Jinshan Xiong 9b7a83cbb6 OpenZFS 6988 spa_sync() spends half its time in dmu_objset_do_userquota_updates
Using a benchmark which creates 2 million files in one TXG, I observe
that the thread running spa_sync() is on CPU almost the entire time we
are syncing, and therefore can be a performance bottleneck. About 50% of
the time in spa_sync() is in dmu_objset_do_userquota_updates().

The problem is that dmu_objset_do_userquota_updates() calls
zap_increment_int(DMU_USERUSED_OBJECT) once for every file that was
modified (or created). In this benchmark, all the files are owned by the
same user/group, so all 2 million calls to zap_increment_int() are
modifying the same entry in the zap. The same issue exists for the
DMU_GROUPUSED_OBJECT.

We should keep an in-memory map from user to space delta while we are
syncing, and when we finish, iterate over the in-memory map and modify
the ZAP once per entry. This reduces the number of calls to
zap_increment_int() from "number of objects modified" to "number of
owners/groups of modified files".

This reduced the time spent in spa_sync() in the file create benchmark
by ~33%, from 11 seconds to 7 seconds.

Upstream bugs: DLPX-44799
Ported by: Ned Bass <bass6@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/6988
ZFSonLinux-issue: https://github.com/zfsonlinux/zfs/issues/4642
OpenZFS-commit: unmerged

Porting notes:
- Added curly braces around declaration of userquota_cache_t cache to
  quiet compiler warning;
- Handled the userobj accounting the same way it proposed in this path.

Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
2016-10-07 09:45:13 -07:00

2197 lines
60 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/dbuf.h>
#include <sys/dnode.h>
#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_dataset.h>
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/dmu_zfetch.h>
#include <sys/range_tree.h>
#include <sys/trace_dnode.h>
static kmem_cache_t *dnode_cache;
/*
* Define DNODE_STATS to turn on statistic gathering. By default, it is only
* turned on when DEBUG is also defined.
*/
#ifdef DEBUG
#define DNODE_STATS
#endif /* DEBUG */
#ifdef DNODE_STATS
#define DNODE_STAT_ADD(stat) ((stat)++)
#else
#define DNODE_STAT_ADD(stat) /* nothing */
#endif /* DNODE_STATS */
ASSERTV(static dnode_phys_t dnode_phys_zero);
int zfs_default_bs = SPA_MINBLOCKSHIFT;
int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
#ifdef _KERNEL
static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
#endif /* _KERNEL */
static int
dbuf_compare(const void *x1, const void *x2)
{
const dmu_buf_impl_t *d1 = x1;
const dmu_buf_impl_t *d2 = x2;
int cmp = AVL_CMP(d1->db_level, d2->db_level);
if (likely(cmp))
return (cmp);
cmp = AVL_CMP(d1->db_blkid, d2->db_blkid);
if (likely(cmp))
return (cmp);
if (d1->db_state == DB_SEARCH) {
ASSERT3S(d2->db_state, !=, DB_SEARCH);
return (-1);
} else if (d2->db_state == DB_SEARCH) {
ASSERT3S(d1->db_state, !=, DB_SEARCH);
return (1);
}
return (AVL_PCMP(d1, d2));
}
/* ARGSUSED */
static int
dnode_cons(void *arg, void *unused, int kmflag)
{
dnode_t *dn = arg;
int i;
rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
/*
* Every dbuf has a reference, and dropping a tracked reference is
* O(number of references), so don't track dn_holds.
*/
refcount_create_untracked(&dn->dn_holds);
refcount_create(&dn->dn_tx_holds);
list_link_init(&dn->dn_link);
bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
for (i = 0; i < TXG_SIZE; i++) {
list_link_init(&dn->dn_dirty_link[i]);
dn->dn_free_ranges[i] = NULL;
list_create(&dn->dn_dirty_records[i],
sizeof (dbuf_dirty_record_t),
offsetof(dbuf_dirty_record_t, dr_dirty_node));
}
dn->dn_allocated_txg = 0;
dn->dn_free_txg = 0;
dn->dn_assigned_txg = 0;
dn->dn_dirtyctx = 0;
dn->dn_dirtyctx_firstset = NULL;
dn->dn_bonus = NULL;
dn->dn_have_spill = B_FALSE;
dn->dn_zio = NULL;
dn->dn_oldused = 0;
dn->dn_oldflags = 0;
dn->dn_olduid = 0;
dn->dn_oldgid = 0;
dn->dn_newuid = 0;
dn->dn_newgid = 0;
dn->dn_id_flags = 0;
dn->dn_dbufs_count = 0;
dn->dn_unlisted_l0_blkid = 0;
avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
offsetof(dmu_buf_impl_t, db_link));
dn->dn_moved = 0;
return (0);
}
/* ARGSUSED */
static void
dnode_dest(void *arg, void *unused)
{
int i;
dnode_t *dn = arg;
rw_destroy(&dn->dn_struct_rwlock);
mutex_destroy(&dn->dn_mtx);
mutex_destroy(&dn->dn_dbufs_mtx);
cv_destroy(&dn->dn_notxholds);
refcount_destroy(&dn->dn_holds);
refcount_destroy(&dn->dn_tx_holds);
ASSERT(!list_link_active(&dn->dn_link));
for (i = 0; i < TXG_SIZE; i++) {
ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
list_destroy(&dn->dn_dirty_records[i]);
ASSERT0(dn->dn_next_nblkptr[i]);
ASSERT0(dn->dn_next_nlevels[i]);
ASSERT0(dn->dn_next_indblkshift[i]);
ASSERT0(dn->dn_next_bonustype[i]);
ASSERT0(dn->dn_rm_spillblk[i]);
ASSERT0(dn->dn_next_bonuslen[i]);
ASSERT0(dn->dn_next_blksz[i]);
}
ASSERT0(dn->dn_allocated_txg);
ASSERT0(dn->dn_free_txg);
ASSERT0(dn->dn_assigned_txg);
ASSERT0(dn->dn_dirtyctx);
ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
ASSERT3P(dn->dn_bonus, ==, NULL);
ASSERT(!dn->dn_have_spill);
ASSERT3P(dn->dn_zio, ==, NULL);
ASSERT0(dn->dn_oldused);
ASSERT0(dn->dn_oldflags);
ASSERT0(dn->dn_olduid);
ASSERT0(dn->dn_oldgid);
ASSERT0(dn->dn_newuid);
ASSERT0(dn->dn_newgid);
ASSERT0(dn->dn_id_flags);
ASSERT0(dn->dn_dbufs_count);
ASSERT0(dn->dn_unlisted_l0_blkid);
avl_destroy(&dn->dn_dbufs);
}
void
dnode_init(void)
{
ASSERT(dnode_cache == NULL);
dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
kmem_cache_set_move(dnode_cache, dnode_move);
}
void
dnode_fini(void)
{
kmem_cache_destroy(dnode_cache);
dnode_cache = NULL;
}
#ifdef ZFS_DEBUG
void
dnode_verify(dnode_t *dn)
{
int drop_struct_lock = FALSE;
ASSERT(dn->dn_phys);
ASSERT(dn->dn_objset);
ASSERT(dn->dn_handle->dnh_dnode == dn);
ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
return;
if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
rw_enter(&dn->dn_struct_rwlock, RW_READER);
drop_struct_lock = TRUE;
}
if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
int i;
int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
if (dn->dn_datablkshift) {
ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
}
ASSERT3U(dn->dn_nlevels, <=, 30);
ASSERT(DMU_OT_IS_VALID(dn->dn_type));
ASSERT3U(dn->dn_nblkptr, >=, 1);
ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
ASSERT3U(dn->dn_datablksz, ==,
dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
dn->dn_bonuslen, <=, max_bonuslen);
for (i = 0; i < TXG_SIZE; i++) {
ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
}
}
if (dn->dn_phys->dn_type != DMU_OT_NONE)
ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
if (dn->dn_dbuf != NULL) {
ASSERT3P(dn->dn_phys, ==,
(dnode_phys_t *)dn->dn_dbuf->db.db_data +
(dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
}
if (drop_struct_lock)
rw_exit(&dn->dn_struct_rwlock);
}
#endif
void
dnode_byteswap(dnode_phys_t *dnp)
{
uint64_t *buf64 = (void*)&dnp->dn_blkptr;
int i;
if (dnp->dn_type == DMU_OT_NONE) {
bzero(dnp, sizeof (dnode_phys_t));
return;
}
dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
dnp->dn_used = BSWAP_64(dnp->dn_used);
/*
* dn_nblkptr is only one byte, so it's OK to read it in either
* byte order. We can't read dn_bouslen.
