freebsd-nq/sys/dev/rr232x/osm_bsd.c
Scott Long 2b83592fdc Remove Giant from CAM. Drivers (SIMs) now register a mutex that CAM will
use to synchornize and protect all data objects that are used for that
SIM.  Drivers that are not yet MPSAFE register Giant and operate as
usual.  RIght now, no drivers are MPSAFE, though a few will be changed
in the coming week as this work settles down.

The driver API has changed, so all CAM drivers will need to be recompiled.
The userland API has not changed, so tools like camcontrol do not need to
be recompiled.
2007-04-15 08:49:19 +00:00

1355 lines
33 KiB
C

#include <dev/rr232x/rr232x_config.h>
/* $Id: osm_bsd.c,v 1.24 2006/04/11 08:19:02 gmm Exp $
*
* HighPoint RAID Driver for FreeBSD
* Copyright (C) 2005 HighPoint Technologies, Inc. All Rights Reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <dev/rr232x/os_bsd.h>
#include <dev/rr232x/hptintf.h>
static int hpt_probe(device_t dev)
{
PCI_ID pci_id;
HIM *him;
int i;
PHBA hba;
for (him = him_list; him; him = him->next) {
for (i=0; him->get_supported_device_id(i, &pci_id); i++) {
if ((pci_get_vendor(dev) == pci_id.vid) &&
(pci_get_device(dev) == pci_id.did)){
KdPrint(("hpt_probe: adapter at PCI %d:%d:%d, IRQ %d",
pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev), pci_get_irq(dev)
));
device_set_desc(dev, him->name);
hba = (PHBA)device_get_softc(dev);
memset(hba, 0, sizeof(HBA));
hba->ext_type = EXT_TYPE_HBA;
hba->ldm_adapter.him = him;
return 0;
}
}
}
return (ENXIO);
}
static int hpt_attach(device_t dev)
{
PHBA hba = (PHBA)device_get_softc(dev);
HIM *him = hba->ldm_adapter.him;
PCI_ID pci_id;
HPT_UINT size;
PVBUS vbus;
PVBUS_EXT vbus_ext;
KdPrint(("hpt_attach(%d/%d/%d)", pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev)));
#if __FreeBSD_version >=440000
pci_enable_busmaster(dev);
#endif
pci_id.vid = pci_get_vendor(dev);
pci_id.did = pci_get_device(dev);
pci_id.rev = pci_get_revid(dev);
size = him->get_adapter_size(&pci_id);
hba->ldm_adapter.him_handle = malloc(size, M_DEVBUF, M_WAITOK);
if (!hba->ldm_adapter.him_handle)
return ENXIO;
hba->pcidev = dev;
hba->pciaddr.tree = 0;
hba->pciaddr.bus = pci_get_bus(dev);
hba->pciaddr.device = pci_get_slot(dev);
hba->pciaddr.function = pci_get_function(dev);
if (!him->create_adapter(&pci_id, hba->pciaddr, hba->ldm_adapter.him_handle, hba)) {
free(hba->ldm_adapter.him_handle, M_DEVBUF);
return -1;
}
os_printk("adapter at PCI %d:%d:%d, IRQ %d",
hba->pciaddr.bus, hba->pciaddr.device, hba->pciaddr.function, pci_get_irq(dev));
if (!ldm_register_adapter(&hba->ldm_adapter)) {
size = ldm_get_vbus_size();
vbus_ext = malloc(sizeof(VBUS_EXT) + size, M_DEVBUF, M_WAITOK);
if (!vbus_ext) {
free(hba->ldm_adapter.him_handle, M_DEVBUF);
return -1;
}
memset(vbus_ext, 0, sizeof(VBUS_EXT));
vbus_ext->ext_type = EXT_TYPE_VBUS;
ldm_create_vbus((PVBUS)vbus_ext->vbus, vbus_ext);
ldm_register_adapter(&hba->ldm_adapter);
}
ldm_for_each_vbus(vbus, vbus_ext) {
if (hba->ldm_adapter.vbus==vbus) {
hba->vbus_ext = vbus_ext;
hba->next = vbus_ext->hba_list;
vbus_ext->hba_list = hba;
break;
}
}
return 0;
}
/*
* Maybe we'd better to use the bus_dmamem_alloc to alloc DMA memory,
* but there are some problems currently (alignment, etc).
