Sam Leffler 60177845fd Replace most compile-time support options with linker sets for
chip and RF backend support:
o add OS_DATA_SET and OS_SET_DECLARE os requirements for setting
  up linker sets
o add AH_CHIP macro for registering chip support (e.g. 5210)
o add AH_RF macro for registering RF support (e.g. 2413); note
  this isn't required for single chip solutions where there's no
  ambiguity (e.g. 5416/9160+2133) but for 5212 class parts it's
  required because of the multi-chip solutions
o remove all uses of AH_SUPPORT_AR5210, AH_SUPPORT_AR5211, AH_SUPPORT_5212,
  and AH_SUPPORT_AR9160; still need AH_SUPPORT_AR5416 to enable the 11n
  descriptor formats and 5312 support is presently broken
o remove all uses of AH_SUPPORT_2133, AH_SUPPORT_2413, AH_SUPPORT_5111,
  AH_SUPPORT_5112, AH_SUPPORT_2417, AH_SUPPORT_2425, and AH_SUPPORT_5413;
  5312-related support still requires fixup

Remaining issues:
o fixup SoC attach
o ath_hal_attach uses a hack to probe w/o access to the vendorid
o fallback handling of parts w/o a macrev needs to be restored
2008-11-28 19:58:09 +00:00

643 lines
16 KiB
C

/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2004 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $Id: ar5210_misc.c,v 1.6 2008/11/27 22:29:37 sam Exp $
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar5210/ar5210.h"
#include "ar5210/ar5210reg.h"
#include "ar5210/ar5210phy.h"
#include "ah_eeprom_v1.h"
#define AR_NUM_GPIO 6 /* 6 GPIO bits */
#define AR_GPIOD_MASK 0x2f /* 6-bit mask */
void
ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
{
struct ath_hal_5210 *ahp = AH5210(ah);
OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
}
HAL_BOOL
ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
{
struct ath_hal_5210 *ahp = AH5210(ah);
OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
return AH_TRUE;
}
void
ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
{
static const uint8_t ones[IEEE80211_ADDR_LEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
}
HAL_BOOL
ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
{
return AH_FALSE;
}
/*
* Read 16 bits of data from the specified EEPROM offset.
*/
HAL_BOOL
ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
{
(void) OS_REG_READ(ah, AR_EP_AIR(off)); /* activate read op */
if (!ath_hal_wait(ah, AR_EP_STA,
AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
__func__, AR_EP_AIR(off));
return AH_FALSE;
}
*data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
return AH_TRUE;
}
#ifdef AH_SUPPORT_WRITE_EEPROM
/*
* Write 16 bits of data to the specified EEPROM offset.
*/
HAL_BOOL
ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
{
return AH_FALSE;
}
#endif /* AH_SUPPORT_WRITE_EEPROM */
/*
* Attempt to change the cards operating regulatory domain to the given value
*/
HAL_BOOL
ar5210SetRegulatoryDomain(struct ath_hal *ah,
uint16_t regDomain, HAL_STATUS *status)
{
HAL_STATUS ecode;
if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
ecode = HAL_EINVAL;
goto bad;
}
/*
* Check if EEPROM is configured to allow this; must
* be a proper version and the protection bits must
* permit re-writing that segment of the EEPROM.
*/
if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
ecode = HAL_EEWRITE;
goto bad;
}
ecode = HAL_EIO; /* disallow all writes */
bad:
if (status)
*status = ecode;
return AH_FALSE;
}
/*
* Return the wireless modes (a,b,g,t) supported by hardware.
*
* This value is what is actually supported by the hardware
* and is unaffected by regulatory/country code settings.
*
*/
u_int
ar5210GetWirelessModes(struct ath_hal *ah)
{
/* XXX could enable turbo mode but can't do all rates */
return HAL_MODE_11A;
}
/*
* Called if RfKill is supported (according to EEPROM). Set the interrupt and
* GPIO values so the ISR and can disable RF on a switch signal
*/
void
ar5210EnableRfKill(struct ath_hal *ah)
{
uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
/*
* If radio disable switch connection to GPIO bit 0 is enabled
* program GPIO interrupt.
* If rfkill bit on eeprom is 1, setupeeprommap routine has already
* verified that it is a later version of eeprom, it has a place for
* rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
* connection is present.
