTL_TMR_STOP:
case SNDCTL_TMR_CONTINUE:
case SNDCTL_TMR_METRONOME:
case SNDCTL_TMR_SOURCE:
if (dev) /* Patch manager */
return RET_ERROR (EIO);
if (seq_mode != SEQ_2)
return RET_ERROR (EINVAL);
return tmr->ioctl (tmr_no, cmd, arg);
break;
case SNDCTL_TMR_SELECT:
if (dev) /* Patch manager */
return RET_ERROR (EIO);
if (seq_mode != SEQ_2)
return RET_ERROR (EINVAL);
pending_timer = IOCTL_IN (arg);
if (pending_timer < 0 || pending_timer >= num_sound_timers)
{
pending_timer = -1;
return RET_ERROR (EINVAL);
}
return IOCTL_OUT (arg, pending_timer);
break;
case SNDCTL_SEQ_PANIC:
seq_panic ();
break;
case SNDCTL_SEQ_SYNC:
if (dev) /*
* Patch manager
*/
return RET_ERROR (EIO);
if (mode == OPEN_READ)
return 0;
while (qlen && !PROCESS_ABORTING (seq_sleeper, seq_sleep_flag))
seq_sync ();
if (qlen)
return RET_ERROR (EINTR);
else
return 0;
break;
case SNDCTL_SEQ_RESET:
if (dev) /*
* Patch manager
*/
return RET_ERROR (EIO);
seq_reset ();
return 0;
break;
case SNDCTL_SEQ_TESTMIDI:
if (dev) /*
* Patch manager
*/
return RET_ERROR (EIO);
midi_dev = IOCTL_IN (arg);
if (midi_dev >= max_mididev)
return RET_ERROR (ENXIO);
if (!midi_opened[midi_dev])
{
int err, mode;
mode = file->mode & O_ACCMODE;
if ((err = midi_devs[midi_dev]->open (midi_dev, mode,
sequencer_midi_input,
sequencer_midi_output)) < 0)
return err;
}
midi_opened[midi_dev] = 1;
return 0;
break;
case SNDCTL_SEQ_GETINCOUNT:
if (dev) /*
* Patch manager
*/
return RET_ERROR (EIO);
if (mode == OPEN_WRITE)
return 0;
return IOCTL_OUT (arg, iqlen);
break;
case SNDCTL_SEQ_GETOUTCOUNT:
if (mode == OPEN_READ)
return 0;
return IOCTL_OUT (arg, SEQ_MAX_QUEUE - qlen);
break;
case SNDCTL_SEQ_CTRLRATE:
if (dev) /* Patch manager */
return RET_ERROR (EIO);
/*
* If *arg == 0, just return the current rate
*/
if (seq_mode == SEQ_2)
return tmr->ioctl (tmr_no, cmd, arg);
if (IOCTL_IN (arg) != 0)
return RET_ERROR (EINVAL);
return IOCTL_OUT (arg, HZ);
break;
case SNDCTL_SEQ_RESETSAMPLES:
dev = IOCTL_IN (arg);
if (dev < 0 || dev >= num_synths)
return RET_ERROR (ENXIO);
if (!(synth_open_mask & (1 << dev)) && !orig_dev)
return RET_ERROR (EBUSY);
if (!orig_dev && pmgr_present[dev])
pmgr_inform (dev, PM_E_PATCH_RESET, 0, 0, 0, 0);
return synth_devs[dev]->ioctl (dev, cmd, arg);
break;
case SNDCTL_SEQ_NRSYNTHS:
return IOCTL_OUT (arg, max_synthdev);
break;
case SNDCTL_SEQ_NRMIDIS:
return IOCTL_OUT (arg, max_mididev);
break;
case SNDCTL_SYNTH_MEMAVL:
{
int dev = IOCTL_IN (arg);
if (dev < 0 || dev >= num_synths)
return RET_ERROR (ENXIO);
if (!(synth_open_mask & (1 << dev)) && !orig_dev)
return RET_ERROR (EBUSY);
return IOCTL_OUT (arg, synth_devs[dev]->ioctl (dev, cmd, arg));
}
break;
case SNDCTL_FM_4OP_ENABLE:
{
int dev = IOCTL_IN (arg);
if (dev < 0 || dev >= num_synths)
return RET_ERROR (ENXIO);
if (!(synth_open_mask & (1 << dev)))
return RET_ERROR (ENXIO);
synth_devs[dev]->ioctl (dev, cmd, arg);
return 0;
}
break;
case SNDCTL_SYNTH_INFO:
{
struct synth_info inf;
int dev;
IOCTL_FROM_USER ((char *) &inf, (char *) arg, 0, sizeof (inf));
