freebsd-nq/module/zfs/zfs_ioctl.c
loli10K d8d418ff0c ZVOLs should not be allowed to have children
zfs create, receive and rename can bypass this hierarchy rule. Update
both userland and kernel module to prevent this issue and use pyzfs
unit tests to exercise the ioctls directly.

Note: this commit slightly changes zfs_ioc_create() ABI. This allow to
differentiate a generic error (EINVAL) from the specific case where we
tried to create a dataset below a ZVOL (ZFS_ERR_WRONG_PARENT).

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
2019-02-08 15:44:15 -08:00

7317 lines
183 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Portions Copyright 2011 Martin Matuska
* Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
* Portions Copyright 2012 Pawel Jakub Dawidek <pawel@dawidek.net>
* Copyright (c) 2014, 2016 Joyent, Inc. All rights reserved.
* Copyright 2016 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
* Copyright (c) 2013 Steven Hartland. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2016 Toomas Soome <tsoome@me.com>
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
* Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
* Copyright (c) 2017 Datto Inc. All rights reserved.
* Copyright 2017 RackTop Systems.
* Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
*/
/*
* ZFS ioctls.
*
* This file handles the ioctls to /dev/zfs, used for configuring ZFS storage
* pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool.
*
* There are two ways that we handle ioctls: the legacy way where almost
* all of the logic is in the ioctl callback, and the new way where most
* of the marshalling is handled in the common entry point, zfsdev_ioctl().
*
* Non-legacy ioctls should be registered by calling
* zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked
* from userland by lzc_ioctl().
*
* The registration arguments are as follows:
*
* const char *name
* The name of the ioctl. This is used for history logging. If the
* ioctl returns successfully (the callback returns 0), and allow_log
* is true, then a history log entry will be recorded with the input &
* output nvlists. The log entry can be printed with "zpool history -i".
*
* zfs_ioc_t ioc
* The ioctl request number, which userland will pass to ioctl(2).
* We want newer versions of libzfs and libzfs_core to run against
* existing zfs kernel modules (i.e. a deferred reboot after an update).
* Therefore the ioctl numbers cannot change from release to release.
*
* zfs_secpolicy_func_t *secpolicy
* This function will be called before the zfs_ioc_func_t, to
* determine if this operation is permitted. It should return EPERM
* on failure, and 0 on success. Checks include determining if the
* dataset is visible in this zone, and if the user has either all
* zfs privileges in the zone (SYS_MOUNT), or has been granted permission
* to do this operation on this dataset with "zfs allow".
*
* zfs_ioc_namecheck_t namecheck
* This specifies what to expect in the zfs_cmd_t:zc_name -- a pool
* name, a dataset name, or nothing. If the name is not well-formed,
* the ioctl will fail and the callback will not be called.
* Therefore, the callback can assume that the name is well-formed
* (e.g. is null-terminated, doesn't have more than one '@' character,
* doesn't have invalid characters).
*
* zfs_ioc_poolcheck_t pool_check
* This specifies requirements on the pool state. If the pool does
* not meet them (is suspended or is readonly), the ioctl will fail
* and the callback will not be called. If any checks are specified
* (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME.
* Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED |
* POOL_CHECK_READONLY).
*
* zfs_ioc_key_t *nvl_keys
* The list of expected/allowable innvl input keys. This list is used
* to validate the nvlist input to the ioctl.
*
* boolean_t smush_outnvlist
* If smush_outnvlist is true, then the output is presumed to be a
* list of errors, and it will be "smushed" down to fit into the
* caller's buffer, by removing some entries and replacing them with a
* single "N_MORE_ERRORS" entry indicating how many were removed. See
* nvlist_smush() for details. If smush_outnvlist is false, and the
* outnvlist does not fit into the userland-provided buffer, then the
* ioctl will fail with ENOMEM.
*
* zfs_ioc_func_t *func
* The callback function that will perform the operation.
*
* The callback should return 0 on success, or an error number on
* failure. If the function fails, the userland ioctl will return -1,
* and errno will be set to the callback's return value. The callback
* will be called with the following arguments:
*
* const char *name
* The name of the pool or dataset to operate on, from
* zfs_cmd_t:zc_name. The 'namecheck' argument specifies the
* expected type (pool, dataset, or none).
*
* nvlist_t *innvl
* The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or
* NULL if no input nvlist was provided. Changes to this nvlist are
* ignored. If the input nvlist could not be deserialized, the
* ioctl will fail and the callback will not be called.
*
* nvlist_t *outnvl
* The output nvlist, initially empty. The callback can fill it in,
* and it will be returned to userland by serializing it into
* zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization
* fails (e.g. because the caller didn't supply a large enough
* buffer), then the overall ioctl will fail. See the
* 'smush_nvlist' argument above for additional behaviors.
*
* There are two typical uses of the output nvlist:
* - To return state, e.g. property values. In this case,
* smush_outnvlist should be false. If the buffer was not large
* enough, the caller will reallocate a larger buffer and try
* the ioctl again.
*
* - To return multiple errors from an ioctl which makes on-disk
* changes. In this case, smush_outnvlist should be true.
* Ioctls which make on-disk modifications should generally not
* use the outnvl if they succeed, because the caller can not
* distinguish between the operation failing, and
* deserialization failing.
*
* IOCTL Interface Errors
*
* The following ioctl input errors can be returned:
* ZFS_ERR_IOC_CMD_UNAVAIL the ioctl number is not supported by kernel
* ZFS_ERR_IOC_ARG_UNAVAIL an input argument is not supported by kernel
* ZFS_ERR_IOC_ARG_REQUIRED a required input argument is missing
* ZFS_ERR_IOC_ARG_BADTYPE an input argument has an invalid type
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/file.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_znode.h>
#include <sys/zap.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/dmu.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_deleg.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_tx.h>
#include <sys/sunddi.h>
#include <sys/policy.h>
#include <sys/zone.h>
#include <sys/nvpair.h>
#include <sys/pathname.h>
#include <sys/sdt.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_onexit.h>
#include <sys/zvol.h>
#include <sys/dsl_scan.h>
#include <sys/fm/util.h>
#include <sys/dsl_crypt.h>
#include <sys/dmu_recv.h>
#include <sys/dmu_send.h>
#include <sys/dsl_destroy.h>
#include <sys/dsl_bookmark.h>
#include <sys/dsl_userhold.h>
#include <sys/zfeature.h>
#include <sys/zcp.h>
#include <sys/zio_checksum.h>
#include <sys/vdev_removal.h>
#include <sys/zfs_sysfs.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_initialize.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include "zfs_namecheck.h"
#include "zfs_prop.h"
#include "zfs_deleg.h"
#include "zfs_comutil.h"
#include <sys/lua/lua.h>
#include <sys/lua/lauxlib.h>
/*
* Limit maximum nvlist size. We don't want users passing in insane values
* for zc->zc_nvlist_src_size, since we will need to allocate that much memory.
*/
#define MAX_NVLIST_SRC_SIZE KMALLOC_MAX_SIZE
kmutex_t zfsdev_state_lock;
zfsdev_state_t *zfsdev_state_list;
extern void zfs_init(void);
extern void zfs_fini(void);
uint_t zfs_fsyncer_key;
extern uint_t rrw_tsd_key;
static uint_t zfs_allow_log_key;
typedef int zfs_ioc_legacy_func_t(zfs_cmd_t *);
typedef int zfs_ioc_func_t(const char *, nvlist_t *, nvlist_t *);
typedef int zfs_secpolicy_func_t(zfs_cmd_t *, nvlist_t *, cred_t *);
/*
* IOC Keys are used to document and validate user->kernel interface inputs.
* See zfs_keys_recv_new for an example declaration. Any key name that is not
* listed will be rejected as input.
*
* The keyname 'optional' is always allowed, and must be an nvlist if present.
* Arguments which older kernels can safely ignore can be placed under the
* "optional" key.
*
* When adding new keys to an existing ioc for new functionality, consider:
* - adding an entry into zfs_sysfs.c zfs_features[] list
* - updating the libzfs_input_check.c test utility
*
* Note: in the ZK_WILDCARDLIST case, the name serves as documentation
* for the expected name (bookmark, snapshot, property, etc) but there
* is no validation in the preflight zfs_check_input_nvpairs() check.
*/
typedef enum {
ZK_OPTIONAL = 1 << 0, /* pair is optional */
ZK_WILDCARDLIST = 1 << 1, /* one or more unspecified key names */
} ioc_key_flag_t;
/* DATA_TYPE_ANY is used when zkey_type can vary. */
#define DATA_TYPE_ANY DATA_TYPE_UNKNOWN
typedef struct zfs_ioc_key {
const char *zkey_name;
data_type_t zkey_type;
ioc_key_flag_t zkey_flags;
} zfs_ioc_key_t;
typedef enum {
NO_NAME,
POOL_NAME,
DATASET_NAME
} zfs_ioc_namecheck_t;
typedef enum {
POOL_CHECK_NONE = 1 << 0,
POOL_CHECK_SUSPENDED = 1 << 1,
POOL_CHECK_READONLY = 1 << 2,
} zfs_ioc_poolcheck_t;
typedef struct zfs_ioc_vec {
zfs_ioc_legacy_func_t *zvec_legacy_func;
zfs_ioc_func_t *zvec_func;
zfs_secpolicy_func_t *zvec_secpolicy;
zfs_ioc_namecheck_t zvec_namecheck;
boolean_t zvec_allow_log;
zfs_ioc_poolcheck_t zvec_pool_check;
boolean_t zvec_smush_outnvlist;
const char *zvec_name;
const zfs_ioc_key_t *zvec_nvl_keys;
size_t zvec_nvl_key_count;
} zfs_ioc_vec_t;
/* This array is indexed by zfs_userquota_prop_t */
static const char *userquota_perms[] = {
ZFS_DELEG_PERM_USERUSED,
ZFS_DELEG_PERM_USERQUOTA,
ZFS_DELEG_PERM_GROUPUSED,
ZFS_DELEG_PERM_GROUPQUOTA,
ZFS_DELEG_PERM_USEROBJUSED,
ZFS_DELEG_PERM_USEROBJQUOTA,
ZFS_DELEG_PERM_GROUPOBJUSED,
ZFS_DELEG_PERM_GROUPOBJQUOTA,
ZFS_DELEG_PERM_PROJECTUSED,
ZFS_DELEG_PERM_PROJECTQUOTA,
ZFS_DELEG_PERM_PROJECTOBJUSED,
ZFS_DELEG_PERM_PROJECTOBJQUOTA,
};
static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc);
static int zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc);
static int zfs_check_settable(const char *name, nvpair_t *property,
cred_t *cr);
static int zfs_check_clearable(char *dataset, nvlist_t *props,
nvlist_t **errors);
static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *,
boolean_t *);
int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *);
static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp);
static void
history_str_free(char *buf)
{
kmem_free(buf, HIS_MAX_RECORD_LEN);
}
static char *
history_str_get(zfs_cmd_t *zc)
{
char *buf;
if (zc->zc_history == 0)
return (NULL);
buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP);
if (copyinstr((void *)(uintptr_t)zc->zc_history,
buf, HIS_MAX_RECORD_LEN, NULL) != 0) {
history_str_free(buf);
return (NULL);
}
buf[HIS_MAX_RECORD_LEN -1] = '\0';
return (buf);
}
/*
* Check to see if the named dataset is currently defined as bootable
*/
static boolean_t
zfs_is_bootfs(const char *name)
{
objset_t *os;
if (dmu_objset_hold(name, FTAG, &os) == 0) {
boolean_t ret;
ret = (dmu_objset_id(os) == spa_bootfs(dmu_objset_spa(os)));
dmu_objset_rele(os, FTAG);
return (ret);
}
return (B_FALSE);
}
/*
* Return non-zero if the spa version is less than requested version.
*/
static int
zfs_earlier_version(const char *name, int version)
{
spa_t *spa;
if (spa_open(name, &spa, FTAG) == 0) {
if (spa_version(spa) < version) {
spa_close(spa, FTAG);
return (1);
}
spa_close(spa, FTAG);
}
return (0);
}
/*
* Return TRUE if the ZPL version is less than requested version.
*/
static boolean_t
zpl_earlier_version(const char *name, int version)
{
objset_t *os;
boolean_t rc = B_TRUE;
if (dmu_objset_hold(name, FTAG, &os) == 0) {
uint64_t zplversion;
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dmu_objset_rele(os, FTAG);
return (B_TRUE);
}
/* XXX reading from non-owned objset */
if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0)
rc = zplversion < version;
dmu_objset_rele(os, FTAG);
}
return (rc);
}
static void
zfs_log_history(zfs_cmd_t *zc)
{
spa_t *spa;
char *buf;
if ((buf = history_str_get(zc)) == NULL)
return;
if (spa_open(zc->zc_name, &spa, FTAG) == 0) {
if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY)
(void) spa_history_log(spa, buf);
spa_close(spa, FTAG);
}
history_str_free(buf);
}
/*
* Policy for top-level read operations (list pools). Requires no privileges,
* and can be used in the local zone, as there is no associated dataset.
