freebsd-nq/sys/dev/igc/igc_phy.c
Peter Grehan 517904de5c igc(4): Introduce new driver for the Intel I225 Ethernet controller.
This controller supports 2.5G/1G/100MB/10MB speeds, and allows
tx/rx checksum offload, TSO, LRO, and multi-queue operation.

The driver was derived from code contributed by Intel, and modified
by Netgate to fit into the iflib framework.

Thanks to Mike Karels for testing and feedback on the driver.

Reviewed by:	bcr (manpages), kbowling, scottl, erj
MFC after:	1 month
Relnotes:	yes
Sponsored by:	Rubicon Communications, LLC ("Netgate")
Differential Revision:	https://reviews.freebsd.org/D30668
2021-07-12 14:57:18 +10:00

1110 lines
30 KiB
C

/*-
* Copyright 2021 Intel Corp
* Copyright 2021 Rubicon Communications, LLC (Netgate)
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "igc_api.h"
static s32 igc_wait_autoneg(struct igc_hw *hw);
/**
* igc_init_phy_ops_generic - Initialize PHY function pointers
* @hw: pointer to the HW structure
*
* Setups up the function pointers to no-op functions
**/
void igc_init_phy_ops_generic(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
DEBUGFUNC("igc_init_phy_ops_generic");
/* Initialize function pointers */
phy->ops.init_params = igc_null_ops_generic;
phy->ops.acquire = igc_null_ops_generic;
phy->ops.check_reset_block = igc_null_ops_generic;
phy->ops.commit = igc_null_ops_generic;
phy->ops.force_speed_duplex = igc_null_ops_generic;
phy->ops.get_info = igc_null_ops_generic;
phy->ops.set_page = igc_null_set_page;
phy->ops.read_reg = igc_null_read_reg;
phy->ops.read_reg_locked = igc_null_read_reg;
phy->ops.read_reg_page = igc_null_read_reg;
phy->ops.release = igc_null_phy_generic;
phy->ops.reset = igc_null_ops_generic;
phy->ops.set_d0_lplu_state = igc_null_lplu_state;
phy->ops.set_d3_lplu_state = igc_null_lplu_state;
phy->ops.write_reg = igc_null_write_reg;
phy->ops.write_reg_locked = igc_null_write_reg;
phy->ops.write_reg_page = igc_null_write_reg;
phy->ops.power_up = igc_null_phy_generic;
phy->ops.power_down = igc_null_phy_generic;
}
/**
* igc_null_set_page - No-op function, return 0
* @hw: pointer to the HW structure
* @data: dummy variable
**/
s32 igc_null_set_page(struct igc_hw IGC_UNUSEDARG *hw,
u16 IGC_UNUSEDARG data)
{
DEBUGFUNC("igc_null_set_page");
return IGC_SUCCESS;
}
/**
* igc_null_read_reg - No-op function, return 0
* @hw: pointer to the HW structure
* @offset: dummy variable
* @data: dummy variable
**/
s32 igc_null_read_reg(struct igc_hw IGC_UNUSEDARG *hw,
u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG *data)
{
DEBUGFUNC("igc_null_read_reg");
return IGC_SUCCESS;
}
/**
* igc_null_phy_generic - No-op function, return void
* @hw: pointer to the HW structure
**/
void igc_null_phy_generic(struct igc_hw IGC_UNUSEDARG *hw)
{
DEBUGFUNC("igc_null_phy_generic");
return;
}
/**
* igc_null_lplu_state - No-op function, return 0
* @hw: pointer to the HW structure
* @active: dummy variable
**/
s32 igc_null_lplu_state(struct igc_hw IGC_UNUSEDARG *hw,
bool IGC_UNUSEDARG active)
{
DEBUGFUNC("igc_null_lplu_state");
return IGC_SUCCESS;
}
/**
* igc_null_write_reg - No-op function, return 0
* @hw: pointer to the HW structure
* @offset: dummy variable
* @data: dummy variable
**/
s32 igc_null_write_reg(struct igc_hw IGC_UNUSEDARG *hw,
u32 IGC_UNUSEDARG offset, u16 IGC_UNUSEDARG data)
{
DEBUGFUNC("igc_null_write_reg");
return IGC_SUCCESS;
}
/**
* igc_check_reset_block_generic - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
* Read the PHY management control register and check whether a PHY reset
* is blocked. If a reset is not blocked return IGC_SUCCESS, otherwise
* return IGC_BLK_PHY_RESET (12).