*/
ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
buf64[i] = BSWAP_64(buf64[i]);
/*
* OK to check dn_bonuslen for zero, because it won't matter if
* we have the wrong byte order. This is necessary because the
* dnode dnode is smaller than a regular dnode.
*/
if (dnp->dn_bonuslen != 0) {
/*
* Note that the bonus length calculated here may be
* longer than the actual bonus buffer. This is because
* we always put the bonus buffer after the last block
* pointer (instead of packing it against the end of the
* dnode buffer).
*/
int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
int slots = dnp->dn_extra_slots + 1;
size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
dmu_object_byteswap_t byteswap;
ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
}
/* Swap SPILL block if we have one */
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
}
void
dnode_buf_byteswap(void *vbuf, size_t size)
{
int i = 0;
ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
while (i < size) {
dnode_phys_t *dnp = vbuf + i;
dnode_byteswap(dnp);
i += DNODE_MIN_SIZE;
if (dnp->dn_type != DMU_OT_NONE)
i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
}
}
void
dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
{
ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
dnode_setdirty(dn, tx);
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
(dn->dn_nblkptr-1) * sizeof (blkptr_t));
dn->dn_bonuslen = newsize;
if (newsize == 0)
dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
else
dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
rw_exit(&dn->dn_struct_rwlock);
}
void
dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
{
ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
dnode_setdirty(dn, tx);
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
dn->dn_bonustype = newtype;
dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
rw_exit(&dn->dn_struct_rwlock);
}
void
dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
{
ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
dnode_setdirty(dn, tx);
dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
dn->dn_have_spill = B_FALSE;
}
static void
dnode_setdblksz(dnode_t *dn, int size)
{
ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
dn->dn_datablksz = size;
dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
}
static dnode_t *
dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
uint64_t object, dnode_handle_t *dnh)
{
dnode_t *dn;
dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
ASSERT(!POINTER_IS_VALID(dn->dn_objset));
dn->dn_moved = 0;
/*
* Defer setting dn_objset until the dnode is ready to be a candidate
* for the dnode_move() callback.
*/
dn->dn_object = object;
dn->dn_dbuf = db;
dn->dn_handle = dnh;
dn->dn_phys = dnp;
if (dnp->dn_datablkszsec) {
dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
} else {
dn->dn_datablksz = 0;
dn->dn_datablkszsec = 0;
dn->dn_datablkshift = 0;
}
dn->dn_indblkshift = dnp->dn_indblkshift;
dn->dn_nlevels = dnp->dn_nlevels;
dn->dn_type = dnp->dn_type;
dn->dn_nblkptr = dnp->dn_nblkptr;
dn->dn_checksum = dnp->dn_checksum;
dn->dn_compress = dnp->dn_compress;
dn->dn_bonustype = dnp->dn_bonustype;
dn->dn_bonuslen = dnp->dn_bonuslen;
dn->dn_num_slots = dnp->dn_extra_slots + 1;
dn->dn_maxblkid = dnp->dn_maxblkid;
dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
dn->dn_id_flags = 0;
dmu_zfetch_init(&dn->dn_zfetch, dn);
ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
mutex_enter(&os->os_lock);
if (dnh->dnh_dnode != NULL) {
/* Lost the allocation race. */
mutex_exit(&os->os_lock);
kmem_cache_free(dnode_cache, dn);
return (dnh->dnh_dnode);
}
/*
* Exclude special dnodes from os_dnodes so an empty os_dnodes
* signifies that the special dnodes have no references from
* their children (the entries in os_dnodes). This allows
* dnode_destroy() to easily determine if the last child has
* been removed and then complete eviction of the objset.
*/
if (!DMU_OBJECT_IS_SPECIAL(object))
list_insert_head(&os->os_dnodes, dn);
membar_producer();
/*
* Everything else must be valid before assigning dn_objset
* makes the dnode eligible for dnode_move().
*/
dn->dn_objset = os;
dnh->dnh_dnode = dn;
mutex_exit(&os->os_lock);
arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
return (dn);
}
/*
* Caller must be holding the dnode handle, which is released upon return.
*/
static void
dnode_destroy(dnode_t *dn)
{
objset_t *os = dn->dn_objset;
boolean_t complete_os_eviction = B_FALSE;
ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
mutex_enter(&os->os_lock);
POINTER_INVALIDATE(&dn->dn_objset);
if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
list_remove(&os->os_dnodes, dn);
complete_os_eviction =
list_is_empty(&os->os_dnodes) &&
list_link_active(&os->os_evicting_node);
}
mutex_exit(&os->os_lock);
/* the dnode can no longer move, so we can release the handle */
zrl_remove(&dn->dn_handle->dnh_zrlock);
dn->dn_allocated_txg = 0;
dn->dn_free_txg = 0;
dn->dn_assigned_txg = 0;
dn->dn_dirtyctx = 0;
if (dn->dn_dirtyctx_firstset != NULL) {
kmem_free(dn->dn_dirtyctx_firstset, 1);
dn->dn_dirtyctx_firstset = NULL;
}
if (dn->dn_bonus != NULL) {
mutex_enter(&dn->dn_bonus->db_mtx);
dbuf_destroy(dn->dn_bonus);
dn->dn_bonus = NULL;
}
dn->dn_zio = NULL;
dn->dn_have_spill = B_FALSE;
dn->dn_oldused = 0;
dn->dn_oldflags = 0;
dn->dn_olduid = 0;
dn->dn_oldgid = 0;
dn->dn_newuid = 0;
dn->dn_newgid = 0;
dn->dn_id_flags = 0;
dn->dn_unlisted_l0_blkid = 0;
dmu_zfetch_fini(&dn->dn_zfetch);
kmem_cache_free(dnode_cache, dn);
arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
if (complete_os_eviction)
dmu_objset_evict_done(os);
}
void
dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
{
int i;
ASSERT3U(dn_slots, >, 0);
ASSERT3U(dn_slots << DNODE_SHIFT, <=,
spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
ASSERT3U(blocksize, <=,
spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
if (blocksize == 0)
blocksize = 1 << zfs_default_bs;
else
blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
if (ibs == 0)
ibs = zfs_default_ibs;
ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
ASSERT(dn->dn_type == DMU_OT_NONE);
ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
ASSERT(ot != DMU_OT_NONE);
ASSERT(DMU_OT_IS_VALID(ot));
ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
(bonustype == DMU_OT_SA && bonuslen == 0) ||
(bonustype != DMU_OT_NONE && bonuslen != 0));
ASSERT(DMU_OT_IS_VALID(bonustype));
ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
ASSERT(dn->dn_type == DMU_OT_NONE);
ASSERT0(dn->dn_maxblkid);
ASSERT0(dn->dn_allocated_txg);
ASSERT0(dn->dn_assigned_txg);
ASSERT(refcount_is_zero(&dn->dn_tx_holds));
ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