*/
/* ARGSUSED */
static int
zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (0);
}
/*
* Policy for dataset read operations (list children, get statistics). Requires
* no privileges, but must be visible in the local zone.
*/
/* ARGSUSED */
static int
zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
if (INGLOBALZONE(curproc) ||
zone_dataset_visible(zc->zc_name, NULL))
return (0);
return (SET_ERROR(ENOENT));
}
static int
zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr)
{
int writable = 1;
/*
* The dataset must be visible by this zone -- check this first
* so they don't see EPERM on something they shouldn't know about.
*/
if (!INGLOBALZONE(curproc) &&
!zone_dataset_visible(dataset, &writable))
return (SET_ERROR(ENOENT));
if (INGLOBALZONE(curproc)) {
/*
* If the fs is zoned, only root can access it from the
* global zone.
*/
if (secpolicy_zfs(cr) && zoned)
return (SET_ERROR(EPERM));
} else {
/*
* If we are in a local zone, the 'zoned' property must be set.
*/
if (!zoned)
return (SET_ERROR(EPERM));
/* must be writable by this zone */
if (!writable)
return (SET_ERROR(EPERM));
}
return (0);
}
static int
zfs_dozonecheck(const char *dataset, cred_t *cr)
{
uint64_t zoned;
if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL))
return (SET_ERROR(ENOENT));
return (zfs_dozonecheck_impl(dataset, zoned, cr));
}
static int
zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr)
{
uint64_t zoned;
if (dsl_prop_get_int_ds(ds, "zoned", &zoned))
return (SET_ERROR(ENOENT));
return (zfs_dozonecheck_impl(dataset, zoned, cr));
}
static int
zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds,
const char *perm, cred_t *cr)
{
int error;
error = zfs_dozonecheck_ds(name, ds, cr);
if (error == 0) {
error = secpolicy_zfs(cr);
if (error != 0)
error = dsl_deleg_access_impl(ds, perm, cr);
}
return (error);
}
static int
zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr)
{
int error;
dsl_dataset_t *ds;
dsl_pool_t *dp;
/*
* First do a quick check for root in the global zone, which
* is allowed to do all write_perms. This ensures that zfs_ioc_*
* will get to handle nonexistent datasets.
*/
if (INGLOBALZONE(curproc) && secpolicy_zfs(cr) == 0)
return (0);
error = dsl_pool_hold(name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, name, FTAG, &ds);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
error = zfs_secpolicy_write_perms_ds(name, ds, perm, cr);
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
/*
* Policy for setting the security label property.
*
* Returns 0 for success, non-zero for access and other errors.
*/
static int
zfs_set_slabel_policy(const char *name, char *strval, cred_t *cr)
{
#ifdef HAVE_MLSLABEL
char ds_hexsl[MAXNAMELEN];
bslabel_t ds_sl, new_sl;
boolean_t new_default = FALSE;
uint64_t zoned;
int needed_priv = -1;
int error;
/* First get the existing dataset label. */
error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1, sizeof (ds_hexsl), &ds_hexsl, NULL);
if (error != 0)
return (SET_ERROR(EPERM));
if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0)
new_default = TRUE;
/* The label must be translatable */
if (!new_default && (hexstr_to_label(strval, &new_sl) != 0))
return (SET_ERROR(EINVAL));
/*
* In a non-global zone, disallow attempts to set a label that
* doesn't match that of the zone; otherwise no other checks
* are needed.
*/
if (!INGLOBALZONE(curproc)) {
if (new_default || !blequal(&new_sl, CR_SL(CRED())))
return (SET_ERROR(EPERM));
return (0);
}
/*
* For global-zone datasets (i.e., those whose zoned property is
* "off", verify that the specified new label is valid for the
* global zone.
*/
if (dsl_prop_get_integer(name,
zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
return (SET_ERROR(EPERM));
if (!zoned) {
if (zfs_check_global_label(name, strval) != 0)
return (SET_ERROR(EPERM));
}
/*
* If the existing dataset label is nondefault, check if the
* dataset is mounted (label cannot be changed while mounted).
* Get the zfsvfs_t; if there isn't one, then the dataset isn't
* mounted (or isn't a dataset, doesn't exist, ...).
*/
if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) {
objset_t *os;
static char *setsl_tag = "setsl_tag";
/*
* Try to own the dataset; abort if there is any error,
* (e.g., already mounted, in use, or other error).
*/
error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, B_TRUE,
setsl_tag, &os);
if (error != 0)
return (SET_ERROR(EPERM));
dmu_objset_disown(os, B_TRUE, setsl_tag);
if (new_default) {
needed_priv = PRIV_FILE_DOWNGRADE_SL;
goto out_check;
}
if (hexstr_to_label(strval, &new_sl) != 0)
return (SET_ERROR(EPERM));
if (blstrictdom(&ds_sl, &new_sl))
needed_priv = PRIV_FILE_DOWNGRADE_SL;
else if (blstrictdom(&new_sl, &ds_sl))
needed_priv = PRIV_FILE_UPGRADE_SL;
} else {
/* dataset currently has a default label */
if (!new_default)
needed_priv = PRIV_FILE_UPGRADE_SL;
}
out_check:
if (needed_priv != -1)
return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL));
return (0);
#else
return (SET_ERROR(ENOTSUP));
#endif /* HAVE_MLSLABEL */
}
static int
zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval,
cred_t *cr)
{
char *strval;
/*
* Check permissions for special properties.
*/
switch (prop) {
default:
break;
case ZFS_PROP_ZONED:
/*
* Disallow setting of 'zoned' from within a local zone.
*/
if (!INGLOBALZONE(curproc))
return (SET_ERROR(EPERM));
break;
case ZFS_PROP_QUOTA:
case ZFS_PROP_FILESYSTEM_LIMIT:
case ZFS_PROP_SNAPSHOT_LIMIT:
if (!INGLOBALZONE(curproc)) {
uint64_t zoned;
char setpoint[ZFS_MAX_DATASET_NAME_LEN];
/*
* Unprivileged users are allowed to modify the
* limit on things *under* (ie. contained by)
* the thing they own.
*/
if (dsl_prop_get_integer(dsname, "zoned", &zoned,
setpoint))
return (SET_ERROR(EPERM));
if (!zoned || strlen(dsname) <= strlen(setpoint))
return (SET_ERROR(EPERM));
}
break;
case ZFS_PROP_MLSLABEL:
if (!is_system_labeled())
return (SET_ERROR(EPERM));
if (nvpair_value_string(propval, &strval) == 0) {
int err;
err = zfs_set_slabel_policy(dsname, strval, CRED());
if (err != 0)
return (err);
}
break;
}
return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int error;
error = zfs_dozonecheck(zc->zc_name, cr);
if (error != 0)
return (error);
/*
* permission to set permissions will be evaluated later in
* dsl_deleg_can_allow()
*/
return (0);
}
/* ARGSUSED */
static int
zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_ROLLBACK, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
dsl_pool_t *dp;
dsl_dataset_t *ds;
char *cp;
int error;
/*
* Generate the current snapshot name from the given objsetid, then
* use that name for the secpolicy/zone checks.
*/
cp = strchr(zc->zc_name, '@');
if (cp == NULL)
return (SET_ERROR(EINVAL));
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
dsl_dataset_name(ds, zc->zc_name);
error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds,
ZFS_DELEG_PERM_SEND, cr);
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_SEND, cr));
}
int
zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (SET_ERROR(ENOTSUP));
}
int
zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (SET_ERROR(ENOTSUP));
}
static int
zfs_get_parent(const char *datasetname, char *parent, int parentsize)
{
char *cp;
/*
* Remove the @bla or /bla from the end of the name to get the parent.
*/
(void) strncpy(parent, datasetname, parentsize);
cp = strrchr(parent, '@');
if (cp != NULL) {
cp[0] = '\0';
} else {
cp = strrchr(parent, '/');
if (cp == NULL)
return (SET_ERROR(ENOENT));
cp[0] = '\0';
}
return (0);
}
int
zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
{
int error;
if ((error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_destroy_perms(zc->zc_name, cr));
}
/*
* Destroying snapshots with delegated permissions requires
* descendant mount and destroy permissions.
*/
/* ARGSUSED */
static int
zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvlist_t *snaps;
nvpair_t *pair, *nextpair;
int error = 0;
snaps = fnvlist_lookup_nvlist(innvl, "snaps");
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
pair = nextpair) {
nextpair = nvlist_next_nvpair(snaps, pair);
error = zfs_secpolicy_destroy_perms(nvpair_name(pair), cr);
if (error == ENOENT) {
/*
* Ignore any snapshots that don't exist (we consider
* them "already destroyed"). Remove the name from the
* nvl here in case the snapshot is created between
* now and when we try to destroy it (in which case
* we don't want to destroy it since we haven't
* checked for permission).
*/
fnvlist_remove_nvpair(snaps, pair);
error = 0;
}
if (error != 0)
break;
}
return (error);
}
int
zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
{
char parentname[ZFS_MAX_DATASET_NAME_LEN];
int error;
if ((error = zfs_secpolicy_write_perms(from,
ZFS_DELEG_PERM_RENAME, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(from,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
if ((error = zfs_get_parent(to, parentname,
sizeof (parentname))) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_CREATE, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
dsl_pool_t *dp;
dsl_dataset_t *clone;
int error;
error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_PROMOTE, cr);
if (error != 0)
return (error);
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &clone);
if (error == 0) {
char parentname[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_t *origin = NULL;
dsl_dir_t *dd;
dd = clone->ds_dir;
error = dsl_dataset_hold_obj(dd->dd_pool,
dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin);
if (error != 0) {
dsl_dataset_rele(clone, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
error = zfs_secpolicy_write_perms_ds(zc->zc_name, clone,
ZFS_DELEG_PERM_MOUNT, cr);
dsl_dataset_name(origin, parentname);
if (error == 0) {
error = zfs_secpolicy_write_perms_ds(parentname, origin,
ZFS_DELEG_PERM_PROMOTE, cr);
}
dsl_dataset_rele(clone, FTAG);
dsl_dataset_rele(origin, FTAG);
}
dsl_pool_rele(dp, FTAG);
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int error;
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_RECEIVE, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_CREATE, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_recv_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_recv(zc, innvl, cr));
}
int
zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
{
return (zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_SNAPSHOT, cr));
}
/*
* Check for permission to create each snapshot in the nvlist.
*/
/* ARGSUSED */
static int
zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvlist_t *snaps;
int error = 0;
nvpair_t *pair;
snaps = fnvlist_lookup_nvlist(innvl, "snaps");
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
pair = nvlist_next_nvpair(snaps, pair)) {
char *name = nvpair_name(pair);
char *atp = strchr(name, '@');
if (atp == NULL) {
error = SET_ERROR(EINVAL);
break;
}
*atp = '\0';
error = zfs_secpolicy_snapshot_perms(name, cr);
*atp = '@';
if (error != 0)
break;
}
return (error);
}
/*
* Check for permission to create each bookmark in the nvlist.
*/
/* ARGSUSED */
static int
zfs_secpolicy_bookmark(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int error = 0;
for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL);
pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) {
char *name = nvpair_name(pair);
char *hashp = strchr(name, '#');
if (hashp == NULL) {
error = SET_ERROR(EINVAL);
break;
}
*hashp = '\0';
error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_BOOKMARK, cr);
*hashp = '#';
if (error != 0)
break;
}
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_remap(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_REMAP, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_destroy_bookmarks(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvpair_t *pair, *nextpair;
int error = 0;
for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL;
pair = nextpair) {
char *name = nvpair_name(pair);
char *hashp = strchr(name, '#');
nextpair = nvlist_next_nvpair(innvl, pair);
if (hashp == NULL) {
error = SET_ERROR(EINVAL);
break;
}
*hashp = '\0';
error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_DESTROY, cr);
*hashp = '#';
if (error == ENOENT) {
/*
* Ignore any filesystems that don't exist (we consider
* their bookmarks "already destroyed"). Remove
* the name from the nvl here in case the filesystem
* is created between now and when we try to destroy
* the bookmark (in which case we don't want to
* destroy it since we haven't checked for permission).
*/
fnvlist_remove_nvpair(innvl, pair);
error = 0;
}
if (error != 0)
break;
}
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
/*
* Even root must have a proper TSD so that we know what pool
* to log to.
