freebsd-nq/sys/dev/aacraid/aacraid_cam.c
Conrad Meyer 0f752e9f7b aacraid(4): Fix some mostly trivial buffer overruns
strcpy(3) emits a trailing nul byte, trampling fields after the intended
destination.  Instead, use strncpy(3), intentionally leaving these fields
not nul-terminated.

Reported by:	Coverity
CIDs:		1031024, 1305463, 1305494, 1305545
Sponsored by:	EMC / Isilon Storage Division
2016-04-26 20:59:21 +00:00

1419 lines
38 KiB
C

/*-
* Copyright (c) 2002-2010 Adaptec, Inc.
* Copyright (c) 2010-2012 PMC-Sierra, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* CAM front-end for communicating with non-DASD devices
*/
#include "opt_aacraid.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_periph.h>
#if __FreeBSD_version < 801000
#include <cam/cam_xpt_periph.h>
#endif
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <machine/md_var.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/aacraid/aacraid_reg.h>
#include <sys/aac_ioctl.h>
#include <dev/aacraid/aacraid_debug.h>
#include <dev/aacraid/aacraid_var.h>
#if __FreeBSD_version >= 700025
#ifndef CAM_NEW_TRAN_CODE
#define CAM_NEW_TRAN_CODE 1
#endif
#endif
#ifndef SVPD_SUPPORTED_PAGE_LIST
struct scsi_vpd_supported_page_list
{
u_int8_t device;
u_int8_t page_code;
#define SVPD_SUPPORTED_PAGE_LIST 0x00
u_int8_t reserved;
u_int8_t length; /* number of VPD entries */
#define SVPD_SUPPORTED_PAGES_SIZE 251
u_int8_t list[SVPD_SUPPORTED_PAGES_SIZE];
};
#endif
/************************** Version Compatibility *************************/
#if __FreeBSD_version < 700031
#define aac_sim_alloc(a,b,c,d,e,f,g,h,i) cam_sim_alloc(a,b,c,d,e,g,h,i)
#else
#define aac_sim_alloc cam_sim_alloc
#endif
struct aac_cam {
device_t dev;
struct aac_sim *inf;
struct cam_sim *sim;
struct cam_path *path;
};
static int aac_cam_probe(device_t dev);
static int aac_cam_attach(device_t dev);
static int aac_cam_detach(device_t dev);
static void aac_cam_action(struct cam_sim *, union ccb *);
static void aac_cam_poll(struct cam_sim *);
static void aac_cam_complete(struct aac_command *);
static void aac_container_complete(struct aac_command *);
#if __FreeBSD_version >= 700000
static void aac_cam_rescan(struct aac_softc *sc, uint32_t channel,
uint32_t target_id);
#endif
static void aac_set_scsi_error(struct aac_softc *sc, union ccb *ccb,
u_int8_t status, u_int8_t key, u_int8_t asc, u_int8_t ascq);
static int aac_load_map_command_sg(struct aac_softc *, struct aac_command *);
static u_int64_t aac_eval_blockno(u_int8_t *);
static void aac_container_rw_command(struct cam_sim *, union ccb *, u_int8_t *);
static void aac_container_special_command(struct cam_sim *, union ccb *,
u_int8_t *);
static void aac_passthrough_command(struct cam_sim *, union ccb *);
static u_int32_t aac_cam_reset_bus(struct cam_sim *, union ccb *);
static u_int32_t aac_cam_abort_ccb(struct cam_sim *, union ccb *);
static u_int32_t aac_cam_term_io(struct cam_sim *, union ccb *);
static devclass_t aacraid_pass_devclass;
static device_method_t aacraid_pass_methods[] = {
DEVMETHOD(device_probe, aac_cam_probe),
DEVMETHOD(device_attach, aac_cam_attach),
DEVMETHOD(device_detach, aac_cam_detach),
{ 0, 0 }
};
static driver_t aacraid_pass_driver = {
"aacraidp",
aacraid_pass_methods,
sizeof(struct aac_cam)
};
DRIVER_MODULE(aacraidp, aacraid, aacraid_pass_driver, aacraid_pass_devclass, 0, 0);
MODULE_DEPEND(aacraidp, cam, 1, 1, 1);
MALLOC_DEFINE(M_AACRAIDCAM, "aacraidcam", "AACRAID CAM info");
static void
aac_set_scsi_error(struct aac_softc *sc, union ccb *ccb, u_int8_t status,
u_int8_t key, u_int8_t asc, u_int8_t ascq)
{
#if __FreeBSD_version >= 900000
struct scsi_sense_data_fixed *sense =
(struct scsi_sense_data_fixed *)&ccb->csio.sense_data;
#else
struct scsi_sense_data *sense = &ccb->csio.sense_data;
#endif
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "Error %d!", status);
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
ccb->csio.scsi_status = status;
if (status == SCSI_STATUS_CHECK_COND) {
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
