0b9a5c6fa1
The fusefs driver will print warning messages about FUSE servers that commit protocol violations. Previously it would print those warnings on every violation, but that could spam the console. Now it will print each warning no more than once per lifetime of the mount. There is also now a dtrace probe for each violation. MFC after: 2 weeks Sponsored by: Axcient Reviewed by: emaste, pfg Differential Revision: https://reviews.freebsd.org/D30780
1128 lines
32 KiB
C
1128 lines
32 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2007-2009 Google Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Google Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Copyright (C) 2005 Csaba Henk.
|
|
* All rights reserved.
|
|
*
|
|
* Copyright (c) 2019 The FreeBSD Foundation
|
|
*
|
|
* Portions of this software were developed by BFF Storage Systems, LLC under
|
|
* sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/module.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/file.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_object.h>
|
|
|
|
#include "fuse.h"
|
|
#include "fuse_file.h"
|
|
#include "fuse_node.h"
|
|
#include "fuse_internal.h"
|
|
#include "fuse_ipc.h"
|
|
#include "fuse_io.h"
|
|
|
|
/*
|
|
* Set in a struct buf to indicate that the write came from the buffer cache
|
|
* and the originating cred and pid are no longer known.
|
|
*/
|
|
#define B_FUSEFS_WRITE_CACHE B_FS_FLAG1
|
|
|
|
SDT_PROVIDER_DECLARE(fusefs);
|
|
/*
|
|
* Fuse trace probe:
|
|
* arg0: verbosity. Higher numbers give more verbose messages
|
|
* arg1: Textual message
|
|
*/
|
|
SDT_PROBE_DEFINE2(fusefs, , io, trace, "int", "char*");
|
|
|
|
static int
|
|
fuse_inval_buf_range(struct vnode *vp, off_t filesize, off_t start, off_t end);
|
|
static int
|
|
fuse_read_directbackend(struct vnode *vp, struct uio *uio,
|
|
struct ucred *cred, struct fuse_filehandle *fufh);
|
|
static int
|
|
fuse_read_biobackend(struct vnode *vp, struct uio *uio, int ioflag,
|
|
struct ucred *cred, struct fuse_filehandle *fufh, pid_t pid);
|
|
static int
|
|
fuse_write_directbackend(struct vnode *vp, struct uio *uio,
|
|
struct ucred *cred, struct fuse_filehandle *fufh, off_t filesize,
|
|
int ioflag, bool pages);
|
|
static int
|
|
fuse_write_biobackend(struct vnode *vp, struct uio *uio,
|
|
struct ucred *cred, struct fuse_filehandle *fufh, int ioflag, pid_t pid);
|
|
|
|
/* Invalidate a range of cached data, whether dirty of not */
|
|
static int
|
|
fuse_inval_buf_range(struct vnode *vp, off_t filesize, off_t start, off_t end)
|
|
{
|
|
struct buf *bp;
|
|
daddr_t left_lbn, end_lbn, right_lbn;
|
|
off_t new_filesize;
|
|
int iosize, left_on, right_on, right_blksize;
|
|
|
|
iosize = fuse_iosize(vp);
|
|
left_lbn = start / iosize;
|
|
end_lbn = howmany(end, iosize);
|
|
left_on = start & (iosize - 1);
|
|
if (left_on != 0) {
|
|
bp = getblk(vp, left_lbn, iosize, PCATCH, 0, 0);
|
|
if ((bp->b_flags & B_CACHE) != 0 && bp->b_dirtyend >= left_on) {
|
|
/*
|
|
* Flush the dirty buffer, because we don't have a
|
|
* byte-granular way to record which parts of the
|
|
* buffer are valid.
|
|
*/
|
|
bwrite(bp);
|
|
if (bp->b_error)
|
|
return (bp->b_error);
|
|
} else {
|
|
brelse(bp);
|
|
}
|
|
}
|
|
right_on = end & (iosize - 1);
|
|
if (right_on != 0) {
|
|
right_lbn = end / iosize;
|
|
new_filesize = MAX(filesize, end);
|
|
right_blksize = MIN(iosize, new_filesize - iosize * right_lbn);
|
|
bp = getblk(vp, right_lbn, right_blksize, PCATCH, 0, 0);
|
|
if ((bp->b_flags & B_CACHE) != 0 && bp->b_dirtyoff < right_on) {
|
|
/*
|
|
* Flush the dirty buffer, because we don't have a
|
|
* byte-granular way to record which parts of the
|
|
* buffer are valid.
