freebsd-nq/sys/dev/cxgbe/adapter.h
Navdeep Parhar 82eff304b6 cxgbe(4): Keep track of the clusters that have to be freed by the
custom free routine (rxb_free) in the driver.  Fail MOD_UNLOAD with
EBUSY if any such cluster has been handed up to the kernel but hasn't
been freed yet.  This prevents a panic later when the cluster finally
needs to be freed but rxb_free is gone from the kernel.

MFC after:	1 week
2014-07-23 22:29:22 +00:00

1059 lines
29 KiB
C

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*
*/
#ifndef __T4_ADAPTER_H__
#define __T4_ADAPTER_H__
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/types.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/rwlock.h>
#include <sys/sx.h>
#include <vm/uma.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <machine/bus.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/tcp_lro.h>
#include "offload.h"
#include "common/t4_msg.h"
#include "firmware/t4fw_interface.h"
MALLOC_DECLARE(M_CXGBE);
#define CXGBE_UNIMPLEMENTED(s) \
panic("%s (%s, line %d) not implemented yet.", s, __FILE__, __LINE__)
#if defined(__i386__) || defined(__amd64__)
static __inline void
prefetch(void *x)
{
__asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
}
#else
#define prefetch(x)
#endif
#ifndef SYSCTL_ADD_UQUAD
#define SYSCTL_ADD_UQUAD SYSCTL_ADD_QUAD
#define sysctl_handle_64 sysctl_handle_quad
#define CTLTYPE_U64 CTLTYPE_QUAD
#endif
#if (__FreeBSD_version >= 900030) || \
((__FreeBSD_version >= 802507) && (__FreeBSD_version < 900000))
#define SBUF_DRAIN 1
#endif
#ifdef __amd64__
/* XXX: need systemwide bus_space_read_8/bus_space_write_8 */
static __inline uint64_t
t4_bus_space_read_8(bus_space_tag_t tag, bus_space_handle_t handle,
bus_size_t offset)
{
KASSERT(tag == X86_BUS_SPACE_MEM,
("%s: can only handle mem space", __func__));
return (*(volatile uint64_t *)(handle + offset));
}
static __inline void
t4_bus_space_write_8(bus_space_tag_t tag, bus_space_handle_t bsh,
bus_size_t offset, uint64_t value)
{
KASSERT(tag == X86_BUS_SPACE_MEM,
("%s: can only handle mem space", __func__));
*(volatile uint64_t *)(bsh + offset) = value;
}
#else
static __inline uint64_t
t4_bus_space_read_8(bus_space_tag_t tag, bus_space_handle_t handle,
bus_size_t offset)
{
return (uint64_t)bus_space_read_4(tag, handle, offset) +
((uint64_t)bus_space_read_4(tag, handle, offset + 4) << 32);
}
static __inline void
t4_bus_space_write_8(bus_space_tag_t tag, bus_space_handle_t bsh,
bus_size_t offset, uint64_t value)
{
bus_space_write_4(tag, bsh, offset, value);
bus_space_write_4(tag, bsh, offset + 4, value >> 32);
}
#endif
struct adapter;
typedef struct adapter adapter_t;
enum {
FW_IQ_QSIZE = 256,
FW_IQ_ESIZE = 64, /* At least 64 mandated by the firmware spec */
RX_IQ_QSIZE = 1024,
RX_IQ_ESIZE = 64, /* At least 64 so CPL_RX_PKT will fit */
EQ_ESIZE = 64, /* All egress queues use this entry size */
SGE_MAX_WR_NDESC = SGE_MAX_WR_LEN / EQ_ESIZE, /* max WR size in desc */
RX_FL_ESIZE = EQ_ESIZE, /* 8 64bit addresses */
#if MJUMPAGESIZE != MCLBYTES
SW_ZONE_SIZES = 4, /* cluster, jumbop, jumbo9k, jumbo16k */
#else
SW_ZONE_SIZES = 3, /* cluster, jumbo9k, jumbo16k */
#endif
CL_METADATA_SIZE = CACHE_LINE_SIZE,
CTRL_EQ_QSIZE = 128,
TX_EQ_QSIZE = 1024,
TX_SGL_SEGS = 36,
TX_WR_FLITS = SGE_MAX_WR_LEN / 8
};
enum {
/* adapter intr_type */
INTR_INTX = (1 << 0),
INTR_MSI = (1 << 1),
INTR_MSIX = (1 << 2)
};
enum {
XGMAC_MTU = (1 << 0),
XGMAC_PROMISC = (1 << 1),
XGMAC_ALLMULTI = (1 << 2),
XGMAC_VLANEX = (1 << 3),
XGMAC_UCADDR = (1 << 4),
XGMAC_MCADDRS = (1 << 5),
XGMAC_ALL = 0xffff
};
enum {
/* flags understood by begin_synchronized_op */
HOLD_LOCK = (1 << 0),
SLEEP_OK = (1 << 1),
INTR_OK = (1 << 2),
/* flags understood by end_synchronized_op */
LOCK_HELD = HOLD_LOCK,
};
enum {
/* adapter flags */
FULL_INIT_DONE = (1 << 0),
FW_OK = (1 << 1),
/* INTR_DIRECT = (1 << 2), No longer used. */