bzero(&ccb->csio.sense_data, ccb->csio.sense_len);
ccb->csio.sense_data.error_code =
SSD_CURRENT_ERROR | SSD_ERRCODE_VALID;
sense->flags = key;
if (ccb->csio.sense_len >= 14) {
sense->extra_len = 6;
sense->add_sense_code = asc;
sense->add_sense_code_qual = ascq;
}
}
}
#if __FreeBSD_version >= 700000
static void
aac_cam_rescan(struct aac_softc *sc, uint32_t channel, uint32_t target_id)
{
union ccb *ccb;
struct aac_sim *sim;
struct aac_cam *camsc;
if (target_id == AAC_CAM_TARGET_WILDCARD)
target_id = CAM_TARGET_WILDCARD;
TAILQ_FOREACH(sim, &sc->aac_sim_tqh, sim_link) {
camsc = sim->aac_cam;
if (camsc == NULL || camsc->inf == NULL ||
camsc->inf->BusNumber != channel)
continue;
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
device_printf(sc->aac_dev,
"Cannot allocate ccb for bus rescan.\n");
return;
}
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
cam_sim_path(camsc->sim),
target_id, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_free_ccb(ccb);
device_printf(sc->aac_dev,
"Cannot create path for bus rescan.\n");
return;
}
xpt_rescan(ccb);
break;
}
}
#endif
static void
aac_cam_event(struct aac_softc *sc, struct aac_event *event, void *arg)
{
union ccb *ccb;
struct aac_cam *camsc;
switch (event->ev_type) {
case AAC_EVENT_CMFREE:
ccb = arg;
camsc = ccb->ccb_h.sim_priv.entries[0].ptr;
free(event, M_AACRAIDCAM);
xpt_release_simq(camsc->sim, 1);
ccb->ccb_h.status = CAM_REQUEUE_REQ;
xpt_done(ccb);
break;
default:
device_printf(sc->aac_dev, "unknown event %d in aac_cam\n",
event->ev_type);
break;
}
return;
}
static int
aac_cam_probe(device_t dev)
{
struct aac_cam *camsc;
camsc = (struct aac_cam *)device_get_softc(dev);
if (!camsc->inf)
return (0);
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
return (0);
}
static int
aac_cam_detach(device_t dev)
{
struct aac_softc *sc;
struct aac_cam *camsc;
camsc = (struct aac_cam *)device_get_softc(dev);
if (!camsc->inf)
return (0);
sc = camsc->inf->aac_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
camsc->inf->aac_cam = NULL;
mtx_lock(&sc->aac_io_lock);
xpt_async(AC_LOST_DEVICE, camsc->path, NULL);
xpt_free_path(camsc->path);
xpt_bus_deregister(cam_sim_path(camsc->sim));
cam_sim_free(camsc->sim, /*free_devq*/TRUE);
sc->cam_rescan_cb = NULL;
mtx_unlock(&sc->aac_io_lock);
return (0);
}
/*
* Register the driver as a CAM SIM
*/
static int
aac_cam_attach(device_t dev)
{
struct cam_devq *devq;
struct cam_sim *sim;
struct cam_path *path;
struct aac_cam *camsc;
struct aac_sim *inf;
camsc = (struct aac_cam *)device_get_softc(dev);
inf = (struct aac_sim *)device_get_ivars(dev);
if (!inf)
return (EIO);
fwprintf(inf->aac_sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
camsc->inf = inf;
camsc->inf->aac_cam = camsc;
devq = cam_simq_alloc(inf->TargetsPerBus);
if (devq == NULL)
return (EIO);
sim = aac_sim_alloc(aac_cam_action, aac_cam_poll, "aacraidp", camsc,
device_get_unit(dev), &inf->aac_sc->aac_io_lock, 1, 1, devq);
if (sim == NULL) {
cam_simq_free(devq);
return (EIO);
}
/* Since every bus has it's own sim, every bus 'appears' as bus 0 */
mtx_lock(&inf->aac_sc->aac_io_lock);
if (aac_xpt_bus_register(sim, dev, 0) != CAM_SUCCESS) {
cam_sim_free(sim, TRUE);
mtx_unlock(&inf->aac_sc->aac_io_lock);
return (EIO);
}
if (xpt_create_path(&path, NULL, cam_sim_path(sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, TRUE);
mtx_unlock(&inf->aac_sc->aac_io_lock);
return (EIO);
}
#if __FreeBSD_version >= 700000
inf->aac_sc->cam_rescan_cb = aac_cam_rescan;
#endif
mtx_unlock(&inf->aac_sc->aac_io_lock);
camsc->sim = sim;
camsc->path = path;
return (0);
}
static u_int64_t
aac_eval_blockno(u_int8_t *cmdp)
{
u_int64_t blockno;
switch (cmdp[0]) {
case READ_6:
case WRITE_6:
blockno = scsi_3btoul(((struct scsi_rw_6 *)cmdp)->addr);
break;
case READ_10:
case WRITE_10:
blockno = scsi_4btoul(((struct scsi_rw_10 *)cmdp)->addr);
break;
case READ_12:
case WRITE_12:
blockno = scsi_4btoul(((struct scsi_rw_12 *)cmdp)->addr);
break;
case READ_16:
case WRITE_16:
blockno = scsi_8btou64(((struct scsi_rw_16 *)cmdp)->addr);