|
|
*/
|
|
bwrite(bp);
|
|
if (bp->b_error)
|
|
return (bp->b_error);
|
|
} else {
|
|
brelse(bp);
|
|
}
|
|
}
|
|
|
|
v_inval_buf_range(vp, left_lbn, end_lbn, iosize);
|
|
return (0);
|
|
}
|
|
|
|
SDT_PROBE_DEFINE5(fusefs, , io, io_dispatch, "struct vnode*", "struct uio*",
|
|
"int", "struct ucred*", "struct fuse_filehandle*");
|
|
SDT_PROBE_DEFINE4(fusefs, , io, io_dispatch_filehandles_closed, "struct vnode*",
|
|
"struct uio*", "int", "struct ucred*");
|
|
int
|
|
fuse_io_dispatch(struct vnode *vp, struct uio *uio, int ioflag,
|
|
struct ucred *cred, pid_t pid)
|
|
{
|
|
struct fuse_filehandle *fufh;
|
|
int err, directio;
|
|
int fflag;
|
|
bool closefufh = false;
|
|
|
|
MPASS(vp->v_type == VREG || vp->v_type == VDIR);
|
|
|
|
fflag = (uio->uio_rw == UIO_READ) ? FREAD : FWRITE;
|
|
err = fuse_filehandle_getrw(vp, fflag, &fufh, cred, pid);
|
|
if (err == EBADF && vnode_mount(vp)->mnt_flag & MNT_EXPORTED) {
|
|
/*
|
|
* nfsd will do I/O without first doing VOP_OPEN. We
|
|
* must implicitly open the file here
|
|
*/
|
|
err = fuse_filehandle_open(vp, fflag, &fufh, curthread, cred);
|
|
closefufh = true;
|
|
}
|
|
else if (err) {
|
|
SDT_PROBE4(fusefs, , io, io_dispatch_filehandles_closed,
|
|
vp, uio, ioflag, cred);
|
|
printf("FUSE: io dispatch: filehandles are closed\n");
|
|
return err;
|
|
}
|
|
if (err)
|
|
goto out;
|
|
SDT_PROBE5(fusefs, , io, io_dispatch, vp, uio, ioflag, cred, fufh);
|
|
|
|
/*
|
|
* Ideally, when the daemon asks for direct io at open time, the
|
|
* standard file flag should be set according to this, so that would
|
|
* just change the default mode, which later on could be changed via
|
|
* fcntl(2).
|
|
* But this doesn't work, the O_DIRECT flag gets cleared at some point
|
|
* (don't know where). So to make any use of the Fuse direct_io option,
|
|
* we hardwire it into the file's private data (similarly to Linux,
|
|
* btw.).
|
|
*/
|
|
directio = (ioflag & IO_DIRECT) || !fsess_opt_datacache(vnode_mount(vp));
|
|
|
|
switch (uio->uio_rw) {
|
|
case UIO_READ:
|
|
if (directio) {
|
|
SDT_PROBE2(fusefs, , io, trace, 1,
|
|
"direct read of vnode");
|
|
err = fuse_read_directbackend(vp, uio, cred, fufh);
|
|
} else {
|
|
SDT_PROBE2(fusefs, , io, trace, 1,
|
|
"buffered read of vnode");
|
|
err = fuse_read_biobackend(vp, uio, ioflag, cred, fufh,
|
|
pid);
|
|
}
|
|
break;
|
|
case UIO_WRITE:
|
|
fuse_vnode_update(vp, FN_MTIMECHANGE | FN_CTIMECHANGE);
|
|
if (directio) {
|
|
off_t start, end, filesize;
|
|
bool pages = (ioflag & IO_VMIO) != 0;
|
|
|
|
SDT_PROBE2(fusefs, , io, trace, 1,
|
|
"direct write of vnode");
|
|
|
|
err = fuse_vnode_size(vp, &filesize, cred, curthread);
|
|
if (err)
|
|
goto out;
|
|
|
|
start = uio->uio_offset;
|
|
end = start + uio->uio_resid;
|
|
if (!pages) {
|
|
err = fuse_inval_buf_range(vp, filesize, start,
|
|
end);
|
|
if (err)
|
|
return (err);
|
|
}
|
|
err = fuse_write_directbackend(vp, uio, cred, fufh,
|
|
filesize, ioflag, pages);
|
|
} else {
|
|
SDT_PROBE2(fusefs, , io, trace, 1,
|
|
"buffered write of vnode");
|
|
if (!fsess_opt_writeback(vnode_mount(vp)))
|
|
ioflag |= IO_SYNC;
|
|
err = fuse_write_biobackend(vp, uio, cred, fufh, ioflag,
|
|
pid);
|
|
}
|
|
fuse_internal_clear_suid_on_write(vp, cred, uio->uio_td);
|
|
break;
|
|
default:
|
|
panic("uninterpreted mode passed to fuse_io_dispatch");
|
|
}
|
|
|
|
out:
|
|
if (closefufh)
|
|
fuse_filehandle_close(vp, fufh, curthread, cred);
|
|
|
|
return (err);
|
|
}
|
|
|
|
SDT_PROBE_DEFINE4(fusefs, , io, read_bio_backend_start, "int", "int", "int", "int");
|
|
SDT_PROBE_DEFINE2(fusefs, , io, read_bio_backend_feed, "int", "struct buf*");
|
|
SDT_PROBE_DEFINE4(fusefs, , io, read_bio_backend_end, "int", "ssize_t", "int",
|
|
"struct buf*");
|
|
static int
|
|
fuse_read_biobackend(struct vnode *vp, struct uio *uio, int ioflag,
|
|
struct ucred *cred, struct fuse_filehandle *fufh, pid_t pid)
|
|
{
|
|
struct buf *bp;
|
|
struct mount *mp;
|
|
struct fuse_data *data;
|
|
daddr_t lbn, nextlbn;
|
|
int bcount, nextsize;
|
|
int err, n = 0, on = 0, seqcount;
|
|
off_t filesize;
|
|
|
|
const int biosize = fuse_iosize(vp);
|
|
mp = vnode_mount(vp);
|
|
data = fuse_get_mpdata(mp);
|
|
|
|
if (uio->uio_offset < 0)
|
|
return (EINVAL);
|
|
|
|
seqcount = ioflag >> IO_SEQSHIFT;
|
|
|
|
err = fuse_vnode_size(vp, &filesize, cred, curthread);
|
|
if (err)
|
|
return err;
|
|
|
|
for (err = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
|
|
if (fuse_isdeadfs(vp)) {
|
|
err = ENXIO;
|
|
break;
|
|
}
|
|
if (filesize - uio->uio_offset <= 0)
|
|
break;
|
|
lbn = uio->uio_offset / biosize;
|
|
on = uio->uio_offset & (biosize - 1);
|
|
|
|
if ((off_t)lbn * biosize >= filesize) {
|
|
bcount = 0;
|
|
} else if ((off_t)(lbn + 1) * biosize > filesize) {
|
|