MASTER_PF = (1 << 3),
ADAP_SYSCTL_CTX = (1 << 4),
TOM_INIT_DONE = (1 << 5),
BUF_PACKING_OK = (1 << 6),
CXGBE_BUSY = (1 << 9),
/* port flags */
DOOMED = (1 << 0),
PORT_INIT_DONE = (1 << 1),
PORT_SYSCTL_CTX = (1 << 2),
HAS_TRACEQ = (1 << 3),
INTR_RXQ = (1 << 4), /* All NIC rxq's take interrupts */
INTR_OFLD_RXQ = (1 << 5), /* All TOE rxq's take interrupts */
INTR_NM_RXQ = (1 << 6), /* All netmap rxq's take interrupts */
INTR_ALL = (INTR_RXQ | INTR_OFLD_RXQ | INTR_NM_RXQ),
};
#define IS_DOOMED(pi) ((pi)->flags & DOOMED)
#define SET_DOOMED(pi) do {(pi)->flags |= DOOMED;} while (0)
#define IS_BUSY(sc) ((sc)->flags & CXGBE_BUSY)
#define SET_BUSY(sc) do {(sc)->flags |= CXGBE_BUSY;} while (0)
#define CLR_BUSY(sc) do {(sc)->flags &= ~CXGBE_BUSY;} while (0)
struct port_info {
device_t dev;
struct adapter *adapter;
struct ifnet *ifp;
struct ifmedia media;
struct mtx pi_lock;
char lockname[16];
unsigned long flags;
int if_flags;
uint16_t *rss;
uint16_t viid;
int16_t xact_addr_filt;/* index of exact MAC address filter */
uint16_t rss_size; /* size of VI's RSS table slice */
uint8_t lport; /* associated offload logical port */
int8_t mdio_addr;
uint8_t port_type;
uint8_t mod_type;
uint8_t port_id;
uint8_t tx_chan;
uint8_t rx_chan_map; /* rx MPS channel bitmap */
/* These need to be int as they are used in sysctl */
int ntxq; /* # of tx queues */
int first_txq; /* index of first tx queue */
int rsrv_noflowq; /* Reserve queue 0 for non-flowid packets */
int nrxq; /* # of rx queues */
int first_rxq; /* index of first rx queue */
#ifdef TCP_OFFLOAD
int nofldtxq; /* # of offload tx queues */
int first_ofld_txq; /* index of first offload tx queue */
int nofldrxq; /* # of offload rx queues */
int first_ofld_rxq; /* index of first offload rx queue */
#endif
#ifdef DEV_NETMAP
int nnmtxq; /* # of netmap tx queues */
int first_nm_txq; /* index of first netmap tx queue */
int nnmrxq; /* # of netmap rx queues */
int first_nm_rxq; /* index of first netmap rx queue */
struct ifnet *nm_ifp;
struct ifmedia nm_media;
int nmif_flags;
uint16_t nm_viid;
int16_t nm_xact_addr_filt;
uint16_t nm_rss_size; /* size of netmap VI's RSS table slice */
#endif
int tmr_idx;
int pktc_idx;
int qsize_rxq;
int qsize_txq;
int linkdnrc;
struct link_config link_cfg;
struct port_stats stats;
eventhandler_tag vlan_c;
struct callout tick;
struct sysctl_ctx_list ctx; /* from ifconfig up to driver detach */
uint8_t hw_addr[ETHER_ADDR_LEN]; /* factory MAC address, won't change */
};
/* Where the cluster came from, how it has been carved up. */
struct cluster_layout {
int8_t zidx;
int8_t hwidx;
uint16_t region1; /* mbufs laid out within this region */
/* region2 is the DMA region */
uint16_t region3; /* cluster_metadata within this region */
};
struct cluster_metadata {
u_int refcount;
#ifdef INVARIANTS
struct fl_sdesc *sd; /* For debug only. Could easily be stale */
#endif
};
struct fl_sdesc {
caddr_t cl;
uint16_t nmbuf; /* # of driver originated mbufs with ref on cluster */
struct cluster_layout cll;
};
struct tx_desc {
__be64 flit[8];
};
struct tx_map {
struct mbuf *m;
bus_dmamap_t map;
};
/* DMA maps used for tx */
struct tx_maps {
struct tx_map *maps;
uint32_t map_total; /* # of DMA maps */
uint32_t map_pidx; /* next map to be used */
uint32_t map_cidx; /* reclaimed up to this index */
uint32_t map_avail; /* # of available maps */
};
struct tx_sdesc {
uint8_t desc_used; /* # of hardware descriptors used by the WR */
uint8_t credits; /* NIC txq: # of frames sent out in the WR */
};
enum {
/* iq flags */
IQ_ALLOCATED = (1 << 0), /* firmware resources allocated */
IQ_HAS_FL = (1 << 1), /* iq associated with a freelist */
IQ_INTR = (1 << 2), /* iq takes direct interrupt */
IQ_LRO_ENABLED = (1 << 3), /* iq is an eth rxq with LRO enabled */
/* iq state */
IQS_DISABLED = 0,
IQS_BUSY = 1,
IQS_IDLE = 2,
};
/*
* Ingress Queue: T4 is producer, driver is consumer.