*/
static __inline void *__get_free_pages(int order)
{
/* don't use low memory - other devices may get starved */
return contigmalloc(PAGE_SIZE<<order,
M_DEVBUF, M_WAITOK, BUS_SPACE_MAXADDR_24BIT, BUS_SPACE_MAXADDR, PAGE_SIZE, 0);
}
static __inline void free_pages(void *p, int order)
{
contigfree(p, PAGE_SIZE<<order, M_DEVBUF);
}
static int hpt_alloc_mem(PVBUS_EXT vbus_ext)
{
PHBA hba;
struct freelist *f;
HPT_UINT i;
void **p;
for (hba = vbus_ext->hba_list; hba; hba = hba->next)
hba->ldm_adapter.him->get_meminfo(hba->ldm_adapter.him_handle);
ldm_get_mem_info((PVBUS)vbus_ext->vbus, 0);
for (f=vbus_ext->freelist_head; f; f=f->next) {
KdPrint(("%s: %d*%d=%d bytes",
f->tag, f->count, f->size, f->count*f->size));
for (i=0; i<f->count; i++) {
p = (void **)malloc(f->size, M_DEVBUF, M_WAITOK);
if (!p) return (ENXIO);
*p = f->head;
f->head = p;
}
}
for (f=vbus_ext->freelist_dma_head; f; f=f->next) {
int order, size, j;
HPT_ASSERT((f->size & (f->alignment-1))==0);
for (order=0, size=PAGE_SIZE; size<f->size; order++, size<<=1) ;
KdPrint(("%s: %d*%d=%d bytes, order %d",
f->tag, f->count, f->size, f->count*f->size, order));
HPT_ASSERT(f->alignment<=PAGE_SIZE);
for (i=0; i<f->count;) {
p = (void **)__get_free_pages(order);
if (!p) return -1;
for (j = size/f->size; j && i<f->count; i++,j--) {
*p = f->head;
*(BUS_ADDRESS *)(p+1) = (BUS_ADDRESS)vtophys(p);
f->head = p;
p = (void **)((unsigned long)p + f->size);
}
}
}
HPT_ASSERT(PAGE_SIZE==DMAPOOL_PAGE_SIZE);
for (i=0; i<os_max_cache_pages; i++) {
p = (void **)__get_free_pages(0);
if (!p) return -1;
HPT_ASSERT(((HPT_UPTR)p & (DMAPOOL_PAGE_SIZE-1))==0);
dmapool_put_page((PVBUS)vbus_ext->vbus, p, (BUS_ADDRESS)vtophys(p));
}
return 0;
}
static void hpt_free_mem(PVBUS_EXT vbus_ext)
{
struct freelist *f;
void *p;
int i;
BUS_ADDRESS bus;
for (f=vbus_ext->freelist_head; f; f=f->next) {
#if DBG
if (f->count!=f->reserved_count) {
KdPrint(("memory leak for freelist %s (%d/%d)", f->tag, f->count, f->reserved_count));
}
#endif
while ((p=freelist_get(f)))
free(p, M_DEVBUF);
}
for (i=0; i<os_max_cache_pages; i++) {
p = dmapool_get_page((PVBUS)vbus_ext->vbus, &bus);
HPT_ASSERT(p);
free_pages(p, 0);
}
for (f=vbus_ext->freelist_dma_head; f; f=f->next) {
int order, size;
#if DBG
if (f->count!=f->reserved_count) {
KdPrint(("memory leak for dma freelist %s (%d/%d)", f->tag, f->count, f->reserved_count));
}
#endif
for (order=0, size=PAGE_SIZE; size<f->size; order++, size<<=1) ;
while ((p=freelist_get_dma(f, &bus))) {
if (order)
free_pages(p, order);
else {
/* can't free immediately since other blocks in this page may still be in the list */
if (((HPT_UPTR)p & (PAGE_SIZE-1))==0)
dmapool_put_page((PVBUS)vbus_ext->vbus, p, bus);
}
}
}
while ((p = dmapool_get_page((PVBUS)vbus_ext->vbus, &bus)))
free_pages(p, 0);
}
static int hpt_init_vbus(PVBUS_EXT vbus_ext)
{
PHBA hba;
for (hba = vbus_ext->hba_list; hba; hba = hba->next)
if (!hba->ldm_adapter.him->initialize(hba->ldm_adapter.him_handle)) {
KdPrint(("fail to initialize %p", hba));
return -1;
}
ldm_initialize_vbus((PVBUS)vbus_ext->vbus, &vbus_ext->hba_list->ldm_adapter);
return 0;
}
static void hpt_flush_done(PCOMMAND pCmd)
{
PVDEV vd = pCmd->target;
if (mIsArray(vd->Class->type) && vd->u.array.transform && vd!=vd->u.array.transform->target) {
vd = vd->u.array.transform->target;
HPT_ASSERT(vd);
pCmd->target = vd;
pCmd->Result = RETURN_PENDING;
vdev_queue_cmd(pCmd);
return;
}
*(int *)pCmd->priv = 1;
wakeup(pCmd);
}
/*
* flush a vdev (without retry).
*/
static int hpt_flush_vdev(PVBUS_EXT vbus_ext, PVDEV vd)
{
PCOMMAND pCmd;
int result = 0, done;
HPT_UINT count;
KdPrint(("flusing dev %p", vd));
hpt_lock_vbus(vbus_ext);
if (mIsArray(vd->Class->type) && vd->u.array.transform)
count = MAX(vd->u.array.transform->source->cmds_per_request,
vd->u.array.transform->target->cmds_per_request);