bcount = filesize - (off_t)lbn *biosize;
|
|
} else {
|
|
bcount = biosize;
|
|
}
|
|
nextlbn = lbn + 1;
|
|
nextsize = MIN(biosize, filesize - nextlbn * biosize);
|
|
|
|
SDT_PROBE4(fusefs, , io, read_bio_backend_start,
|
|
biosize, (int)lbn, on, bcount);
|
|
|
|
if (bcount < biosize) {
|
|
/* If near EOF, don't do readahead */
|
|
err = bread(vp, lbn, bcount, NOCRED, &bp);
|
|
} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
|
|
/* Try clustered read */
|
|
long totread = uio->uio_resid + on;
|
|
seqcount = MIN(seqcount,
|
|
data->max_readahead_blocks + 1);
|
|
err = cluster_read(vp, filesize, lbn, bcount, NOCRED,
|
|
totread, seqcount, 0, &bp);
|
|
} else if (seqcount > 1 && data->max_readahead_blocks >= 1) {
|
|
/* Try non-clustered readahead */
|
|
err = breadn(vp, lbn, bcount, &nextlbn, &nextsize, 1,
|
|
NOCRED, &bp);
|
|
} else {
|
|
/* Just read what was requested */
|
|
err = bread(vp, lbn, bcount, NOCRED, &bp);
|
|
}
|
|
|
|
if (err) {
|
|
brelse(bp);
|
|
bp = NULL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* on is the offset into the current bp. Figure out how many
|
|
* bytes we can copy out of the bp. Note that bcount is
|
|
* NOT DEV_BSIZE aligned.
|
|
*
|
|
* Then figure out how many bytes we can copy into the uio.
|
|
*/
|
|
|
|
n = 0;
|
|
if (on < bcount - bp->b_resid)
|
|
n = MIN((unsigned)(bcount - bp->b_resid - on),
|
|
uio->uio_resid);
|
|
if (n > 0) {
|
|
SDT_PROBE2(fusefs, , io, read_bio_backend_feed, n, bp);
|
|
err = uiomove(bp->b_data + on, n, uio);
|
|
}
|
|
vfs_bio_brelse(bp, ioflag);
|
|
SDT_PROBE4(fusefs, , io, read_bio_backend_end, err,
|
|
uio->uio_resid, n, bp);
|
|
if (bp->b_resid > 0) {
|
|
/* Short read indicates EOF */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
SDT_PROBE_DEFINE1(fusefs, , io, read_directbackend_start,
|
|
"struct fuse_read_in*");
|
|
SDT_PROBE_DEFINE3(fusefs, , io, read_directbackend_complete,
|
|
"struct fuse_dispatcher*", "struct fuse_read_in*", "struct uio*");
|
|
|
|
static int
|
|
fuse_read_directbackend(struct vnode *vp, struct uio *uio,
|
|
struct ucred *cred, struct fuse_filehandle *fufh)
|
|
{
|
|
struct fuse_data *data;
|
|
struct fuse_dispatcher fdi;
|
|
struct fuse_read_in *fri;
|
|
int err = 0;
|
|
|
|
data = fuse_get_mpdata(vp->v_mount);
|
|
|
|
if (uio->uio_resid == 0)
|
|
return (0);
|
|
|
|
fdisp_init(&fdi, 0);
|
|
|
|
/*
|
|
* XXX In "normal" case we use an intermediate kernel buffer for
|
|
* transmitting data from daemon's context to ours. Eventually, we should
|
|
* get rid of this. Anyway, if the target uio lives in sysspace (we are
|
|
* called from pageops), and the input data doesn't need kernel-side
|
|
* processing (we are not called from readdir) we can already invoke
|
|
* an optimized, "peer-to-peer" I/O routine.
|
|
*/
|
|
while (uio->uio_resid > 0) {
|
|
fdi.iosize = sizeof(*fri);
|
|
fdisp_make_vp(&fdi, FUSE_READ, vp, uio->uio_td, cred);
|
|
fri = fdi.indata;
|
|
fri->fh = fufh->fh_id;
|
|
fri->offset = uio->uio_offset;
|
|
fri->size = MIN(uio->uio_resid,
|
|
fuse_get_mpdata(vp->v_mount)->max_read);
|
|
if (fuse_libabi_geq(data, 7, 9)) {
|
|
/* See comment regarding FUSE_WRITE_LOCKOWNER */
|
|
fri->read_flags = 0;
|
|
fri->flags = fufh_type_2_fflags(fufh->fufh_type);
|
|
}
|
|
|
|
SDT_PROBE1(fusefs, , io, read_directbackend_start, fri);
|
|
|
|
if ((err = fdisp_wait_answ(&fdi)))
|
|
goto out;
|
|
|
|
SDT_PROBE3(fusefs, , io, read_directbackend_complete,
|
|
&fdi, fri, uio);
|
|
|
|
if ((err = uiomove(fdi.answ, MIN(fri->size, fdi.iosize), uio)))
|
|
break;
|
|
if (fdi.iosize < fri->size) {
|
|
/*
|
|
* Short read. Should only happen at EOF or with
|
|
* direct io.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
fdisp_destroy(&fdi);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
fuse_write_directbackend(struct vnode *vp, struct uio *uio,
|
|
struct ucred *cred, struct fuse_filehandle *fufh, off_t filesize,
|
|
int ioflag, bool pages)
|
|
{
|
|
struct fuse_vnode_data *fvdat = VTOFUD(vp);
|
|
struct fuse_data *data;
|
|
struct fuse_write_in *fwi;
|
|
struct fuse_write_out *fwo;
|
|
struct fuse_dispatcher fdi;
|
|
size_t chunksize;
|
|
void *fwi_data;
|
|
off_t as_written_offset;
|
|
int diff;
|
|
int err = 0;
|
|
bool direct_io = fufh->fuse_open_flags & FOPEN_DIRECT_IO;
|
|
bool wrote_anything = false;
|
|
uint32_t write_flags;
|
|
|
|
data = fuse_get_mpdata(vp->v_mount);
|
|
|
|
/*
|
|
* Don't set FUSE_WRITE_LOCKOWNER in write_flags. It can't be set
|
|
* accurately when using POSIX AIO, libfuse doesn't use it, and I'm not
|
|
* aware of any file systems that do. It was an attempt to add
|
|
* Linux-style mandatory locking to the FUSE protocol, but mandatory
|
|
* locking is deprecated even on Linux. See Linux commit
|
|
* f33321141b273d60cbb3a8f56a5489baad82ba5e .