dev = inf.device;
if (dev < 0 || dev >= max_synthdev)
return RET_ERROR (ENXIO);
if (!(synth_open_mask & (1 << dev)) && !orig_dev)
return RET_ERROR (EBUSY);
return synth_devs[dev]->ioctl (dev, cmd, arg);
}
break;
case SNDCTL_SEQ_OUTOFBAND:
{
struct seq_event_rec event;
unsigned long flags;
IOCTL_FROM_USER ((char *) &event, (char *) arg, 0, sizeof (event));
DISABLE_INTR (flags);
play_event (event.arr);
RESTORE_INTR (flags);
return 0;
}
break;
case SNDCTL_MIDI_INFO:
{
struct midi_info inf;
int dev;
IOCTL_FROM_USER ((char *) &inf, (char *) arg, 0, sizeof (inf));
dev = inf.device;
if (dev < 0 || dev >= max_mididev)
return RET_ERROR (ENXIO);
IOCTL_TO_USER ((char *) arg, 0, (char *) &(midi_devs[dev]->info), sizeof (inf));
return 0;
}
break;
case SNDCTL_PMGR_IFACE:
{
struct patmgr_info *inf;
int dev, err;
if ((inf = (struct patmgr_info *) KERNEL_MALLOC (sizeof (*inf))) == NULL)
{
printk ("patmgr: Can't allocate memory for a message\n");
return RET_ERROR (EIO);
}
IOCTL_FROM_USER ((char *) inf, (char *) arg, 0, sizeof (*inf));
dev = inf->device;
if (dev < 0 || dev >= num_synths)
{
KERNEL_FREE (inf);
return RET_ERROR (ENXIO);
}
if (!synth_devs[dev]->pmgr_interface)
{
KERNEL_FREE (inf);
return RET_ERROR (ENXIO);
}
if ((err = synth_devs[dev]->pmgr_interface (dev, inf)) == -1)
{
KERNEL_FREE (inf);
return err;
}
IOCTL_TO_USER ((char *) arg, 0, (char *) inf, sizeof (*inf));
KERNEL_FREE (inf);
return 0;
}
break;
case SNDCTL_PMGR_ACCESS:
{
struct patmgr_info *inf;
int dev, err;
if ((inf = (struct patmgr_info *) KERNEL_MALLOC (sizeof (*inf))) == NULL)
{
printk ("patmgr: Can't allocate memory for a message\n");
return RET_ERROR (EIO);
}
IOCTL_FROM_USER ((char *) inf, (char *) arg, 0, sizeof (*inf));
dev = inf->device;
if (dev < 0 || dev >= num_synths)
{
KERNEL_FREE (inf);
return RET_ERROR (ENXIO);
}
if (!pmgr_present[dev])
{
KERNEL_FREE (inf);
return RET_ERROR (ESRCH);
}
if ((err = pmgr_access (dev, inf)) < 0)
{
KERNEL_FREE (inf);
return err;
}
IOCTL_TO_USER ((char *) arg, 0, (char *) inf, sizeof (*inf));
KERNEL_FREE (inf);
return 0;
}
break;
case SNDCTL_SEQ_TRESHOLD:
{
int tmp = IOCTL_IN (arg);
if (dev) /*
* Patch manager
*/
return RET_ERROR (EIO);
if (tmp < 1)
tmp = 1;
if (tmp >= SEQ_MAX_QUEUE)
tmp = SEQ_MAX_QUEUE - 1;
output_treshold = tmp;
return 0;
}
break;
case SNDCTL_MIDI_PRETIME:
{
int val = IOCTL_IN (arg);
if (val < 0)
val = 0;
val = (HZ * val) / 10;
pre_event_timeout = val;
return IOCTL_OUT (arg, val);
}
break;
default:
if (dev) /*
* Patch manager
*/
return RET_ERROR (EIO);
if (mode == OPEN_READ)
return RET_ERROR (EIO);
if (!synth_devs[0])
return RET_ERROR (ENXIO);
if (!(synth_open_mask & (1 << 0)))
return RET_ERROR (ENXIO);
return synth_devs[0]->ioctl (0, cmd, arg);
break;
}
return RET_ERROR (EINVAL);
}
#ifdef ALLOW_SELECT
int
sequencer_select (int dev, struct fileinfo *file, int sel_type, select_table * wait)
{
unsigned long flags;
dev = dev >> 4;
switch (sel_type)
{
case SEL_IN:
DISABLE_INTR (flags);
if (!iqlen)
{
#if defined(__FreeBSD__)