*/
struct sge_iq {
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
bus_addr_t ba; /* bus address of descriptor ring */
uint32_t flags;
uint16_t abs_id; /* absolute SGE id for the iq */
int8_t intr_pktc_idx; /* packet count threshold index */
int8_t pad0;
__be64 *desc; /* KVA of descriptor ring */
volatile int state;
struct adapter *adapter;
const __be64 *cdesc; /* current descriptor */
uint8_t gen; /* generation bit */
uint8_t intr_params; /* interrupt holdoff parameters */
uint8_t intr_next; /* XXX: holdoff for next interrupt */
uint8_t esize; /* size (bytes) of each entry in the queue */
uint16_t qsize; /* size (# of entries) of the queue */
uint16_t cidx; /* consumer index */
uint16_t cntxt_id; /* SGE context id for the iq */
STAILQ_ENTRY(sge_iq) link;
};
enum {
EQ_CTRL = 1,
EQ_ETH = 2,
#ifdef TCP_OFFLOAD
EQ_OFLD = 3,
#endif
/* eq flags */
EQ_TYPEMASK = 7, /* 3 lsbits hold the type */
EQ_ALLOCATED = (1 << 3), /* firmware resources allocated */
EQ_DOOMED = (1 << 4), /* about to be destroyed */
EQ_CRFLUSHED = (1 << 5), /* expecting an update from SGE */
EQ_STALLED = (1 << 6), /* out of hw descriptors or dmamaps */
};
/* Listed in order of preference. Update t4_sysctls too if you change these */
enum {DOORBELL_UDB, DOORBELL_WCWR, DOORBELL_UDBWC, DOORBELL_KDB};
/*
* Egress Queue: driver is producer, T4 is consumer.
*
* Note: A free list is an egress queue (driver produces the buffers and T4
* consumes them) but it's special enough to have its own struct (see sge_fl).
*/
struct sge_eq {
unsigned int flags; /* MUST be first */
unsigned int cntxt_id; /* SGE context id for the eq */
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
char lockname[16];
struct mtx eq_lock;
struct tx_desc *desc; /* KVA of descriptor ring */
bus_addr_t ba; /* bus address of descriptor ring */
struct sge_qstat *spg; /* status page, for convenience */
uint16_t doorbells;
volatile uint32_t *udb; /* KVA of doorbell (lies within BAR2) */
u_int udb_qid; /* relative qid within the doorbell page */
uint16_t cap; /* max # of desc, for convenience */
uint16_t avail; /* available descriptors, for convenience */
uint16_t qsize; /* size (# of entries) of the queue */
uint16_t cidx; /* consumer idx (desc idx) */
uint16_t pidx; /* producer idx (desc idx) */
uint16_t pending; /* # of descriptors used since last doorbell */
uint16_t iqid; /* iq that gets egr_update for the eq */
uint8_t tx_chan; /* tx channel used by the eq */
struct task tx_task;
struct callout tx_callout;
/* stats */
uint32_t egr_update; /* # of SGE_EGR_UPDATE notifications for eq */
uint32_t unstalled; /* recovered from stall */
};
struct sw_zone_info {
uma_zone_t zone; /* zone that this cluster comes from */
int size; /* size of cluster: 2K, 4K, 9K, 16K, etc. */
int type; /* EXT_xxx type of the cluster */
int8_t head_hwidx;
int8_t tail_hwidx;
};
struct hw_buf_info {
int8_t zidx; /* backpointer to zone; -ve means unused */
int8_t next; /* next hwidx for this zone; -1 means no more */
int size;
};
enum {
FL_STARVING = (1 << 0), /* on the adapter's list of starving fl's */
FL_DOOMED = (1 << 1), /* about to be destroyed */
FL_BUF_PACKING = (1 << 2), /* buffer packing enabled */
};
#define FL_RUNNING_LOW(fl) (fl->cap - fl->needed <= fl->lowat)
#define FL_NOT_RUNNING_LOW(fl) (fl->cap - fl->needed >= 2 * fl->lowat)
struct sge_fl {
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
struct cluster_layout cll_def; /* default refill zone, layout */
struct cluster_layout cll_alt; /* alternate refill zone, layout */
struct mtx fl_lock;