**/
s32 igc_check_reset_block_generic(struct igc_hw *hw)
{
u32 manc;
DEBUGFUNC("igc_check_reset_block");
manc = IGC_READ_REG(hw, IGC_MANC);
return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
IGC_BLK_PHY_RESET : IGC_SUCCESS;
}
/**
* igc_get_phy_id - Retrieve the PHY ID and revision
* @hw: pointer to the HW structure
*
* Reads the PHY registers and stores the PHY ID and possibly the PHY
* revision in the hardware structure.
**/
s32 igc_get_phy_id(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
s32 ret_val = IGC_SUCCESS;
u16 phy_id;
DEBUGFUNC("igc_get_phy_id");
if (!phy->ops.read_reg)
return IGC_SUCCESS;
ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
if (ret_val)
return ret_val;
phy->id = (u32)(phy_id << 16);
usec_delay(20);
ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
if (ret_val)
return ret_val;
phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
return IGC_SUCCESS;
}
/**
* igc_read_phy_reg_mdic - Read MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the MDI control register in the PHY at offset and stores the
* information read to data.
**/
s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
{
struct igc_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
DEBUGFUNC("igc_read_phy_reg_mdic");
if (offset > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", offset);
return -IGC_ERR_PARAM;
}
/* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((offset << IGC_MDIC_REG_SHIFT) |
(phy->addr << IGC_MDIC_PHY_SHIFT) |
(IGC_MDIC_OP_READ));
IGC_WRITE_REG(hw, IGC_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
usec_delay_irq(50);
mdic = IGC_READ_REG(hw, IGC_MDIC);
if (mdic & IGC_MDIC_READY)
break;
}
if (!(mdic & IGC_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
return -IGC_ERR_PHY;
}
if (mdic & IGC_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -IGC_ERR_PHY;
}
if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
offset,
(mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
return -IGC_ERR_PHY;
}
*data = (u16) mdic;
return IGC_SUCCESS;
}
/**
* igc_write_phy_reg_mdic - Write MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write to register at offset
*
* Writes data to MDI control register in the PHY at offset.
**/
s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
{
struct igc_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
DEBUGFUNC("igc_write_phy_reg_mdic");
if (offset > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", offset);
return -IGC_ERR_PARAM;
}
/* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = (((u32)data) |
(offset << IGC_MDIC_REG_SHIFT) |
(phy->addr << IGC_MDIC_PHY_SHIFT) |
(IGC_MDIC_OP_WRITE));
IGC_WRITE_REG(hw, IGC_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < (IGC_GEN_POLL_TIMEOUT * 3); i++) {
usec_delay_irq(50);
mdic = IGC_READ_REG(hw, IGC_MDIC);
if (mdic & IGC_MDIC_READY)
break;
}
if (!(mdic & IGC_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
return -IGC_ERR_PHY;
}
if (mdic & IGC_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -IGC_ERR_PHY;
}
if (((mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT) != offset) {
DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
offset,
(mdic & IGC_MDIC_REG_MASK) >> IGC_MDIC_REG_SHIFT);
return -IGC_ERR_PHY;
}
return IGC_SUCCESS;
}
/**
* igc_phy_setup_autoneg - Configure PHY for auto-negotiation
* @hw: pointer to the HW structure
*
* Reads the MII auto-neg advertisement register and/or the 1000T control
* register and if the PHY is already setup for auto-negotiation, then
* return successful. Otherwise, setup advertisement and flow control to
* the appropriate values for the wanted auto-negotiation.