*/
ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
}
/*
* Configure GPIO Output lines
*/
HAL_BOOL
ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio)
{
HALASSERT(gpio < AR_NUM_GPIO);
OS_REG_WRITE(ah, AR_GPIOCR,
(OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
| AR_GPIOCR_OUT1(gpio));
return AH_TRUE;
}
/*
* Configure GPIO Input lines
*/
HAL_BOOL
ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
{
HALASSERT(gpio < AR_NUM_GPIO);
OS_REG_WRITE(ah, AR_GPIOCR,
(OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
| AR_GPIOCR_IN(gpio));
return AH_TRUE;
}
/*
* Once configured for I/O - set output lines
*/
HAL_BOOL
ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
{
uint32_t reg;
HALASSERT(gpio < AR_NUM_GPIO);
reg = OS_REG_READ(ah, AR_GPIODO);
reg &= ~(1 << gpio);
reg |= (val&1) << gpio;
OS_REG_WRITE(ah, AR_GPIODO, reg);
return AH_TRUE;
}
/*
* Once configured for I/O - get input lines
*/
uint32_t
ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
{
if (gpio < AR_NUM_GPIO) {
uint32_t val = OS_REG_READ(ah, AR_GPIODI);
val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
return val;
} else {
return 0xffffffff;
}
}
/*
* Set the GPIO 0 Interrupt
*/
void
ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
{
uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
/* Clear the bits that we will modify. */
val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
AR_GPIOCR_ALL(gpio));
val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
if (ilevel)
val |= AR_GPIOCR_INT_SELH;
/* Don't need to change anything for low level interrupt. */
OS_REG_WRITE(ah, AR_GPIOCR, val);
/* Change the interrupt mask. */
ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
}
/*
* Change the LED blinking pattern to correspond to the connectivity
*/
void
ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
{
uint32_t val;
val = OS_REG_READ(ah, AR_PCICFG);
switch (state) {
case HAL_LED_INIT:
val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
break;
case HAL_LED_RUN:
/* normal blink when connected */
val &= ~AR_PCICFG_LED_PEND;
val |= AR_PCICFG_LED_ACT;
break;
default:
val |= AR_PCICFG_LED_PEND;
val &= ~AR_PCICFG_LED_ACT;
break;
}
OS_REG_WRITE(ah, AR_PCICFG, val);
}
/*
* Return 1 or 2 for the corresponding antenna that is in use
*/
u_int
ar5210GetDefAntenna(struct ath_hal *ah)
{
uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
return (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1);
}
void
ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
{
uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1)) {
/*
* Antenna change requested, force a toggle of the default.
*/
OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
}
}
HAL_ANT_SETTING
ar5210GetAntennaSwitch(struct ath_hal *ah)
{
return HAL_ANT_VARIABLE;
}
HAL_BOOL
ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
{
/* XXX not sure how to fix antenna */
return (settings == HAL_ANT_VARIABLE);
}
/*
* Change association related fields programmed into the hardware.
* Writing a valid BSSID to the hardware effectively enables the hardware
* to synchronize its TSF to the correct beacons and receive frames coming
* from that BSSID. It is called by the SME JOIN operation.
*/
void
ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
{
struct ath_hal_5210 *ahp = AH5210(ah);
/* XXX save bssid for possible re-use on reset */
OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
if (assocId == 0)
OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
else
OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
}
/*
* Get the current hardware tsf for stamlme.
*/
uint64_t
ar5210GetTsf64(struct ath_hal *ah)
{
uint32_t low1, low2, u32;
/* sync multi-word read */
low1 = OS_REG_READ(ah, AR_TSF_L32);
u32 = OS_REG_READ(ah, AR_TSF_U32);
low2 = OS_REG_READ(ah, AR_TSF_L32);
if (low2 < low1) { /* roll over */
/*
* If we are not preempted this will work. If we are
* then we re-reading AR_TSF_U32 does no good as the
* low bits will be meaningless. Likewise reading
* L32, U32, U32, then comparing the last two reads
* to check for rollover doesn't help if preempted--so
* we take this approach as it costs one less PCI
* read which can be noticeable when doing things
* like timestamping packets in monitor mode.
*/
u32++;
}
return (((uint64_t) u32) << 32) | ((uint64_t) low2);
}
/*
* Get the current hardware tsf for stamlme.