else
count = vd->cmds_per_request;
pCmd = ldm_alloc_cmds(vd->vbus, count);
if (!pCmd) {
hpt_unlock_vbus(vbus_ext);
return -1;
}
pCmd->type = CMD_TYPE_FLUSH;
pCmd->flags.hard_flush = 1;
pCmd->target = vd;
pCmd->done = hpt_flush_done;
done = 0;
pCmd->priv = &done;
ldm_queue_cmd(pCmd);
if (!done) {
while (hpt_sleep(vbus_ext, pCmd, PPAUSE, "hptfls", HPT_OSM_TIMEOUT)) {
ldm_reset_vbus(vd->vbus);
}
}
KdPrint(("flush result %d", pCmd->Result));
if (pCmd->Result!=RETURN_SUCCESS)
result = -1;
ldm_free_cmds(pCmd);
hpt_unlock_vbus(vbus_ext);
return result;
}
static void hpt_stop_tasks(PVBUS_EXT vbus_ext);
static void hpt_shutdown_vbus(PVBUS_EXT vbus_ext, int howto)
{
PVBUS vbus = (PVBUS)vbus_ext->vbus;
PHBA hba;
int i;
KdPrint(("hpt_shutdown_vbus"));
/* stop all ctl tasks and disable the worker taskqueue */
hpt_stop_tasks(vbus_ext);
vbus_ext->worker.ta_context = 0;
/* flush devices */
for (i=0; i<osm_max_targets; i++) {
PVDEV vd = ldm_find_target(vbus, i);
if (vd) {
/* retry once */
if (hpt_flush_vdev(vbus_ext, vd))
hpt_flush_vdev(vbus_ext, vd);
}
}
hpt_lock_vbus(vbus_ext);
ldm_shutdown(vbus);
hpt_unlock_vbus(vbus_ext);
ldm_release_vbus(vbus);
for (hba=vbus_ext->hba_list; hba; hba=hba->next)
bus_teardown_intr(hba->pcidev, hba->irq_res, hba->irq_handle);
hpt_free_mem(vbus_ext);
while ((hba=vbus_ext->hba_list)) {
vbus_ext->hba_list = hba->next;
free(hba->ldm_adapter.him_handle, M_DEVBUF);
}
free(vbus_ext, M_DEVBUF);
KdPrint(("hpt_shutdown_vbus done"));
}
static void __hpt_do_tasks(PVBUS_EXT vbus_ext)
{
OSM_TASK *tasks;
tasks = vbus_ext->tasks;
vbus_ext->tasks = 0;
while (tasks) {
OSM_TASK *t = tasks;
tasks = t->next;
t->next = 0;
t->func(vbus_ext->vbus, t->data);
}
}
static void hpt_do_tasks(PVBUS_EXT vbus_ext, int pending)
{
if(vbus_ext){
hpt_lock_vbus(vbus_ext);
__hpt_do_tasks(vbus_ext);
hpt_unlock_vbus(vbus_ext);
}
}
static void hpt_action(struct cam_sim *sim, union ccb *ccb);
static void hpt_poll(struct cam_sim *sim);
static void hpt_async(void * callback_arg, u_int32_t code, struct cam_path * path, void * arg);
static void hpt_pci_intr(void *arg);
static __inline POS_CMDEXT cmdext_get(PVBUS_EXT vbus_ext)
{
POS_CMDEXT p = vbus_ext->cmdext_list;
if (p)
vbus_ext->cmdext_list = p->next;
return p;
}
static __inline void cmdext_put(POS_CMDEXT p)
{
p->next = p->vbus_ext->cmdext_list;
p->vbus_ext->cmdext_list = p;
}
static void hpt_timeout(void *arg)
{
PCOMMAND pCmd = (PCOMMAND)arg;
POS_CMDEXT ext = (POS_CMDEXT)pCmd->priv;
KdPrint(("pCmd %p timeout", pCmd));
ldm_reset_vbus((PVBUS)ext->vbus_ext->vbus);
}
static void os_cmddone(PCOMMAND pCmd)
{
POS_CMDEXT ext = (POS_CMDEXT)pCmd->priv;
union ccb *ccb = ext->ccb;
KdPrint(("os_cmddone(%p, %d)", pCmd, pCmd->Result));
untimeout(hpt_timeout, pCmd, ccb->ccb_h.timeout_ch);
switch(pCmd->Result) {
case RETURN_SUCCESS:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case RETURN_BAD_DEVICE:
ccb->ccb_h.status = CAM_DEV_NOT_THERE;
break;
case RETURN_DEVICE_BUSY:
ccb->ccb_h.status = CAM_BUSY;
break;
case RETURN_INVALID_REQUEST:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case RETURN_SELECTION_TIMEOUT:
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case RETURN_RETRY:
ccb->ccb_h.status = CAM_BUSY;
break;
default:
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
break;
}
if (pCmd->flags.data_in) {
bus_dmamap_sync(ext->vbus_ext->io_dmat, ext->dma_map, BUS_DMASYNC_POSTREAD);
}
else if (pCmd->flags.data_out) {
bus_dmamap_sync(ext->vbus_ext->io_dmat, ext->dma_map, BUS_DMASYNC_POSTWRITE);
}
bus_dmamap_unload(ext->vbus_ext->io_dmat, ext->dma_map);
cmdext_put(ext);
ldm_free_cmds(pCmd);
xpt_done(ccb);
}
static int os_buildsgl(PCOMMAND pCmd, PSG pSg, int logical)
{
POS_CMDEXT ext = (POS_CMDEXT)pCmd->priv;
union ccb *ccb = ext->ccb;
bus_dma_segment_t *sgList = (bus_dma_segment_t *)ccb->csio.data_ptr;