**/
static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
s32 ret_val;
u16 mii_autoneg_adv_reg;
u16 mii_1000t_ctrl_reg = 0;
u16 aneg_multigbt_an_ctrl = 0;
DEBUGFUNC("igc_phy_setup_autoneg");
phy->autoneg_advertised &= phy->autoneg_mask;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
&mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
hw->phy.id == I225_I_PHY_ID) {
/* Read the MULTI GBT AN Control Register - reg 7.32 */
ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
MMD_DEVADDR_SHIFT) |
ANEG_MULTIGBT_AN_CTRL,
&aneg_multigbt_an_ctrl);
if (ret_val)
return ret_val;
}
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
NWAY_AR_100TX_HD_CAPS |
NWAY_AR_10T_FD_CAPS |
NWAY_AR_10T_HD_CAPS);
mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
DEBUGOUT("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
DEBUGOUT("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
DEBUGOUT("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
DEBUGOUT("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
/* Do we want to advertise 1000 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
DEBUGOUT("Advertise 2500mb Half duplex request denied!\n");
/* Do we want to advertise 2500 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
DEBUGOUT("Advertise 2500mb Full duplex\n");
aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
} else {
aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
* negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc.current_mode) {
case igc_fc_none:
/* Flow control (Rx & Tx) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case igc_fc_rx_pause:
/* Rx Flow control is enabled, and Tx Flow control is
* disabled, by a software over-ride.
*
* Since there really isn't a way to advertise that we are
* capable of Rx Pause ONLY, we will advertise that we
* support both symmetric and asymmetric Rx PAUSE. Later
* (in igc_config_fc_after_link_up) we will disable the
* hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case igc_fc_tx_pause:
/* Tx Flow control is enabled, and Rx Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case igc_fc_full:
/* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -IGC_ERR_CONFIG;
}
ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (phy->autoneg_mask & ADVERTISE_1000_FULL)
ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
mii_1000t_ctrl_reg);
if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
hw->phy.id == I225_I_PHY_ID)
ret_val = phy->ops.write_reg(hw,
(STANDARD_AN_REG_MASK <<
MMD_DEVADDR_SHIFT) |
ANEG_MULTIGBT_AN_CTRL,
aneg_multigbt_an_ctrl);
return ret_val;
}
/**
* igc_copper_link_autoneg - Setup/Enable autoneg for copper link
* @hw: pointer to the HW structure
*
* Performs initial bounds checking on autoneg advertisement parameter, then
* configure to advertise the full capability. Setup the PHY to autoneg
* and restart the negotiation process between the link partner. If
* autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
**/
static s32 igc_copper_link_autoneg(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_ctrl;
DEBUGFUNC("igc_copper_link_autoneg");
/* Perform some bounds checking on the autoneg advertisement
* parameter.
*/
phy->autoneg_advertised &= phy->autoneg_mask;
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if (!phy->autoneg_advertised)
phy->autoneg_advertised = phy->autoneg_mask;
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
ret_val = igc_phy_setup_autoneg(hw);
if (ret_val) {
DEBUGOUT("Error Setting up Auto-Negotiation\n");
return ret_val;
}
DEBUGOUT("Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
return ret_val;
phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
return ret_val;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
if (phy->autoneg_wait_to_complete) {
ret_val = igc_wait_autoneg(hw);
if (ret_val) {
DEBUGOUT("Error while waiting for autoneg to complete\n");
return ret_val;
}
}
hw->mac.get_link_status = true;
return ret_val;
}
/**
* igc_setup_copper_link_generic - Configure copper link settings
* @hw: pointer to the HW structure
*
* Calls the appropriate function to configure the link for auto-neg or forced
* speed and duplex. Then we check for link, once link is established calls
* to configure collision distance and flow control are called. If link is
* not established, we return -IGC_ERR_PHY (-2).