ASSERT(avl_is_empty(&dn->dn_dbufs));
for (i = 0; i < TXG_SIZE; i++) {
ASSERT0(dn->dn_next_nblkptr[i]);
ASSERT0(dn->dn_next_nlevels[i]);
ASSERT0(dn->dn_next_indblkshift[i]);
ASSERT0(dn->dn_next_bonuslen[i]);
ASSERT0(dn->dn_next_bonustype[i]);
ASSERT0(dn->dn_rm_spillblk[i]);
ASSERT0(dn->dn_next_blksz[i]);
ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
}
dn->dn_type = ot;
dnode_setdblksz(dn, blocksize);
dn->dn_indblkshift = ibs;
dn->dn_nlevels = 1;
dn->dn_num_slots = dn_slots;
if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
dn->dn_nblkptr = 1;
else {
dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
SPA_BLKPTRSHIFT));
}
dn->dn_bonustype = bonustype;
dn->dn_bonuslen = bonuslen;
dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
dn->dn_compress = ZIO_COMPRESS_INHERIT;
dn->dn_dirtyctx = 0;
dn->dn_free_txg = 0;
if (dn->dn_dirtyctx_firstset) {
kmem_free(dn->dn_dirtyctx_firstset, 1);
dn->dn_dirtyctx_firstset = NULL;
}
dn->dn_allocated_txg = tx->tx_txg;
dn->dn_id_flags = 0;
dnode_setdirty(dn, tx);
dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
}
void
dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
{
int nblkptr;
ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
ASSERT3U(blocksize, <=,
spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
ASSERT0(blocksize % SPA_MINBLOCKSIZE);
ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
ASSERT(tx->tx_txg != 0);
ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
(bonustype != DMU_OT_NONE && bonuslen != 0) ||
(bonustype == DMU_OT_SA && bonuslen == 0));
ASSERT(DMU_OT_IS_VALID(bonustype));
ASSERT3U(bonuslen, <=,
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
dn_slots = dn_slots > 0 ? dn_slots : DNODE_MIN_SLOTS;
/* clean up any unreferenced dbufs */
dnode_evict_dbufs(dn);
dn->dn_id_flags = 0;
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
dnode_setdirty(dn, tx);
if (dn->dn_datablksz != blocksize) {
/* change blocksize */
ASSERT(dn->dn_maxblkid == 0 &&
(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
dnode_block_freed(dn, 0)));
dnode_setdblksz(dn, blocksize);
dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
}
if (dn->dn_bonuslen != bonuslen)
dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
nblkptr = 1;
else
nblkptr = MIN(DN_MAX_NBLKPTR,
1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
SPA_BLKPTRSHIFT));
if (dn->dn_bonustype != bonustype)
dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
if (dn->dn_nblkptr != nblkptr)
dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
dbuf_rm_spill(dn, tx);
dnode_rm_spill(dn, tx);
}
rw_exit(&dn->dn_struct_rwlock);
/* change type */
dn->dn_type = ot;
/* change bonus size and type */
mutex_enter(&dn->dn_mtx);
dn->dn_bonustype = bonustype;
dn->dn_bonuslen = bonuslen;
dn->dn_num_slots = dn_slots;
dn->dn_nblkptr = nblkptr;
dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
dn->dn_compress = ZIO_COMPRESS_INHERIT;
ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
/* fix up the bonus db_size */
if (dn->dn_bonus) {
dn->dn_bonus->db.db_size =
DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
(dn->dn_nblkptr-1) * sizeof (blkptr_t);
ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
}
dn->dn_allocated_txg = tx->tx_txg;
mutex_exit(&dn->dn_mtx);
}
#ifdef _KERNEL
#ifdef DNODE_STATS
static struct {
uint64_t dms_dnode_invalid;
uint64_t dms_dnode_recheck1;
uint64_t dms_dnode_recheck2;
uint64_t dms_dnode_special;
uint64_t dms_dnode_handle;
uint64_t dms_dnode_rwlock;
uint64_t dms_dnode_active;
} dnode_move_stats;
#endif /* DNODE_STATS */
static void
dnode_move_impl(dnode_t *odn, dnode_t *ndn)
{
int i;
ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
/* Copy fields. */
ndn->dn_objset = odn->dn_objset;
ndn->dn_object = odn->dn_object;
ndn->dn_dbuf = odn->dn_dbuf;
ndn->dn_handle = odn->dn_handle;
ndn->dn_phys = odn->dn_phys;
ndn->dn_type = odn->dn_type;
ndn->dn_bonuslen = odn->dn_bonuslen;
ndn->dn_bonustype = odn->dn_bonustype;
ndn->dn_nblkptr = odn->dn_nblkptr;
ndn->dn_checksum = odn->dn_checksum;
ndn->dn_compress = odn->dn_compress;
ndn->dn_nlevels = odn->dn_nlevels;
ndn->dn_indblkshift = odn->dn_indblkshift;
ndn->dn_datablkshift = odn->dn_datablkshift;
ndn->dn_datablkszsec = odn->dn_datablkszsec;
ndn->dn_datablksz = odn->dn_datablksz;
ndn->dn_maxblkid = odn->dn_maxblkid;
bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
sizeof (odn->dn_next_nblkptr));
bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
sizeof (odn->dn_next_nlevels));
bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
sizeof (odn->dn_next_indblkshift));
bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
sizeof (odn->dn_next_bonustype));
bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
sizeof (odn->dn_rm_spillblk));
bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
sizeof (odn->dn_next_bonuslen));
bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
sizeof (odn->dn_next_blksz));
for (i = 0; i < TXG_SIZE; i++) {
list_move_tail(&ndn->dn_dirty_records[i],
&odn->dn_dirty_records[i]);
}
bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
sizeof (odn->dn_free_ranges));
ndn->dn_allocated_txg = odn->dn_allocated_txg;
ndn->dn_free_txg = odn->dn_free_txg;
ndn->dn_assigned_txg = odn->dn_assigned_txg;
ndn->dn_dirtyctx = odn->dn_dirtyctx;
ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
ASSERT(avl_is_empty(&ndn->dn_dbufs));
avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
ndn->dn_dbufs_count = odn->dn_dbufs_count;
ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid;
ndn->dn_bonus = odn->dn_bonus;
ndn->dn_have_spill = odn->dn_have_spill;
ndn->dn_zio = odn->dn_zio;
ndn->dn_oldused = odn->dn_oldused;
ndn->dn_oldflags = odn->dn_oldflags;
ndn->dn_olduid = odn->dn_olduid;
ndn->dn_oldgid = odn->dn_oldgid;
ndn->dn_newuid = odn->dn_newuid;
ndn->dn_newgid = odn->dn_newgid;
ndn->dn_id_flags = odn->dn_id_flags;
dmu_zfetch_init(&ndn->dn_zfetch, NULL);
list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
/*
* Update back pointers. Updating the handle fixes the back pointer of
* every descendant dbuf as well as the bonus dbuf.
*/
ASSERT(ndn->dn_handle->dnh_dnode == odn);
ndn->dn_handle->dnh_dnode = ndn;
if (ndn->dn_zfetch.zf_dnode == odn) {
ndn->dn_zfetch.zf_dnode = ndn;
}
/*
* Invalidate the original dnode by clearing all of its back pointers.
*/
odn->dn_dbuf = NULL;
odn->dn_handle = NULL;
avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
offsetof(dmu_buf_impl_t, db_link));
odn->dn_dbufs_count = 0;
odn->dn_unlisted_l0_blkid = 0;
odn->dn_bonus = NULL;
odn->dn_zfetch.zf_dnode = NULL;
/*
* Set the low bit of the objset pointer to ensure that dnode_move()
* recognizes the dnode as invalid in any subsequent callback.