*/
if (tsd_get(zfs_allow_log_key) == NULL)
return (SET_ERROR(EPERM));
return (0);
}
static int
zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
char parentname[ZFS_MAX_DATASET_NAME_LEN];
int error;
char *origin;
if ((error = zfs_get_parent(zc->zc_name, parentname,
sizeof (parentname))) != 0)
return (error);
if (nvlist_lookup_string(innvl, "origin", &origin) == 0 &&
(error = zfs_secpolicy_write_perms(origin,
ZFS_DELEG_PERM_CLONE, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_CREATE, cr)) != 0)
return (error);
return (zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_MOUNT, cr));
}
/*
* Policy for pool operations - create/destroy pools, add vdevs, etc. Requires
* SYS_CONFIG privilege, which is not available in a local zone.
*/
/* ARGSUSED */
static int
zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
if (secpolicy_sys_config(cr, B_FALSE) != 0)
return (SET_ERROR(EPERM));
return (0);
}
/*
* Policy for object to name lookups.
*/
/* ARGSUSED */
static int
zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int error;
if ((error = secpolicy_sys_config(cr, B_FALSE)) == 0)
return (0);
error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr);
return (error);
}
/*
* Policy for fault injection. Requires all privileges.
*/
/* ARGSUSED */
static int
zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (secpolicy_zinject(cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
zfs_prop_t prop = zfs_name_to_prop(zc->zc_value);
if (prop == ZPROP_INVAL) {
if (!zfs_prop_user(zc->zc_value))
return (SET_ERROR(EINVAL));
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_USERPROP, cr));
} else {
return (zfs_secpolicy_setprop(zc->zc_name, prop,
NULL, cr));
}
}
static int
zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int err = zfs_secpolicy_read(zc, innvl, cr);
if (err)
return (err);
if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
return (SET_ERROR(EINVAL));
if (zc->zc_value[0] == 0) {
/*
* They are asking about a posix uid/gid. If it's
* themself, allow it.
*/
if (zc->zc_objset_type == ZFS_PROP_USERUSED ||
zc->zc_objset_type == ZFS_PROP_USERQUOTA ||
zc->zc_objset_type == ZFS_PROP_USEROBJUSED ||
zc->zc_objset_type == ZFS_PROP_USEROBJQUOTA) {
if (zc->zc_guid == crgetuid(cr))
return (0);
} else if (zc->zc_objset_type == ZFS_PROP_GROUPUSED ||
zc->zc_objset_type == ZFS_PROP_GROUPQUOTA ||
zc->zc_objset_type == ZFS_PROP_GROUPOBJUSED ||
zc->zc_objset_type == ZFS_PROP_GROUPOBJQUOTA) {
if (groupmember(zc->zc_guid, cr))
return (0);
}
/* else is for project quota/used */
}
return (zfs_secpolicy_write_perms(zc->zc_name,
userquota_perms[zc->zc_objset_type], cr));
}
static int
zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int err = zfs_secpolicy_read(zc, innvl, cr);
if (err)
return (err);
if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
return (SET_ERROR(EINVAL));
return (zfs_secpolicy_write_perms(zc->zc_name,
userquota_perms[zc->zc_objset_type], cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION,
NULL, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvpair_t *pair;
nvlist_t *holds;
int error;
holds = fnvlist_lookup_nvlist(innvl, "holds");
for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
pair = nvlist_next_nvpair(holds, pair)) {
char fsname[ZFS_MAX_DATASET_NAME_LEN];
error = dmu_fsname(nvpair_name(pair), fsname);
if (error != 0)
return (error);
error = zfs_secpolicy_write_perms(fsname,
ZFS_DELEG_PERM_HOLD, cr);
if (error != 0)
return (error);
}
return (0);
}
/* ARGSUSED */
static int
zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvpair_t *pair;
int error;
for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL;
pair = nvlist_next_nvpair(innvl, pair)) {
char fsname[ZFS_MAX_DATASET_NAME_LEN];
error = dmu_fsname(nvpair_name(pair), fsname);
if (error != 0)
return (error);
error = zfs_secpolicy_write_perms(fsname,
ZFS_DELEG_PERM_RELEASE, cr);
if (error != 0)
return (error);
}
return (0);
}
/*
* Policy for allowing temporary snapshots to be taken or released
*/
static int
zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
/*
* A temporary snapshot is the same as a snapshot,
* hold, destroy and release all rolled into one.
* Delegated diff alone is sufficient that we allow this.
*/
int error;
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_DIFF, cr)) == 0)
return (0);
error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr);
if (innvl != NULL) {
if (error == 0)
error = zfs_secpolicy_hold(zc, innvl, cr);
if (error == 0)
error = zfs_secpolicy_release(zc, innvl, cr);
if (error == 0)
error = zfs_secpolicy_destroy(zc, innvl, cr);
}
return (error);
}
static int
zfs_secpolicy_load_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_LOAD_KEY, cr));
}
static int
zfs_secpolicy_change_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_CHANGE_KEY, cr));
}
/*
* Returns the nvlist as specified by the user in the zfs_cmd_t.
*/
static int
get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp)
{
char *packed;
int error;
nvlist_t *list = NULL;
/*
* Read in and unpack the user-supplied nvlist.
*/
if (size == 0)
return (SET_ERROR(EINVAL));
packed = vmem_alloc(size, KM_SLEEP);
if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size,
iflag)) != 0) {
vmem_free(packed, size);
return (SET_ERROR(EFAULT));
}
if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) {
vmem_free(packed, size);
return (error);
}
vmem_free(packed, size);
*nvp = list;
return (0);
}
/*
* Reduce the size of this nvlist until it can be serialized in 'max' bytes.
* Entries will be removed from the end of the nvlist, and one int32 entry
* named "N_MORE_ERRORS" will be added indicating how many entries were
* removed.
*/
static int
nvlist_smush(nvlist_t *errors, size_t max)
{
size_t size;
size = fnvlist_size(errors);
if (size > max) {
nvpair_t *more_errors;
int n = 0;
if (max < 1024)
return (SET_ERROR(ENOMEM));
fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0);
more_errors = nvlist_prev_nvpair(errors, NULL);
do {
nvpair_t *pair = nvlist_prev_nvpair(errors,
more_errors);
fnvlist_remove_nvpair(errors, pair);
n++;
size = fnvlist_size(errors);
} while (size > max);
fnvlist_remove_nvpair(errors, more_errors);
fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n);
ASSERT3U(fnvlist_size(errors), <=, max);
}
return (0);
}
static int
put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl)
{
char *packed = NULL;
int error = 0;
size_t size;
size = fnvlist_size(nvl);
if (size > zc->zc_nvlist_dst_size) {
error = SET_ERROR(ENOMEM);
} else {
packed = fnvlist_pack(nvl, &size);
if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst,
size, zc->zc_iflags) != 0)
error = SET_ERROR(EFAULT);
fnvlist_pack_free(packed, size);
}
zc->zc_nvlist_dst_size = size;
zc->zc_nvlist_dst_filled = B_TRUE;
return (error);
}
int
getzfsvfs_impl(objset_t *os, zfsvfs_t **zfvp)
{
int error = 0;
if (dmu_objset_type(os) != DMU_OST_ZFS) {
return (SET_ERROR(EINVAL));
}
mutex_enter(&os->os_user_ptr_lock);
*zfvp = dmu_objset_get_user(os);
/* bump s_active only when non-zero to prevent umount race */
if (*zfvp == NULL || (*zfvp)->z_sb == NULL ||
!atomic_inc_not_zero(&((*zfvp)->z_sb->s_active))) {
error = SET_ERROR(ESRCH);
}
mutex_exit(&os->os_user_ptr_lock);
return (error);
}
int
getzfsvfs(const char *dsname, zfsvfs_t **zfvp)
{
objset_t *os;
int error;
error = dmu_objset_hold(dsname, FTAG, &os);
if (error != 0)
return (error);
error = getzfsvfs_impl(os, zfvp);
dmu_objset_rele(os, FTAG);
return (error);
}
/*
* Find a zfsvfs_t for a mounted filesystem, or create our own, in which
* case its z_sb will be NULL, and it will be opened as the owner.
* If 'writer' is set, the z_teardown_lock will be held for RW_WRITER,
* which prevents all inode ops from running.
*/
static int
zfsvfs_hold(const char *name, void *tag, zfsvfs_t **zfvp, boolean_t writer)
{
int error = 0;
if (getzfsvfs(name, zfvp) != 0)
error = zfsvfs_create(name, B_FALSE, zfvp);
if (error == 0) {
rrm_enter(&(*zfvp)->z_teardown_lock, (writer) ? RW_WRITER :
RW_READER, tag);
if ((*zfvp)->z_unmounted) {
/*
* XXX we could probably try again, since the unmounting
* thread should be just about to disassociate the
* objset from the zfsvfs.
*/
rrm_exit(&(*zfvp)->z_teardown_lock, tag);
return (SET_ERROR(EBUSY));
}
}
return (error);
}
static void
zfsvfs_rele(zfsvfs_t *zfsvfs, void *tag)
{
rrm_exit(&zfsvfs->z_teardown_lock, tag);
if (zfsvfs->z_sb) {
deactivate_super(zfsvfs->z_sb);
} else {
dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
zfsvfs_free(zfsvfs);
}
}
static int
zfs_ioc_pool_create(zfs_cmd_t *zc)
{
int error;
nvlist_t *config, *props = NULL;
nvlist_t *rootprops = NULL;
nvlist_t *zplprops = NULL;
dsl_crypto_params_t *dcp = NULL;
char *spa_name = zc->zc_name;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config)))
return (error);
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props))) {
nvlist_free(config);
return (error);
}
if (props) {
nvlist_t *nvl = NULL;
nvlist_t *hidden_args = NULL;
uint64_t version = SPA_VERSION;
char *tname;
(void) nvlist_lookup_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_VERSION), &version);
if (!SPA_VERSION_IS_SUPPORTED(version)) {
error = SET_ERROR(EINVAL);
goto pool_props_bad;
}
(void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl);
if (nvl) {
error = nvlist_dup(nvl, &rootprops, KM_SLEEP);
if (error != 0) {
nvlist_free(config);
nvlist_free(props);
return (error);
}
(void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS);
}
(void) nvlist_lookup_nvlist(props, ZPOOL_HIDDEN_ARGS,
&hidden_args);
error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
rootprops, hidden_args, &dcp);
if (error != 0) {
nvlist_free(config);
nvlist_free(props);
return (error);
}
(void) nvlist_remove_all(props, ZPOOL_HIDDEN_ARGS);
VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
error = zfs_fill_zplprops_root(version, rootprops,
zplprops, NULL);
if (error != 0)
goto pool_props_bad;
if (nvlist_lookup_string(props,
zpool_prop_to_name(ZPOOL_PROP_TNAME), &tname) == 0)
spa_name = tname;
}
error = spa_create(zc->zc_name, config, props, zplprops, dcp);
/*
* Set the remaining root properties
*/
if (!error && (error = zfs_set_prop_nvlist(spa_name,
ZPROP_SRC_LOCAL, rootprops, NULL)) != 0)
(void) spa_destroy(spa_name);
pool_props_bad:
nvlist_free(rootprops);
nvlist_free(zplprops);
nvlist_free(config);
nvlist_free(props);
dsl_crypto_params_free(dcp, !!error);
return (error);
}
static int
zfs_ioc_pool_destroy(zfs_cmd_t *zc)
{
int error;
zfs_log_history(zc);
error = spa_destroy(zc->zc_name);
return (error);
}
static int
zfs_ioc_pool_import(zfs_cmd_t *zc)
{
nvlist_t *config, *props = NULL;
uint64_t guid;
int error;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config)) != 0)
return (error);
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props))) {
nvlist_free(config);
return (error);
}
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
guid != zc->zc_guid)
error = SET_ERROR(EINVAL);
else
error = spa_import(zc->zc_name, config, props, zc->zc_cookie);
if (zc->zc_nvlist_dst != 0) {
int err;
if ((err = put_nvlist(zc, config)) != 0)
error = err;
}
nvlist_free(config);
nvlist_free(props);
return (error);
}
static int
zfs_ioc_pool_export(zfs_cmd_t *zc)
{
int error;
boolean_t force = (boolean_t)zc->zc_cookie;
boolean_t hardforce = (boolean_t)zc->zc_guid;
zfs_log_history(zc);
error = spa_export(zc->zc_name, NULL, force, hardforce);
return (error);
}
static int
zfs_ioc_pool_configs(zfs_cmd_t *zc)
{
nvlist_t *configs;
int error;
if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL)
return (SET_ERROR(EEXIST));
error = put_nvlist(zc, configs);
nvlist_free(configs);
return (error);
}
/*
* inputs:
* zc_name name of the pool
*
* outputs:
* zc_cookie real errno
* zc_nvlist_dst config nvlist
* zc_nvlist_dst_size size of config nvlist
*/
static int
zfs_ioc_pool_stats(zfs_cmd_t *zc)
{
nvlist_t *config;
int error;
int ret = 0;
error = spa_get_stats(zc->zc_name, &config, zc->zc_value,
sizeof (zc->zc_value));
if (config != NULL) {
ret = put_nvlist(zc, config);
nvlist_free(config);
/*
* The config may be present even if 'error' is non-zero.