char lockname[16];
int flags;
__be64 *desc; /* KVA of descriptor ring, ptr to addresses */
bus_addr_t ba; /* bus address of descriptor ring */
struct fl_sdesc *sdesc; /* KVA of software descriptor ring */
uint32_t cap; /* max # of buffers, for convenience */
uint16_t qsize; /* size (# of entries) of the queue */
uint16_t cntxt_id; /* SGE context id for the freelist */
uint32_t cidx; /* consumer idx (buffer idx, NOT hw desc idx) */
uint32_t rx_offset; /* offset in fl buf (when buffer packing) */
uint32_t pidx; /* producer idx (buffer idx, NOT hw desc idx) */
uint32_t needed; /* # of buffers needed to fill up fl. */
uint32_t lowat; /* # of buffers <= this means fl needs help */
uint32_t pending; /* # of bufs allocated since last doorbell */
TAILQ_ENTRY(sge_fl) link; /* All starving freelists */
struct mbuf *m0;
struct mbuf **pnext;
u_int remaining;
uint64_t mbuf_allocated;/* # of mbuf allocated from zone_mbuf */
uint64_t mbuf_inlined; /* # of mbuf created within clusters */
uint64_t cl_allocated; /* # of clusters allocated */
uint64_t cl_recycled; /* # of clusters recycled */
uint64_t cl_fast_recycled; /* # of clusters recycled (fast) */
};
/* txq: SGE egress queue + what's needed for Ethernet NIC */
struct sge_txq {
struct sge_eq eq; /* MUST be first */
struct ifnet *ifp; /* the interface this txq belongs to */
bus_dma_tag_t tx_tag; /* tag for transmit buffers */
struct buf_ring *br; /* tx buffer ring */
struct tx_sdesc *sdesc; /* KVA of software descriptor ring */
struct mbuf *m; /* held up due to temporary resource shortage */
struct tx_maps txmaps;
/* stats for common events first */
uint64_t txcsum; /* # of times hardware assisted with checksum */
uint64_t tso_wrs; /* # of TSO work requests */
uint64_t vlan_insertion;/* # of times VLAN tag was inserted */
uint64_t imm_wrs; /* # of work requests with immediate data */
uint64_t sgl_wrs; /* # of work requests with direct SGL */
uint64_t txpkt_wrs; /* # of txpkt work requests (not coalesced) */
uint64_t txpkts_wrs; /* # of coalesced tx work requests */
uint64_t txpkts_pkts; /* # of frames in coalesced tx work requests */
/* stats for not-that-common events */
uint32_t no_dmamap; /* no DMA map to load the mbuf */
uint32_t no_desc; /* out of hardware descriptors */
} __aligned(CACHE_LINE_SIZE);
/* rxq: SGE ingress queue + SGE free list + miscellaneous items */
struct sge_rxq {
struct sge_iq iq; /* MUST be first */
struct sge_fl fl; /* MUST follow iq */
struct ifnet *ifp; /* the interface this rxq belongs to */
#if defined(INET) || defined(INET6)
struct lro_ctrl lro; /* LRO state */
#endif
/* stats for common events first */
uint64_t rxcsum; /* # of times hardware assisted with checksum */
uint64_t vlan_extraction;/* # of times VLAN tag was extracted */
/* stats for not-that-common events */
} __aligned(CACHE_LINE_SIZE);
static inline struct sge_rxq *
iq_to_rxq(struct sge_iq *iq)
{
return (__containerof(iq, struct sge_rxq, iq));
}
#ifdef TCP_OFFLOAD
/* ofld_rxq: SGE ingress queue + SGE free list + miscellaneous items */
struct sge_ofld_rxq {
struct sge_iq iq; /* MUST be first */
struct sge_fl fl; /* MUST follow iq */
} __aligned(CACHE_LINE_SIZE);
static inline struct sge_ofld_rxq *
iq_to_ofld_rxq(struct sge_iq *iq)
{
return (__containerof(iq, struct sge_ofld_rxq, iq));
}
#endif
struct wrqe {
STAILQ_ENTRY(wrqe) link;
struct sge_wrq *wrq;
int wr_len;
uint64_t wr[] __aligned(16);
};
/*
* wrq: SGE egress queue that is given prebuilt work requests. Both the control
* and offload tx queues are of this type.