break;
default:
blockno = 0;
break;
}
return(blockno);
}
static void
aac_container_rw_command(struct cam_sim *sim, union ccb *ccb, u_int8_t *cmdp)
{
struct aac_cam *camsc;
struct aac_softc *sc;
struct aac_command *cm;
struct aac_fib *fib;
u_int64_t blockno;
camsc = (struct aac_cam *)cam_sim_softc(sim);
sc = camsc->inf->aac_sc;
mtx_assert(&sc->aac_io_lock, MA_OWNED);
if (aacraid_alloc_command(sc, &cm)) {
struct aac_event *event;
xpt_freeze_simq(sim, 1);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
ccb->ccb_h.sim_priv.entries[0].ptr = camsc;
event = malloc(sizeof(struct aac_event), M_AACRAIDCAM,
M_NOWAIT | M_ZERO);
if (event == NULL) {
device_printf(sc->aac_dev,
"Warning, out of memory for event\n");
return;
}
event->ev_callback = aac_cam_event;
event->ev_arg = ccb;
event->ev_type = AAC_EVENT_CMFREE;
aacraid_add_event(sc, event);
return;
}
fib = cm->cm_fib;
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
cm->cm_flags |= AAC_CMD_DATAIN;
break;
case CAM_DIR_OUT:
cm->cm_flags |= AAC_CMD_DATAOUT;
break;
case CAM_DIR_NONE:
break;
default:
cm->cm_flags |= AAC_CMD_DATAIN | AAC_CMD_DATAOUT;
break;
}
blockno = aac_eval_blockno(cmdp);
cm->cm_complete = aac_container_complete;
cm->cm_ccb = ccb;
cm->cm_timestamp = time_uptime;
cm->cm_data = (void *)ccb->csio.data_ptr;
cm->cm_datalen = ccb->csio.dxfer_len;
fib->Header.Size = sizeof(struct aac_fib_header);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
if (sc->flags & AAC_FLAGS_NEW_COMM_TYPE2) {
struct aac_raw_io2 *raw;
raw = (struct aac_raw_io2 *)&fib->data[0];
bzero(raw, sizeof(struct aac_raw_io2));
fib->Header.Command = RawIo2;
raw->strtBlkLow = (u_int32_t)blockno;
raw->strtBlkHigh = (u_int32_t)(blockno >> 32);
raw->byteCnt = cm->cm_datalen;
raw->ldNum = ccb->ccb_h.target_id;
fib->Header.Size += sizeof(struct aac_raw_io2);
cm->cm_sgtable = (struct aac_sg_table *)raw->sge;
if (cm->cm_flags & AAC_CMD_DATAIN)
raw->flags = RIO2_IO_TYPE_READ | RIO2_SG_FORMAT_IEEE1212;
else
raw->flags = RIO2_IO_TYPE_WRITE | RIO2_SG_FORMAT_IEEE1212;
} else if (sc->flags & AAC_FLAGS_RAW_IO) {
struct aac_raw_io *raw;
raw = (struct aac_raw_io *)&fib->data[0];
bzero(raw, sizeof(struct aac_raw_io));
fib->Header.Command = RawIo;
raw->BlockNumber = blockno;
raw->ByteCount = cm->cm_datalen;
raw->ContainerId = ccb->ccb_h.target_id;
fib->Header.Size += sizeof(struct aac_raw_io);
cm->cm_sgtable = (struct aac_sg_table *)
&raw->SgMapRaw;
if (cm->cm_flags & AAC_CMD_DATAIN)
raw->Flags = 1;
} else if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
fib->Header.Command = ContainerCommand;
if (cm->cm_flags & AAC_CMD_DATAIN) {
struct aac_blockread *br;
br = (struct aac_blockread *)&fib->data[0];
br->Command = VM_CtBlockRead;
br->ContainerId = ccb->ccb_h.target_id;
br->BlockNumber = blockno;
br->ByteCount = cm->cm_datalen;
fib->Header.Size += sizeof(struct aac_blockread);
cm->cm_sgtable = &br->SgMap;
} else {
struct aac_blockwrite *bw;
bw = (struct aac_blockwrite *)&fib->data[0];
bw->Command = VM_CtBlockWrite;
bw->ContainerId = ccb->ccb_h.target_id;
bw->BlockNumber = blockno;
bw->ByteCount = cm->cm_datalen;
bw->Stable = CUNSTABLE;
fib->Header.Size += sizeof(struct aac_blockwrite);
cm->cm_sgtable = &bw->SgMap;
}
} else {
fib->Header.Command = ContainerCommand64;
if (cm->cm_flags & AAC_CMD_DATAIN) {
struct aac_blockread64 *br;
br = (struct aac_blockread64 *)&fib->data[0];
br->Command = VM_CtHostRead64;
br->ContainerId = ccb->ccb_h.target_id;
br->SectorCount = cm->cm_datalen/AAC_BLOCK_SIZE;
br->BlockNumber = blockno;
br->Pad = 0;
br->Flags = 0;
fib->Header.Size += sizeof(struct aac_blockread64);
cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
} else {
struct aac_blockwrite64 *bw;
bw = (struct aac_blockwrite64 *)&fib->data[0];
bw->Command = VM_CtHostWrite64;
bw->ContainerId = ccb->ccb_h.target_id;
bw->SectorCount = cm->cm_datalen/AAC_BLOCK_SIZE;
bw->BlockNumber = blockno;
bw->Pad = 0;
bw->Flags = 0;
fib->Header.Size += sizeof(struct aac_blockwrite64);
cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
}
}