int idx;
if(logical) {
if (ccb->ccb_h.flags & CAM_DATA_PHYS)
panic("physical address unsupported");
if (ccb->ccb_h.flags & CAM_SCATTER_VALID) {
if (ccb->ccb_h.flags & CAM_SG_LIST_PHYS)
panic("physical address unsupported");
for (idx = 0; idx < ccb->csio.sglist_cnt; idx++) {
os_set_sgptr(&pSg[idx], (HPT_U8 *)(HPT_UPTR)sgList[idx].ds_addr);
pSg[idx].size = sgList[idx].ds_len;
pSg[idx].eot = (idx==ccb->csio.sglist_cnt-1)? 1 : 0;
}
}
else {
os_set_sgptr(pSg, (HPT_U8 *)ccb->csio.data_ptr);
pSg->size = ccb->csio.dxfer_len;
pSg->eot = 1;
}
return TRUE;
}
/* since we have provided physical sg, nobody will ask us to build physical sg */
HPT_ASSERT(0);
return FALSE;
}
static void hpt_io_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
PCOMMAND pCmd = (PCOMMAND)arg;
POS_CMDEXT ext = (POS_CMDEXT)pCmd->priv;
PSG psg = pCmd->psg;
int idx;
HPT_ASSERT(pCmd->flags.physical_sg);
if (error || nsegs == 0)
panic("busdma error");
HPT_ASSERT(nsegs<=os_max_sg_descriptors);
for (idx = 0; idx < nsegs; idx++, psg++) {
psg->addr.bus = segs[idx].ds_addr;
psg->size = segs[idx].ds_len;
psg->eot = 0;
}
psg[-1].eot = 1;
if (pCmd->flags.data_in) {
bus_dmamap_sync(ext->vbus_ext->io_dmat, ext->dma_map, BUS_DMASYNC_PREREAD);
}
else if (pCmd->flags.data_out) {
bus_dmamap_sync(ext->vbus_ext->io_dmat, ext->dma_map, BUS_DMASYNC_PREWRITE);
}
ext->ccb->ccb_h.timeout_ch = timeout(hpt_timeout, pCmd, HPT_OSM_TIMEOUT);
ldm_queue_cmd(pCmd);
}
static void hpt_scsi_io(PVBUS_EXT vbus_ext, union ccb *ccb)
{
PVBUS vbus = (PVBUS)vbus_ext->vbus;
PVDEV vd;
PCOMMAND pCmd;
POS_CMDEXT ext;
HPT_U8 *cdb;
if (ccb->ccb_h.flags & CAM_CDB_POINTER)
cdb = ccb->csio.cdb_io.cdb_ptr;
else
cdb = ccb->csio.cdb_io.cdb_bytes;
KdPrint(("hpt_scsi_io: ccb %x id %d lun %d cdb %x-%x-%x",
ccb,
ccb->ccb_h.target_id, ccb->ccb_h.target_lun,
*(HPT_U32 *)&cdb[0], *(HPT_U32 *)&cdb[4], *(HPT_U32 *)&cdb[8]
));
/* ccb->ccb_h.path_id is not our bus id - don't check it */
if (ccb->ccb_h.target_lun != 0 ||
ccb->ccb_h.target_id >= osm_max_targets ||
(ccb->ccb_h.flags & CAM_CDB_PHYS))
{
ccb->ccb_h.status = CAM_TID_INVALID;
xpt_done(ccb);
return;
}
vd = ldm_find_target(vbus, ccb->ccb_h.target_id);
if (!vd) {
ccb->ccb_h.status = CAM_TID_INVALID;
xpt_done(ccb);
return;
}
switch (cdb[0]) {
case TEST_UNIT_READY:
case START_STOP_UNIT:
case SYNCHRONIZE_CACHE:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case INQUIRY:
{
PINQUIRYDATA inquiryData;
memset(ccb->csio.data_ptr, 0, ccb->csio.dxfer_len);
inquiryData = (PINQUIRYDATA)ccb->csio.data_ptr;
inquiryData->AdditionalLength = 31;
inquiryData->CommandQueue = 1;
memcpy(&inquiryData->VendorId, "HPT ", 8);
memcpy(&inquiryData->ProductId, "DISK 0_0 ", 16);
if (vd->target_id / 10) {
inquiryData->ProductId[7] = (vd->target_id % 100) / 10 + '0';
inquiryData->ProductId[8] = (vd->target_id % 100) % 10 + '0';
}
else
inquiryData->ProductId[7] = (vd->target_id % 100) % 10 + '0';
memcpy(&inquiryData->ProductRevisionLevel, "4.00", 4);
ccb->ccb_h.status = CAM_REQ_CMP;
}
break;
case READ_CAPACITY:
{
HPT_U8 *rbuf = ccb->csio.data_ptr;
HPT_U32 cap;
if (vd->capacity>0xfffffffful)
cap = 0xfffffffful;
else
cap = vd->capacity - 1;
rbuf[0] = (HPT_U8)(cap>>24);
rbuf[1] = (HPT_U8)(cap>>16);
rbuf[2] = (HPT_U8)(cap>>8);
rbuf[3] = (HPT_U8)cap;
rbuf[4] = 0;
rbuf[5] = 0;
rbuf[6] = 2;
rbuf[7] = 0;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case SERVICE_ACTION_IN:
{
HPT_U8 *rbuf = ccb->csio.data_ptr;
HPT_U64 cap = vd->capacity - 1;
rbuf[0] = (HPT_U8)(cap>>56);
rbuf[1] = (HPT_U8)(cap>>48);
rbuf[2] = (HPT_U8)(cap>>40);
rbuf[3] = (HPT_U8)(cap>>32);
rbuf[4] = (HPT_U8)(cap>>24);
rbuf[5] = (HPT_U8)(cap>>16);
rbuf[6] = (HPT_U8)(cap>>8);
rbuf[7] = (HPT_U8)cap;
rbuf[8] = 0;
rbuf[9] = 0;
rbuf[10] = 2;
rbuf[11] = 0;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case READ_6:
case READ_10:
case READ_16:
case WRITE_6:
case WRITE_10:
case WRITE_16:
case 0x13:
case 0x2f:
{
pCmd = ldm_alloc_cmds(vbus, vd->cmds_per_request);
if(!pCmd){
KdPrint(("Failed to allocate command!"));
ccb->ccb_h.status = CAM_BUSY;
break;
}
switch (cdb[0]) {
case READ_6:
case WRITE_6:
case 0x13:
pCmd->uCmd.Ide.Lba = ((HPT_U32)cdb[1] << 16) | ((HPT_U32)cdb[2] << 8) | (HPT_U32)cdb[3];
pCmd->uCmd.Ide.nSectors = (HPT_U16) cdb[4];
break;
case READ_16:
case WRITE_16:
{
HPT_U64 block =
((HPT_U64)cdb[2]<<56) |
((HPT_U64)cdb[3]<<48) |
((HPT_U64)cdb[4]<<40) |
((HPT_U64)cdb[5]<<32) |
((HPT_U64)cdb[6]<<24) |
((HPT_U64)cdb[7]<<16) |
((HPT_U64)cdb[8]<<8) |
((HPT_U64)cdb[9]);
pCmd->uCmd.Ide.Lba = block;
pCmd->uCmd.Ide.nSectors = (HPT_U16)cdb[13] | ((HPT_U16)cdb[12]<<8);
break;
}
default:
pCmd->uCmd.Ide.Lba = (HPT_U32)cdb[5] | ((HPT_U32)cdb[4] << 8) | ((HPT_U32)cdb[3] << 16) | ((HPT_U32)cdb[2] << 24);
pCmd->uCmd.Ide.nSectors = (HPT_U16) cdb[8] | ((HPT_U16)cdb[7]<<8);
break;
}
switch (cdb[0]) {
case READ_6:
case READ_10:
case READ_16:
pCmd->flags.data_in = 1;
break;
case WRITE_6:
case WRITE_10:
case WRITE_16:
pCmd->flags.data_out = 1;
break;
}
pCmd->priv = ext = cmdext_get(vbus_ext);
HPT_ASSERT(ext);
ext->ccb = ccb;
pCmd->target = vd;
pCmd->done = os_cmddone;
pCmd->buildsgl = os_buildsgl;
pCmd->psg = ext->psg;
if (ccb->ccb_h.flags & CAM_SCATTER_VALID) {
int idx;
bus_dma_segment_t *sgList = (bus_dma_segment_t *)ccb->csio.data_ptr;
if (ccb->ccb_h.flags & CAM_SG_LIST_PHYS)
pCmd->flags.physical_sg = 1;
for (idx = 0; idx < ccb->csio.sglist_cnt; idx++) {
pCmd->psg[idx].addr.bus = sgList[idx].ds_addr;
pCmd->psg[idx].size = sgList[idx].ds_len;
pCmd->psg[idx].eot = (idx==ccb->csio.sglist_cnt-1)? 1 : 0;
}
ccb->ccb_h.timeout_ch = timeout(hpt_timeout, pCmd, HPT_OSM_TIMEOUT);
ldm_queue_cmd(pCmd);
}
else {
int error;
pCmd->flags.physical_sg = 1;
error = bus_dmamap_load(vbus_ext->io_dmat,
ext->dma_map,
ccb->csio.data_ptr, ccb->csio.dxfer_len,
hpt_io_dmamap_callback, pCmd,
BUS_DMA_WAITOK
);
KdPrint(("bus_dmamap_load return %d", error));
if (error && error!=EINPROGRESS) {
os_printk("bus_dmamap_load error %d", error);
cmdext_put(ext);
ldm_free_cmds(pCmd);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
xpt_done(ccb);
}
}
return;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
static void hpt_action(struct cam_sim *sim, union ccb *ccb)
{
PVBUS_EXT vbus_ext = (PVBUS_EXT)cam_sim_softc(sim);
KdPrint(("hpt_action(fn=%d, id=%d)", ccb->ccb_h.func_code, ccb->ccb_h.target_id));
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
hpt_lock_vbus(vbus_ext);
hpt_scsi_io(vbus_ext, ccb);
hpt_unlock_vbus(vbus_ext);
return;
case XPT_RESET_BUS:
hpt_lock_vbus(vbus_ext);
ldm_reset_vbus((PVBUS)vbus_ext->vbus);
hpt_unlock_vbus(vbus_ext);
break;
case XPT_GET_TRAN_SETTINGS:
case XPT_SET_TRAN_SETTINGS:
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
break;
case XPT_CALC_GEOMETRY:
ccb->ccg.heads = 255;
ccb->ccg.secs_per_track = 63;
ccb->ccg.cylinders = ccb->ccg.volume_size / (ccb->ccg.heads * ccb->ccg.secs_per_track);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_SDTR_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NOBUSRESET;
cpi->hba_eng_cnt = 0;
cpi->max_target = osm_max_targets;
cpi->max_lun = 0;
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->initiator_id = osm_max_targets;
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "HPT ", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
static void hpt_pci_intr(void *arg)
{
PVBUS_EXT vbus_ext = (PVBUS_EXT)arg;
hpt_lock_vbus(vbus_ext);
ldm_intr((PVBUS)vbus_ext->vbus);
hpt_unlock_vbus(vbus_ext);
}
static void hpt_poll(struct cam_sim *sim)
{
hpt_pci_intr(cam_sim_softc(sim));
}
static void hpt_async(void * callback_arg, u_int32_t code, struct cam_path * path, void * arg)
{