|
|
*/
|
|
/*
|
|
* Set FUSE_WRITE_CACHE whenever we don't know the uid, gid, and/or pid
|
|
* that originated a write. For example when writing from the
|
|
* writeback cache. I don't know of a single file system that cares,
|
|
* but the protocol says we're supposed to do this.
|
|
*/
|
|
write_flags = !pages && (
|
|
(ioflag & IO_DIRECT) ||
|
|
!fsess_opt_datacache(vnode_mount(vp)) ||
|
|
!fsess_opt_writeback(vnode_mount(vp))) ? 0 : FUSE_WRITE_CACHE;
|
|
|
|
if (uio->uio_resid == 0)
|
|
return (0);
|
|
|
|
if (ioflag & IO_APPEND)
|
|
uio_setoffset(uio, filesize);
|
|
|
|
if (vn_rlimit_fsize(vp, uio, uio->uio_td))
|
|
return (EFBIG);
|
|
|
|
fdisp_init(&fdi, 0);
|
|
|
|
while (uio->uio_resid > 0) {
|
|
size_t sizeof_fwi;
|
|
|
|
if (fuse_libabi_geq(data, 7, 9)) {
|
|
sizeof_fwi = sizeof(*fwi);
|
|
} else {
|
|
sizeof_fwi = FUSE_COMPAT_WRITE_IN_SIZE;
|
|
}
|
|
|
|
chunksize = MIN(uio->uio_resid, data->max_write);
|
|
|
|
fdi.iosize = sizeof_fwi + chunksize;
|
|
fdisp_make_vp(&fdi, FUSE_WRITE, vp, uio->uio_td, cred);
|
|
|
|
fwi = fdi.indata;
|
|
fwi->fh = fufh->fh_id;
|
|
fwi->offset = uio->uio_offset;
|
|
fwi->size = chunksize;
|
|
fwi->write_flags = write_flags;
|
|
if (fuse_libabi_geq(data, 7, 9)) {
|
|
fwi->flags = fufh_type_2_fflags(fufh->fufh_type);
|
|
}
|
|
fwi_data = (char *)fdi.indata + sizeof_fwi;
|
|
|
|
if ((err = uiomove(fwi_data, chunksize, uio)))
|
|
break;
|
|
|
|
retry:
|
|
err = fdisp_wait_answ(&fdi);
|
|
if (err == ERESTART || err == EINTR || err == EWOULDBLOCK) {
|
|
/*
|
|
* Rewind the uio so dofilewrite will know it's
|
|
* incomplete
|
|
*/
|
|
uio->uio_resid += fwi->size;
|
|
uio->uio_offset -= fwi->size;
|
|
/*
|
|
* Change ERESTART into EINTR because we can't rewind
|
|
* uio->uio_iov. Basically, once uiomove(9) has been
|
|
* called, it's impossible to restart a syscall.