aac_enqueue_ready(cm);
aacraid_startio(cm->cm_sc);
}
static void
aac_container_special_command(struct cam_sim *sim, union ccb *ccb,
u_int8_t *cmdp)
{
struct aac_cam *camsc;
struct aac_softc *sc;
struct aac_container *co;
camsc = (struct aac_cam *)cam_sim_softc(sim);
sc = camsc->inf->aac_sc;
mtx_assert(&sc->aac_io_lock, MA_OWNED);
TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "found container %d search for %d", co->co_mntobj.ObjectId, ccb->ccb_h.target_id);
if (co->co_mntobj.ObjectId == ccb->ccb_h.target_id)
break;
}
if (co == NULL || ccb->ccb_h.target_lun != 0) {
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B,
"Container not present: cmd 0x%x id %d lun %d len %d",
*cmdp, ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
xpt_done(ccb);
return;
}
if (ccb->csio.dxfer_len)
bzero(ccb->csio.data_ptr, ccb->csio.dxfer_len);
switch (*cmdp) {
case INQUIRY:
{
struct scsi_inquiry *inq = (struct scsi_inquiry *)cmdp;
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container INQUIRY id %d lun %d len %d VPD 0x%x Page 0x%x",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len, inq->byte2, inq->page_code);
if (!(inq->byte2 & SI_EVPD)) {
struct scsi_inquiry_data *p =
(struct scsi_inquiry_data *)ccb->csio.data_ptr;
if (inq->page_code != 0) {
aac_set_scsi_error(sc, ccb,
SCSI_STATUS_CHECK_COND,
SSD_KEY_ILLEGAL_REQUEST, 0x24, 0x00);
xpt_done(ccb);
return;
}
p->device = T_DIRECT;
p->version = SCSI_REV_SPC2;
p->response_format = 2;
if (ccb->csio.dxfer_len >= 36) {
p->additional_length = 31;
p->flags = SID_WBus16|SID_Sync|SID_CmdQue;
/* OEM Vendor defines */
strncpy(p->vendor, "Adaptec ", sizeof(p->vendor));
strncpy(p->product, "Array ",
sizeof(p->product));
strncpy(p->revision, "V1.0",
sizeof(p->revision));
}
} else {
if (inq->page_code == SVPD_SUPPORTED_PAGE_LIST) {
struct scsi_vpd_supported_page_list *p =
(struct scsi_vpd_supported_page_list *)
ccb->csio.data_ptr;
p->device = T_DIRECT;
p->page_code = SVPD_SUPPORTED_PAGE_LIST;
p->length = 2;
p->list[0] = SVPD_SUPPORTED_PAGE_LIST;
p->list[1] = SVPD_UNIT_SERIAL_NUMBER;
} else if (inq->page_code == SVPD_UNIT_SERIAL_NUMBER) {
struct scsi_vpd_unit_serial_number *p =
(struct scsi_vpd_unit_serial_number *)
ccb->csio.data_ptr;
p->device = T_DIRECT;
p->page_code = SVPD_UNIT_SERIAL_NUMBER;
p->length = sprintf((char *)p->serial_num,
"%08X%02X", co->co_uid,
ccb->ccb_h.target_id);
} else {
aac_set_scsi_error(sc, ccb,
SCSI_STATUS_CHECK_COND,
SSD_KEY_ILLEGAL_REQUEST, 0x24, 0x00);
xpt_done(ccb);
return;
}
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case REPORT_LUNS:
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container REPORT_LUNS id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case START_STOP:
{
struct scsi_start_stop_unit *ss =
(struct scsi_start_stop_unit *)cmdp;
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container START_STOP id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
if (sc->aac_support_opt2 & AAC_SUPPORTED_POWER_MANAGEMENT) {
struct aac_command *cm;
struct aac_fib *fib;
struct aac_cnt_config *ccfg;
if (aacraid_alloc_command(sc, &cm)) {
struct aac_event *event;
xpt_freeze_simq(sim, 1);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
ccb->ccb_h.sim_priv.entries[0].ptr = camsc;
event = malloc(sizeof(struct aac_event), M_AACRAIDCAM,
M_NOWAIT | M_ZERO);
if (event == NULL) {
device_printf(sc->aac_dev,
"Warning, out of memory for event\n");
return;
}
event->ev_callback = aac_cam_event;
event->ev_arg = ccb;
event->ev_type = AAC_EVENT_CMFREE;
aacraid_add_event(sc, event);
return;
}
fib = cm->cm_fib;
cm->cm_timestamp = time_uptime;
cm->cm_datalen = 0;
fib->Header.Size =
sizeof(struct aac_fib_header) + sizeof(struct aac_cnt_config);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
fib->Header.Command = ContainerCommand;
/* Start unit */
ccfg = (struct aac_cnt_config *)&fib->data[0];
bzero(ccfg, sizeof (*ccfg) - CT_PACKET_SIZE);
ccfg->Command = VM_ContainerConfig;
ccfg->CTCommand.command = CT_PM_DRIVER_SUPPORT;
ccfg->CTCommand.param[0] = (ss->how & SSS_START ?