**/
s32 igc_setup_copper_link_generic(struct igc_hw *hw)
{
s32 ret_val;
bool link;
DEBUGFUNC("igc_setup_copper_link_generic");
if (hw->mac.autoneg) {
/* Setup autoneg and flow control advertisement and perform
* autonegotiation.
*/
ret_val = igc_copper_link_autoneg(hw);
if (ret_val)
return ret_val;
} else {
/* PHY will be set to 10H, 10F, 100H or 100F
* depending on user settings.
*/
DEBUGOUT("Forcing Speed and Duplex\n");
ret_val = hw->phy.ops.force_speed_duplex(hw);
if (ret_val) {
DEBUGOUT("Error Forcing Speed and Duplex\n");
return ret_val;
}
}
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
ret_val = igc_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
&link);
if (ret_val)
return ret_val;
if (link) {
DEBUGOUT("Valid link established!!!\n");
hw->mac.ops.config_collision_dist(hw);
ret_val = igc_config_fc_after_link_up_generic(hw);
} else {
DEBUGOUT("Unable to establish link!!!\n");
}
return ret_val;
}
/**
* igc_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
* @hw: pointer to the HW structure
* @phy_ctrl: pointer to current value of PHY_CONTROL
*
* Forces speed and duplex on the PHY by doing the following: disable flow
* control, force speed/duplex on the MAC, disable auto speed detection,
* disable auto-negotiation, configure duplex, configure speed, configure
* the collision distance, write configuration to CTRL register. The
* caller must write to the PHY_CONTROL register for these settings to
* take affect.
**/
void igc_phy_force_speed_duplex_setup(struct igc_hw *hw, u16 *phy_ctrl)
{
struct igc_mac_info *mac = &hw->mac;
u32 ctrl;
DEBUGFUNC("igc_phy_force_speed_duplex_setup");
/* Turn off flow control when forcing speed/duplex */
hw->fc.current_mode = igc_fc_none;
/* Force speed/duplex on the mac */
ctrl = IGC_READ_REG(hw, IGC_CTRL);
ctrl |= (IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
ctrl &= ~IGC_CTRL_SPD_SEL;
/* Disable Auto Speed Detection */
ctrl &= ~IGC_CTRL_ASDE;
/* Disable autoneg on the phy */
*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
/* Forcing Full or Half Duplex? */
if (mac->forced_speed_duplex & IGC_ALL_HALF_DUPLEX) {
ctrl &= ~IGC_CTRL_FD;
*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
DEBUGOUT("Half Duplex\n");
} else {
ctrl |= IGC_CTRL_FD;
*phy_ctrl |= MII_CR_FULL_DUPLEX;
DEBUGOUT("Full Duplex\n");
}
/* Forcing 10mb or 100mb? */
if (mac->forced_speed_duplex & IGC_ALL_100_SPEED) {
ctrl |= IGC_CTRL_SPD_100;
*phy_ctrl |= MII_CR_SPEED_100;
*phy_ctrl &= ~MII_CR_SPEED_1000;
DEBUGOUT("Forcing 100mb\n");
} else {
ctrl &= ~(IGC_CTRL_SPD_1000 | IGC_CTRL_SPD_100);
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
DEBUGOUT("Forcing 10mb\n");
}
hw->mac.ops.config_collision_dist(hw);
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
}
/**
* igc_set_d3_lplu_state_generic - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D3
* and SmartSpeed is disabled when active is true, else clear lplu for D3
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained.