*/
POINTER_INVALIDATE(&odn->dn_objset);
/*
* Satisfy the destructor.
*/
for (i = 0; i < TXG_SIZE; i++) {
list_create(&odn->dn_dirty_records[i],
sizeof (dbuf_dirty_record_t),
offsetof(dbuf_dirty_record_t, dr_dirty_node));
odn->dn_free_ranges[i] = NULL;
odn->dn_next_nlevels[i] = 0;
odn->dn_next_indblkshift[i] = 0;
odn->dn_next_bonustype[i] = 0;
odn->dn_rm_spillblk[i] = 0;
odn->dn_next_bonuslen[i] = 0;
odn->dn_next_blksz[i] = 0;
}
odn->dn_allocated_txg = 0;
odn->dn_free_txg = 0;
odn->dn_assigned_txg = 0;
odn->dn_dirtyctx = 0;
odn->dn_dirtyctx_firstset = NULL;
odn->dn_have_spill = B_FALSE;
odn->dn_zio = NULL;
odn->dn_oldused = 0;
odn->dn_oldflags = 0;
odn->dn_olduid = 0;
odn->dn_oldgid = 0;
odn->dn_newuid = 0;
odn->dn_newgid = 0;
odn->dn_id_flags = 0;
/*
* Mark the dnode.
*/
ndn->dn_moved = 1;
odn->dn_moved = (uint8_t)-1;
}
/*ARGSUSED*/
static kmem_cbrc_t
dnode_move(void *buf, void *newbuf, size_t size, void *arg)
{
dnode_t *odn = buf, *ndn = newbuf;
objset_t *os;
int64_t refcount;
uint32_t dbufs;
/*
* The dnode is on the objset's list of known dnodes if the objset
* pointer is valid. We set the low bit of the objset pointer when
* freeing the dnode to invalidate it, and the memory patterns written
* by kmem (baddcafe and deadbeef) set at least one of the two low bits.
* A newly created dnode sets the objset pointer last of all to indicate
* that the dnode is known and in a valid state to be moved by this
* function.
*/
os = odn->dn_objset;
if (!POINTER_IS_VALID(os)) {
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
return (KMEM_CBRC_DONT_KNOW);
}
/*
* Ensure that the objset does not go away during the move.
*/
rw_enter(&os_lock, RW_WRITER);
if (os != odn->dn_objset) {
rw_exit(&os_lock);
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
return (KMEM_CBRC_DONT_KNOW);
}
/*
* If the dnode is still valid, then so is the objset. We know that no
* valid objset can be freed while we hold os_lock, so we can safely
* ensure that the objset remains in use.
*/
mutex_enter(&os->os_lock);
/*
* Recheck the objset pointer in case the dnode was removed just before
* acquiring the lock.
*/
if (os != odn->dn_objset) {
mutex_exit(&os->os_lock);
rw_exit(&os_lock);
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
return (KMEM_CBRC_DONT_KNOW);
}
/*
* At this point we know that as long as we hold os->os_lock, the dnode
* cannot be freed and fields within the dnode can be safely accessed.
* The objset listing this dnode cannot go away as long as this dnode is
* on its list.
*/
rw_exit(&os_lock);
if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
mutex_exit(&os->os_lock);
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
return (KMEM_CBRC_NO);
}
ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
/*
* Lock the dnode handle to prevent the dnode from obtaining any new
* holds. This also prevents the descendant dbufs and the bonus dbuf
* from accessing the dnode, so that we can discount their holds. The
* handle is safe to access because we know that while the dnode cannot
* go away, neither can its handle. Once we hold dnh_zrlock, we can
* safely move any dnode referenced only by dbufs.
*/
if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
mutex_exit(&os->os_lock);
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
return (KMEM_CBRC_LATER);
}
/*
* Ensure a consistent view of the dnode's holds and the dnode's dbufs.
* We need to guarantee that there is a hold for every dbuf in order to
* determine whether the dnode is actively referenced. Falsely matching
* a dbuf to an active hold would lead to an unsafe move. It's possible
* that a thread already having an active dnode hold is about to add a
* dbuf, and we can't compare hold and dbuf counts while the add is in
* progress.
*/
if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
zrl_exit(&odn->dn_handle->dnh_zrlock);
mutex_exit(&os->os_lock);
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
return (KMEM_CBRC_LATER);
}
/*
* A dbuf may be removed (evicted) without an active dnode hold. In that
* case, the dbuf count is decremented under the handle lock before the
* dbuf's hold is released. This order ensures that if we count the hold
* after the dbuf is removed but before its hold is released, we will
* treat the unmatched hold as active and exit safely. If we count the
* hold before the dbuf is removed, the hold is discounted, and the
* removal is blocked until the move completes.
*/
refcount = refcount_count(&odn->dn_holds);
ASSERT(refcount >= 0);
dbufs = odn->dn_dbufs_count;
/* We can't have more dbufs than dnode holds. */
ASSERT3U(dbufs, <=, refcount);
DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
uint32_t, dbufs);
if (refcount > dbufs) {
rw_exit(&odn->dn_struct_rwlock);
zrl_exit(&odn->dn_handle->dnh_zrlock);
mutex_exit(&os->os_lock);
DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
return (KMEM_CBRC_LATER);
}
rw_exit(&odn->dn_struct_rwlock);
/*
* At this point we know that anyone with a hold on the dnode is not
* actively referencing it. The dnode is known and in a valid state to
* move. We're holding the locks needed to execute the critical section.
*/
dnode_move_impl(odn, ndn);
list_link_replace(&odn->dn_link, &ndn->dn_link);
/* If the dnode was safe to move, the refcount cannot have changed. */
ASSERT(refcount == refcount_count(&ndn->dn_holds));
ASSERT(dbufs == ndn->dn_dbufs_count);
zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
mutex_exit(&os->os_lock);
return (KMEM_CBRC_YES);
}
#endif /* _KERNEL */
void
dnode_special_close(dnode_handle_t *dnh)
{
dnode_t *dn = dnh->dnh_dnode;
/*
* Wait for final references to the dnode to clear. This can
* only happen if the arc is asyncronously evicting state that
* has a hold on this dnode while we are trying to evict this
* dnode.
*/
while (refcount_count(&dn->dn_holds) > 0)
delay(1);
ASSERT(dn->dn_dbuf == NULL ||
dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
zrl_add(&dnh->dnh_zrlock);
dnode_destroy(dn); /* implicit zrl_remove() */
zrl_destroy(&dnh->dnh_zrlock);
dnh->dnh_dnode = NULL;
}
void
dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
dnode_handle_t *dnh)
{
dnode_t *dn;
dn = dnode_create(os, dnp, NULL, object, dnh);
zrl_init(&dnh->dnh_zrlock);
DNODE_VERIFY(dn);
}
static void
dnode_buf_pageout(void *dbu)
{
dnode_children_t *children_dnodes = dbu;
int i;
for (i = 0; i < children_dnodes->dnc_count; i++) {
dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
dnode_t *dn;
/*
* The dnode handle lock guards against the dnode moving to
* another valid address, so there is no need here to guard
* against changes to or from NULL.
*/
if (dnh->dnh_dnode == NULL) {
zrl_destroy(&dnh->dnh_zrlock);
continue;
}
zrl_add(&dnh->dnh_zrlock);
dn = dnh->dnh_dnode;
/*
* If there are holds on this dnode, then there should
* be holds on the dnode's containing dbuf as well; thus
* it wouldn't be eligible for eviction and this function
* would not have been called.