KdPrint(("hpt_async"));
}
static int hpt_shutdown(device_t dev)
{
KdPrint(("hpt_shutdown(dev=%p)", dev));
return 0;
}
static int hpt_detach(device_t dev)
{
/* we don't allow the driver to be unloaded. */
return EBUSY;
}
static void hpt_ioctl_done(struct _IOCTL_ARG *arg)
{
arg->ioctl_cmnd = 0;
wakeup(arg);
}
static void __hpt_do_ioctl(PVBUS_EXT vbus_ext, IOCTL_ARG *ioctl_args)
{
ioctl_args->result = -1;
ioctl_args->done = hpt_ioctl_done;
ioctl_args->ioctl_cmnd = (void *)1;
hpt_lock_vbus(vbus_ext);
ldm_ioctl((PVBUS)vbus_ext->vbus, ioctl_args);
while (ioctl_args->ioctl_cmnd) {
if (hpt_sleep(vbus_ext, ioctl_args, PPAUSE, "hptctl", HPT_OSM_TIMEOUT)==0)
break;
ldm_reset_vbus((PVBUS)vbus_ext->vbus);
__hpt_do_tasks(vbus_ext);
}
/* KdPrint(("ioctl %x result %d", ioctl_args->dwIoControlCode, ioctl_args->result)); */
hpt_unlock_vbus(vbus_ext);
}
static void hpt_do_ioctl(IOCTL_ARG *ioctl_args)
{
PVBUS vbus;
PVBUS_EXT vbus_ext;
ldm_for_each_vbus(vbus, vbus_ext) {
__hpt_do_ioctl(vbus_ext, ioctl_args);
if (ioctl_args->result!=HPT_IOCTL_RESULT_WRONG_VBUS)
return;
}
}
#define HPT_DO_IOCTL(code, inbuf, insize, outbuf, outsize) ({\
IOCTL_ARG arg;\
arg.dwIoControlCode = code;\
arg.lpInBuffer = inbuf;\
arg.lpOutBuffer = outbuf;\
arg.nInBufferSize = insize;\
arg.nOutBufferSize = outsize;\
arg.lpBytesReturned = 0;\
hpt_do_ioctl(&arg);\
arg.result;\
})
#define DEVICEID_VALID(id) ((id) && ((HPT_U32)(id)!=0xffffffff))
static int hpt_get_logical_devices(DEVICEID * pIds, int nMaxCount)
{
int i;
HPT_U32 count = nMaxCount-1;
if (HPT_DO_IOCTL(HPT_IOCTL_GET_LOGICAL_DEVICES,
&count, sizeof(HPT_U32), pIds, sizeof(DEVICEID)*nMaxCount))
return -1;
nMaxCount = (int)pIds[0];
for (i=0; i<nMaxCount; i++) pIds[i] = pIds[i+1];
return nMaxCount;
}
static int hpt_get_device_info_v3(DEVICEID id, PLOGICAL_DEVICE_INFO_V3 pInfo)
{
return HPT_DO_IOCTL(HPT_IOCTL_GET_DEVICE_INFO_V3,
&id, sizeof(DEVICEID), pInfo, sizeof(LOGICAL_DEVICE_INFO_V3));
}
/* not belong to this file logically, but we want to use ioctl interface */
static int __hpt_stop_tasks(PVBUS_EXT vbus_ext, DEVICEID id)
{
LOGICAL_DEVICE_INFO_V3 devinfo;
int i, result;
DEVICEID param[2] = { id, 0 };
if (hpt_get_device_info_v3(id, &devinfo))
return -1;
if (devinfo.Type!=LDT_ARRAY)
return -1;
if (devinfo.u.array.Flags & ARRAY_FLAG_REBUILDING)
param[1] = AS_REBUILD_ABORT;
else if (devinfo.u.array.Flags & ARRAY_FLAG_VERIFYING)
param[1] = AS_VERIFY_ABORT;
else if (devinfo.u.array.Flags & ARRAY_FLAG_INITIALIZING)
param[1] = AS_INITIALIZE_ABORT;
else if (devinfo.u.array.Flags & ARRAY_FLAG_TRANSFORMING)
param[1] = AS_TRANSFORM_ABORT;
else
return -1;
KdPrint(("SET_ARRAY_STATE(%x, %d)", param[0], param[1]));
result = HPT_DO_IOCTL(HPT_IOCTL_SET_ARRAY_STATE,
param, sizeof(param), 0, 0);
for (i=0; i<devinfo.u.array.nDisk; i++)
if (DEVICEID_VALID(devinfo.u.array.Members[i]))
__hpt_stop_tasks(vbus_ext, devinfo.u.array.Members[i]);
return result;
}
static void hpt_stop_tasks(PVBUS_EXT vbus_ext)
{
DEVICEID ids[32];
int i, count;
count = hpt_get_logical_devices((DEVICEID *)&ids, sizeof(ids)/sizeof(ids[0]));
for (i=0; i<count; i++)
__hpt_stop_tasks(vbus_ext, ids[i]);
}
static d_open_t hpt_open;
static d_close_t hpt_close;
static d_ioctl_t hpt_ioctl;
static void hpt_bus_scan_cb(struct cam_periph *periph, union ccb *ccb);
static int hpt_rescan_bus(void);
static struct cdevsw hpt_cdevsw = {
.d_open = hpt_open,
.d_close = hpt_close,
.d_ioctl = hpt_ioctl,
.d_name = driver_name,
#if __FreeBSD_version>=503000
.d_version = D_VERSION,
#endif
#if (__FreeBSD_version>=503000 && __FreeBSD_version<600034)
.d_flags = D_NEEDGIANT,
#endif
#if __FreeBSD_version<600034
#if __FreeBSD_version>501000
.d_maj = MAJOR_AUTO,
#else
.d_maj = HPT_DEV_MAJOR,
#endif
#endif
};
static struct intr_config_hook hpt_ich;
/*
* hpt_final_init will be called after all hpt_attach.