|
|
*/
|
|
if (err == ERESTART)
|
|
err = EINTR;
|
|
break;
|
|
} else if (err) {
|
|
break;
|
|
} else {
|
|
wrote_anything = true;
|
|
}
|
|
|
|
fwo = ((struct fuse_write_out *)fdi.answ);
|
|
|
|
/* Adjust the uio in the case of short writes */
|
|
diff = fwi->size - fwo->size;
|
|
as_written_offset = uio->uio_offset - diff;
|
|
|
|
if (as_written_offset - diff > filesize)
|
|
fuse_vnode_setsize(vp, as_written_offset);
|
|
if (as_written_offset - diff >= filesize)
|
|
fvdat->flag &= ~FN_SIZECHANGE;
|
|
|
|
if (diff < 0) {
|
|
fuse_warn(data, FSESS_WARN_WROTE_LONG,
|
|
"wrote more data than we provided it.");
|
|
err = EINVAL;
|
|
break;
|
|
} else if (diff > 0) {
|
|
/* Short write */
|
|
if (!direct_io) {
|
|
fuse_warn(data, FSESS_WARN_SHORT_WRITE,
|
|
"short writes are only allowed with "
|
|
"direct_io.");
|
|
}
|
|
if (ioflag & IO_DIRECT) {
|
|
/* Return early */
|
|
uio->uio_resid += diff;
|
|
uio->uio_offset -= diff;
|
|
break;
|
|
} else {
|
|
/* Resend the unwritten portion of data */
|
|
fdi.iosize = sizeof_fwi + diff;
|
|
/* Refresh fdi without clearing data buffer */
|
|
fdisp_refresh_vp(&fdi, FUSE_WRITE, vp,
|
|
uio->uio_td, cred);
|
|
fwi = fdi.indata;
|
|
MPASS2(fwi == fdi.indata, "FUSE dispatcher "
|
|
"reallocated despite no increase in "
|
|
"size?");
|
|
void *src = (char*)fwi_data + fwo->size;
|
|
memmove(fwi_data, src, diff);
|
|
fwi->fh = fufh->fh_id;
|
|
fwi->offset = as_written_offset;
|
|
fwi->size = diff;
|
|
fwi->write_flags = write_flags;
|
|
goto retry;
|
|
}
|
|
}
|
|
}
|
|
|
|
fdisp_destroy(&fdi);
|
|
|
|
if (wrote_anything)
|
|
fuse_vnode_undirty_cached_timestamps(vp);
|
|
|
|
return (err);
|
|
}
|
|
|
|
SDT_PROBE_DEFINE6(fusefs, , io, write_biobackend_start, "int64_t", "int", "int",
|
|
"struct uio*", "int", "bool");
|
|
SDT_PROBE_DEFINE2(fusefs, , io, write_biobackend_append_race, "long", "int");
|
|
SDT_PROBE_DEFINE2(fusefs, , io, write_biobackend_issue, "int", "struct buf*");
|
|
|
|
static int
|
|
fuse_write_biobackend(struct vnode *vp, struct uio *uio,
|
|
struct ucred *cred, struct fuse_filehandle *fufh, int ioflag, pid_t pid)
|
|
{
|
|
struct fuse_vnode_data *fvdat = VTOFUD(vp);
|
|
struct buf *bp;
|
|
daddr_t lbn;
|
|
off_t filesize;
|
|
int bcount;
|
|
int n, on, seqcount, err = 0;
|
|
bool last_page;
|
|
|
|
const int biosize = fuse_iosize(vp);
|
|
|
|
seqcount = ioflag >> IO_SEQSHIFT;
|
|
|
|
KASSERT(uio->uio_rw == UIO_WRITE, ("fuse_write_biobackend mode"));
|
|
if (vp->v_type != VREG)
|
|
return (EIO);
|
|
if (uio->uio_offset < 0)
|
|
return (EINVAL);
|
|
if (uio->uio_resid == 0)
|
|
return (0);
|
|
|
|
err = fuse_vnode_size(vp, &filesize, cred, curthread);
|
|
if (err)
|
|
return err;
|
|
|
|
if (ioflag & IO_APPEND)
|
|
uio_setoffset(uio, filesize);
|
|
|
|
if (vn_rlimit_fsize(vp, uio, uio->uio_td))
|
|
return (EFBIG);
|
|
|
|
do {
|
|
bool direct_append, extending;
|
|
|
|
if (fuse_isdeadfs(vp)) {
|
|
err = ENXIO;
|
|
break;
|
|
}
|
|
lbn = uio->uio_offset / biosize;
|
|
on = uio->uio_offset & (biosize - 1);
|
|
n = MIN((unsigned)(biosize - on), uio->uio_resid);
|
|
|
|
again:
|
|
/* Get or create a buffer for the write */
|
|
direct_append = uio->uio_offset == filesize && n;
|
|
if (uio->uio_offset + n < filesize) {
|
|
extending = false;
|
|
if ((off_t)(lbn + 1) * biosize < filesize) {
|
|
/* Not the file's last block */
|
|
bcount = biosize;
|
|
} else {
|
|
/* The file's last block */
|
|
bcount = filesize - (off_t)lbn * biosize;
|
|
}
|
|
} else {
|
|
extending = true;
|
|
bcount = on + n;
|
|
}
|
|
if (howmany(((off_t)lbn * biosize + on + n - 1), PAGE_SIZE) >=
|
|
howmany(filesize, PAGE_SIZE))
|
|
last_page = true;
|
|
else
|
|
last_page = false;
|
|
if (direct_append) {
|
|
/*
|
|
* Take care to preserve the buffer's B_CACHE state so
|
|
* as not to cause an unnecessary read.
|
|
*/
|
|
bp = getblk(vp, lbn, on, PCATCH, 0, 0);
|
|
if (bp != NULL) {
|
|
uint32_t save = bp->b_flags & B_CACHE;
|
|
allocbuf(bp, bcount);
|
|
bp->b_flags |= save;
|
|
}
|
|
} else {
|
|
bp = getblk(vp, lbn, bcount, PCATCH, 0, 0);
|
|
}
|
|
if (!bp) {
|
|
err = EINTR;
|
|
break;
|
|
}
|
|
if (extending) {
|
|
/*
|
|
* Extend file _after_ locking buffer so we won't race
|
|
* with other readers
|
|
*/
|
|
err = fuse_vnode_setsize(vp, uio->uio_offset + n);
|
|
filesize = uio->uio_offset + n;
|
|
fvdat->flag |= FN_SIZECHANGE;
|
|
if (err) {
|
|
brelse(bp);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SDT_PROBE6(fusefs, , io, write_biobackend_start,
|
|
lbn, on, n, uio, bcount, direct_append);
|
|
/*
|
|
* Issue a READ if B_CACHE is not set. In special-append
|
|
* mode, B_CACHE is based on the buffer prior to the write
|
|
* op and is typically set, avoiding the read. If a read
|
|
* is required in special append mode, the server will
|
|
* probably send us a short-read since we extended the file
|
|
* on our end, resulting in b_resid == 0 and, thusly,
|
|
* B_CACHE getting set.