AAC_PM_DRIVERSUP_START_UNIT :
AAC_PM_DRIVERSUP_STOP_UNIT);
ccfg->CTCommand.param[1] = co->co_mntobj.ObjectId;
ccfg->CTCommand.param[2] = 0; /* 1 - immediate */
if (aacraid_wait_command(cm) != 0 ||
*(u_int32_t *)&fib->data[0] != 0) {
printf("Power Management: Error start/stop container %d\n",
co->co_mntobj.ObjectId);
}
aacraid_release_command(cm);
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case TEST_UNIT_READY:
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container TEST_UNIT_READY id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case REQUEST_SENSE:
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container REQUEST_SENSE id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case READ_CAPACITY:
{
struct scsi_read_capacity_data *p =
(struct scsi_read_capacity_data *)ccb->csio.data_ptr;
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container READ_CAPACITY id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
scsi_ulto4b(co->co_mntobj.ObjExtension.BlockDevice.BlockSize, p->length);
/* check if greater than 2TB */
if (co->co_mntobj.CapacityHigh) {
if (sc->flags & AAC_FLAGS_LBA_64BIT)
scsi_ulto4b(0xffffffff, p->addr);
} else {
scsi_ulto4b(co->co_mntobj.Capacity-1, p->addr);
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case SERVICE_ACTION_IN:
{
struct scsi_read_capacity_data_long *p =
(struct scsi_read_capacity_data_long *)
ccb->csio.data_ptr;
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container SERVICE_ACTION_IN id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
if (((struct scsi_read_capacity_16 *)cmdp)->service_action !=
SRC16_SERVICE_ACTION) {
aac_set_scsi_error(sc, ccb, SCSI_STATUS_CHECK_COND,
SSD_KEY_ILLEGAL_REQUEST, 0x24, 0x00);
xpt_done(ccb);
return;
}
scsi_ulto4b(co->co_mntobj.ObjExtension.BlockDevice.BlockSize, p->length);
scsi_ulto4b(co->co_mntobj.CapacityHigh, p->addr);
scsi_ulto4b(co->co_mntobj.Capacity-1, &p->addr[4]);
if (ccb->csio.dxfer_len >= 14) {
u_int32_t mapping = co->co_mntobj.ObjExtension.BlockDevice.bdLgclPhysMap;
p->prot_lbppbe = 0;
while (mapping > 1) {
mapping >>= 1;
p->prot_lbppbe++;
}
p->prot_lbppbe &= 0x0f;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case MODE_SENSE_6:
{
struct scsi_mode_sense_6 *msp =(struct scsi_mode_sense_6 *)cmdp;
struct ms6_data {
struct scsi_mode_hdr_6 hd;
struct scsi_mode_block_descr bd;
char pages;
} *p = (struct ms6_data *)ccb->csio.data_ptr;
char *pagep;
int return_all_pages = FALSE;
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container MODE_SENSE id %d lun %d len %d page %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len, msp->page);
p->hd.datalen = sizeof(struct scsi_mode_hdr_6) - 1;
if (co->co_mntobj.ContentState & AAC_FSCS_READONLY)
p->hd.dev_specific = 0x80; /* WP */
p->hd.dev_specific |= 0x10; /* DPOFUA */
if (msp->byte2 & SMS_DBD) {
p->hd.block_descr_len = 0;
} else {
p->hd.block_descr_len =
sizeof(struct scsi_mode_block_descr);
p->hd.datalen += p->hd.block_descr_len;
scsi_ulto3b(co->co_mntobj.ObjExtension.BlockDevice.BlockSize, p->bd.block_len);
if (co->co_mntobj.Capacity > 0xffffff ||
co->co_mntobj.CapacityHigh) {
p->bd.num_blocks[0] = 0xff;
p->bd.num_blocks[1] = 0xff;
p->bd.num_blocks[2] = 0xff;
} else {
p->bd.num_blocks[0] = (u_int8_t)
(co->co_mntobj.Capacity >> 16);
p->bd.num_blocks[1] = (u_int8_t)
(co->co_mntobj.Capacity >> 8);
p->bd.num_blocks[2] = (u_int8_t)
(co->co_mntobj.Capacity);
}
}
pagep = &p->pages;
switch (msp->page & SMS_PAGE_CODE) {
case SMS_ALL_PAGES_PAGE:
return_all_pages = TRUE;
case SMS_CONTROL_MODE_PAGE:
{
struct scsi_control_page *cp =
(struct scsi_control_page *)pagep;
if (ccb->csio.dxfer_len <= p->hd.datalen + 8) {
aac_set_scsi_error(sc, ccb,
SCSI_STATUS_CHECK_COND,
SSD_KEY_ILLEGAL_REQUEST, 0x24, 0x00);
xpt_done(ccb);
return;
}
cp->page_code = SMS_CONTROL_MODE_PAGE;
cp->page_length = 6;
p->hd.datalen += 8;
pagep += 8;
if (!return_all_pages)
break;
}
case SMS_VENDOR_SPECIFIC_PAGE:
break;
default:
aac_set_scsi_error(sc, ccb, SCSI_STATUS_CHECK_COND,
SSD_KEY_ILLEGAL_REQUEST, 0x24, 0x00);
xpt_done(ccb);
return;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case SYNCHRONIZE_CACHE:
fwprintf(sc, HBA_FLAGS_DBG_COMM_B,
"Container SYNCHRONIZE_CACHE id %d lun %d len %d",
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