* In this case we return success, and preserve the real errno
* in 'zc_cookie'.
*/
zc->zc_cookie = error;
} else {
ret = error;
}
return (ret);
}
/*
* Try to import the given pool, returning pool stats as appropriate so that
* user land knows which devices are available and overall pool health.
*/
static int
zfs_ioc_pool_tryimport(zfs_cmd_t *zc)
{
nvlist_t *tryconfig, *config = NULL;
int error;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &tryconfig)) != 0)
return (error);
config = spa_tryimport(tryconfig);
nvlist_free(tryconfig);
if (config == NULL)
return (SET_ERROR(EINVAL));
error = put_nvlist(zc, config);
nvlist_free(config);
return (error);
}
/*
* inputs:
* zc_name name of the pool
* zc_cookie scan func (pool_scan_func_t)
* zc_flags scrub pause/resume flag (pool_scrub_cmd_t)
*/
static int
zfs_ioc_pool_scan(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if (zc->zc_flags >= POOL_SCRUB_FLAGS_END)
return (SET_ERROR(EINVAL));
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (zc->zc_flags == POOL_SCRUB_PAUSE)
error = spa_scrub_pause_resume(spa, POOL_SCRUB_PAUSE);
else if (zc->zc_cookie == POOL_SCAN_NONE)
error = spa_scan_stop(spa);
else
error = spa_scan(spa, zc->zc_cookie);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_freeze(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error == 0) {
spa_freeze(spa);
spa_close(spa, FTAG);
}
return (error);
}
static int
zfs_ioc_pool_upgrade(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (zc->zc_cookie < spa_version(spa) ||
!SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) {
spa_close(spa, FTAG);
return (SET_ERROR(EINVAL));
}
spa_upgrade(spa, zc->zc_cookie);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_get_history(zfs_cmd_t *zc)
{
spa_t *spa;
char *hist_buf;
uint64_t size;
int error;
if ((size = zc->zc_history_len) == 0)
return (SET_ERROR(EINVAL));
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
hist_buf = vmem_alloc(size, KM_SLEEP);
if ((error = spa_history_get(spa, &zc->zc_history_offset,
&zc->zc_history_len, hist_buf)) == 0) {
error = ddi_copyout(hist_buf,
(void *)(uintptr_t)zc->zc_history,
zc->zc_history_len, zc->zc_iflags);
}
spa_close(spa, FTAG);
vmem_free(hist_buf, size);
return (error);
}
static int
zfs_ioc_pool_reguid(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error == 0) {
error = spa_change_guid(spa);
spa_close(spa, FTAG);
}
return (error);
}
static int
zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc)
{
return (dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value));
}
/*
* inputs:
* zc_name name of filesystem
* zc_obj object to find
*
* outputs:
* zc_value name of object
*/
static int
zfs_ioc_obj_to_path(zfs_cmd_t *zc)
{
objset_t *os;
int error;
/* XXX reading from objset not owned */
if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE,
FTAG, &os)) != 0)
return (error);
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dmu_objset_rele_flags(os, B_TRUE, FTAG);
return (SET_ERROR(EINVAL));
}
error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value,
sizeof (zc->zc_value));
dmu_objset_rele_flags(os, B_TRUE, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_obj object to find
*
* outputs:
* zc_stat stats on object
* zc_value path to object
*/
static int
zfs_ioc_obj_to_stats(zfs_cmd_t *zc)
{
objset_t *os;
int error;
/* XXX reading from objset not owned */
if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE,
FTAG, &os)) != 0)
return (error);
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dmu_objset_rele_flags(os, B_TRUE, FTAG);
return (SET_ERROR(EINVAL));
}
error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value,
sizeof (zc->zc_value));
dmu_objset_rele_flags(os, B_TRUE, FTAG);
return (error);
}
static int
zfs_ioc_vdev_add(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
nvlist_t *config;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config);
if (error == 0) {
error = spa_vdev_add(spa, config);
nvlist_free(config);
}
spa_close(spa, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of the pool
* zc_guid guid of vdev to remove
* zc_cookie cancel removal
*/
static int
zfs_ioc_vdev_remove(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
if (zc->zc_cookie != 0) {
error = spa_vdev_remove_cancel(spa);
} else {
error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE);
}
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_set_state(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
vdev_state_t newstate = VDEV_STATE_UNKNOWN;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
switch (zc->zc_cookie) {
case VDEV_STATE_ONLINE:
error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate);
break;
case VDEV_STATE_OFFLINE:
error = vdev_offline(spa, zc->zc_guid, zc->zc_obj);
break;
case VDEV_STATE_FAULTED:
if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED &&
zc->zc_obj != VDEV_AUX_EXTERNAL &&
zc->zc_obj != VDEV_AUX_EXTERNAL_PERSIST)
zc->zc_obj = VDEV_AUX_ERR_EXCEEDED;
error = vdev_fault(spa, zc->zc_guid, zc->zc_obj);
break;
case VDEV_STATE_DEGRADED:
if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED &&
zc->zc_obj != VDEV_AUX_EXTERNAL)
zc->zc_obj = VDEV_AUX_ERR_EXCEEDED;
error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj);
break;
default:
error = SET_ERROR(EINVAL);
}
zc->zc_cookie = newstate;
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_attach(zfs_cmd_t *zc)
{
spa_t *spa;
int replacing = zc->zc_cookie;
nvlist_t *config;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config)) == 0) {
error = spa_vdev_attach(spa, zc->zc_guid, config, replacing);
nvlist_free(config);
}
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_detach(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_split(zfs_cmd_t *zc)
{
spa_t *spa;
nvlist_t *config, *props = NULL;
int error;
boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT);
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config))) {
spa_close(spa, FTAG);
return (error);
}
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props))) {
spa_close(spa, FTAG);
nvlist_free(config);
return (error);
}
error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp);
spa_close(spa, FTAG);
nvlist_free(config);
nvlist_free(props);
return (error);
}
static int
zfs_ioc_vdev_setpath(zfs_cmd_t *zc)
{
spa_t *spa;
char *path = zc->zc_value;
uint64_t guid = zc->zc_guid;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_setpath(spa, guid, path);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_setfru(zfs_cmd_t *zc)
{
spa_t *spa;
char *fru = zc->zc_value;
uint64_t guid = zc->zc_guid;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_setfru(spa, guid, fru);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os)
{
int error = 0;
nvlist_t *nv;
dmu_objset_fast_stat(os, &zc->zc_objset_stats);
if (zc->zc_nvlist_dst != 0 &&
(error = dsl_prop_get_all(os, &nv)) == 0) {
dmu_objset_stats(os, nv);
/*
* NB: zvol_get_stats() will read the objset contents,
* which we aren't supposed to do with a
* DS_MODE_USER hold, because it could be
* inconsistent. So this is a bit of a workaround...
* XXX reading with out owning
*/
if (!zc->zc_objset_stats.dds_inconsistent &&
dmu_objset_type(os) == DMU_OST_ZVOL) {
error = zvol_get_stats(os, nv);
if (error == EIO) {
nvlist_free(nv);
return (error);
}
VERIFY0(error);
}
if (error == 0)
error = put_nvlist(zc, nv);
nvlist_free(nv);
}
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_objset_stats(zfs_cmd_t *zc)
{
objset_t *os;
int error;
error = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (error == 0) {
error = zfs_ioc_objset_stats_impl(zc, os);
dmu_objset_rele(os, FTAG);
}
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_nvlist_dst received property nvlist
* zc_nvlist_dst_size size of received property nvlist
*
* Gets received properties (distinct from local properties on or after
* SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from
* local property values.
*/
static int
zfs_ioc_objset_recvd_props(zfs_cmd_t *zc)
{
int error = 0;
nvlist_t *nv;
/*
* Without this check, we would return local property values if the
* caller has not already received properties on or after
* SPA_VERSION_RECVD_PROPS.
*/
if (!dsl_prop_get_hasrecvd(zc->zc_name))
return (SET_ERROR(ENOTSUP));
if (zc->zc_nvlist_dst != 0 &&
(error = dsl_prop_get_received(zc->zc_name, &nv)) == 0) {
error = put_nvlist(zc, nv);
nvlist_free(nv);
}
return (error);
}
static int
nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop)
{
uint64_t value;
int error;
/*
* zfs_get_zplprop() will either find a value or give us
* the default value (if there is one).
*/
if ((error = zfs_get_zplprop(os, prop, &value)) != 0)
return (error);
VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0);
return (0);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for zpl property nvlist
*
* outputs:
* zc_nvlist_dst zpl property nvlist
* zc_nvlist_dst_size size of zpl property nvlist
*/
static int
zfs_ioc_objset_zplprops(zfs_cmd_t *zc)
{
objset_t *os;
int err;
/* XXX reading without owning */
if ((err = dmu_objset_hold(zc->zc_name, FTAG, &os)))
return (err);
dmu_objset_fast_stat(os, &zc->zc_objset_stats);
/*
* NB: nvl_add_zplprop() will read the objset contents,
* which we aren't supposed to do with a DS_MODE_USER
* hold, because it could be inconsistent.
*/
if (zc->zc_nvlist_dst != 0 &&
!zc->zc_objset_stats.dds_inconsistent &&
dmu_objset_type(os) == DMU_OST_ZFS) {
nvlist_t *nv;
VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0)
err = put_nvlist(zc, nv);
nvlist_free(nv);
} else {
err = SET_ERROR(ENOENT);
}
dmu_objset_rele(os, FTAG);
return (err);
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_name name of next filesystem
* zc_cookie zap cursor
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_dataset_list_next(zfs_cmd_t *zc)
{
objset_t *os;
int error;
char *p;
size_t orig_len = strlen(zc->zc_name);
top:
if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os))) {
if (error == ENOENT)
error = SET_ERROR(ESRCH);
return (error);
}
p = strrchr(zc->zc_name, '/');
if (p == NULL || p[1] != '\0')
(void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name));
p = zc->zc_name + strlen(zc->zc_name);
do {
error = dmu_dir_list_next(os,
sizeof (zc->zc_name) - (p - zc->zc_name), p,
NULL, &zc->zc_cookie);
if (error == ENOENT)
error = SET_ERROR(ESRCH);
} while (error == 0 && zfs_dataset_name_hidden(zc->zc_name));
dmu_objset_rele(os, FTAG);
/*
* If it's an internal dataset (ie. with a '$' in its name),
* don't try to get stats for it, otherwise we'll return ENOENT.
*/
if (error == 0 && strchr(zc->zc_name, '$') == NULL) {
error = zfs_ioc_objset_stats(zc); /* fill in the stats */
if (error == ENOENT) {
/* We lost a race with destroy, get the next one. */
zc->zc_name[orig_len] = '\0';
goto top;
}
}
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_name name of next snapshot
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_snapshot_list_next(zfs_cmd_t *zc)
{
objset_t *os;
int error;
error = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (error != 0) {
return (error == ENOENT ? ESRCH : error);
}
/*
* A dataset name of maximum length cannot have any snapshots,
* so exit immediately.
*/
if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >=
ZFS_MAX_DATASET_NAME_LEN) {
dmu_objset_rele(os, FTAG);
return (SET_ERROR(ESRCH));
}
error = dmu_snapshot_list_next(os,
sizeof (zc->zc_name) - strlen(zc->zc_name),
zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, &zc->zc_cookie,
NULL);
if (error == 0 && !zc->zc_simple) {
dsl_dataset_t *ds;
dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool;
error = dsl_dataset_hold_obj(dp, zc->zc_obj, FTAG, &ds);
if (error == 0) {
objset_t *ossnap;
error = dmu_objset_from_ds(ds, &ossnap);
if (error == 0)
error = zfs_ioc_objset_stats_impl(zc, ossnap);
dsl_dataset_rele(ds, FTAG);
}
} else if (error == ENOENT) {
error = SET_ERROR(ESRCH);
}
dmu_objset_rele(os, FTAG);
/* if we failed, undo the @ that we tacked on to zc_name */
if (error != 0)
*strchr(zc->zc_name, '@') = '\0';
return (error);
}
static int
zfs_prop_set_userquota(const char *dsname, nvpair_t *pair)
{
const char *propname = nvpair_name(pair);
uint64_t *valary;
unsigned int vallen;
const char *domain;
char *dash;
zfs_userquota_prop_t type;
uint64_t rid;
uint64_t quota;
zfsvfs_t *zfsvfs;
int err;
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&pair) != 0)
return (SET_ERROR(EINVAL));
}
/*
* A correctly constructed propname is encoded as
* userquota@<rid>-<domain>.