selrecord(wait, &selinfo[dev]);
#else
midi_sleep_flag.mode = WK_SLEEP;
select_wait (&midi_sleeper, wait);
#endif
RESTORE_INTR (flags);
return 0;
}
midi_sleep_flag.mode &= ~WK_SLEEP;
RESTORE_INTR (flags);
return 1;
break;
case SEL_OUT:
DISABLE_INTR (flags);
if (qlen >= SEQ_MAX_QUEUE)
{
#if defined(__FreeBSD__)
selrecord(wait, &selinfo[dev]);
#else
seq_sleep_flag.mode = WK_SLEEP;
select_wait (&seq_sleeper, wait);
#endif
RESTORE_INTR (flags);
return 0;
}
seq_sleep_flag.mode &= ~WK_SLEEP;
RESTORE_INTR (flags);
return 1;
break;
case SEL_EX:
return 0;
}
return 0;
}
#endif
void
sequencer_timer (void)
{
seq_startplay ();
}
int
note_to_freq (int note_num)
{
/*
* This routine converts a midi note to a frequency (multiplied by 1000)
*/
int note, octave, note_freq;
int notes[] =
{
261632, 277189, 293671, 311132, 329632, 349232,
369998, 391998, 415306, 440000, 466162, 493880
};
#define BASE_OCTAVE 5
octave = note_num / 12;
note = note_num % 12;
note_freq = notes[note];
if (octave < BASE_OCTAVE)
note_freq >>= (BASE_OCTAVE - octave);
else if (octave > BASE_OCTAVE)
note_freq <<= (octave - BASE_OCTAVE);
/*
* note_freq >>= 1;
*/
return note_freq;
}
unsigned long
compute_finetune (unsigned long base_freq, int bend, int range)
{
unsigned long amount;
int negative, semitones, cents, multiplier = 1;
if (!bend)
return base_freq;
if (!range)
return base_freq;
if (!base_freq)
return base_freq;
if (range >= 8192)
range = 8191;
bend = bend * range / 8192;
if (!bend)
return base_freq;
negative = bend < 0 ? 1 : 0;
if (bend < 0)
bend *= -1;
if (bend > range)
bend = range;
/*
if (bend > 2399)
bend = 2399;
*/
while (bend > 2399)
{
multiplier *= 4;
bend -= 2400;
}
semitones = bend / 100;
cents = bend % 100;
amount = (int) (semitone_tuning[semitones] * multiplier * cent_tuning[cents])
/ 10000;
if (negative)
return (base_freq * 10000) / amount; /*
* Bend down
*/
else
return (base_freq * amount) / 10000; /*
* Bend up
*/
}
long
sequencer_init (long mem_start)
{
sequencer_ok = 1;
PERMANENT_MALLOC (unsigned char *, queue, SEQ_MAX_QUEUE * EV_SZ, mem_start);
PERMANENT_MALLOC (unsigned char *, iqueue, SEQ_MAX_QUEUE * IEV_SZ, mem_start);
return mem_start;
}
#else
/*
* Stub version
*/
int
sequencer_read (int dev, struct fileinfo *file, snd_rw_buf * buf, int count)
{
return RET_ERROR (EIO);
}
int
sequencer_write (int dev, struct fileinfo *file, snd_rw_buf * buf, int count)
{
return RET_ERROR (EIO);
}
int
sequencer_open (int dev, struct fileinfo *file)
{
return RET_ERROR (ENXIO);
}
void
sequencer_release (int dev, struct fileinfo *file)
{
}
int
sequencer_ioctl (int dev, struct fileinfo *file,
unsigned int cmd, unsigned int arg)
{
return RET_ERROR (EIO);
}
int
sequencer_lseek (int dev, struct fileinfo *file, off_t offset, int orig)
{
return RET_ERROR (EIO);
}
long
sequencer_init (long mem_start)
{
return mem_start;
}
#ifdef ALLOW_SELECT
int
sequencer_select (int dev, struct fileinfo *file, int sel_type, select_table * wait)
{
return RET_ERROR (EIO);
}
#endif
#endif
#endif