default:
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B,
"Container unsupp. cmd 0x%x id %d lun %d len %d",
*cmdp, ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
ccb->csio.dxfer_len);
ccb->ccb_h.status = CAM_REQ_CMP; /*CAM_REQ_INVALID*/
break;
}
xpt_done(ccb);
}
static void
aac_passthrough_command(struct cam_sim *sim, union ccb *ccb)
{
struct aac_cam *camsc;
struct aac_softc *sc;
struct aac_command *cm;
struct aac_fib *fib;
struct aac_srb *srb;
camsc = (struct aac_cam *)cam_sim_softc(sim);
sc = camsc->inf->aac_sc;
mtx_assert(&sc->aac_io_lock, MA_OWNED);
if (aacraid_alloc_command(sc, &cm)) {
struct aac_event *event;
xpt_freeze_simq(sim, 1);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
ccb->ccb_h.sim_priv.entries[0].ptr = camsc;
event = malloc(sizeof(struct aac_event), M_AACRAIDCAM,
M_NOWAIT | M_ZERO);
if (event == NULL) {
device_printf(sc->aac_dev,
"Warning, out of memory for event\n");
return;
}
event->ev_callback = aac_cam_event;
event->ev_arg = ccb;
event->ev_type = AAC_EVENT_CMFREE;
aacraid_add_event(sc, event);
return;
}
fib = cm->cm_fib;
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
cm->cm_flags |= AAC_CMD_DATAIN;
break;
case CAM_DIR_OUT:
cm->cm_flags |= AAC_CMD_DATAOUT;
break;
case CAM_DIR_NONE:
break;
default:
cm->cm_flags |= AAC_CMD_DATAIN | AAC_CMD_DATAOUT;
break;
}
srb = (struct aac_srb *)&fib->data[0];
srb->function = AAC_SRB_FUNC_EXECUTE_SCSI;
if (cm->cm_flags & (AAC_CMD_DATAIN|AAC_CMD_DATAOUT))
srb->flags = AAC_SRB_FLAGS_UNSPECIFIED_DIRECTION;
if (cm->cm_flags & AAC_CMD_DATAIN)
srb->flags = AAC_SRB_FLAGS_DATA_IN;
else if (cm->cm_flags & AAC_CMD_DATAOUT)
srb->flags = AAC_SRB_FLAGS_DATA_OUT;
else
srb->flags = AAC_SRB_FLAGS_NO_DATA_XFER;
/*
* Copy the CDB into the SRB. It's only 6-16 bytes,
* so a copy is not too expensive.
*/
srb->cdb_len = ccb->csio.cdb_len;
if (ccb->ccb_h.flags & CAM_CDB_POINTER)
bcopy(ccb->csio.cdb_io.cdb_ptr, (u_int8_t *)&srb->cdb[0],
srb->cdb_len);
else
bcopy(ccb->csio.cdb_io.cdb_bytes, (u_int8_t *)&srb->cdb[0],
srb->cdb_len);
/* Set command */
fib->Header.Command = (sc->flags & AAC_FLAGS_SG_64BIT) ?
ScsiPortCommandU64 : ScsiPortCommand;
fib->Header.Size = sizeof(struct aac_fib_header) +
sizeof(struct aac_srb);
/* Map the s/g list */
cm->cm_sgtable = &srb->sg_map;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
/*
* Arrange things so that the S/G
* map will get set up automagically
*/
cm->cm_data = (void *)ccb->csio.data_ptr;
cm->cm_datalen = ccb->csio.dxfer_len;
srb->data_len = ccb->csio.dxfer_len;
} else {
cm->cm_data = NULL;
cm->cm_datalen = 0;
srb->data_len = 0;
}
srb->bus = camsc->inf->BusNumber - 1; /* Bus no. rel. to the card */
srb->target = ccb->ccb_h.target_id;
srb->lun = ccb->ccb_h.target_lun;
srb->timeout = ccb->ccb_h.timeout; /* XXX */
srb->retry_limit = 0;
cm->cm_complete = aac_cam_complete;
cm->cm_ccb = ccb;
cm->cm_timestamp = time_uptime;
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
aac_enqueue_ready(cm);
aacraid_startio(cm->cm_sc);
}
static void
aac_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct aac_cam *camsc;
struct aac_softc *sc;
camsc = (struct aac_cam *)cam_sim_softc(sim);
sc = camsc->inf->aac_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_assert(&sc->aac_io_lock, MA_OWNED);
/* Synchronous ops, and ops that don't require communication with the
* controller */
switch(ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
/* This is handled down below */
break;
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
ccg = &ccb->ccg;
size_mb = ccg->volume_size /
((1024L * 1024L) / ccg->block_size);
if (size_mb >= (2 * 1024)) { /* 2GB */
ccg->heads = 255;
ccg->secs_per_track = 63;
} else if (size_mb >= (1 * 1024)) { /* 1GB */
ccg->heads = 128;
ccg->secs_per_track = 32;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;
}
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->target_sprt = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = camsc->inf->TargetsPerBus;
cpi->max_lun = 8; /* Per the controller spec */
cpi->initiator_id = camsc->inf->InitiatorBusId;
cpi->bus_id = camsc->inf->BusNumber;
#if __FreeBSD_version >= 800000
cpi->maxio = sc->aac_max_sectors << 9;
#endif
/*
* Resetting via the passthrough or parallel bus scan
* causes problems.