*/
static void hpt_final_init(void *dummy)
{
int i;
PVBUS_EXT vbus_ext;
PVBUS vbus;
PHBA hba;
/* Clear the config hook */
config_intrhook_disestablish(&hpt_ich);
/* allocate memory */
i = 0;
ldm_for_each_vbus(vbus, vbus_ext) {
if (hpt_alloc_mem(vbus_ext)) {
os_printk("out of memory");
return;
}
i++;
}
if (!i) {
if (bootverbose)
os_printk("no controller detected.");
return;
}
/* initializing hardware */
ldm_for_each_vbus(vbus, vbus_ext) {
/* make timer available here */
callout_handle_init(&vbus_ext->timer);
if (hpt_init_vbus(vbus_ext)) {
os_printk("fail to initialize hardware");
break; /* FIXME */
}
}
/* register CAM interface */
ldm_for_each_vbus(vbus, vbus_ext) {
struct cam_devq *devq;
struct ccb_setasync ccb;
#if (__FreeBSD_version >= 500000)
mtx_init(&vbus_ext->lock, "hptsleeplock", NULL, MTX_DEF);
#endif
if (bus_dma_tag_create(NULL,/* parent */
4, /* alignment */
BUS_SPACE_MAXADDR_32BIT+1, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
PAGE_SIZE * (os_max_sg_descriptors-1), /* maxsize */
os_max_sg_descriptors, /* nsegments */
0x10000, /* maxsegsize */
BUS_DMA_WAITOK, /* flags */
#if __FreeBSD_version>502000
busdma_lock_mutex, /* lockfunc */
&vbus_ext->lock, /* lockfuncarg */
#endif
&vbus_ext->io_dmat /* tag */))
{
return ;
}
for (i=0; i<os_max_queue_comm; i++) {
POS_CMDEXT ext = (POS_CMDEXT)malloc(sizeof(OS_CMDEXT), M_DEVBUF, M_WAITOK);
if (!ext) {
os_printk("Can't alloc cmdext(%d)", i);
return ;
}
ext->vbus_ext = vbus_ext;
ext->next = vbus_ext->cmdext_list;
vbus_ext->cmdext_list = ext;
if (bus_dmamap_create(vbus_ext->io_dmat, 0, &ext->dma_map)) {
os_printk("Can't create dma map(%d)", i);
return ;
}
}
if ((devq = cam_simq_alloc(os_max_queue_comm)) == NULL) {
os_printk("cam_simq_alloc failed");
return ;
}
vbus_ext->sim = cam_sim_alloc(hpt_action, hpt_poll, driver_name,
vbus_ext, 0, &Giant,
os_max_queue_comm, /*tagged*/8, devq);
if (!vbus_ext->sim) {
os_printk("cam_sim_alloc failed");
cam_simq_free(devq);
return ;
}
if (xpt_bus_register(vbus_ext->sim, 0) != CAM_SUCCESS) {
os_printk("xpt_bus_register failed");
cam_sim_free(vbus_ext->sim, /*free devq*/ TRUE);
vbus_ext->sim = NULL;
return ;
}
if (xpt_create_path(&vbus_ext->path, /*periph */ NULL,
cam_sim_path(vbus_ext->sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP)
{
os_printk("xpt_create_path failed");
xpt_bus_deregister(cam_sim_path(vbus_ext->sim));
cam_sim_free(vbus_ext->sim, /*free_devq*/TRUE);
vbus_ext->sim = NULL;
return ;
}
xpt_setup_ccb(&ccb.ccb_h, vbus_ext->path, /*priority*/5);
ccb.ccb_h.func_code = XPT_SASYNC_CB;
ccb.event_enable = AC_LOST_DEVICE;
ccb.callback = hpt_async;
ccb.callback_arg = vbus_ext;
xpt_action((union ccb *)&ccb);
for (hba = vbus_ext->hba_list; hba; hba = hba->next) {
int rid = 0;
if ((hba->irq_res = bus_alloc_resource(hba->pcidev,
SYS_RES_IRQ, &rid, 0, ~0ul, 1, RF_SHAREABLE | RF_ACTIVE)) == NULL)
{
os_printk("can't allocate interrupt");
return ;
}
if (bus_setup_intr(hba->pcidev, hba->irq_res, INTR_TYPE_CAM,
NULL, hpt_pci_intr, vbus_ext, &hba->irq_handle))
{
os_printk("can't set up interrupt");
return ;
}
hba->ldm_adapter.him->intr_control(hba->ldm_adapter.him_handle, HPT_TRUE);
}
vbus_ext->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
hpt_shutdown_vbus, vbus_ext, SHUTDOWN_PRI_DEFAULT);
if (!vbus_ext->shutdown_eh)
os_printk("Shutdown event registration failed");
}
ldm_for_each_vbus(vbus, vbus_ext) {
TASK_INIT(&vbus_ext->worker, 0, (task_fn_t *)hpt_do_tasks, vbus_ext);
if (vbus_ext->tasks)
TASK_ENQUEUE(&vbus_ext->worker);
}
make_dev(&hpt_cdevsw, DRIVER_MINOR, UID_ROOT, GID_OPERATOR,
S_IRUSR | S_IWUSR, driver_name);
}
static void hpt_init(void *dummy)
{
if (bootverbose)
os_printk("%s %s", driver_name_long, driver_ver);
init_config();
hpt_ich.ich_func = hpt_final_init;
hpt_ich.ich_arg = NULL;
if (config_intrhook_establish(&hpt_ich) != 0) {
printf("%s: cannot establish configuration hook\n",
driver_name_long);
}
}
SYSINIT(hptinit, SI_SUB_CONFIGURE, SI_ORDER_FIRST, hpt_init, NULL);
/*
* CAM driver interface
*/
static device_method_t driver_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, hpt_probe),