**/
s32 igc_set_d3_lplu_state_generic(struct igc_hw *hw, bool active)
{
struct igc_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
DEBUGFUNC("igc_set_d3_lplu_state_generic");
if (!hw->phy.ops.read_reg)
return IGC_SUCCESS;
ret_val = phy->ops.read_reg(hw, IGP02IGC_PHY_POWER_MGMT, &data);
if (ret_val)
return ret_val;
if (!active) {
data &= ~IGP02IGC_PM_D3_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT,
data);
if (ret_val)
return ret_val;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == igc_smart_speed_on) {
ret_val = phy->ops.read_reg(hw,
IGP01IGC_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01IGC_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
IGP01IGC_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == igc_smart_speed_off) {
ret_val = phy->ops.read_reg(hw,
IGP01IGC_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01IGC_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
IGP01IGC_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
} else if ((phy->autoneg_advertised == IGC_ALL_SPEED_DUPLEX) ||
(phy->autoneg_advertised == IGC_ALL_NOT_GIG) ||
(phy->autoneg_advertised == IGC_ALL_10_SPEED)) {
data |= IGP02IGC_PM_D3_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02IGC_PHY_POWER_MGMT,
data);
if (ret_val)
return ret_val;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = phy->ops.read_reg(hw, IGP01IGC_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01IGC_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw, IGP01IGC_PHY_PORT_CONFIG,
data);
}
return ret_val;
}
/**
* igc_check_downshift_generic - Checks whether a downshift in speed occurred
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns 1
*
* A downshift is detected by querying the PHY link health.
**/
s32 igc_check_downshift_generic(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
s32 ret_val;
DEBUGFUNC("igc_check_downshift_generic");
switch (phy->type) {
case igc_phy_i225:
default:
/* speed downshift not supported */
phy->speed_downgraded = false;
return IGC_SUCCESS;
}
return ret_val;
}
/**
* igc_wait_autoneg - Wait for auto-neg completion
* @hw: pointer to the HW structure
*
* Waits for auto-negotiation to complete or for the auto-negotiation time
* limit to expire, which ever happens first.
**/
static s32 igc_wait_autoneg(struct igc_hw *hw)
{
s32 ret_val = IGC_SUCCESS;
u16 i, phy_status;
DEBUGFUNC("igc_wait_autoneg");
if (!hw->phy.ops.read_reg)
return IGC_SUCCESS;
/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_AUTONEG_COMPLETE)
break;
msec_delay(100);
}
/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
* has completed.
*/
return ret_val;
}
/**
* igc_phy_has_link_generic - Polls PHY for link
* @hw: pointer to the HW structure
* @iterations: number of times to poll for link
* @usec_interval: delay between polling attempts
* @success: pointer to whether polling was successful or not
*
* Polls the PHY status register for link, 'iterations' number of times.
**/
s32 igc_phy_has_link_generic(struct igc_hw *hw, u32 iterations,
u32 usec_interval, bool *success)
{
s32 ret_val = IGC_SUCCESS;
u16 i, phy_status;
DEBUGFUNC("igc_phy_has_link_generic");
if (!hw->phy.ops.read_reg)
return IGC_SUCCESS;
for (i = 0; i < iterations; i++) {
/* Some PHYs require the PHY_STATUS register to be read
* twice due to the link bit being sticky. No harm doing
* it across the board.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val) {
/* If the first read fails, another entity may have
* ownership of the resources, wait and try again to
* see if they have relinquished the resources yet.
*/
if (usec_interval >= 1000)
msec_delay(usec_interval/1000);
else
usec_delay(usec_interval);
}
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_LINK_STATUS)
break;
if (usec_interval >= 1000)
msec_delay(usec_interval/1000);
else
usec_delay(usec_interval);
}
*success = (i < iterations);
return ret_val;
}
/**
* igc_phy_sw_reset_generic - PHY software reset
* @hw: pointer to the HW structure
*
* Does a software reset of the PHY by reading the PHY control register and
* setting/write the control register reset bit to the PHY.
**/
s32 igc_phy_sw_reset_generic(struct igc_hw *hw)
{
s32 ret_val;
u16 phy_ctrl;
DEBUGFUNC("igc_phy_sw_reset_generic");
if (!hw->phy.ops.read_reg)
return IGC_SUCCESS;
ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
return ret_val;
phy_ctrl |= MII_CR_RESET;
ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
return ret_val;
usec_delay(1);
return ret_val;
}
/**
* igc_phy_hw_reset_generic - PHY hardware reset
* @hw: pointer to the HW structure
*
* Verify the reset block is not blocking us from resetting. Acquire
* semaphore (if necessary) and read/set/write the device control reset
* bit in the PHY. Wait the appropriate delay time for the device to
* reset and release the semaphore (if necessary).
