freebsd-nq/include/sys/zfs_fuid.h
Brian Behlendorf 3558fd73b5 Prototype/structure update for Linux
I appologize in advance why to many things ended up in this commit.
When it could be seperated in to a whole series of commits teasing
that all apart now would take considerable time and I'm not sure
there's much merrit in it.  As such I'll just summerize the intent
of the changes which are all (or partly) in this commit.  Broadly
the intent is to remove as much Solaris specific code as possible
and replace it with native Linux equivilants.  More specifically:

1) Replace all instances of zfsvfs_t with zfs_sb_t.  While the
type is largely the same calling it private super block data
rather than a zfsvfs is more consistent with how Linux names
this.  While non critical it makes the code easier to read when
your thinking in Linux friendly VFS terms.

2) Replace vnode_t with struct inode.  The Linux VFS doesn't have
the notion of a vnode and there's absolutely no good reason to
create one.  There are in fact several good reasons to remove it.
It just adds overhead on Linux if we were to manage one, it
conplicates the code, and it likely will lead to bugs so there's
a good change it will be out of date.  The code has been updated
to remove all need for this type.

3) Replace all vtype_t's with umode types.  Along with this shift
all uses of types to mode bits.  The Solaris code would pass a
vtype which is redundant with the Linux mode.  Just update all the
code to use the Linux mode macros and remove this redundancy.

4) Remove using of vn_* helpers and replace where needed with
inode helpers.  The big example here is creating iput_aync to
replace vn_rele_async.  Other vn helpers will be addressed as
needed but they should be be emulated.  They are a Solaris VFS'ism
and should simply be replaced with Linux equivilants.

5) Update znode alloc/free code.  Under Linux it's common to
embed the inode specific data with the inode itself.  This removes
the need for an extra memory allocation.  In zfs this information
is called a znode and it now embeds the inode with it.  Allocators
have been updated accordingly.

6) Minimal integration with the vfs flags for setting up the
super block and handling mount options has been added this
code will need to be refined but functionally it's all there.

This will be the first and last of these to large to review commits.
2011-02-10 09:27:21 -08:00

133 lines
4.2 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _SYS_FS_ZFS_FUID_H
#define _SYS_FS_ZFS_FUID_H
#ifdef _KERNEL
#include <sys/kidmap.h>
#include <sys/sid.h>
#include <sys/dmu.h>
#include <sys/zfs_vfsops.h>
#endif
#include <sys/avl.h>
#include <sys/list.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
ZFS_OWNER,
ZFS_GROUP,
ZFS_ACE_USER,
ZFS_ACE_GROUP
} zfs_fuid_type_t;
/*
* Estimate space needed for one more fuid table entry.
* for now assume its current size + 1K
*/
#define FUID_SIZE_ESTIMATE(z) ((z)->z_fuid_size + (SPA_MINBLOCKSIZE << 1))
#define FUID_INDEX(x) ((x) >> 32)
#define FUID_RID(x) ((x) & 0xffffffff)
#define FUID_ENCODE(idx, rid) (((uint64_t)(idx) << 32) | (rid))
/*
* FUIDs cause problems for the intent log
* we need to replay the creation of the FUID,
* but we can't count on the idmapper to be around
* and during replay the FUID index may be different than
* before. Also, if an ACL has 100 ACEs and 12 different
* domains we don't want to log 100 domain strings, but rather
* just the unique 12.
*/
/*
* The FUIDs in the log will index into
* domain string table and the bottom half will be the rid.
* Used for mapping ephemeral uid/gid during ACL setting to FUIDs
*/
typedef struct zfs_fuid {
list_node_t z_next;
uint64_t z_id; /* uid/gid being converted to fuid */
uint64_t z_domidx; /* index in AVL domain table */
uint64_t z_logfuid; /* index for domain in log */
} zfs_fuid_t;
/* list of unique domains */
typedef struct zfs_fuid_domain {
list_node_t z_next;
uint64_t z_domidx; /* AVL tree idx */
const char *z_domain; /* domain string */
} zfs_fuid_domain_t;
/*
* FUID information necessary for logging create, setattr, and setacl.
*/
typedef struct zfs_fuid_info {
list_t z_fuids;
list_t z_domains;
uint64_t z_fuid_owner;
uint64_t z_fuid_group;
char **z_domain_table; /* Used during replay */
uint32_t z_fuid_cnt; /* How many fuids in z_fuids */
uint32_t z_domain_cnt; /* How many domains */
size_t z_domain_str_sz; /* len of domain strings z_domain list */
} zfs_fuid_info_t;
#ifdef _KERNEL
struct znode;
extern uid_t zfs_fuid_map_id(zfs_sb_t *, uint64_t, cred_t *, zfs_fuid_type_t);
extern void zfs_fuid_node_add(zfs_fuid_info_t **, const char *, uint32_t,
uint64_t, uint64_t, zfs_fuid_type_t);
extern void zfs_fuid_destroy(zfs_sb_t *);
extern uint64_t zfs_fuid_create_cred(zfs_sb_t *, zfs_fuid_type_t,
cred_t *, zfs_fuid_info_t **);
extern uint64_t zfs_fuid_create(zfs_sb_t *, uint64_t, cred_t *, zfs_fuid_type_t,
zfs_fuid_info_t **);
extern void zfs_fuid_map_ids(struct znode *zp, cred_t *cr,
uid_t *uid, uid_t *gid);
extern zfs_fuid_info_t *zfs_fuid_info_alloc(void);
extern void zfs_fuid_info_free(zfs_fuid_info_t *);
extern boolean_t zfs_groupmember(zfs_sb_t *, uint64_t, cred_t *);
void zfs_fuid_sync(zfs_sb_t *, dmu_tx_t *);
extern int zfs_fuid_find_by_domain(zfs_sb_t *, const char *domain,
char **retdomain, boolean_t addok);
extern const char *zfs_fuid_find_by_idx(zfs_sb_t *zsb, uint32_t idx);
extern void zfs_fuid_txhold(zfs_sb_t *zsb, dmu_tx_t *tx);
#endif
char *zfs_fuid_idx_domain(avl_tree_t *, uint32_t);
void zfs_fuid_avl_tree_create(avl_tree_t *, avl_tree_t *);
uint64_t zfs_fuid_table_load(objset_t *, uint64_t, avl_tree_t *, avl_tree_t *);
void zfs_fuid_table_destroy(avl_tree_t *, avl_tree_t *);
#ifdef __cplusplus
}
#endif
#endif /* _SYS_FS_ZFS_FUID_H */