*/
ASSERT(refcount_is_zero(&dn->dn_holds));
ASSERT(refcount_is_zero(&dn->dn_tx_holds));
dnode_destroy(dn); /* implicit zrl_remove() */
zrl_destroy(&dnh->dnh_zrlock);
dnh->dnh_dnode = NULL;
}
kmem_free(children_dnodes, sizeof (dnode_children_t) +
children_dnodes->dnc_count * sizeof (dnode_handle_t));
}
/*
* Return true if the given index is interior to a dnode already
* allocated in the block. That is, the index is neither free nor
* allocated, but is consumed by a large dnode.
*
* The dnode_phys_t buffer may not be in sync with the in-core dnode
* structure, so we try to check the dnode structure first and fall back
* to the dnode_phys_t buffer it doesn't exist.
*/
static boolean_t
dnode_is_consumed(dmu_buf_impl_t *db, int idx)
{
dnode_handle_t *dnh;
dmu_object_type_t ot;
dnode_children_t *children_dnodes;
dnode_phys_t *dn_block;
int skip;
int i;
children_dnodes = dmu_buf_get_user(&db->db);
dn_block = (dnode_phys_t *)db->db.db_data;
for (i = 0; i < idx; i += skip) {
dnh = &children_dnodes->dnc_children[i];
zrl_add(&dnh->dnh_zrlock);
if (dnh->dnh_dnode != NULL) {
ot = dnh->dnh_dnode->dn_type;
skip = dnh->dnh_dnode->dn_num_slots;
} else {
ot = dn_block[i].dn_type;
skip = dn_block[i].dn_extra_slots + 1;
}
zrl_remove(&dnh->dnh_zrlock);
if (ot == DMU_OT_NONE)
skip = 1;
}
return (i > idx);
}
/*
* Return true if the given index in the dnode block is a valid
* allocated dnode. That is, the index is not consumed by a large
* dnode and is not free.
*
* The dnode_phys_t buffer may not be in sync with the in-core dnode
* structure, so we try to check the dnode structure first and fall back
* to the dnode_phys_t buffer it doesn't exist.
*/
static boolean_t
dnode_is_allocated(dmu_buf_impl_t *db, int idx)
{
dnode_handle_t *dnh;
dmu_object_type_t ot;
dnode_children_t *children_dnodes;
dnode_phys_t *dn_block;
if (dnode_is_consumed(db, idx))
return (B_FALSE);
children_dnodes = dmu_buf_get_user(&db->db);
dn_block = (dnode_phys_t *)db->db.db_data;
dnh = &children_dnodes->dnc_children[idx];
zrl_add(&dnh->dnh_zrlock);
if (dnh->dnh_dnode != NULL)
ot = dnh->dnh_dnode->dn_type;
else
ot = dn_block[idx].dn_type;
zrl_remove(&dnh->dnh_zrlock);
return (ot != DMU_OT_NONE);
}
/*
* Return true if the given range of indices in the dnode block are
* free. That is, the starting index is not consumed by a large dnode
* and none of the indices are allocated.
*
* The dnode_phys_t buffer may not be in sync with the in-core dnode
* structure, so we try to check the dnode structure first and fall back
* to the dnode_phys_t buffer it doesn't exist.
*/
static boolean_t
dnode_is_free(dmu_buf_impl_t *db, int idx, int slots)
{
dnode_handle_t *dnh;
dmu_object_type_t ot;
dnode_children_t *children_dnodes;
dnode_phys_t *dn_block;
int i;
if (idx + slots > DNODES_PER_BLOCK)
return (B_FALSE);
children_dnodes = dmu_buf_get_user(&db->db);
dn_block = (dnode_phys_t *)db->db.db_data;
if (dnode_is_consumed(db, idx))
return (B_FALSE);
for (i = idx; i < idx + slots; i++) {
dnh = &children_dnodes->dnc_children[i];
zrl_add(&dnh->dnh_zrlock);
if (dnh->dnh_dnode != NULL)
ot = dnh->dnh_dnode->dn_type;
else
ot = dn_block[i].dn_type;
zrl_remove(&dnh->dnh_zrlock);
if (ot != DMU_OT_NONE)
return (B_FALSE);
}
return (B_TRUE);
}
/*
* errors:
* EINVAL - invalid object number.
* ENOSPC - hole too small to fulfill "slots" request
* EIO - i/o error.
* succeeds even for free dnodes.
*/
int
dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
void *tag, dnode_t **dnp)
{
int epb, idx, err, i;
int drop_struct_lock = FALSE;
int type;
uint64_t blk;
dnode_t *mdn, *dn;
dmu_buf_impl_t *db;
dnode_children_t *children_dnodes;
dnode_phys_t *dn_block_begin;
dnode_handle_t *dnh;
ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
/*
* If you are holding the spa config lock as writer, you shouldn't
* be asking the DMU to do *anything* unless it's the root pool
* which may require us to read from the root filesystem while
* holding some (not all) of the locks as writer.
*/
ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
(spa_is_root(os->os_spa) &&
spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
dn = (object == DMU_USERUSED_OBJECT) ?
DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
if (dn == NULL)
return (SET_ERROR(ENOENT));
type = dn->dn_type;
if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
return (SET_ERROR(ENOENT));
if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
return (SET_ERROR(EEXIST));
DNODE_VERIFY(dn);
(void) refcount_add(&dn->dn_holds, tag);
*dnp = dn;
return (0);
}
if (object == 0 || object >= DN_MAX_OBJECT)
return (SET_ERROR(EINVAL));
mdn = DMU_META_DNODE(os);
ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
DNODE_VERIFY(mdn);
if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
rw_enter(&mdn->dn_struct_rwlock, RW_READER);
drop_struct_lock = TRUE;
}
blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
db = dbuf_hold(mdn, blk, FTAG);
if (drop_struct_lock)
rw_exit(&mdn->dn_struct_rwlock);
if (db == NULL)
return (SET_ERROR(EIO));
err = dbuf_read(db, NULL, DB_RF_CANFAIL);
if (err) {
dbuf_rele(db, FTAG);
return (err);
}
ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
epb = db->db.db_size >> DNODE_SHIFT;
ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
children_dnodes = dmu_buf_get_user(&db->db);
if (children_dnodes == NULL) {
dnode_children_t *winner;
children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
epb * sizeof (dnode_handle_t), KM_SLEEP);
children_dnodes->dnc_count = epb;
dnh = &children_dnodes->dnc_children[0];
for (i = 0; i < epb; i++) {
zrl_init(&dnh[i].dnh_zrlock);
}
dmu_buf_init_user(&children_dnodes->dnc_dbu,
dnode_buf_pageout, NULL);
winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu);
if (winner != NULL) {
for (i = 0; i < epb; i++) {
zrl_destroy(&dnh[i].dnh_zrlock);
}
kmem_free(children_dnodes, sizeof (dnode_children_t) +
epb * sizeof (dnode_handle_t));
children_dnodes = winner;
}
}
ASSERT(children_dnodes->dnc_count == epb);
idx = object & (epb - 1);
dn_block_begin = (dnode_phys_t *)db->db.db_data;
if ((flag & DNODE_MUST_BE_FREE) && !dnode_is_free(db, idx, slots)) {
dbuf_rele(db, FTAG);
return (ENOSPC);
} else if ((flag & DNODE_MUST_BE_ALLOCATED) &&
!dnode_is_allocated(db, idx)) {
dbuf_rele(db, FTAG);
return (ENOENT);
}
dnh = &children_dnodes->dnc_children[idx];
zrl_add(&dnh->dnh_zrlock);
dn = dnh->dnh_dnode;
if (dn == NULL)
dn = dnode_create(os, dn_block_begin + idx, db, object, dnh);
mutex_enter(&dn->dn_mtx);
type = dn->dn_type;
if (dn->dn_free_txg ||
((flag & DNODE_MUST_BE_FREE) && !refcount_is_zero(&dn->dn_holds))) {
mutex_exit(&dn->dn_mtx);
zrl_remove(&dnh->dnh_zrlock);
dbuf_rele(db, FTAG);
return (type == DMU_OT_NONE ? ENOENT : EEXIST);
}
if (refcount_add(&dn->dn_holds, tag) == 1)
dbuf_add_ref(db, dnh);
mutex_exit(&dn->dn_mtx);
/* Now we can rely on the hold to prevent the dnode from moving. */
zrl_remove(&dnh->dnh_zrlock);
DNODE_VERIFY(dn);
ASSERT3P(dn->dn_dbuf, ==, db);
ASSERT3U(dn->dn_object, ==, object);
dbuf_rele(db, FTAG);
*dnp = dn;
return (0);
}
/*
* Return held dnode if the object is allocated, NULL if not.