|
|
*
|
|
* We can also avoid issuing the read if the write covers
|
|
* the entire buffer. We have to make sure the buffer state
|
|
* is reasonable in this case since we will not be initiating
|
|
* I/O. See the comments in kern/vfs_bio.c's getblk() for
|
|
* more information.
|
|
*
|
|
* B_CACHE may also be set due to the buffer being cached
|
|
* normally.
|
|
*/
|
|
|
|
if (on == 0 && n == bcount) {
|
|
bp->b_flags |= B_CACHE;
|
|
bp->b_flags &= ~B_INVAL;
|
|
bp->b_ioflags &= ~BIO_ERROR;
|
|
}
|
|
if ((bp->b_flags & B_CACHE) == 0) {
|
|
bp->b_iocmd = BIO_READ;
|
|
vfs_busy_pages(bp, 0);
|
|
fuse_io_strategy(vp, bp);
|
|
if ((err = bp->b_error)) {
|
|
brelse(bp);
|
|
break;
|
|
}
|
|
if (bp->b_resid > 0) {
|
|
/*
|
|
* Short read indicates EOF. Update file size
|
|
* from the server and try again.
|
|
*/
|
|
SDT_PROBE2(fusefs, , io, trace, 1,
|
|
"Short read during a RMW");
|
|
brelse(bp);
|
|
err = fuse_vnode_size(vp, &filesize, cred,
|
|
curthread);
|
|
if (err)
|
|
break;
|
|
else
|
|
goto again;
|
|
}
|
|
}
|
|
if (bp->b_wcred == NOCRED)
|
|
bp->b_wcred = crhold(cred);
|
|
|
|
/*
|
|
* If dirtyend exceeds file size, chop it down. This should
|
|
* not normally occur but there is an append race where it
|
|
* might occur XXX, so we log it.
|
|
*
|
|
* If the chopping creates a reverse-indexed or degenerate
|
|
* situation with dirtyoff/end, we 0 both of them.
|
|
*/
|
|
if (bp->b_dirtyend > bcount) {
|
|
SDT_PROBE2(fusefs, , io, write_biobackend_append_race,
|
|
(long)bp->b_blkno * biosize,
|
|
bp->b_dirtyend - bcount);
|
|
bp->b_dirtyend = bcount;
|
|
}
|
|
if (bp->b_dirtyoff >= bp->b_dirtyend)
|
|
bp->b_dirtyoff = bp->b_dirtyend = 0;
|
|
|
|
/*
|
|
* If the new write will leave a contiguous dirty
|
|
* area, just update the b_dirtyoff and b_dirtyend,
|
|
* otherwise force a write rpc of the old dirty area.
|
|
*
|
|
* While it is possible to merge discontiguous writes due to
|
|
* our having a B_CACHE buffer ( and thus valid read data
|
|
* for the hole), we don't because it could lead to
|
|
* significant cache coherency problems with multiple clients,
|
|
* especially if locking is implemented later on.
|
|
*
|
|
* as an optimization we could theoretically maintain
|
|
* a linked list of discontinuous areas, but we would still
|
|
* have to commit them separately so there isn't much
|
|
* advantage to it except perhaps a bit of asynchronization.
|
|
*/
|
|
|
|
if (bp->b_dirtyend > 0 &&
|
|
(on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
|
|
/*
|
|
* Yes, we mean it. Write out everything to "storage"
|
|
* immediately, without hesitation. (Apart from other
|
|
* reasons: the only way to know if a write is valid
|
|
* if its actually written out.)
|
|
*/
|
|
SDT_PROBE2(fusefs, , io, write_biobackend_issue, 0, bp);
|
|
bwrite(bp);
|
|
if (bp->b_error == EINTR) {
|
|
err = EINTR;
|
|
break;
|
|
}
|
|
goto again;
|
|
}
|
|
err = uiomove((char *)bp->b_data + on, n, uio);
|
|
|
|
if (err) {
|
|
bp->b_ioflags |= BIO_ERROR;
|
|
bp->b_error = err;
|
|
brelse(bp);
|
|
break;
|
|
/* TODO: vfs_bio_clrbuf like ffs_write does? */
|
|
}
|
|
/*
|
|
* Only update dirtyoff/dirtyend if not a degenerate
|
|
* condition.