*/
if ((dash = strchr(propname, '-')) == NULL ||
nvpair_value_uint64_array(pair, &valary, &vallen) != 0 ||
vallen != 3)
return (SET_ERROR(EINVAL));
domain = dash + 1;
type = valary[0];
rid = valary[1];
quota = valary[2];
err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE);
if (err == 0) {
err = zfs_set_userquota(zfsvfs, type, domain, rid, quota);
zfsvfs_rele(zfsvfs, FTAG);
}
return (err);
}
/*
* If the named property is one that has a special function to set its value,
* return 0 on success and a positive error code on failure; otherwise if it is
* not one of the special properties handled by this function, return -1.
*
* XXX: It would be better for callers of the property interface if we handled
* these special cases in dsl_prop.c (in the dsl layer).
*/
static int
zfs_prop_set_special(const char *dsname, zprop_source_t source,
nvpair_t *pair)
{
const char *propname = nvpair_name(pair);
zfs_prop_t prop = zfs_name_to_prop(propname);
uint64_t intval = 0;
char *strval = NULL;
int err = -1;
if (prop == ZPROP_INVAL) {
if (zfs_prop_userquota(propname))
return (zfs_prop_set_userquota(dsname, pair));
return (-1);
}
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&pair) == 0);
}
/* all special properties are numeric except for keylocation */
if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) {
strval = fnvpair_value_string(pair);
} else {
intval = fnvpair_value_uint64(pair);
}
switch (prop) {
case ZFS_PROP_QUOTA:
err = dsl_dir_set_quota(dsname, source, intval);
break;
case ZFS_PROP_REFQUOTA:
err = dsl_dataset_set_refquota(dsname, source, intval);
break;
case ZFS_PROP_FILESYSTEM_LIMIT:
case ZFS_PROP_SNAPSHOT_LIMIT:
if (intval == UINT64_MAX) {
/* clearing the limit, just do it */
err = 0;
} else {
err = dsl_dir_activate_fs_ss_limit(dsname);
}
/*
* Set err to -1 to force the zfs_set_prop_nvlist code down the
* default path to set the value in the nvlist.
*/
if (err == 0)
err = -1;
break;
case ZFS_PROP_KEYLOCATION:
err = dsl_crypto_can_set_keylocation(dsname, strval);
/*
* Set err to -1 to force the zfs_set_prop_nvlist code down the
* default path to set the value in the nvlist.
*/
if (err == 0)
err = -1;
break;
case ZFS_PROP_RESERVATION:
err = dsl_dir_set_reservation(dsname, source, intval);
break;
case ZFS_PROP_REFRESERVATION:
err = dsl_dataset_set_refreservation(dsname, source, intval);
break;
case ZFS_PROP_VOLSIZE:
err = zvol_set_volsize(dsname, intval);
break;
case ZFS_PROP_SNAPDEV:
err = zvol_set_snapdev(dsname, source, intval);
break;
case ZFS_PROP_VOLMODE:
err = zvol_set_volmode(dsname, source, intval);
break;
case ZFS_PROP_VERSION:
{
zfsvfs_t *zfsvfs;
if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0)
break;
err = zfs_set_version(zfsvfs, intval);
zfsvfs_rele(zfsvfs, FTAG);
if (err == 0 && intval >= ZPL_VERSION_USERSPACE) {
zfs_cmd_t *zc;
zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP);
(void) strcpy(zc->zc_name, dsname);
(void) zfs_ioc_userspace_upgrade(zc);
(void) zfs_ioc_id_quota_upgrade(zc);
kmem_free(zc, sizeof (zfs_cmd_t));
}
break;
}
default:
err = -1;
}
return (err);
}
/*
* This function is best effort. If it fails to set any of the given properties,
* it continues to set as many as it can and returns the last error
* encountered. If the caller provides a non-NULL errlist, it will be filled in
* with the list of names of all the properties that failed along with the
* corresponding error numbers.
*
* If every property is set successfully, zero is returned and errlist is not
* modified.
*/
int
zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl,
nvlist_t *errlist)
{
nvpair_t *pair;
nvpair_t *propval;
int rv = 0;
uint64_t intval;
char *strval;
nvlist_t *genericnvl = fnvlist_alloc();
nvlist_t *retrynvl = fnvlist_alloc();
retry:
pair = NULL;
while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
const char *propname = nvpair_name(pair);
zfs_prop_t prop = zfs_name_to_prop(propname);
int err = 0;
/* decode the property value */
propval = pair;
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
attrs = fnvpair_value_nvlist(pair);
if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&propval) != 0)
err = SET_ERROR(EINVAL);
}
/* Validate value type */
if (err == 0 && source == ZPROP_SRC_INHERITED) {
/* inherited properties are expected to be booleans */
if (nvpair_type(propval) != DATA_TYPE_BOOLEAN)
err = SET_ERROR(EINVAL);
} else if (err == 0 && prop == ZPROP_INVAL) {
if (zfs_prop_user(propname)) {
if (nvpair_type(propval) != DATA_TYPE_STRING)
err = SET_ERROR(EINVAL);
} else if (zfs_prop_userquota(propname)) {
if (nvpair_type(propval) !=
DATA_TYPE_UINT64_ARRAY)
err = SET_ERROR(EINVAL);
} else {
err = SET_ERROR(EINVAL);
}
} else if (err == 0) {
if (nvpair_type(propval) == DATA_TYPE_STRING) {
if (zfs_prop_get_type(prop) != PROP_TYPE_STRING)
err = SET_ERROR(EINVAL);
} else if (nvpair_type(propval) == DATA_TYPE_UINT64) {
const char *unused;
intval = fnvpair_value_uint64(propval);
switch (zfs_prop_get_type(prop)) {
case PROP_TYPE_NUMBER:
break;
case PROP_TYPE_STRING:
err = SET_ERROR(EINVAL);
break;
case PROP_TYPE_INDEX:
if (zfs_prop_index_to_string(prop,
intval, &unused) != 0)
err = SET_ERROR(EINVAL);
break;
default:
cmn_err(CE_PANIC,
"unknown property type");
}
} else {
err = SET_ERROR(EINVAL);
}
}
/* Validate permissions */
if (err == 0)
err = zfs_check_settable(dsname, pair, CRED());
if (err == 0) {
if (source == ZPROP_SRC_INHERITED)
err = -1; /* does not need special handling */
else
err = zfs_prop_set_special(dsname, source,
pair);
if (err == -1) {
/*
* For better performance we build up a list of
* properties to set in a single transaction.
*/
err = nvlist_add_nvpair(genericnvl, pair);
} else if (err != 0 && nvl != retrynvl) {
/*
* This may be a spurious error caused by
* receiving quota and reservation out of order.
* Try again in a second pass.
*/
err = nvlist_add_nvpair(retrynvl, pair);
}
}
if (err != 0) {
if (errlist != NULL)
fnvlist_add_int32(errlist, propname, err);
rv = err;
}
}
if (nvl != retrynvl && !nvlist_empty(retrynvl)) {
nvl = retrynvl;
goto retry;
}
if (!nvlist_empty(genericnvl) &&
dsl_props_set(dsname, source, genericnvl) != 0) {
/*
* If this fails, we still want to set as many properties as we
* can, so try setting them individually.
*/
pair = NULL;
while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) {
const char *propname = nvpair_name(pair);
int err = 0;
propval = pair;
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
attrs = fnvpair_value_nvlist(pair);
propval = fnvlist_lookup_nvpair(attrs,
ZPROP_VALUE);
}
if (nvpair_type(propval) == DATA_TYPE_STRING) {
strval = fnvpair_value_string(propval);
err = dsl_prop_set_string(dsname, propname,
source, strval);
} else if (nvpair_type(propval) == DATA_TYPE_BOOLEAN) {
err = dsl_prop_inherit(dsname, propname,
source);
} else {
intval = fnvpair_value_uint64(propval);
err = dsl_prop_set_int(dsname, propname, source,
intval);
}
if (err != 0) {
if (errlist != NULL) {
fnvlist_add_int32(errlist, propname,
err);
}
rv = err;
}
}
}
nvlist_free(genericnvl);
nvlist_free(retrynvl);
return (rv);
}
/*
* Check that all the properties are valid user properties.
*/
static int
zfs_check_userprops(const char *fsname, nvlist_t *nvl)
{
nvpair_t *pair = NULL;
int error = 0;
while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
const char *propname = nvpair_name(pair);
if (!zfs_prop_user(propname) ||
nvpair_type(pair) != DATA_TYPE_STRING)
return (SET_ERROR(EINVAL));
if ((error = zfs_secpolicy_write_perms(fsname,
ZFS_DELEG_PERM_USERPROP, CRED())))
return (error);
if (strlen(propname) >= ZAP_MAXNAMELEN)
return (SET_ERROR(ENAMETOOLONG));
if (strlen(fnvpair_value_string(pair)) >= ZAP_MAXVALUELEN)
return (SET_ERROR(E2BIG));
}
return (0);
}
static void
props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops)
{
nvpair_t *pair;
VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
pair = NULL;
while ((pair = nvlist_next_nvpair(props, pair)) != NULL) {
if (nvlist_exists(skipped, nvpair_name(pair)))
continue;
VERIFY(nvlist_add_nvpair(*newprops, pair) == 0);
}
}
static int
clear_received_props(const char *dsname, nvlist_t *props,
nvlist_t *skipped)
{
int err = 0;
nvlist_t *cleared_props = NULL;
props_skip(props, skipped, &cleared_props);
if (!nvlist_empty(cleared_props)) {
/*
* Acts on local properties until the dataset has received
* properties at least once on or after SPA_VERSION_RECVD_PROPS.
*/
zprop_source_t flags = (ZPROP_SRC_NONE |
(dsl_prop_get_hasrecvd(dsname) ? ZPROP_SRC_RECEIVED : 0));
err = zfs_set_prop_nvlist(dsname, flags, cleared_props, NULL);
}
nvlist_free(cleared_props);
return (err);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value name of property to set
* zc_nvlist_src{_size} nvlist of properties to apply
* zc_cookie received properties flag
*
* outputs:
* zc_nvlist_dst{_size} error for each unapplied received property
*/
static int
zfs_ioc_set_prop(zfs_cmd_t *zc)
{
nvlist_t *nvl;
boolean_t received = zc->zc_cookie;
zprop_source_t source = (received ? ZPROP_SRC_RECEIVED :
ZPROP_SRC_LOCAL);
nvlist_t *errors;
int error;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &nvl)) != 0)
return (error);
if (received) {
nvlist_t *origprops;
if (dsl_prop_get_received(zc->zc_name, &origprops) == 0) {
(void) clear_received_props(zc->zc_name,
origprops, nvl);
nvlist_free(origprops);
}
error = dsl_prop_set_hasrecvd(zc->zc_name);
}
errors = fnvlist_alloc();
if (error == 0)
error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors);
if (zc->zc_nvlist_dst != 0 && errors != NULL) {
(void) put_nvlist(zc, errors);
}
nvlist_free(errors);
nvlist_free(nvl);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value name of property to inherit
* zc_cookie revert to received value if TRUE
*
* outputs: none
*/
static int
zfs_ioc_inherit_prop(zfs_cmd_t *zc)
{
const char *propname = zc->zc_value;
zfs_prop_t prop = zfs_name_to_prop(propname);
boolean_t received = zc->zc_cookie;
zprop_source_t source = (received
? ZPROP_SRC_NONE /* revert to received value, if any */
: ZPROP_SRC_INHERITED); /* explicitly inherit */
nvlist_t *dummy;
nvpair_t *pair;
zprop_type_t type;
int err;
if (!received) {
/*
* Only check this in the non-received case. We want to allow
* 'inherit -S' to revert non-inheritable properties like quota
* and reservation to the received or default values even though
* they are not considered inheritable.
*/
if (prop != ZPROP_INVAL && !zfs_prop_inheritable(prop))
return (SET_ERROR(EINVAL));
}
if (prop == ZPROP_INVAL) {
if (!zfs_prop_user(propname))
return (SET_ERROR(EINVAL));
type = PROP_TYPE_STRING;
} else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) {
return (SET_ERROR(EINVAL));
} else {
type = zfs_prop_get_type(prop);
}
/*
* zfs_prop_set_special() expects properties in the form of an
* nvpair with type info.