*/
struct sge_wrq {
struct sge_eq eq; /* MUST be first */
struct adapter *adapter;
/* List of WRs held up due to lack of tx descriptors */
STAILQ_HEAD(, wrqe) wr_list;
/* stats for common events first */
uint64_t tx_wrs; /* # of tx work requests */
/* stats for not-that-common events */
uint32_t no_desc; /* out of hardware descriptors */
} __aligned(CACHE_LINE_SIZE);
#ifdef DEV_NETMAP
#define CPL_PAD (RX_IQ_ESIZE - sizeof(struct rsp_ctrl) - \
sizeof(struct rss_header))
struct nm_iq_desc {
struct rss_header rss;
union {
uint8_t cpl[CPL_PAD];
struct cpl_fw6_msg fw6_msg;
struct cpl_rx_pkt rx_pkt;
} u;
struct rsp_ctrl rsp;
};
CTASSERT(sizeof(struct nm_iq_desc) == RX_IQ_ESIZE);
struct sge_nm_rxq {
struct port_info *pi;
struct nm_iq_desc *iq_desc;
uint16_t iq_abs_id;
uint16_t iq_cntxt_id;
uint16_t iq_cidx;
uint16_t iq_sidx;
uint8_t iq_gen;
__be64 *fl_desc;
uint16_t fl_cntxt_id;
uint32_t fl_cidx;
uint32_t fl_pidx;
uint32_t fl_sidx;
uint32_t fl_db_val;
u_int fl_hwidx:4;
u_int nid; /* netmap ring # for this queue */
/* infrequently used items after this */
bus_dma_tag_t iq_desc_tag;
bus_dmamap_t iq_desc_map;
bus_addr_t iq_ba;
int intr_idx;
bus_dma_tag_t fl_desc_tag;
bus_dmamap_t fl_desc_map;
bus_addr_t fl_ba;
} __aligned(CACHE_LINE_SIZE);
struct sge_nm_txq {
struct tx_desc *desc;
uint16_t cidx;
uint16_t pidx;
uint16_t sidx;
uint16_t equiqidx; /* EQUIQ last requested at this pidx */
uint16_t equeqidx; /* EQUEQ last requested at this pidx */
uint16_t dbidx; /* pidx of the most recent doorbell */
uint16_t doorbells;
volatile uint32_t *udb;
u_int udb_qid;
u_int cntxt_id;
__be32 cpl_ctrl0; /* for convenience */
u_int nid; /* netmap ring # for this queue */
/* infrequently used items after this */
bus_dma_tag_t desc_tag;
bus_dmamap_t desc_map;
bus_addr_t ba;
int iqidx;
} __aligned(CACHE_LINE_SIZE);
#endif
struct sge {
int timer_val[SGE_NTIMERS];
int counter_val[SGE_NCOUNTERS];
int fl_starve_threshold;
int fl_starve_threshold2;
int eq_s_qpp;
int iq_s_qpp;
int nrxq; /* total # of Ethernet rx queues */
int ntxq; /* total # of Ethernet tx tx queues */
#ifdef TCP_OFFLOAD
int nofldrxq; /* total # of TOE rx queues */
int nofldtxq; /* total # of TOE tx queues */
#endif
#ifdef DEV_NETMAP
int nnmrxq; /* total # of netmap rx queues */
int nnmtxq; /* total # of netmap tx queues */
#endif
int niq; /* total # of ingress queues */
int neq; /* total # of egress queues */
struct sge_iq fwq; /* Firmware event queue */
struct sge_wrq mgmtq; /* Management queue (control queue) */
struct sge_wrq *ctrlq; /* Control queues */
struct sge_txq *txq; /* NIC tx queues */
struct sge_rxq *rxq; /* NIC rx queues */
#ifdef TCP_OFFLOAD
struct sge_wrq *ofld_txq; /* TOE tx queues */
struct sge_ofld_rxq *ofld_rxq; /* TOE rx queues */
#endif
#ifdef DEV_NETMAP
struct sge_nm_txq *nm_txq; /* netmap tx queues */
struct sge_nm_rxq *nm_rxq; /* netmap rx queues */
#endif
uint16_t iq_start;
int eq_start;
struct sge_iq **iqmap; /* iq->cntxt_id to iq mapping */
struct sge_eq **eqmap; /* eq->cntxt_id to eq mapping */
int pack_boundary;
int8_t safe_hwidx1; /* may not have room for metadata */
int8_t safe_hwidx2; /* with room for metadata and maybe more */
struct sw_zone_info sw_zone_info[SW_ZONE_SIZES];
struct hw_buf_info hw_buf_info[SGE_FLBUF_SIZES];
};
struct rss_header;
typedef int (*cpl_handler_t)(struct sge_iq *, const struct rss_header *,