*/
cpi->hba_misc = PIM_NOBUSRESET;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->base_transfer_speed = 300000;
#ifdef CAM_NEW_TRAN_CODE
cpi->hba_misc |= PIM_SEQSCAN;
cpi->protocol = PROTO_SCSI;
cpi->transport = XPORT_SAS;
cpi->transport_version = 0;
cpi->protocol_version = SCSI_REV_SPC2;
#endif
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "PMC-Sierra", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;
}
case XPT_GET_TRAN_SETTINGS:
{
#ifdef CAM_NEW_TRAN_CODE
struct ccb_trans_settings_scsi *scsi =
&ccb->cts.proto_specific.scsi;
struct ccb_trans_settings_spi *spi =
&ccb->cts.xport_specific.spi;
ccb->cts.protocol = PROTO_SCSI;
ccb->cts.protocol_version = SCSI_REV_SPC2;
ccb->cts.transport = XPORT_SAS;
ccb->cts.transport_version = 0;
scsi->valid = CTS_SCSI_VALID_TQ;
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
spi->valid |= CTS_SPI_VALID_DISC;
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
#else
ccb->cts.flags = ~(CCB_TRANS_DISC_ENB | CCB_TRANS_TAG_ENB);
ccb->cts.valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
#endif
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;
}
case XPT_SET_TRAN_SETTINGS:
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
return;
case XPT_RESET_BUS:
if (!(sc->flags & AAC_FLAGS_CAM_NORESET) &&
camsc->inf->BusType != CONTAINER_BUS) {
ccb->ccb_h.status = aac_cam_reset_bus(sim, ccb);
} else {
ccb->ccb_h.status = CAM_REQ_CMP;
}
xpt_done(ccb);
return;
case XPT_RESET_DEV:
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;
case XPT_ABORT:
ccb->ccb_h.status = aac_cam_abort_ccb(sim, ccb);
xpt_done(ccb);
return;
case XPT_TERM_IO:
ccb->ccb_h.status = aac_cam_term_io(sim, ccb);
xpt_done(ccb);
return;
default:
device_printf(sc->aac_dev, "Unsupported command 0x%x\n",
ccb->ccb_h.func_code);
ccb->ccb_h.status = CAM_PROVIDE_FAIL;
xpt_done(ccb);
return;
}
/* Async ops that require communcation with the controller */
if (camsc->inf->BusType == CONTAINER_BUS) {
u_int8_t *cmdp;
if (ccb->ccb_h.flags & CAM_CDB_POINTER)
cmdp = ccb->csio.cdb_io.cdb_ptr;
else
cmdp = &ccb->csio.cdb_io.cdb_bytes[0];
if (*cmdp==READ_6 || *cmdp==WRITE_6 || *cmdp==READ_10 ||
*cmdp==WRITE_10 || *cmdp==READ_12 || *cmdp==WRITE_12 ||
*cmdp==READ_16 || *cmdp==WRITE_16)
aac_container_rw_command(sim, ccb, cmdp);
else
aac_container_special_command(sim, ccb, cmdp);
} else {
aac_passthrough_command(sim, ccb);
}
}
static void
aac_cam_poll(struct cam_sim *sim)
{
/*
* Pinging the interrupt routine isn't very safe, nor is it
* really necessary. Do nothing.
*/
}
static void
aac_container_complete(struct aac_command *cm)
{
union ccb *ccb;
u_int32_t status;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
ccb = cm->cm_ccb;
status = ((u_int32_t *)cm->cm_fib->data)[0];
if (cm->cm_flags & AAC_CMD_RESET) {
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
} else if (status == ST_OK) {
ccb->ccb_h.status = CAM_REQ_CMP;
} else if (status == ST_NOT_READY) {
ccb->ccb_h.status = CAM_BUSY;
} else {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
}
aacraid_release_command(cm);
xpt_done(ccb);
}
static void
aac_cam_complete(struct aac_command *cm)
{
union ccb *ccb;
struct aac_srb_response *srbr;
struct aac_softc *sc;
sc = cm->cm_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
ccb = cm->cm_ccb;
srbr = (struct aac_srb_response *)&cm->cm_fib->data[0];
if (cm->cm_flags & AAC_CMD_FASTRESP) {
/* fast response */
srbr->srb_status = CAM_REQ_CMP;
srbr->scsi_status = SCSI_STATUS_OK;
srbr->sense_len = 0;
}
if (cm->cm_flags & AAC_CMD_RESET) {
ccb->ccb_h.status = CAM_SCSI_BUS_RESET;
} else if (srbr->fib_status != 0) {
device_printf(sc->aac_dev, "Passthru FIB failed!\n");
ccb->ccb_h.status = CAM_REQ_ABORTED;
} else {
/*
* The SRB error codes just happen to match the CAM error
* codes. How convienient!
*/
ccb->ccb_h.status = srbr->srb_status;
/* Take care of SCSI_IO ops. */
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
u_int8_t command, device;
ccb->csio.scsi_status = srbr->scsi_status;
/* Take care of autosense */
if (srbr->sense_len) {
int sense_len, scsi_sense_len;
scsi_sense_len = sizeof(struct scsi_sense_data);
bzero(&ccb->csio.sense_data, scsi_sense_len);
sense_len = (srbr->sense_len >
scsi_sense_len) ? scsi_sense_len :
srbr->sense_len;
bcopy(&srbr->sense[0], &ccb->csio.sense_data,
srbr->sense_len);
ccb->csio.sense_len = sense_len;
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
// scsi_sense_print(&ccb->csio);
}
/* If this is an inquiry command, fake things out */
if (ccb->ccb_h.flags & CAM_CDB_POINTER)
command = ccb->csio.cdb_io.cdb_ptr[0];
else
command = ccb->csio.cdb_io.cdb_bytes[0];
if (command == INQUIRY) {
if (ccb->ccb_h.status == CAM_REQ_CMP) {
device = ccb->csio.data_ptr[0] & 0x1f;
/*
* We want DASD and PROC devices to only be
* visible through the pass device.