*/
dummy = fnvlist_alloc();
switch (type) {
case PROP_TYPE_STRING:
VERIFY(0 == nvlist_add_string(dummy, propname, ""));
break;
case PROP_TYPE_NUMBER:
case PROP_TYPE_INDEX:
VERIFY(0 == nvlist_add_uint64(dummy, propname, 0));
break;
default:
err = SET_ERROR(EINVAL);
goto errout;
}
pair = nvlist_next_nvpair(dummy, NULL);
if (pair == NULL) {
err = SET_ERROR(EINVAL);
} else {
err = zfs_prop_set_special(zc->zc_name, source, pair);
if (err == -1) /* property is not "special", needs handling */
err = dsl_prop_inherit(zc->zc_name, zc->zc_value,
source);
}
errout:
nvlist_free(dummy);
return (err);
}
static int
zfs_ioc_pool_set_props(zfs_cmd_t *zc)
{
nvlist_t *props;
spa_t *spa;
int error;
nvpair_t *pair;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props)))
return (error);
/*
* If the only property is the configfile, then just do a spa_lookup()
* to handle the faulted case.
*/
pair = nvlist_next_nvpair(props, NULL);
if (pair != NULL && strcmp(nvpair_name(pair),
zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 &&
nvlist_next_nvpair(props, pair) == NULL) {
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(zc->zc_name)) != NULL) {
spa_configfile_set(spa, props, B_FALSE);
spa_write_cachefile(spa, B_FALSE, B_TRUE);
}
mutex_exit(&spa_namespace_lock);
if (spa != NULL) {
nvlist_free(props);
return (0);
}
}
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
nvlist_free(props);
return (error);
}
error = spa_prop_set(spa, props);
nvlist_free(props);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_get_props(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
nvlist_t *nvp = NULL;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
/*
* If the pool is faulted, there may be properties we can still
* get (such as altroot and cachefile), so attempt to get them
* anyway.
*/
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(zc->zc_name)) != NULL)
error = spa_prop_get(spa, &nvp);
mutex_exit(&spa_namespace_lock);
} else {
error = spa_prop_get(spa, &nvp);
spa_close(spa, FTAG);
}
if (error == 0 && zc->zc_nvlist_dst != 0)
error = put_nvlist(zc, nvp);
else
error = SET_ERROR(EFAULT);
nvlist_free(nvp);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_src{_size} nvlist of delegated permissions
* zc_perm_action allow/unallow flag
*
* outputs: none
*/
static int
zfs_ioc_set_fsacl(zfs_cmd_t *zc)
{
int error;
nvlist_t *fsaclnv = NULL;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &fsaclnv)) != 0)
return (error);
/*
* Verify nvlist is constructed correctly
*/
if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) {
nvlist_free(fsaclnv);
return (SET_ERROR(EINVAL));
}
/*
* If we don't have PRIV_SYS_MOUNT, then validate
* that user is allowed to hand out each permission in
* the nvlist(s)
*/
error = secpolicy_zfs(CRED());
if (error != 0) {
if (zc->zc_perm_action == B_FALSE) {
error = dsl_deleg_can_allow(zc->zc_name,
fsaclnv, CRED());
} else {
error = dsl_deleg_can_unallow(zc->zc_name,
fsaclnv, CRED());
}
}
if (error == 0)
error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action);
nvlist_free(fsaclnv);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* zc_nvlist_src{_size} nvlist of delegated permissions
*/
static int
zfs_ioc_get_fsacl(zfs_cmd_t *zc)
{
nvlist_t *nvp;
int error;
if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) {
error = put_nvlist(zc, nvp);
nvlist_free(nvp);
}
return (error);
}
/* ARGSUSED */
static void
zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
{
zfs_creat_t *zct = arg;
zfs_create_fs(os, cr, zct->zct_zplprops, tx);
}
#define ZFS_PROP_UNDEFINED ((uint64_t)-1)
/*
* inputs:
* os parent objset pointer (NULL if root fs)
* fuids_ok fuids allowed in this version of the spa?
* sa_ok SAs allowed in this version of the spa?
* createprops list of properties requested by creator
*
* outputs:
* zplprops values for the zplprops we attach to the master node object
* is_ci true if requested file system will be purely case-insensitive
*
* Determine the settings for utf8only, normalization and
* casesensitivity. Specific values may have been requested by the
* creator and/or we can inherit values from the parent dataset. If
* the file system is of too early a vintage, a creator can not
* request settings for these properties, even if the requested
* setting is the default value. We don't actually want to create dsl
* properties for these, so remove them from the source nvlist after
* processing.
*/
static int
zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver,
boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
uint64_t sense = ZFS_PROP_UNDEFINED;
uint64_t norm = ZFS_PROP_UNDEFINED;
uint64_t u8 = ZFS_PROP_UNDEFINED;
int error;
ASSERT(zplprops != NULL);
/* parent dataset must be a filesystem */
if (os != NULL && os->os_phys->os_type != DMU_OST_ZFS)
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
/*
* Pull out creator prop choices, if any.
*/
if (createprops) {
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_VERSION), &zplver);
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE));
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY));
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_CASE), &sense);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_CASE));
}
/*
* If the zpl version requested is whacky or the file system
* or pool is version is too "young" to support normalization
* and the creator tried to set a value for one of the props,
* error out.
*/
if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) ||
(zplver >= ZPL_VERSION_FUID && !fuids_ok) ||
(zplver >= ZPL_VERSION_SA && !sa_ok) ||
(zplver < ZPL_VERSION_NORMALIZATION &&
(norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED ||
sense != ZFS_PROP_UNDEFINED)))
return (SET_ERROR(ENOTSUP));
/*
* Put the version in the zplprops
*/
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0);
if (norm == ZFS_PROP_UNDEFINED &&
(error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm)) != 0)
return (error);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0);
/*
* If we're normalizing, names must always be valid UTF-8 strings.
*/
if (norm)
u8 = 1;
if (u8 == ZFS_PROP_UNDEFINED &&
(error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8)) != 0)
return (error);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0);
if (sense == ZFS_PROP_UNDEFINED &&
(error = zfs_get_zplprop(os, ZFS_PROP_CASE, &sense)) != 0)
return (error);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0);
if (is_ci)
*is_ci = (sense == ZFS_CASE_INSENSITIVE);
return (0);
}
static int
zfs_fill_zplprops(const char *dataset, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
boolean_t fuids_ok, sa_ok;
uint64_t zplver = ZPL_VERSION;
objset_t *os = NULL;
char parentname[ZFS_MAX_DATASET_NAME_LEN];
spa_t *spa;
uint64_t spa_vers;
int error;
zfs_get_parent(dataset, parentname, sizeof (parentname));
if ((error = spa_open(dataset, &spa, FTAG)) != 0)
return (error);
spa_vers = spa_version(spa);
spa_close(spa, FTAG);
zplver = zfs_zpl_version_map(spa_vers);
fuids_ok = (zplver >= ZPL_VERSION_FUID);
sa_ok = (zplver >= ZPL_VERSION_SA);
/*
* Open parent object set so we can inherit zplprop values.
*/
if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0)
return (error);
error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops,
zplprops, is_ci);
dmu_objset_rele(os, FTAG);
return (error);
}
static int
zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
boolean_t fuids_ok;
boolean_t sa_ok;
uint64_t zplver = ZPL_VERSION;
int error;
zplver = zfs_zpl_version_map(spa_vers);
fuids_ok = (zplver >= ZPL_VERSION_FUID);
sa_ok = (zplver >= ZPL_VERSION_SA);
error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok,
createprops, zplprops, is_ci);
return (error);
}
/*
* innvl: {
* "type" -> dmu_objset_type_t (int32)
* (optional) "props" -> { prop -> value }
* (optional) "hidden_args" -> { "wkeydata" -> value }
* raw uint8_t array of encryption wrapping key data (32 bytes)
* }
*
* outnvl: propname -> error code (int32)
*/
static const zfs_ioc_key_t zfs_keys_create[] = {
{"type", DATA_TYPE_INT32, 0},
{"props", DATA_TYPE_NVLIST, ZK_OPTIONAL},
{"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL},
};
static int
zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
int error = 0;
zfs_creat_t zct = { 0 };
nvlist_t *nvprops = NULL;
nvlist_t *hidden_args = NULL;
void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx);
dmu_objset_type_t type;
boolean_t is_insensitive = B_FALSE;
dsl_crypto_params_t *dcp = NULL;
type = (dmu_objset_type_t)fnvlist_lookup_int32(innvl, "type");
(void) nvlist_lookup_nvlist(innvl, "props", &nvprops);
(void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args);
switch (type) {
case DMU_OST_ZFS:
cbfunc = zfs_create_cb;
break;
case DMU_OST_ZVOL:
cbfunc = zvol_create_cb;
break;
default:
cbfunc = NULL;
break;
}
if (strchr(fsname, '@') ||
strchr(fsname, '%'))
return (SET_ERROR(EINVAL));
zct.zct_props = nvprops;
if (cbfunc == NULL)
return (SET_ERROR(EINVAL));
if (type == DMU_OST_ZVOL) {
uint64_t volsize, volblocksize;
if (nvprops == NULL)
return (SET_ERROR(EINVAL));
if (nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0)
return (SET_ERROR(EINVAL));
if ((error = nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
&volblocksize)) != 0 && error != ENOENT)
return (SET_ERROR(EINVAL));
if (error != 0)
volblocksize = zfs_prop_default_numeric(
ZFS_PROP_VOLBLOCKSIZE);
if ((error = zvol_check_volblocksize(fsname,
volblocksize)) != 0 ||
(error = zvol_check_volsize(volsize,
volblocksize)) != 0)
return (error);
} else if (type == DMU_OST_ZFS) {
int error;
/*
* We have to have normalization and
* case-folding flags correct when we do the
* file system creation, so go figure them out
* now.
*/
VERIFY(nvlist_alloc(&zct.zct_zplprops,
NV_UNIQUE_NAME, KM_SLEEP) == 0);
error = zfs_fill_zplprops(fsname, nvprops,
zct.zct_zplprops, &is_insensitive);
if (error != 0) {
nvlist_free(zct.zct_zplprops);
return (error);
}
}
error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, nvprops,
hidden_args, &dcp);
if (error != 0) {
nvlist_free(zct.zct_zplprops);
return (error);
}
error = dmu_objset_create(fsname, type,
is_insensitive ? DS_FLAG_CI_DATASET : 0, dcp, cbfunc, &zct);
nvlist_free(zct.zct_zplprops);
dsl_crypto_params_free(dcp, !!error);
/*
* It would be nice to do this atomically.
*/
if (error == 0) {
error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL,
nvprops, outnvl);
if (error != 0) {
spa_t *spa;
int error2;
/*
* Volumes will return EBUSY and cannot be destroyed
* until all asynchronous minor handling has completed.
* Wait for the spa_zvol_taskq to drain then retry.
*/
error2 = dsl_destroy_head(fsname);
while ((error2 == EBUSY) && (type == DMU_OST_ZVOL)) {
error2 = spa_open(fsname, &spa, FTAG);
if (error2 == 0) {
taskq_wait(spa->spa_zvol_taskq);
spa_close(spa, FTAG);
}
error2 = dsl_destroy_head(fsname);
}
}
}
return (error);
}
/*
* innvl: {
* "origin" -> name of origin snapshot
* (optional) "props" -> { prop -> value }
* (optional) "hidden_args" -> { "wkeydata" -> value }
* raw uint8_t array of encryption wrapping key data (32 bytes)
* }
*
* outputs:
* outnvl: propname -> error code (int32)
*/
static const zfs_ioc_key_t zfs_keys_clone[] = {
{"origin", DATA_TYPE_STRING, 0},
{"props", DATA_TYPE_NVLIST, ZK_OPTIONAL},
{"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL},
};
static int
zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
int error = 0;
nvlist_t *nvprops = NULL;
char *origin_name;
origin_name = fnvlist_lookup_string(innvl, "origin");
(void) nvlist_lookup_nvlist(innvl, "props", &nvprops);
if (strchr(fsname, '@') ||
strchr(fsname, '%'))
return (SET_ERROR(EINVAL));
if (dataset_namecheck(origin_name, NULL, NULL) != 0)
return (SET_ERROR(EINVAL));
error = dmu_objset_clone(fsname, origin_name);
/*
* It would be nice to do this atomically.
*/
if (error == 0) {
error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL,
nvprops, outnvl);
if (error != 0)
(void) dsl_destroy_head(fsname);
}
return (error);
}
static const zfs_ioc_key_t zfs_keys_remap[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_remap(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
if (strchr(fsname, '@') ||
strchr(fsname, '%'))
return (SET_ERROR(EINVAL));
return (dmu_objset_remap_indirects(fsname));
}
/*
* innvl: {
* "snaps" -> { snapshot1, snapshot2 }
* (optional) "props" -> { prop -> value (string) }
* }
*
* outnvl: snapshot -> error code (int32)
*/
static const zfs_ioc_key_t zfs_keys_snapshot[] = {
{"snaps", DATA_TYPE_NVLIST, 0},
{"props", DATA_TYPE_NVLIST, ZK_OPTIONAL},
};
static int
zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
nvlist_t *snaps;
nvlist_t *props = NULL;
int error, poollen;
nvpair_t *pair;
(void) nvlist_lookup_nvlist(innvl, "props", &props);
if ((error = zfs_check_userprops(poolname, props)) != 0)
return (error);
if (!nvlist_empty(props) &&
zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS))
return (SET_ERROR(ENOTSUP));
snaps = fnvlist_lookup_nvlist(innvl, "snaps");
poollen = strlen(poolname);
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
pair = nvlist_next_nvpair(snaps, pair)) {
const char *name = nvpair_name(pair);
const char *cp = strchr(name, '@');
/*
* The snap name must contain an @, and the part after it must
* contain only valid characters.