*/
int
dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
{
return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
dnp));
}
/*
* Can only add a reference if there is already at least one
* reference on the dnode. Returns FALSE if unable to add a
* new reference.
*/
boolean_t
dnode_add_ref(dnode_t *dn, void *tag)
{
mutex_enter(&dn->dn_mtx);
if (refcount_is_zero(&dn->dn_holds)) {
mutex_exit(&dn->dn_mtx);
return (FALSE);
}
VERIFY(1 < refcount_add(&dn->dn_holds, tag));
mutex_exit(&dn->dn_mtx);
return (TRUE);
}
void
dnode_rele(dnode_t *dn, void *tag)
{
mutex_enter(&dn->dn_mtx);
dnode_rele_and_unlock(dn, tag);
}
void
dnode_rele_and_unlock(dnode_t *dn, void *tag)
{
uint64_t refs;
/* Get while the hold prevents the dnode from moving. */
dmu_buf_impl_t *db = dn->dn_dbuf;
dnode_handle_t *dnh = dn->dn_handle;
refs = refcount_remove(&dn->dn_holds, tag);
mutex_exit(&dn->dn_mtx);
/*
* It's unsafe to release the last hold on a dnode by dnode_rele() or
* indirectly by dbuf_rele() while relying on the dnode handle to
* prevent the dnode from moving, since releasing the last hold could
* result in the dnode's parent dbuf evicting its dnode handles. For
* that reason anyone calling dnode_rele() or dbuf_rele() without some
* other direct or indirect hold on the dnode must first drop the dnode
* handle.
*/
ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
if (refs == 0 && db != NULL) {
/*
* Another thread could add a hold to the dnode handle in
* dnode_hold_impl() while holding the parent dbuf. Since the
* hold on the parent dbuf prevents the handle from being
* destroyed, the hold on the handle is OK. We can't yet assert
* that the handle has zero references, but that will be
* asserted anyway when the handle gets destroyed.
*/
dbuf_rele(db, dnh);
}
}
void
dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
{
objset_t *os = dn->dn_objset;
uint64_t txg = tx->tx_txg;
if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
dsl_dataset_dirty(os->os_dsl_dataset, tx);
return;
}
DNODE_VERIFY(dn);
#ifdef ZFS_DEBUG
mutex_enter(&dn->dn_mtx);
ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
mutex_exit(&dn->dn_mtx);
#endif
/*
* Determine old uid/gid when necessary
*/
dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
mutex_enter(&os->os_lock);
/*
* If we are already marked dirty, we're done.
*/
if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
mutex_exit(&os->os_lock);
return;
}
ASSERT(!refcount_is_zero(&dn->dn_holds) ||
!avl_is_empty(&dn->dn_dbufs));
ASSERT(dn->dn_datablksz != 0);
ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
dn->dn_object, txg);
if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
} else {
list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
}
mutex_exit(&os->os_lock);
/*
* The dnode maintains a hold on its containing dbuf as
* long as there are holds on it. Each instantiated child
* dbuf maintains a hold on the dnode. When the last child
* drops its hold, the dnode will drop its hold on the
* containing dbuf. We add a "dirty hold" here so that the
* dnode will hang around after we finish processing its
* children.
*/
VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
(void) dbuf_dirty(dn->dn_dbuf, tx);
dsl_dataset_dirty(os->os_dsl_dataset, tx);
}
void
dnode_free(dnode_t *dn, dmu_tx_t *tx)
{
int txgoff = tx->tx_txg & TXG_MASK;
dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
/* we should be the only holder... hopefully */
/* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
mutex_enter(&dn->dn_mtx);
if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
mutex_exit(&dn->dn_mtx);
return;
}
dn->dn_free_txg = tx->tx_txg;
mutex_exit(&dn->dn_mtx);
/*
* If the dnode is already dirty, it needs to be moved from
* the dirty list to the free list.
*/
mutex_enter(&dn->dn_objset->os_lock);
if (list_link_active(&dn->dn_dirty_link[txgoff])) {
list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
mutex_exit(&dn->dn_objset->os_lock);
} else {
mutex_exit(&dn->dn_objset->os_lock);
dnode_setdirty(dn, tx);
}
}
/*
* Try to change the block size for the indicated dnode. This can only
* succeed if there are no blocks allocated or dirty beyond first block
*/
int
dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
{
dmu_buf_impl_t *db;
int err;
ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
if (size == 0)
size = SPA_MINBLOCKSIZE;
else
size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
if (ibs == dn->dn_indblkshift)
ibs = 0;
if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
return (0);
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
/* Check for any allocated blocks beyond the first */
if (dn->dn_maxblkid != 0)
goto fail;
mutex_enter(&dn->dn_dbufs_mtx);
for (db = avl_first(&dn->dn_dbufs); db != NULL;
db = AVL_NEXT(&dn->dn_dbufs, db)) {
if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
db->db_blkid != DMU_SPILL_BLKID) {
mutex_exit(&dn->dn_dbufs_mtx);
goto fail;
}
}
mutex_exit(&dn->dn_dbufs_mtx);
if (ibs && dn->dn_nlevels != 1)
goto fail;
/* resize the old block */
err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
if (err == 0)
dbuf_new_size(db, size, tx);
else if (err != ENOENT)
goto fail;
dnode_setdblksz(dn, size);
dnode_setdirty(dn, tx);
dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
if (ibs) {
dn->dn_indblkshift = ibs;
dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
}
/* rele after we have fixed the blocksize in the dnode */
if (db)
dbuf_rele(db, FTAG);
rw_exit(&dn->dn_struct_rwlock);
return (0);
fail:
rw_exit(&dn->dn_struct_rwlock);
return (SET_ERROR(ENOTSUP));
}
/* read-holding callers must not rely on the lock being continuously held */
void
dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
{
uint64_t txgoff = tx->tx_txg & TXG_MASK;
int epbs, new_nlevels;
uint64_t sz;
ASSERT(blkid != DMU_BONUS_BLKID);
ASSERT(have_read ?
RW_READ_HELD(&dn->dn_struct_rwlock) :
RW_WRITE_HELD(&dn->dn_struct_rwlock));
/*
* if we have a read-lock, check to see if we need to do any work
* before upgrading to a write-lock.
*/
if (have_read) {
if (blkid <= dn->dn_maxblkid)
return;
if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
rw_exit(&dn->dn_struct_rwlock);
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
}
}
if (blkid <= dn->dn_maxblkid)
goto out;
dn->dn_maxblkid = blkid;
/*
* Compute the number of levels necessary to support the new maxblkid.