struct mbuf *);
typedef int (*an_handler_t)(struct sge_iq *, const struct rsp_ctrl *);
typedef int (*fw_msg_handler_t)(struct adapter *, const __be64 *);
struct adapter {
SLIST_ENTRY(adapter) link;
device_t dev;
struct cdev *cdev;
/* PCIe register resources */
int regs_rid;
struct resource *regs_res;
int msix_rid;
struct resource *msix_res;
bus_space_handle_t bh;
bus_space_tag_t bt;
bus_size_t mmio_len;
int udbs_rid;
struct resource *udbs_res;
volatile uint8_t *udbs_base;
unsigned int pf;
unsigned int mbox;
/* Interrupt information */
int intr_type;
int intr_count;
struct irq {
struct resource *res;
int rid;
void *tag;
} *irq;
bus_dma_tag_t dmat; /* Parent DMA tag */
struct sge sge;
int lro_timeout;
struct taskqueue *tq[NCHAN]; /* taskqueues that flush data out */
struct port_info *port[MAX_NPORTS];
uint8_t chan_map[NCHAN];
#ifdef TCP_OFFLOAD
void *tom_softc; /* (struct tom_data *) */
struct tom_tunables tt;
void *iwarp_softc; /* (struct c4iw_dev *) */
void *iscsi_softc;
#endif
struct l2t_data *l2t; /* L2 table */
struct tid_info tids;
uint16_t doorbells;
int open_device_map;
#ifdef TCP_OFFLOAD
int offload_map;
#endif
int flags;
char ifp_lockname[16];
struct mtx ifp_lock;
struct ifnet *ifp; /* tracer ifp */
struct ifmedia media;
int traceq; /* iq used by all tracers, -1 if none */
int tracer_valid; /* bitmap of valid tracers */
int tracer_enabled; /* bitmap of enabled tracers */
char fw_version[32];
char cfg_file[32];
u_int cfcsum;
struct adapter_params params;
struct t4_virt_res vres;
uint16_t linkcaps;
uint16_t niccaps;
uint16_t toecaps;
uint16_t rdmacaps;
uint16_t iscsicaps;
uint16_t fcoecaps;
struct sysctl_ctx_list ctx; /* from adapter_full_init to full_uninit */
struct mtx sc_lock;
char lockname[16];
/* Starving free lists */
struct mtx sfl_lock; /* same cache-line as sc_lock? but that's ok */
TAILQ_HEAD(, sge_fl) sfl;
struct callout sfl_callout;
an_handler_t an_handler __aligned(CACHE_LINE_SIZE);
fw_msg_handler_t fw_msg_handler[5]; /* NUM_FW6_TYPES */
cpl_handler_t cpl_handler[0xef]; /* NUM_CPL_CMDS */
#ifdef INVARIANTS
const char *last_op;
const void *last_op_thr;
#endif
int sc_do_rxcopy;
};
#define ADAPTER_LOCK(sc) mtx_lock(&(sc)->sc_lock)
#define ADAPTER_UNLOCK(sc) mtx_unlock(&(sc)->sc_lock)
#define ADAPTER_LOCK_ASSERT_OWNED(sc) mtx_assert(&(sc)->sc_lock, MA_OWNED)
#define ADAPTER_LOCK_ASSERT_NOTOWNED(sc) mtx_assert(&(sc)->sc_lock, MA_NOTOWNED)
/* XXX: not bulletproof, but much better than nothing */
#define ASSERT_SYNCHRONIZED_OP(sc) \
KASSERT(IS_BUSY(sc) && \
(mtx_owned(&(sc)->sc_lock) || sc->last_op_thr == curthread), \
("%s: operation not synchronized.", __func__))
#define PORT_LOCK(pi) mtx_lock(&(pi)->pi_lock)
#define PORT_UNLOCK(pi) mtx_unlock(&(pi)->pi_lock)
#define PORT_LOCK_ASSERT_OWNED(pi) mtx_assert(&(pi)->pi_lock, MA_OWNED)
#define PORT_LOCK_ASSERT_NOTOWNED(pi) mtx_assert(&(pi)->pi_lock, MA_NOTOWNED)
#define FL_LOCK(fl) mtx_lock(&(fl)->fl_lock)
#define FL_TRYLOCK(fl) mtx_trylock(&(fl)->fl_lock)
#define FL_UNLOCK(fl) mtx_unlock(&(fl)->fl_lock)
#define FL_LOCK_ASSERT_OWNED(fl) mtx_assert(&(fl)->fl_lock, MA_OWNED)
#define FL_LOCK_ASSERT_NOTOWNED(fl) mtx_assert(&(fl)->fl_lock, MA_NOTOWNED)
#define RXQ_FL_LOCK(rxq) FL_LOCK(&(rxq)->fl)
#define RXQ_FL_UNLOCK(rxq) FL_UNLOCK(&(rxq)->fl)
#define RXQ_FL_LOCK_ASSERT_OWNED(rxq) FL_LOCK_ASSERT_OWNED(&(rxq)->fl)