|
|
*/
|
|
if (n) {
|
|
if (bp->b_dirtyend > 0) {
|
|
bp->b_dirtyoff = MIN(on, bp->b_dirtyoff);
|
|
bp->b_dirtyend = MAX((on + n), bp->b_dirtyend);
|
|
} else {
|
|
bp->b_dirtyoff = on;
|
|
bp->b_dirtyend = on + n;
|
|
}
|
|
vfs_bio_set_valid(bp, on, n);
|
|
}
|
|
|
|
vfs_bio_set_flags(bp, ioflag);
|
|
|
|
bp->b_flags |= B_FUSEFS_WRITE_CACHE;
|
|
if (ioflag & IO_SYNC) {
|
|
SDT_PROBE2(fusefs, , io, write_biobackend_issue, 2, bp);
|
|
if (!(ioflag & IO_VMIO))
|
|
bp->b_flags &= ~B_FUSEFS_WRITE_CACHE;
|
|
err = bwrite(bp);
|
|
} else if (vm_page_count_severe() ||
|
|
buf_dirty_count_severe() ||
|
|
(ioflag & IO_ASYNC)) {
|
|
bp->b_flags |= B_CLUSTEROK;
|
|
SDT_PROBE2(fusefs, , io, write_biobackend_issue, 3, bp);
|
|
bawrite(bp);
|
|
} else if (on == 0 && n == bcount) {
|
|
if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
|
|
bp->b_flags |= B_CLUSTEROK;
|
|
SDT_PROBE2(fusefs, , io, write_biobackend_issue,
|
|
4, bp);
|
|
cluster_write(vp, &fvdat->clusterw, bp,
|
|
filesize, seqcount, 0);
|
|
} else {
|
|
SDT_PROBE2(fusefs, , io, write_biobackend_issue,
|
|
5, bp);
|
|
bawrite(bp);
|
|
}
|
|
} else if (ioflag & IO_DIRECT) {
|
|
bp->b_flags |= B_CLUSTEROK;
|
|
SDT_PROBE2(fusefs, , io, write_biobackend_issue, 6, bp);
|
|
bawrite(bp);
|
|
} else {
|
|
bp->b_flags &= ~B_CLUSTEROK;
|
|
SDT_PROBE2(fusefs, , io, write_biobackend_issue, 7, bp);
|
|
bdwrite(bp);
|
|
}
|
|
if (err)
|
|
break;
|
|
} while (uio->uio_resid > 0 && n > 0);
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fuse_io_strategy(struct vnode *vp, struct buf *bp)
|
|
{
|
|
struct fuse_vnode_data *fvdat = VTOFUD(vp);
|
|
struct fuse_filehandle *fufh;
|
|
struct ucred *cred;
|
|
struct uio *uiop;
|
|
struct uio uio;
|
|
struct iovec io;
|
|
off_t filesize;
|
|
int error = 0;
|
|
int fflag;
|
|
/* We don't know the true pid when we're dealing with the cache */
|
|
pid_t pid = 0;
|
|
|
|
const int biosize = fuse_iosize(vp);
|
|
|
|
MPASS(vp->v_type == VREG || vp->v_type == VDIR);
|
|
MPASS(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE);
|
|
|
|
fflag = bp->b_iocmd == BIO_READ ? FREAD : FWRITE;
|
|
cred = bp->b_iocmd == BIO_READ ? bp->b_rcred : bp->b_wcred;
|
|
error = fuse_filehandle_getrw(vp, fflag, &fufh, cred, pid);
|
|
if (bp->b_iocmd == BIO_READ && error == EBADF) {
|
|
/*
|
|
* This may be a read-modify-write operation on a cached file
|
|
* opened O_WRONLY. The FUSE protocol allows this.
|
|
*/
|
|
error = fuse_filehandle_get(vp, FWRITE, &fufh, cred, pid);
|
|
}
|
|
if (error) {
|
|
printf("FUSE: strategy: filehandles are closed\n");
|
|
bp->b_ioflags |= BIO_ERROR;
|
|
bp->b_error = error;
|
|
bufdone(bp);
|
|
return (error);
|
|
}
|
|
|
|
uiop = &uio;
|
|
uiop->uio_iov = &io;
|
|
uiop->uio_iovcnt = 1;
|
|
uiop->uio_segflg = UIO_SYSSPACE;
|
|
uiop->uio_td = curthread;
|
|
|
|
/*
|
|
* clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We
|
|
* do this here so we do not have to do it in all the code that
|
|
* calls us.
|
|
*/
|
|
bp->b_flags &= ~B_INVAL;
|
|
bp->b_ioflags &= ~BIO_ERROR;
|
|
|
|
KASSERT(!(bp->b_flags & B_DONE),
|
|
("fuse_io_strategy: bp %p already marked done", bp));
|
|
if (bp->b_iocmd == BIO_READ) {
|
|
ssize_t left;
|
|
|
|
io.iov_len = uiop->uio_resid = bp->b_bcount;
|
|
io.iov_base = bp->b_data;
|
|
uiop->uio_rw = UIO_READ;
|
|
|
|
uiop->uio_offset = ((off_t)bp->b_lblkno) * biosize;
|
|
error = fuse_read_directbackend(vp, uiop, cred, fufh);
|
|
/*
|
|
* Store the amount we failed to read in the buffer's private
|
|
* field, so callers can truncate the file if necessary'
|
|
*/
|
|
|
|
if (!error && uiop->uio_resid) {
|
|
int nread = bp->b_bcount - uiop->uio_resid;
|
|
left = uiop->uio_resid;
|
|
bzero((char *)bp->b_data + nread, left);
|
|
|
|
if ((fvdat->flag & FN_SIZECHANGE) == 0) {
|
|
/*
|
|
* A short read with no error, when not using
|
|
* direct io, and when no writes are cached,
|
|
* indicates EOF caused by a server-side
|
|
* truncation. Clear the attr cache so we'll
|
|
* pick up the new file size and timestamps.
|
|
*
|
|
* We must still bzero the remaining buffer so
|
|
* uninitialized data doesn't get exposed by a
|
|
* future truncate that extends the file.
|
|
*
|
|
* To prevent lock order problems, we must
|
|
* truncate the file upstack, not here.
|
|
*/
|
|
SDT_PROBE2(fusefs, , io, trace, 1,
|
|
"Short read of a clean file");
|
|
fuse_vnode_clear_attr_cache(vp);
|
|
} else {
|
|
/*
|
|
* If dirty writes _are_ cached beyond EOF,
|
|
* that indicates a newly created hole that the
|
|
* server doesn't know about. Those don't pose
|
|
* any problem.