*/
if ((device == T_DIRECT &&
!(sc->aac_feature_bits & AAC_SUPPL_SUPPORTED_JBOD)) ||
(device == T_PROCESSOR))
ccb->csio.data_ptr[0] =
((device & 0xe0) | T_NODEVICE);
/* handle phys. components of a log. drive */
if (ccb->csio.data_ptr[0] & 0x20) {
if (sc->hint_flags & 8) {
/* expose phys. device (daXX) */
ccb->csio.data_ptr[0] &= 0xdf;
} else {
/* phys. device only visible through pass device (passXX) */
ccb->csio.data_ptr[0] |= 0x10;
}
}
} else if (ccb->ccb_h.status == CAM_SEL_TIMEOUT &&
ccb->ccb_h.target_lun != 0) {
/* fix for INQUIRYs on Lun>0 */
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
}
}
}
}
aacraid_release_command(cm);
xpt_done(ccb);
}
static u_int32_t
aac_cam_reset_bus(struct cam_sim *sim, union ccb *ccb)
{
struct aac_command *cm;
struct aac_fib *fib;
struct aac_softc *sc;
struct aac_cam *camsc;
struct aac_vmioctl *vmi;
struct aac_resetbus *rbc;
u_int32_t rval;
camsc = (struct aac_cam *)cam_sim_softc(sim);
sc = camsc->inf->aac_sc;
if (sc == NULL) {
printf("aac: Null sc?\n");
return (CAM_REQ_ABORTED);
}
if (aacraid_alloc_command(sc, &cm)) {
struct aac_event *event;
xpt_freeze_simq(sim, 1);
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
ccb->ccb_h.sim_priv.entries[0].ptr = camsc;
event = malloc(sizeof(struct aac_event), M_AACRAIDCAM,
M_NOWAIT | M_ZERO);
if (event == NULL) {
device_printf(sc->aac_dev,
"Warning, out of memory for event\n");
return (CAM_REQ_ABORTED);
}
event->ev_callback = aac_cam_event;
event->ev_arg = ccb;
event->ev_type = AAC_EVENT_CMFREE;
aacraid_add_event(sc, event);
return (CAM_REQ_ABORTED);
}
fib = cm->cm_fib;
cm->cm_timestamp = time_uptime;
cm->cm_datalen = 0;
fib->Header.Size =
sizeof(struct aac_fib_header) + sizeof(struct aac_vmioctl);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
fib->Header.Command = ContainerCommand;
vmi = (struct aac_vmioctl *)&fib->data[0];
bzero(vmi, sizeof(struct aac_vmioctl));
vmi->Command = VM_Ioctl;
vmi->ObjType = FT_DRIVE;
vmi->MethId = sc->scsi_method_id;
vmi->ObjId = 0;
vmi->IoctlCmd = ResetBus;
rbc = (struct aac_resetbus *)&vmi->IoctlBuf[0];
rbc->BusNumber = camsc->inf->BusNumber - 1;
if (aacraid_wait_command(cm) != 0) {
device_printf(sc->aac_dev,"Error sending ResetBus command\n");
rval = CAM_REQ_ABORTED;
} else {
rval = CAM_REQ_CMP;
}
aacraid_release_command(cm);
return (rval);
}
static u_int32_t
aac_cam_abort_ccb(struct cam_sim *sim, union ccb *ccb)
{
return (CAM_UA_ABORT);
}
static u_int32_t
aac_cam_term_io(struct cam_sim *sim, union ccb *ccb)
{
return (CAM_UA_TERMIO);
}
static int
aac_load_map_command_sg(struct aac_softc *sc, struct aac_command *cm)
{
int error;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
error = bus_dmamap_load(sc->aac_buffer_dmat,
cm->cm_datamap, cm->cm_data, cm->cm_datalen,
aacraid_map_command_sg, cm, 0);
if (error == EINPROGRESS) {
fwprintf(sc, HBA_FLAGS_DBG_INIT_B, "freezing queue\n");
sc->flags |= AAC_QUEUE_FRZN;
error = 0;
} else if (error != 0) {
panic("aac_load_map_command_sg: unexpected error %d from "
"busdma", error);
}
return(error);
}
/*
* Start as much queued I/O as possible on the controller
*/
void
aacraid_startio(struct aac_softc *sc)
{
struct aac_command *cm;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
for (;;) {
if (sc->aac_state & AAC_STATE_RESET) {
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "AAC_STATE_RESET");
break;
}
/*
* This flag might be set if the card is out of resources.
* Checking it here prevents an infinite loop of deferrals.
*/
if (sc->flags & AAC_QUEUE_FRZN) {
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "AAC_QUEUE_FRZN");
break;
}
/*
* Try to get a command that's been put off for lack of
* resources
*/
if (sc->flags & AAC_FLAGS_SYNC_MODE) {
/* sync. transfer mode */
if (sc->aac_sync_cm)
break;
cm = aac_dequeue_ready(sc);
sc->aac_sync_cm = cm;
} else {
cm = aac_dequeue_ready(sc);
}
/* nothing to do? */
if (cm == NULL)
break;
/* don't map more than once */
if (cm->cm_flags & AAC_CMD_MAPPED)
panic("aac: command %p already mapped", cm);
/*
* Set up the command to go to the controller. If there are no
* data buffers associated with the command then it can bypass
* busdma.
*/
if (cm->cm_datalen)
aac_load_map_command_sg(sc, cm);
else
aacraid_map_command_sg(cm, NULL, 0, 0);
}
}