#define RXQ_FL_LOCK_ASSERT_NOTOWNED(rxq) FL_LOCK_ASSERT_NOTOWNED(&(rxq)->fl)
#define EQ_LOCK(eq) mtx_lock(&(eq)->eq_lock)
#define EQ_TRYLOCK(eq) mtx_trylock(&(eq)->eq_lock)
#define EQ_UNLOCK(eq) mtx_unlock(&(eq)->eq_lock)
#define EQ_LOCK_ASSERT_OWNED(eq) mtx_assert(&(eq)->eq_lock, MA_OWNED)
#define EQ_LOCK_ASSERT_NOTOWNED(eq) mtx_assert(&(eq)->eq_lock, MA_NOTOWNED)
#define TXQ_LOCK(txq) EQ_LOCK(&(txq)->eq)
#define TXQ_TRYLOCK(txq) EQ_TRYLOCK(&(txq)->eq)
#define TXQ_UNLOCK(txq) EQ_UNLOCK(&(txq)->eq)
#define TXQ_LOCK_ASSERT_OWNED(txq) EQ_LOCK_ASSERT_OWNED(&(txq)->eq)
#define TXQ_LOCK_ASSERT_NOTOWNED(txq) EQ_LOCK_ASSERT_NOTOWNED(&(txq)->eq)
#define for_each_txq(pi, iter, q) \
for (q = &pi->adapter->sge.txq[pi->first_txq], iter = 0; \
iter < pi->ntxq; ++iter, ++q)
#define for_each_rxq(pi, iter, q) \
for (q = &pi->adapter->sge.rxq[pi->first_rxq], iter = 0; \
iter < pi->nrxq; ++iter, ++q)
#define for_each_ofld_txq(pi, iter, q) \
for (q = &pi->adapter->sge.ofld_txq[pi->first_ofld_txq], iter = 0; \
iter < pi->nofldtxq; ++iter, ++q)
#define for_each_ofld_rxq(pi, iter, q) \
for (q = &pi->adapter->sge.ofld_rxq[pi->first_ofld_rxq], iter = 0; \
iter < pi->nofldrxq; ++iter, ++q)
#define for_each_nm_txq(pi, iter, q) \
for (q = &pi->adapter->sge.nm_txq[pi->first_nm_txq], iter = 0; \
iter < pi->nnmtxq; ++iter, ++q)
#define for_each_nm_rxq(pi, iter, q) \
for (q = &pi->adapter->sge.nm_rxq[pi->first_nm_rxq], iter = 0; \
iter < pi->nnmrxq; ++iter, ++q)
/* One for errors, one for firmware events */
#define T4_EXTRA_INTR 2
static inline uint32_t
t4_read_reg(struct adapter *sc, uint32_t reg)
{
return bus_space_read_4(sc->bt, sc->bh, reg);
}
static inline void
t4_write_reg(struct adapter *sc, uint32_t reg, uint32_t val)
{
bus_space_write_4(sc->bt, sc->bh, reg, val);
}
static inline uint64_t
t4_read_reg64(struct adapter *sc, uint32_t reg)
{
return t4_bus_space_read_8(sc->bt, sc->bh, reg);
}
static inline void
t4_write_reg64(struct adapter *sc, uint32_t reg, uint64_t val)
{
t4_bus_space_write_8(sc->bt, sc->bh, reg, val);
}
static inline void
t4_os_pci_read_cfg1(struct adapter *sc, int reg, uint8_t *val)
{
*val = pci_read_config(sc->dev, reg, 1);
}
static inline void
t4_os_pci_write_cfg1(struct adapter *sc, int reg, uint8_t val)
{
pci_write_config(sc->dev, reg, val, 1);
}
static inline void
t4_os_pci_read_cfg2(struct adapter *sc, int reg, uint16_t *val)
{
*val = pci_read_config(sc->dev, reg, 2);
}
static inline void
t4_os_pci_write_cfg2(struct adapter *sc, int reg, uint16_t val)
{
pci_write_config(sc->dev, reg, val, 2);
}
static inline void
t4_os_pci_read_cfg4(struct adapter *sc, int reg, uint32_t *val)
{
*val = pci_read_config(sc->dev, reg, 4);
}
static inline void
t4_os_pci_write_cfg4(struct adapter *sc, int reg, uint32_t val)
{
pci_write_config(sc->dev, reg, val, 4);
}
static inline struct port_info *
adap2pinfo(struct adapter *sc, int idx)
{
return (sc->port[idx]);
}
static inline void
t4_os_set_hw_addr(struct adapter *sc, int idx, uint8_t hw_addr[])
{
bcopy(hw_addr, sc->port[idx]->hw_addr, ETHER_ADDR_LEN);
}
static inline bool
is_10G_port(const struct port_info *pi)
{
return ((pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) != 0);
}
static inline bool
is_40G_port(const struct port_info *pi)
{
return ((pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) != 0);