|
|
* XXX: we don't currently track whether dirty
|
|
* writes are cached beyond EOF, before EOF, or
|
|
* both.
|
|
*/
|
|
SDT_PROBE2(fusefs, , io, trace, 1,
|
|
"Short read of a dirty file");
|
|
uiop->uio_resid = 0;
|
|
}
|
|
}
|
|
if (error) {
|
|
bp->b_ioflags |= BIO_ERROR;
|
|
bp->b_error = error;
|
|
}
|
|
} else {
|
|
/*
|
|
* Setup for actual write
|
|
*/
|
|
error = fuse_vnode_size(vp, &filesize, cred, curthread);
|
|
if (error) {
|
|
bp->b_ioflags |= BIO_ERROR;
|
|
bp->b_error = error;
|
|
bufdone(bp);
|
|
return (error);
|
|
}
|
|
|
|
if ((off_t)bp->b_lblkno * biosize + bp->b_dirtyend > filesize)
|
|
bp->b_dirtyend = filesize -
|
|
(off_t)bp->b_lblkno * biosize;
|
|
|
|
if (bp->b_dirtyend > bp->b_dirtyoff) {
|
|
io.iov_len = uiop->uio_resid = bp->b_dirtyend
|
|
- bp->b_dirtyoff;
|
|
uiop->uio_offset = (off_t)bp->b_lblkno * biosize
|
|
+ bp->b_dirtyoff;
|
|
io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
|
|
uiop->uio_rw = UIO_WRITE;
|
|
|
|
bool pages = bp->b_flags & B_FUSEFS_WRITE_CACHE;
|
|
error = fuse_write_directbackend(vp, uiop, cred, fufh,
|
|
filesize, 0, pages);
|
|
|
|
if (error == EINTR || error == ETIMEDOUT) {
|
|
bp->b_flags &= ~(B_INVAL | B_NOCACHE);
|
|
if ((bp->b_flags & B_PAGING) == 0) {
|
|
bdirty(bp);
|
|
bp->b_flags &= ~B_DONE;
|
|
}
|
|
if ((error == EINTR || error == ETIMEDOUT) &&
|
|
(bp->b_flags & B_ASYNC) == 0)
|
|
bp->b_flags |= B_EINTR;
|
|
} else {
|
|
if (error) {
|
|
bp->b_ioflags |= BIO_ERROR;
|
|
bp->b_flags |= B_INVAL;
|
|
bp->b_error = error;
|
|
}
|
|
bp->b_dirtyoff = bp->b_dirtyend = 0;
|
|
}
|
|
} else {
|
|
bp->b_resid = 0;
|
|
bufdone(bp);
|
|
return (0);
|
|
}
|
|
}
|
|
bp->b_resid = uiop->uio_resid;
|
|
bufdone(bp);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
fuse_io_flushbuf(struct vnode *vp, int waitfor, struct thread *td)
|
|
{
|
|
|
|
return (vn_fsync_buf(vp, waitfor));
|
|
}
|
|
|
|
/*
|
|
* Flush and invalidate all dirty buffers. If another process is already
|
|
* doing the flush, just wait for completion.
|
|
*/
|
|
int
|
|
fuse_io_invalbuf(struct vnode *vp, struct thread *td)
|
|
{
|
|
struct fuse_vnode_data *fvdat = VTOFUD(vp);
|
|
int error = 0;
|
|
|
|
if (VN_IS_DOOMED(vp))
|
|
return 0;
|
|
|
|
ASSERT_VOP_ELOCKED(vp, "fuse_io_invalbuf");
|
|
|
|
while (fvdat->flag & FN_FLUSHINPROG) {
|
|
struct proc *p = td->td_proc;
|
|
|
|
if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF)
|
|
return EIO;
|
|
fvdat->flag |= FN_FLUSHWANT;
|
|
tsleep(&fvdat->flag, PRIBIO + 2, "fusevinv", 2 * hz);
|
|
error = 0;
|
|
if (p != NULL) {
|
|
PROC_LOCK(p);
|
|
if (SIGNOTEMPTY(p->p_siglist) ||
|
|
SIGNOTEMPTY(td->td_siglist))
|
|
error = EINTR;
|
|
PROC_UNLOCK(p);
|
|
}
|
|
if (error == EINTR)
|
|
return EINTR;
|
|
}
|
|
fvdat->flag |= FN_FLUSHINPROG;
|
|
|
|
if (vp->v_bufobj.bo_object != NULL) {
|
|
VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
|
|
vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
|
|
VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
|
|
}
|
|
error = vinvalbuf(vp, V_SAVE, PCATCH, 0);
|
|
while (error) {
|
|
if (error == ERESTART || error == EINTR) {
|
|
fvdat->flag &= ~FN_FLUSHINPROG;
|
|
if (fvdat->flag & FN_FLUSHWANT) {
|
|
fvdat->flag &= ~FN_FLUSHWANT;
|
|
wakeup(&fvdat->flag);
|
|
}
|
|
return EINTR;
|
|
}
|
|
error = vinvalbuf(vp, V_SAVE, PCATCH, 0);
|
|
}
|
|
fvdat->flag &= ~FN_FLUSHINPROG;
|
|
if (fvdat->flag & FN_FLUSHWANT) {
|
|
fvdat->flag &= ~FN_FLUSHWANT;
|
|
wakeup(&fvdat->flag);
|
|
}
|
|
return (error);
|
|
}
|