*/
new_nlevels = 1;
epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
for (sz = dn->dn_nblkptr;
sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
new_nlevels++;
ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
if (new_nlevels > dn->dn_nlevels) {
int old_nlevels = dn->dn_nlevels;
dmu_buf_impl_t *db;
list_t *list;
dbuf_dirty_record_t *new, *dr, *dr_next;
dn->dn_nlevels = new_nlevels;
ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
dn->dn_next_nlevels[txgoff] = new_nlevels;
/* dirty the left indirects */
db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
ASSERT(db != NULL);
new = dbuf_dirty(db, tx);
dbuf_rele(db, FTAG);
/* transfer the dirty records to the new indirect */
mutex_enter(&dn->dn_mtx);
mutex_enter(&new->dt.di.dr_mtx);
list = &dn->dn_dirty_records[txgoff];
for (dr = list_head(list); dr; dr = dr_next) {
dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
if (dr->dr_dbuf->db_level != new_nlevels-1 &&
dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
list_remove(&dn->dn_dirty_records[txgoff], dr);
list_insert_tail(&new->dt.di.dr_children, dr);
dr->dr_parent = new;
}
}
mutex_exit(&new->dt.di.dr_mtx);
mutex_exit(&dn->dn_mtx);
}
out:
if (have_read)
rw_downgrade(&dn->dn_struct_rwlock);
}
static void
dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
{
dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
if (db != NULL) {
dmu_buf_will_dirty(&db->db, tx);
dbuf_rele(db, FTAG);
}
}
void
dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
{
dmu_buf_impl_t *db;
uint64_t blkoff, blkid, nblks;
int blksz, blkshift, head, tail;
int trunc = FALSE;
int epbs;
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
blksz = dn->dn_datablksz;
blkshift = dn->dn_datablkshift;
epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
if (len == DMU_OBJECT_END) {
len = UINT64_MAX - off;
trunc = TRUE;
}
/*
* First, block align the region to free:
*/
if (ISP2(blksz)) {
head = P2NPHASE(off, blksz);
blkoff = P2PHASE(off, blksz);
if ((off >> blkshift) > dn->dn_maxblkid)
goto out;
} else {
ASSERT(dn->dn_maxblkid == 0);
if (off == 0 && len >= blksz) {
/*
* Freeing the whole block; fast-track this request.
* Note that we won't dirty any indirect blocks,
* which is fine because we will be freeing the entire
* file and thus all indirect blocks will be freed
* by free_children().
*/
blkid = 0;
nblks = 1;
goto done;
} else if (off >= blksz) {
/* Freeing past end-of-data */
goto out;
} else {
/* Freeing part of the block. */
head = blksz - off;
ASSERT3U(head, >, 0);
}
blkoff = off;
}
/* zero out any partial block data at the start of the range */
if (head) {
ASSERT3U(blkoff + head, ==, blksz);
if (len < head)
head = len;
if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
TRUE, FALSE, FTAG, &db) == 0) {
caddr_t data;
/* don't dirty if it isn't on disk and isn't dirty */
if (db->db_last_dirty ||
(db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
rw_exit(&dn->dn_struct_rwlock);
dmu_buf_will_dirty(&db->db, tx);
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
data = db->db.db_data;
bzero(data + blkoff, head);
}
dbuf_rele(db, FTAG);
}
off += head;
len -= head;
}
/* If the range was less than one block, we're done */
if (len == 0)
goto out;
/* If the remaining range is past end of file, we're done */
if ((off >> blkshift) > dn->dn_maxblkid)
goto out;
ASSERT(ISP2(blksz));
if (trunc)
tail = 0;
else
tail = P2PHASE(len, blksz);
ASSERT0(P2PHASE(off, blksz));
/* zero out any partial block data at the end of the range */
if (tail) {
if (len < tail)
tail = len;
if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
TRUE, FALSE, FTAG, &db) == 0) {
/* don't dirty if not on disk and not dirty */
if (db->db_last_dirty ||
(db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
rw_exit(&dn->dn_struct_rwlock);
dmu_buf_will_dirty(&db->db, tx);
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
bzero(db->db.db_data, tail);
}
dbuf_rele(db, FTAG);
}
len -= tail;
}
/* If the range did not include a full block, we are done */
if (len == 0)
goto out;
ASSERT(IS_P2ALIGNED(off, blksz));
ASSERT(trunc || IS_P2ALIGNED(len, blksz));
blkid = off >> blkshift;
nblks = len >> blkshift;
if (trunc)
nblks += 1;
/*
* Dirty all the indirect blocks in this range. Note that only
* the first and last indirect blocks can actually be written
* (if they were partially freed) -- they must be dirtied, even if
* they do not exist on disk yet. The interior blocks will
* be freed by free_children(), so they will not actually be written.
* Even though these interior blocks will not be written, we
* dirty them for two reasons:
*
* - It ensures that the indirect blocks remain in memory until
* syncing context. (They have already been prefetched by
* dmu_tx_hold_free(), so we don't have to worry about reading
* them serially here.)
*
* - The dirty space accounting will put pressure on the txg sync
* mechanism to begin syncing, and to delay transactions if there
* is a large amount of freeing. Even though these indirect
* blocks will not be written, we could need to write the same
* amount of space if we copy the freed BPs into deadlists.
*/
if (dn->dn_nlevels > 1) {
uint64_t first, last, i, ibyte;
int shift, err;
first = blkid >> epbs;
dnode_dirty_l1(dn, first, tx);
if (trunc)
last = dn->dn_maxblkid >> epbs;
else
last = (blkid + nblks - 1) >> epbs;
if (last != first)
dnode_dirty_l1(dn, last, tx);
shift = dn->dn_datablkshift + dn->dn_indblkshift -
SPA_BLKPTRSHIFT;
for (i = first + 1; i < last; i++) {
/*
* Set i to the blockid of the next non-hole
* level-1 indirect block at or after i. Note
* that dnode_next_offset() operates in terms of
* level-0-equivalent bytes.
*/
ibyte = i << shift;
err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
&ibyte, 2, 1, 0);
i = ibyte >> shift;
if (i >= last)
break;
/*
* Normally we should not see an error, either
* from dnode_next_offset() or dbuf_hold_level()
* (except for ESRCH from dnode_next_offset).
* If there is an i/o error, then when we read
* this block in syncing context, it will use
* ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
* to the "failmode" property. dnode_next_offset()
* doesn't have a flag to indicate MUSTSUCCEED.
*/
if (err != 0)
break;
dnode_dirty_l1(dn, i, tx);
}
}
done:
/*
* Add this range to the dnode range list.
* We will finish up this free operation in the syncing phase.
*/
mutex_enter(&dn->dn_mtx);
{
int txgoff = tx->tx_txg & TXG_MASK;
if (dn->dn_free_ranges[txgoff] == NULL) {
dn->dn_free_ranges[txgoff] =
range_tree_create(NULL, NULL, &dn->dn_mtx);
}
range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
}
dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
blkid, nblks, tx->tx_txg);
mutex_exit(&dn->dn_mtx);
dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
dnode_setdirty(dn, tx);
out:
rw_exit(&dn->dn_struct_rwlock);
}
static boolean_t
dnode_spill_freed(dnode_t *dn)
{
int i;
mutex_enter(&dn->dn_mtx);
for (i = 0; i < TXG_SIZE; i++) {
if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
break;
}
mutex_exit(&dn->dn_mtx);
return (i < TXG_SIZE);
}
/* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
uint64_t
dnode_block_freed(dnode_t *dn, uint64_t blkid)
{
void *dp = spa_get_dsl(dn->dn_objset->os_spa);
int i;
if (blkid == DMU_BONUS_BLKID)
return (FALSE);
/*
* If we're in the process of opening the pool, dp will not be
* set yet, but there shouldn't be anything dirty.