*/
uint32_t
ar5210GetTsf32(struct ath_hal *ah)
{
return OS_REG_READ(ah, AR_TSF_L32);
}
/*
* Reset the current hardware tsf for stamlme
*/
void
ar5210ResetTsf(struct ath_hal *ah)
{
uint32_t val = OS_REG_READ(ah, AR_BEACON);
OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
}
/*
* Grab a semi-random value from hardware registers - may not
* change often
*/
uint32_t
ar5210GetRandomSeed(struct ath_hal *ah)
{
uint32_t nf;
nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
return (OS_REG_READ(ah, AR_TSF_U32) ^
OS_REG_READ(ah, AR_TSF_L32) ^ nf);
}
/*
* Detect if our card is present
*/
HAL_BOOL
ar5210DetectCardPresent(struct ath_hal *ah)
{
/*
* Read the Silicon Revision register and compare that
* to what we read at attach time. If the same, we say
* a card/device is present.
*/
return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
}
/*
* Update MIB Counters
*/
void
ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
{
stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
}
HAL_BOOL
ar5210SetSifsTime(struct ath_hal *ah, u_int us)
{
struct ath_hal_5210 *ahp = AH5210(ah);
if (us > ath_hal_mac_usec(ah, 0x7ff)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
__func__, us);
ahp->ah_sifstime = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
ath_hal_mac_clks(ah, us));
ahp->ah_sifstime = us;
return AH_TRUE;
}
}
u_int
ar5210GetSifsTime(struct ath_hal *ah)
{
u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
HAL_BOOL
ar5210SetSlotTime(struct ath_hal *ah, u_int us)
{
struct ath_hal_5210 *ahp = AH5210(ah);
if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
__func__, us);
ahp->ah_slottime = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
ahp->ah_slottime = us;
return AH_TRUE;
}
}
u_int
ar5210GetSlotTime(struct ath_hal *ah)
{
u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
HAL_BOOL
ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
{
struct ath_hal_5210 *ahp = AH5210(ah);
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
__func__, us);
ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
ahp->ah_acktimeout = us;
return AH_TRUE;
}
}
u_int
ar5210GetAckTimeout(struct ath_hal *ah)
{
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
u_int
ar5210GetAckCTSRate(struct ath_hal *ah)
{
return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
}
HAL_BOOL
ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
{
struct ath_hal_5210 *ahp = AH5210(ah);
if (high) {
OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
} else {
OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
}
return AH_TRUE;
}
HAL_BOOL
ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
{
struct ath_hal_5210 *ahp = AH5210(ah);
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
__func__, us);
ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
ahp->ah_ctstimeout = us;
return AH_TRUE;
}
}
u_int
ar5210GetCTSTimeout(struct ath_hal *ah)
{
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
HAL_BOOL
ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
{
/* nothing to do */
return AH_TRUE;
}
void
ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
{
}
/*
* Control Adaptive Noise Immunity Parameters
*/
HAL_BOOL
ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
{
return AH_FALSE;
}
void
ar5210AniPoll(struct ath_hal *ah, const HAL_NODE_STATS *stats, HAL_CHANNEL *chan)
{
}
void
ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
{
}
#define AR_DIAG_SW_DIS_CRYPTO (AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC)
HAL_STATUS
ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
uint32_t capability, uint32_t *result)
{
switch (type) {
case HAL_CAP_CIPHER: /* cipher handled in hardware */
return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
default:
return ath_hal_getcapability(ah, type, capability, result);
}
}
HAL_BOOL
ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
uint32_t capability, uint32_t setting, HAL_STATUS *status)
{
switch (type) {
case HAL_CAP_DIAG: /* hardware diagnostic support */
/*
* NB: could split this up into virtual capabilities,
* (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
* seems worth the additional complexity.
*/
#ifdef AH_DEBUG
AH_PRIVATE(ah)->ah_diagreg = setting;
#else
AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
#endif
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
return AH_TRUE;
case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */
return AH_FALSE; /* NB: disallow */
default:
return ath_hal_setcapability(ah, type, capability,
setting, status);
}
}
HAL_BOOL
ar5210GetDiagState(struct ath_hal *ah, int request,
const void *args, uint32_t argsize,
void **result, uint32_t *resultsize)
{
#ifdef AH_PRIVATE_DIAG
uint32_t pcicfg;
HAL_BOOL ok;
switch (request) {
case HAL_DIAG_EEPROM:
/* XXX */
break;
case HAL_DIAG_EEREAD:
if (argsize != sizeof(uint16_t))
return AH_FALSE;
pcicfg = OS_REG_READ(ah, AR_PCICFG);
OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
if (ok)
*resultsize = sizeof(uint16_t);
return ok;
}
#endif
return ath_hal_getdiagstate(ah, request,
args, argsize, result, resultsize);
}