DEVMETHOD(device_attach, hpt_attach),
DEVMETHOD(device_detach, hpt_detach),
DEVMETHOD(device_shutdown, hpt_shutdown),
{ 0, 0 }
};
static driver_t hpt_pci_driver = {
driver_name,
driver_methods,
sizeof(HBA)
};
static devclass_t hpt_devclass;
#ifndef TARGETNAME
#error "no TARGETNAME found"
#endif
/* use this to make TARGETNAME be expanded */
#define __DRIVER_MODULE(p1, p2, p3, p4, p5, p6) DRIVER_MODULE(p1, p2, p3, p4, p5, p6)
#define __MODULE_VERSION(p1, p2) MODULE_VERSION(p1, p2)
#define __MODULE_DEPEND(p1, p2, p3, p4, p5) MODULE_DEPEND(p1, p2, p3, p4, p5)
__DRIVER_MODULE(TARGETNAME, pci, hpt_pci_driver, hpt_devclass, 0, 0);
__MODULE_VERSION(TARGETNAME, 1);
__MODULE_DEPEND(TARGETNAME, cam, 1, 1, 1);
#if __FreeBSD_version>503000
typedef struct cdev * ioctl_dev_t;
#else
typedef dev_t ioctl_dev_t;
#endif
#if __FreeBSD_version >= 500000
typedef struct thread * ioctl_thread_t;
#else
typedef struct proc * ioctl_thread_t;
#endif
static int hpt_open(ioctl_dev_t dev, int flags, int devtype, ioctl_thread_t td)
{
return 0;
}
static int hpt_close(ioctl_dev_t dev, int flags, int devtype, ioctl_thread_t td)
{
return 0;
}
static int hpt_ioctl(ioctl_dev_t dev, u_long cmd, caddr_t data, int fflag, ioctl_thread_t td)
{
PHPT_IOCTL_PARAM piop=(PHPT_IOCTL_PARAM)data;
IOCTL_ARG ioctl_args;
HPT_U32 bytesReturned;
switch (cmd){
case HPT_DO_IOCONTROL:
{
if (piop->Magic == HPT_IOCTL_MAGIC || piop->Magic == HPT_IOCTL_MAGIC32) {
KdPrint(("ioctl=%x in=%p len=%d out=%p len=%d\n",
piop->dwIoControlCode,
piop->lpInBuffer,
piop->nInBufferSize,
piop->lpOutBuffer,
piop->nOutBufferSize));
memset(&ioctl_args, 0, sizeof(ioctl_args));
ioctl_args.dwIoControlCode = piop->dwIoControlCode;
ioctl_args.nInBufferSize = piop->nInBufferSize;
ioctl_args.nOutBufferSize = piop->nOutBufferSize;
ioctl_args.lpBytesReturned = &bytesReturned;
if (ioctl_args.nInBufferSize) {
ioctl_args.lpInBuffer = malloc(ioctl_args.nInBufferSize, M_DEVBUF, M_WAITOK);
if (!ioctl_args.lpInBuffer)
goto invalid;
if (copyin((void*)piop->lpInBuffer,
ioctl_args.lpInBuffer, piop->nInBufferSize))
goto invalid;
}
if (ioctl_args.nOutBufferSize) {
ioctl_args.lpOutBuffer = malloc(ioctl_args.nOutBufferSize, M_DEVBUF, M_WAITOK);
if (!ioctl_args.lpOutBuffer)
goto invalid;
}
#if (__FreeBSD_version >= 500000)
mtx_lock(&Giant);
#endif
hpt_do_ioctl(&ioctl_args);
#if (__FreeBSD_version >= 500000)
mtx_unlock(&Giant);
#endif
if (ioctl_args.result==HPT_IOCTL_RESULT_OK) {
if (piop->nOutBufferSize) {
if (copyout(ioctl_args.lpOutBuffer,
(void*)piop->lpOutBuffer, piop->nOutBufferSize))
goto invalid;
}
if (piop->lpBytesReturned) {
if (copyout(&bytesReturned,
(void*)piop->lpBytesReturned, sizeof(HPT_U32)))
goto invalid;
}
if (ioctl_args.lpInBuffer) free(ioctl_args.lpInBuffer, M_DEVBUF);
if (ioctl_args.lpOutBuffer) free(ioctl_args.lpOutBuffer, M_DEVBUF);
return 0;
}
invalid:
if (ioctl_args.lpInBuffer) free(ioctl_args.lpInBuffer, M_DEVBUF);
if (ioctl_args.lpOutBuffer) free(ioctl_args.lpOutBuffer, M_DEVBUF);
return EFAULT;
}
return EFAULT;
}
case HPT_SCAN_BUS:
{
return hpt_rescan_bus();
}
default:
KdPrint(("invalid command!"));
return EFAULT;
}
}
static int hpt_rescan_bus(void)
{
struct cam_path *path;
union ccb *ccb;
PVBUS vbus;
PVBUS_EXT vbus_ext;
#if (__FreeBSD_version >= 500000)
mtx_lock(&Giant);
#endif
ldm_for_each_vbus(vbus, vbus_ext) {
if (xpt_create_path(&path, xpt_periph, cam_sim_path(vbus_ext->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP)
return(EIO);
if ((ccb = malloc(sizeof(union ccb), M_TEMP, M_WAITOK)) == NULL)
return(ENOMEM);
bzero(ccb, sizeof(union ccb));
xpt_setup_ccb(&ccb->ccb_h, path, 5);
ccb->ccb_h.func_code = XPT_SCAN_BUS;
ccb->ccb_h.cbfcnp = hpt_bus_scan_cb;
ccb->crcn.flags = CAM_FLAG_NONE;
xpt_action(ccb);
}
#if (__FreeBSD_version >= 500000)
mtx_unlock(&Giant);
#endif
return(0);
}
static void hpt_bus_scan_cb(struct cam_periph *periph, union ccb *ccb)
{
if (ccb->ccb_h.status != CAM_REQ_CMP)
KdPrint(("cam_scan_callback: failure status = %x",ccb->ccb_h.status));
else
KdPrint(("Scan bus successfully!"));
xpt_free_path(ccb->ccb_h.path);
free(ccb, M_TEMP);
return;
}