*/
if (dp == NULL)
return (FALSE);
if (dn->dn_free_txg)
return (TRUE);
if (blkid == DMU_SPILL_BLKID)
return (dnode_spill_freed(dn));
mutex_enter(&dn->dn_mtx);
for (i = 0; i < TXG_SIZE; i++) {
if (dn->dn_free_ranges[i] != NULL &&
range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
break;
}
mutex_exit(&dn->dn_mtx);
return (i < TXG_SIZE);
}
/* call from syncing context when we actually write/free space for this dnode */
void
dnode_diduse_space(dnode_t *dn, int64_t delta)
{
uint64_t space;
dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
dn, dn->dn_phys,
(u_longlong_t)dn->dn_phys->dn_used,
(longlong_t)delta);
mutex_enter(&dn->dn_mtx);
space = DN_USED_BYTES(dn->dn_phys);
if (delta > 0) {
ASSERT3U(space + delta, >=, space); /* no overflow */
} else {
ASSERT3U(space, >=, -delta); /* no underflow */
}
space += delta;
if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
dn->dn_phys->dn_used = space >> DEV_BSHIFT;
} else {
dn->dn_phys->dn_used = space;
dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
}
mutex_exit(&dn->dn_mtx);
}
/*
* Call when we think we're going to write/free space in open context to track
* the amount of memory in use by the currently open txg.
*/
void
dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
{
objset_t *os = dn->dn_objset;
dsl_dataset_t *ds = os->os_dsl_dataset;
int64_t aspace = spa_get_asize(os->os_spa, space);
if (ds != NULL) {
dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
}
dmu_tx_willuse_space(tx, aspace);
}
/*
* Scans a block at the indicated "level" looking for a hole or data,
* depending on 'flags'.
*
* If level > 0, then we are scanning an indirect block looking at its
* pointers. If level == 0, then we are looking at a block of dnodes.
*
* If we don't find what we are looking for in the block, we return ESRCH.
* Otherwise, return with *offset pointing to the beginning (if searching
* forwards) or end (if searching backwards) of the range covered by the
* block pointer we matched on (or dnode).
*
* The basic search algorithm used below by dnode_next_offset() is to
* use this function to search up the block tree (widen the search) until
* we find something (i.e., we don't return ESRCH) and then search back
* down the tree (narrow the search) until we reach our original search
* level.
*/
static int
dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
int lvl, uint64_t blkfill, uint64_t txg)
{
dmu_buf_impl_t *db = NULL;
void *data = NULL;
uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
uint64_t epb = 1ULL << epbs;
uint64_t minfill, maxfill;
boolean_t hole;
int i, inc, error, span;
hole = ((flags & DNODE_FIND_HOLE) != 0);
inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
ASSERT(txg == 0 || !hole);
if (lvl == dn->dn_phys->dn_nlevels) {
error = 0;
epb = dn->dn_phys->dn_nblkptr;
data = dn->dn_phys->dn_blkptr;
} else {
uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
if (error) {
if (error != ENOENT)
return (error);
if (hole)
return (0);
/*
* This can only happen when we are searching up
* the block tree for data. We don't really need to
* adjust the offset, as we will just end up looking
* at the pointer to this block in its parent, and its
* going to be unallocated, so we will skip over it.
*/
return (SET_ERROR(ESRCH));
}
error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
if (error) {
dbuf_rele(db, FTAG);
return (error);
}
data = db->db.db_data;
}
if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
db->db_blkptr->blk_birth <= txg ||
BP_IS_HOLE(db->db_blkptr))) {
/*
* This can only happen when we are searching up the tree
* and these conditions mean that we need to keep climbing.
*/
error = SET_ERROR(ESRCH);
} else if (lvl == 0) {
dnode_phys_t *dnp = data;
ASSERT(dn->dn_type == DMU_OT_DNODE);
ASSERT(!(flags & DNODE_FIND_BACKWARDS));
for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
i < blkfill; i += dnp[i].dn_extra_slots + 1) {
if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
break;
}
if (i == blkfill)
error = SET_ERROR(ESRCH);
*offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
(i << DNODE_SHIFT);
} else {
blkptr_t *bp = data;
uint64_t start = *offset;
span = (lvl - 1) * epbs + dn->dn_datablkshift;
minfill = 0;
maxfill = blkfill << ((lvl - 1) * epbs);
if (hole)
maxfill--;
else
minfill++;
if (span >= 8 * sizeof (*offset)) {
/* This only happens on the highest indirection level */
ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
*offset = 0;
} else {
*offset = *offset >> span;
}
for (i = BF64_GET(*offset, 0, epbs);
i >= 0 && i < epb; i += inc) {
if (BP_GET_FILL(&bp[i]) >= minfill &&
BP_GET_FILL(&bp[i]) <= maxfill &&
(hole || bp[i].blk_birth > txg))
break;
if (inc > 0 || *offset > 0)
*offset += inc;
}
if (span >= 8 * sizeof (*offset)) {
*offset = start;
} else {
*offset = *offset << span;
}
if (inc < 0) {
/* traversing backwards; position offset at the end */
ASSERT3U(*offset, <=, start);
*offset = MIN(*offset + (1ULL << span) - 1, start);
} else if (*offset < start) {
*offset = start;
}
if (i < 0 || i >= epb)
error = SET_ERROR(ESRCH);
}
if (db)
dbuf_rele(db, FTAG);
return (error);
}
/*
* Find the next hole, data, or sparse region at or after *offset.
* The value 'blkfill' tells us how many items we expect to find
* in an L0 data block; this value is 1 for normal objects,
* DNODES_PER_BLOCK for the meta dnode, and some fraction of
* DNODES_PER_BLOCK when searching for sparse regions thereof.
*
* Examples:
*
* dnode_next_offset(dn, flags, offset, 1, 1, 0);
* Finds the next/previous hole/data in a file.
* Used in dmu_offset_next().
*
* dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
* Finds the next free/allocated dnode an objset's meta-dnode.
* Only finds objects that have new contents since txg (ie.
* bonus buffer changes and content removal are ignored).
* Used in dmu_object_next().
*
* dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
* Finds the next L2 meta-dnode bp that's at most 1/4 full.
* Used in dmu_object_alloc().
*/
int
dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
int minlvl, uint64_t blkfill, uint64_t txg)
{
uint64_t initial_offset = *offset;
int lvl, maxlvl;
int error = 0;
if (!(flags & DNODE_FIND_HAVELOCK))
rw_enter(&dn->dn_struct_rwlock, RW_READER);
if (dn->dn_phys->dn_nlevels == 0) {
error = SET_ERROR(ESRCH);
goto out;
}
if (dn->dn_datablkshift == 0) {
if (*offset < dn->dn_datablksz) {
if (flags & DNODE_FIND_HOLE)
*offset = dn->dn_datablksz;
} else {
error = SET_ERROR(ESRCH);
}
goto out;
}
maxlvl = dn->dn_phys->dn_nlevels;
for (lvl = minlvl; lvl <= maxlvl; lvl++) {
error = dnode_next_offset_level(dn,
flags, offset, lvl, blkfill, txg);
if (error != ESRCH)
break;
}
while (error == 0 && --lvl >= minlvl) {
error = dnode_next_offset_level(dn,
flags, offset, lvl, blkfill, txg);
}
/*
* There's always a "virtual hole" at the end of the object, even
* if all BP's which physically exist are non-holes.
*/
if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
error = 0;
}
if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
initial_offset < *offset : initial_offset > *offset))
error = SET_ERROR(ESRCH);
out:
if (!(flags & DNODE_FIND_HAVELOCK))
rw_exit(&dn->dn_struct_rwlock);
return (error);
}