*/
if (cp == NULL ||
zfs_component_namecheck(cp + 1, NULL, NULL) != 0)
return (SET_ERROR(EINVAL));
/*
* The snap must be in the specified pool.
*/
if (strncmp(name, poolname, poollen) != 0 ||
(name[poollen] != '/' && name[poollen] != '@'))
return (SET_ERROR(EXDEV));
/* This must be the only snap of this fs. */
for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair);
pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) {
if (strncmp(name, nvpair_name(pair2), cp - name + 1)
== 0) {
return (SET_ERROR(EXDEV));
}
}
}
error = dsl_dataset_snapshot(snaps, props, outnvl);
return (error);
}
/*
* innvl: "message" -> string
*/
static const zfs_ioc_key_t zfs_keys_log_history[] = {
{"message", DATA_TYPE_STRING, 0},
};
/* ARGSUSED */
static int
zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl)
{
char *message;
spa_t *spa;
int error;
char *poolname;
/*
* The poolname in the ioctl is not set, we get it from the TSD,
* which was set at the end of the last successful ioctl that allows
* logging. The secpolicy func already checked that it is set.
* Only one log ioctl is allowed after each successful ioctl, so
* we clear the TSD here.
*/
poolname = tsd_get(zfs_allow_log_key);
if (poolname == NULL)
return (SET_ERROR(EINVAL));
(void) tsd_set(zfs_allow_log_key, NULL);
error = spa_open(poolname, &spa, FTAG);
strfree(poolname);
if (error != 0)
return (error);
message = fnvlist_lookup_string(innvl, "message");
if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
error = spa_history_log(spa, message);
spa_close(spa, FTAG);
return (error);
}
/*
* The dp_config_rwlock must not be held when calling this, because the
* unmount may need to write out data.
*
* This function is best-effort. Callers must deal gracefully if it
* remains mounted (or is remounted after this call).
*
* Returns 0 if the argument is not a snapshot, or it is not currently a
* filesystem, or we were able to unmount it. Returns error code otherwise.
*/
void
zfs_unmount_snap(const char *snapname)
{
if (strchr(snapname, '@') == NULL)
return;
(void) zfsctl_snapshot_unmount((char *)snapname, MNT_FORCE);
}
/* ARGSUSED */
static int
zfs_unmount_snap_cb(const char *snapname, void *arg)
{
zfs_unmount_snap(snapname);
return (0);
}
/*
* When a clone is destroyed, its origin may also need to be destroyed,
* in which case it must be unmounted. This routine will do that unmount
* if necessary.
*/
void
zfs_destroy_unmount_origin(const char *fsname)
{
int error;
objset_t *os;
dsl_dataset_t *ds;
error = dmu_objset_hold(fsname, FTAG, &os);
if (error != 0)
return;
ds = dmu_objset_ds(os);
if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) {
char originname[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_name(ds->ds_prev, originname);
dmu_objset_rele(os, FTAG);
zfs_unmount_snap(originname);
} else {
dmu_objset_rele(os, FTAG);
}
}
/*
* innvl: {
* "snaps" -> { snapshot1, snapshot2 }
* (optional boolean) "defer"
* }
*
* outnvl: snapshot -> error code (int32)
*/
static const zfs_ioc_key_t zfs_keys_destroy_snaps[] = {
{"snaps", DATA_TYPE_NVLIST, 0},
{"defer", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
nvlist_t *snaps;
nvpair_t *pair;
boolean_t defer;
snaps = fnvlist_lookup_nvlist(innvl, "snaps");
defer = nvlist_exists(innvl, "defer");
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
pair = nvlist_next_nvpair(snaps, pair)) {
zfs_unmount_snap(nvpair_name(pair));
}
return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl));
}
/*
* Create bookmarks. Bookmark names are of the form <fs>#<bmark>.
* All bookmarks must be in the same pool.
*
* innvl: {
* bookmark1 -> snapshot1, bookmark2 -> snapshot2
* }
*
* outnvl: bookmark -> error code (int32)
*
*/
static const zfs_ioc_key_t zfs_keys_bookmark[] = {
{"<bookmark>...", DATA_TYPE_STRING, ZK_WILDCARDLIST},
};
/* ARGSUSED */
static int
zfs_ioc_bookmark(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL);
pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) {
char *snap_name;
/*
* Verify the snapshot argument.
*/
if (nvpair_value_string(pair, &snap_name) != 0)
return (SET_ERROR(EINVAL));
/* Verify that the keys (bookmarks) are unique */
for (nvpair_t *pair2 = nvlist_next_nvpair(innvl, pair);
pair2 != NULL; pair2 = nvlist_next_nvpair(innvl, pair2)) {
if (strcmp(nvpair_name(pair), nvpair_name(pair2)) == 0)
return (SET_ERROR(EINVAL));
}
}
return (dsl_bookmark_create(innvl, outnvl));
}
/*
* innvl: {
* property 1, property 2, ...
* }
*
* outnvl: {
* bookmark name 1 -> { property 1, property 2, ... },
* bookmark name 2 -> { property 1, property 2, ... }
* }
*
*/
static const zfs_ioc_key_t zfs_keys_get_bookmarks[] = {
{"<property>...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST | ZK_OPTIONAL},
};
static int
zfs_ioc_get_bookmarks(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
return (dsl_get_bookmarks(fsname, innvl, outnvl));
}
/*
* innvl: {
* bookmark name 1, bookmark name 2
* }
*
* outnvl: bookmark -> error code (int32)
*
*/
static const zfs_ioc_key_t zfs_keys_destroy_bookmarks[] = {
{"<bookmark>...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST},
};
static int
zfs_ioc_destroy_bookmarks(const char *poolname, nvlist_t *innvl,
nvlist_t *outnvl)
{
int error, poollen;
poollen = strlen(poolname);
for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL);
pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) {
const char *name = nvpair_name(pair);
const char *cp = strchr(name, '#');
/*
* The bookmark name must contain an #, and the part after it
* must contain only valid characters.
*/
if (cp == NULL ||
zfs_component_namecheck(cp + 1, NULL, NULL) != 0)
return (SET_ERROR(EINVAL));
/*
* The bookmark must be in the specified pool.
*/
if (strncmp(name, poolname, poollen) != 0 ||
(name[poollen] != '/' && name[poollen] != '#'))
return (SET_ERROR(EXDEV));
}
error = dsl_bookmark_destroy(innvl, outnvl);
return (error);
}
static const zfs_ioc_key_t zfs_keys_channel_program[] = {
{"program", DATA_TYPE_STRING, 0},
{"arg", DATA_TYPE_ANY, 0},
{"sync", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL},
{"instrlimit", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"memlimit", DATA_TYPE_UINT64, ZK_OPTIONAL},
};
static int
zfs_ioc_channel_program(const char *poolname, nvlist_t *innvl,
nvlist_t *outnvl)
{
char *program;
uint64_t instrlimit, memlimit;
boolean_t sync_flag;
nvpair_t *nvarg = NULL;
program = fnvlist_lookup_string(innvl, ZCP_ARG_PROGRAM);
if (0 != nvlist_lookup_boolean_value(innvl, ZCP_ARG_SYNC, &sync_flag)) {
sync_flag = B_TRUE;
}
if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_INSTRLIMIT, &instrlimit)) {
instrlimit = ZCP_DEFAULT_INSTRLIMIT;
}
if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_MEMLIMIT, &memlimit)) {
memlimit = ZCP_DEFAULT_MEMLIMIT;
}
nvarg = fnvlist_lookup_nvpair(innvl, ZCP_ARG_ARGLIST);
if (instrlimit == 0 || instrlimit > zfs_lua_max_instrlimit)
return (EINVAL);
if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
return (EINVAL);
return (zcp_eval(poolname, program, sync_flag, instrlimit, memlimit,
nvarg, outnvl));
}
/*
* innvl: unused
* outnvl: empty
*/
static const zfs_ioc_key_t zfs_keys_pool_checkpoint[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_pool_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
return (spa_checkpoint(poolname));
}
/*
* innvl: unused
* outnvl: empty
*/
static const zfs_ioc_key_t zfs_keys_pool_discard_checkpoint[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_pool_discard_checkpoint(const char *poolname, nvlist_t *innvl,
nvlist_t *outnvl)
{
return (spa_checkpoint_discard(poolname));
}
/*
* inputs:
* zc_name name of dataset to destroy
* zc_defer_destroy mark for deferred destroy
*
* outputs: none
*/
static int
zfs_ioc_destroy(zfs_cmd_t *zc)
{
objset_t *os;
dmu_objset_type_t ost;
int err;
err = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (err != 0)
return (err);
ost = dmu_objset_type(os);
dmu_objset_rele(os, FTAG);
if (ost == DMU_OST_ZFS)
zfs_unmount_snap(zc->zc_name);
if (strchr(zc->zc_name, '@')) {
err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy);
} else {
err = dsl_destroy_head(zc->zc_name);
if (err == EEXIST) {
/*
* It is possible that the given DS may have
* hidden child (%recv) datasets - "leftovers"
* resulting from the previously interrupted
* 'zfs receive'.
*
* 6 extra bytes for /%recv
*/
char namebuf[ZFS_MAX_DATASET_NAME_LEN + 6];
if (snprintf(namebuf, sizeof (namebuf), "%s/%s",
zc->zc_name, recv_clone_name) >=
sizeof (namebuf))
return (SET_ERROR(EINVAL));
/*
* Try to remove the hidden child (%recv) and after
* that try to remove the target dataset.
* If the hidden child (%recv) does not exist
* the original error (EEXIST) will be returned
*/
err = dsl_destroy_head(namebuf);
if (err == 0)
err = dsl_destroy_head(zc->zc_name);
else if (err == ENOENT)
err = SET_ERROR(EEXIST);
}
}
return (err);
}
/*
* innvl: {
* "initialize_command" -> POOL_INITIALIZE_{CANCEL|DO|SUSPEND} (uint64)
* "initialize_vdevs": { -> guids to initialize (nvlist)
* "vdev_path_1": vdev_guid_1, (uint64),
* "vdev_path_2": vdev_guid_2, (uint64),
* ...
* },
* }
*
* outnvl: {
* "initialize_vdevs": { -> initialization errors (nvlist)
* "vdev_path_1": errno, see function body for possible errnos (uint64)
* "vdev_path_2": errno, ... (uint64)
* ...
* }
* }
*
* EINVAL is returned for an unknown commands or if any of the provided vdev
* guids have be specified with a type other than uint64.
*/
static const zfs_ioc_key_t zfs_keys_pool_initialize[] = {
{ZPOOL_INITIALIZE_COMMAND, DATA_TYPE_UINT64, 0},
{ZPOOL_INITIALIZE_VDEVS, DATA_TYPE_NVLIST, 0}
};
static int
zfs_ioc_pool_initialize(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
uint64_t cmd_type;
if (nvlist_lookup_uint64(innvl, ZPOOL_INITIALIZE_COMMAND,
&cmd_type) != 0) {
return (SET_ERROR(EINVAL));
}
if (!(cmd_type == POOL_INITIALIZE_CANCEL ||
cmd_type == POOL_INITIALIZE_DO ||
cmd_type == POOL_INITIALIZE_SUSPEND)) {
return (SET_ERROR(EINVAL));
}
nvlist_t *vdev_guids;
if (nvlist_lookup_nvlist(innvl, ZPOOL_INITIALIZE_VDEVS,
&vdev_guids) != 0) {
return (SET_ERROR(EINVAL));
}
for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL);
pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) {
uint64_t vdev_guid;
if (nvpair_value_uint64(pair, &vdev_guid) != 0) {
return (SET_ERROR(EINVAL));
}
}
spa_t *spa;
int error = spa_open(poolname, &spa, FTAG);
if (error != 0)
return (error);
nvlist_t *vdev_errlist = fnvlist_alloc();
int total_errors = spa_vdev_initialize(spa, vdev_guids, cmd_type,
vdev_errlist);
if (fnvlist_size(vdev_errlist) > 0) {
fnvlist_add_nvlist(outnvl, ZPOOL_INITIALIZE_VDEVS,
vdev_errlist);
}
fnvlist_free(vdev_errlist);
spa_close(spa, FTAG);
return (total_errors > 0 ? EINVAL : 0);
}
/*
* fsname is name of dataset to rollback (to most recent snapshot)
*
* innvl may contain name of expected target snapshot
*
* outnvl: "target" -> name of most recent snapshot
* }
*/
static const zfs_ioc_key_t zfs_keys_rollback[] = {
{"target", DATA_TYPE_STRING, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_rollback(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
zfsvfs_t *zfsvfs;
zvol_state_t *zv;
char *target = NULL;
int error;
(void) nvlist_lookup_string(innvl, "target", &target);
if (target != NULL) {
const char *cp = strchr(target, '@');
/*
* The snap name must contain an @, and the part after it must
* contain only valid characters.