}
static inline int
tx_resume_threshold(struct sge_eq *eq)
{
return (eq->qsize / 4);
}
/* t4_main.c */
void t4_tx_task(void *, int);
void t4_tx_callout(void *);
int t4_os_find_pci_capability(struct adapter *, int);
int t4_os_pci_save_state(struct adapter *);
int t4_os_pci_restore_state(struct adapter *);
void t4_os_portmod_changed(const struct adapter *, int);
void t4_os_link_changed(struct adapter *, int, int, int);
void t4_iterate(void (*)(struct adapter *, void *), void *);
int t4_register_cpl_handler(struct adapter *, int, cpl_handler_t);
int t4_register_an_handler(struct adapter *, an_handler_t);
int t4_register_fw_msg_handler(struct adapter *, int, fw_msg_handler_t);
int t4_filter_rpl(struct sge_iq *, const struct rss_header *, struct mbuf *);
int begin_synchronized_op(struct adapter *, struct port_info *, int, char *);
void end_synchronized_op(struct adapter *, int);
int update_mac_settings(struct ifnet *, int);
int adapter_full_init(struct adapter *);
int adapter_full_uninit(struct adapter *);
int port_full_init(struct port_info *);
int port_full_uninit(struct port_info *);
#ifdef DEV_NETMAP
/* t4_netmap.c */
int create_netmap_ifnet(struct port_info *);
int destroy_netmap_ifnet(struct port_info *);
void t4_nm_intr(void *);
#endif
/* t4_sge.c */
void t4_sge_modload(void);
void t4_sge_modunload(void);
uint64_t t4_sge_extfree_refs(void);
void t4_init_sge_cpl_handlers(struct adapter *);
void t4_tweak_chip_settings(struct adapter *);
int t4_read_chip_settings(struct adapter *);
int t4_create_dma_tag(struct adapter *);
void t4_sge_sysctls(struct adapter *, struct sysctl_ctx_list *,
struct sysctl_oid_list *);
int t4_destroy_dma_tag(struct adapter *);
int t4_setup_adapter_queues(struct adapter *);
int t4_teardown_adapter_queues(struct adapter *);
int t4_setup_port_queues(struct port_info *);
int t4_teardown_port_queues(struct port_info *);
int t4_alloc_tx_maps(struct tx_maps *, bus_dma_tag_t, int, int);
void t4_free_tx_maps(struct tx_maps *, bus_dma_tag_t);
void t4_intr_all(void *);
void t4_intr(void *);
void t4_intr_err(void *);
void t4_intr_evt(void *);
void t4_wrq_tx_locked(struct adapter *, struct sge_wrq *, struct wrqe *);
int t4_eth_tx(struct ifnet *, struct sge_txq *, struct mbuf *);
void t4_update_fl_bufsize(struct ifnet *);
int can_resume_tx(struct sge_eq *);
/* t4_tracer.c */
struct t4_tracer;
void t4_tracer_modload(void);
void t4_tracer_modunload(void);
void t4_tracer_port_detach(struct adapter *);
int t4_get_tracer(struct adapter *, struct t4_tracer *);
int t4_set_tracer(struct adapter *, struct t4_tracer *);
int t4_trace_pkt(struct sge_iq *, const struct rss_header *, struct mbuf *);
int t5_trace_pkt(struct sge_iq *, const struct rss_header *, struct mbuf *);
static inline struct wrqe *
alloc_wrqe(int wr_len, struct sge_wrq *wrq)
{
int len = offsetof(struct wrqe, wr) + wr_len;
struct wrqe *wr;
wr = malloc(len, M_CXGBE, M_NOWAIT);
if (__predict_false(wr == NULL))
return (NULL);
wr->wr_len = wr_len;
wr->wrq = wrq;
return (wr);
}
static inline void *
wrtod(struct wrqe *wr)
{
return (&wr->wr[0]);
}
static inline void
free_wrqe(struct wrqe *wr)
{
free(wr, M_CXGBE);
}
static inline void
t4_wrq_tx(struct adapter *sc, struct wrqe *wr)
{
struct sge_wrq *wrq = wr->wrq;
TXQ_LOCK(wrq);
t4_wrq_tx_locked(sc, wrq, wr);
TXQ_UNLOCK(wrq);
}
#endif