**/
s32 igc_phy_hw_reset_generic(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
s32 ret_val;
u32 ctrl, timeout = 10000, phpm = 0;
DEBUGFUNC("igc_phy_hw_reset_generic");
if (phy->ops.check_reset_block) {
ret_val = phy->ops.check_reset_block(hw);
if (ret_val)
return IGC_SUCCESS;
}
ret_val = phy->ops.acquire(hw);
if (ret_val)
return ret_val;
phpm = IGC_READ_REG(hw, IGC_I225_PHPM);
ctrl = IGC_READ_REG(hw, IGC_CTRL);
IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
IGC_WRITE_FLUSH(hw);
usec_delay(phy->reset_delay_us);
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
IGC_WRITE_FLUSH(hw);
usec_delay(150);
do {
phpm = IGC_READ_REG(hw, IGC_I225_PHPM);
timeout--;
usec_delay(1);
} while (!(phpm & IGC_I225_PHPM_RST_COMPL) && timeout);
if (!timeout)
DEBUGOUT("Timeout expired after a phy reset\n");
phy->ops.release(hw);
return ret_val;
}
/**
* igc_power_up_phy_copper - Restore copper link in case of PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, restore the link to previous
* settings.
**/
void igc_power_up_phy_copper(struct igc_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN;
hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
usec_delay(300);
}
/**
* igc_power_down_phy_copper - Restore copper link in case of PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, restore the link to previous
* settings.
**/
void igc_power_down_phy_copper(struct igc_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
msec_delay(1);
}
/**
* igc_write_phy_reg_gpy - Write GPY PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
DEBUGFUNC("igc_write_phy_reg_gpy");
offset = offset & GPY_REG_MASK;
if (!dev_addr) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igc_write_phy_reg_mdic(hw, offset, data);
if (ret_val)
return ret_val;
hw->phy.ops.release(hw);
} else {
ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
data);
}
return ret_val;
}
/**
* igc_read_phy_reg_gpy - Read GPY PHY register
* @hw: pointer to the HW structure
* @offset: lower half is register offset to read to
* upper half is MMD to use.
* @data: data to read at register offset
*
* Acquires semaphore, if necessary, then reads the data in the PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
DEBUGFUNC("igc_read_phy_reg_gpy");
offset = offset & GPY_REG_MASK;
if (!dev_addr) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igc_read_phy_reg_mdic(hw, offset, data);
if (ret_val)
return ret_val;
hw->phy.ops.release(hw);
} else {
ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
data);
}
return ret_val;
}
/**
* __igc_access_xmdio_reg - Read/write XMDIO register
* @hw: pointer to the HW structure
* @address: XMDIO address to program
* @dev_addr: device address to program
* @data: pointer to value to read/write from/to the XMDIO address
* @read: boolean flag to indicate read or write
**/
static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
u8 dev_addr, u16 *data, bool read)
{
s32 ret_val;
DEBUGFUNC("__igc_access_xmdio_reg");
ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
dev_addr);
if (ret_val)
return ret_val;
if (read)
ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
else
ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
if (ret_val)
return ret_val;
/* Recalibrate the device back to 0 */
ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
if (ret_val)
return ret_val;
return ret_val;
}
/**
* igc_read_xmdio_reg - Read XMDIO register
* @hw: pointer to the HW structure
* @addr: XMDIO address to program
* @dev_addr: device address to program
* @data: value to be read from the EMI address
**/
s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 *data)
{
DEBUGFUNC("igc_read_xmdio_reg");
return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
}
/**
* igc_write_xmdio_reg - Write XMDIO register
* @hw: pointer to the HW structure
* @addr: XMDIO address to program
* @dev_addr: device address to program
* @data: value to be written to the XMDIO address
**/
s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 data)
{
DEBUGFUNC("igc_write_xmdio_reg");
return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
}