*/
if (cp == NULL ||
zfs_component_namecheck(cp + 1, NULL, NULL) != 0)
return (SET_ERROR(EINVAL));
}
if (getzfsvfs(fsname, &zfsvfs) == 0) {
dsl_dataset_t *ds;
ds = dmu_objset_ds(zfsvfs->z_os);
error = zfs_suspend_fs(zfsvfs);
if (error == 0) {
int resume_err;
error = dsl_dataset_rollback(fsname, target, zfsvfs,
outnvl);
resume_err = zfs_resume_fs(zfsvfs, ds);
error = error ? error : resume_err;
}
deactivate_super(zfsvfs->z_sb);
} else if ((zv = zvol_suspend(fsname)) != NULL) {
error = dsl_dataset_rollback(fsname, target, zvol_tag(zv),
outnvl);
zvol_resume(zv);
} else {
error = dsl_dataset_rollback(fsname, target, NULL, outnvl);
}
return (error);
}
static int
recursive_unmount(const char *fsname, void *arg)
{
const char *snapname = arg;
char *fullname;
fullname = kmem_asprintf("%s@%s", fsname, snapname);
zfs_unmount_snap(fullname);
strfree(fullname);
return (0);
}
/*
* inputs:
* zc_name old name of dataset
* zc_value new name of dataset
* zc_cookie recursive flag (only valid for snapshots)
*
* outputs: none
*/
static int
zfs_ioc_rename(zfs_cmd_t *zc)
{
objset_t *os;
dmu_objset_type_t ost;
boolean_t recursive = zc->zc_cookie & 1;
char *at;
int err;
/* "zfs rename" from and to ...%recv datasets should both fail */
zc->zc_name[sizeof (zc->zc_name) - 1] = '\0';
zc->zc_value[sizeof (zc->zc_value) - 1] = '\0';
if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 ||
dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
strchr(zc->zc_name, '%') || strchr(zc->zc_value, '%'))
return (SET_ERROR(EINVAL));
err = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (err != 0)
return (err);
ost = dmu_objset_type(os);
dmu_objset_rele(os, FTAG);
at = strchr(zc->zc_name, '@');
if (at != NULL) {
/* snaps must be in same fs */
int error;
if (strncmp(zc->zc_name, zc->zc_value, at - zc->zc_name + 1))
return (SET_ERROR(EXDEV));
*at = '\0';
if (ost == DMU_OST_ZFS) {
error = dmu_objset_find(zc->zc_name,
recursive_unmount, at + 1,
recursive ? DS_FIND_CHILDREN : 0);
if (error != 0) {
*at = '@';
return (error);
}
}
error = dsl_dataset_rename_snapshot(zc->zc_name,
at + 1, strchr(zc->zc_value, '@') + 1, recursive);
*at = '@';
return (error);
} else {
return (dsl_dir_rename(zc->zc_name, zc->zc_value));
}
}
static int
zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr)
{
const char *propname = nvpair_name(pair);
boolean_t issnap = (strchr(dsname, '@') != NULL);
zfs_prop_t prop = zfs_name_to_prop(propname);
uint64_t intval;
int err;
if (prop == ZPROP_INVAL) {
if (zfs_prop_user(propname)) {
if ((err = zfs_secpolicy_write_perms(dsname,
ZFS_DELEG_PERM_USERPROP, cr)))
return (err);
return (0);
}
if (!issnap && zfs_prop_userquota(propname)) {
const char *perm = NULL;
const char *uq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA];
const char *gq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA];
const char *uiq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA];
const char *giq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA];
const char *pq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA];
const char *piq_prefix = zfs_userquota_prop_prefixes[\
ZFS_PROP_PROJECTOBJQUOTA];
if (strncmp(propname, uq_prefix,
strlen(uq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_USERQUOTA;
} else if (strncmp(propname, uiq_prefix,
strlen(uiq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_USEROBJQUOTA;
} else if (strncmp(propname, gq_prefix,
strlen(gq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_GROUPQUOTA;
} else if (strncmp(propname, giq_prefix,
strlen(giq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_GROUPOBJQUOTA;
} else if (strncmp(propname, pq_prefix,
strlen(pq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_PROJECTQUOTA;
} else if (strncmp(propname, piq_prefix,
strlen(piq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_PROJECTOBJQUOTA;
} else {
/* {USER|GROUP|PROJECT}USED are read-only */
return (SET_ERROR(EINVAL));
}
if ((err = zfs_secpolicy_write_perms(dsname, perm, cr)))
return (err);
return (0);
}
return (SET_ERROR(EINVAL));
}
if (issnap)
return (SET_ERROR(EINVAL));
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
/*
* dsl_prop_get_all_impl() returns properties in this
* format.
*/
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&pair) == 0);
}
/*
* Check that this value is valid for this pool version
*/
switch (prop) {
case ZFS_PROP_COMPRESSION:
/*
* If the user specified gzip compression, make sure
* the SPA supports it. We ignore any errors here since
* we'll catch them later.
*/
if (nvpair_value_uint64(pair, &intval) == 0) {
if (intval >= ZIO_COMPRESS_GZIP_1 &&
intval <= ZIO_COMPRESS_GZIP_9 &&
zfs_earlier_version(dsname,
SPA_VERSION_GZIP_COMPRESSION)) {
return (SET_ERROR(ENOTSUP));
}
if (intval == ZIO_COMPRESS_ZLE &&
zfs_earlier_version(dsname,
SPA_VERSION_ZLE_COMPRESSION))
return (SET_ERROR(ENOTSUP));
if (intval == ZIO_COMPRESS_LZ4) {
spa_t *spa;
if ((err = spa_open(dsname, &spa, FTAG)) != 0)
return (err);
if (!spa_feature_is_enabled(spa,
SPA_FEATURE_LZ4_COMPRESS)) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
spa_close(spa, FTAG);
}
/*
* If this is a bootable dataset then
* verify that the compression algorithm
* is supported for booting. We must return
* something other than ENOTSUP since it
* implies a downrev pool version.
*/
if (zfs_is_bootfs(dsname) &&
!BOOTFS_COMPRESS_VALID(intval)) {
return (SET_ERROR(ERANGE));
}
}
break;
case ZFS_PROP_COPIES:
if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS))
return (SET_ERROR(ENOTSUP));
break;
case ZFS_PROP_VOLBLOCKSIZE:
case ZFS_PROP_RECORDSIZE:
/* Record sizes above 128k need the feature to be enabled */
if (nvpair_value_uint64(pair, &intval) == 0 &&
intval > SPA_OLD_MAXBLOCKSIZE) {
spa_t *spa;
/*
* We don't allow setting the property above 1MB,
* unless the tunable has been changed.
*/
if (intval > zfs_max_recordsize ||
intval > SPA_MAXBLOCKSIZE)
return (SET_ERROR(ERANGE));
if ((err = spa_open(dsname, &spa, FTAG)) != 0)
return (err);
if (!spa_feature_is_enabled(spa,
SPA_FEATURE_LARGE_BLOCKS)) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
spa_close(spa, FTAG);
}
break;
case ZFS_PROP_DNODESIZE:
/* Dnode sizes above 512 need the feature to be enabled */
if (nvpair_value_uint64(pair, &intval) == 0 &&
intval != ZFS_DNSIZE_LEGACY) {
spa_t *spa;
/*
* If this is a bootable dataset then
* we don't allow large (>512B) dnodes,
* because GRUB doesn't support them.
*/
if (zfs_is_bootfs(dsname) &&
intval != ZFS_DNSIZE_LEGACY) {
return (SET_ERROR(EDOM));
}
if ((err = spa_open(dsname, &spa, FTAG)) != 0)
return (err);
if (!spa_feature_is_enabled(spa,
SPA_FEATURE_LARGE_DNODE)) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
spa_close(spa, FTAG);
}
break;
case ZFS_PROP_SPECIAL_SMALL_BLOCKS:
/*
* This property could require the allocation classes
* feature to be active for setting, however we allow
* it so that tests of settable properties succeed.
* The CLI will issue a warning in this case.
*/
break;
case ZFS_PROP_SHARESMB:
if (zpl_earlier_version(dsname, ZPL_VERSION_FUID))
return (SET_ERROR(ENOTSUP));
break;
case ZFS_PROP_ACLINHERIT:
if (nvpair_type(pair) == DATA_TYPE_UINT64 &&
nvpair_value_uint64(pair, &intval) == 0) {
if (intval == ZFS_ACL_PASSTHROUGH_X &&
zfs_earlier_version(dsname,
SPA_VERSION_PASSTHROUGH_X))
return (SET_ERROR(ENOTSUP));
}
break;
case ZFS_PROP_CHECKSUM:
case ZFS_PROP_DEDUP:
{
spa_feature_t feature;
spa_t *spa;
int err;
/* dedup feature version checks */
if (prop == ZFS_PROP_DEDUP &&
zfs_earlier_version(dsname, SPA_VERSION_DEDUP))
return (SET_ERROR(ENOTSUP));
if (nvpair_type(pair) == DATA_TYPE_UINT64 &&
nvpair_value_uint64(pair, &intval) == 0) {
/* check prop value is enabled in features */
feature = zio_checksum_to_feature(
intval & ZIO_CHECKSUM_MASK);
if (feature == SPA_FEATURE_NONE)
break;
if ((err = spa_open(dsname, &spa, FTAG)) != 0)
return (err);
if (!spa_feature_is_enabled(spa, feature)) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
spa_close(spa, FTAG);
}
break;
}
default:
break;
}
return (zfs_secpolicy_setprop(dsname, prop, pair, CRED()));
}
/*
* Removes properties from the given props list that fail permission checks
* needed to clear them and to restore them in case of a receive error. For each
* property, make sure we have both set and inherit permissions.
*
* Returns the first error encountered if any permission checks fail. If the
* caller provides a non-NULL errlist, it also gives the complete list of names
* of all the properties that failed a permission check along with the
* corresponding error numbers. The caller is responsible for freeing the
* returned errlist.
*
* If every property checks out successfully, zero is returned and the list
* pointed at by errlist is NULL.
*/
static int
zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errlist)
{
zfs_cmd_t *zc;
nvpair_t *pair, *next_pair;
nvlist_t *errors;
int err, rv = 0;
if (props == NULL)
return (0);
VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0);
zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP);
(void) strlcpy(zc->zc_name, dataset, sizeof (zc->zc_name));
pair = nvlist_next_nvpair(props, NULL);
while (pair != NULL) {
next_pair = nvlist_next_nvpair(props, pair);
(void) strlcpy(zc->zc_value, nvpair_name(pair),
sizeof (zc->zc_value));
if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 ||
(err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) {
VERIFY(nvlist_remove_nvpair(props, pair) == 0);
VERIFY(nvlist_add_int32(errors,
zc->zc_value, err) == 0);
}
pair = next_pair;
}
kmem_free(zc, sizeof (zfs_cmd_t));
if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) {
nvlist_free(errors);
errors = NULL;
} else {
VERIFY(nvpair_value_int32(pair, &rv) == 0);
}
if (errlist == NULL)
nvlist_free(errors);
else
*errlist = errors;
return (rv);
}
static boolean_t
propval_equals(nvpair_t *p1, nvpair_t *p2)
{
if (nvpair_type(p1) == DATA_TYPE_NVLIST) {
/* dsl_prop_get_all_impl() format */
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(p1, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&p1) == 0);
}
if (nvpair_type(p2) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(p2, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&p2) == 0);
}
if (nvpair_type(p1) != nvpair_type(p2))
return (B_FALSE);
if (nvpair_type(p1) == DATA_TYPE_STRING) {
char *valstr1, *valstr2;
VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0);
VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0);
return (strcmp(valstr1, valstr2) == 0);
} else {
uint64_t intval1, intval2;
VERIFY(nvpair_value_uint64(p1, &intval1) == 0);
VERIFY(nvpair_value_uint64(p2, &intval2) == 0);
return (intval1 == intval2);
}
}
/*
* Remove properties from props if they are not going to change (as determined
* by comparison with origprops). Remove them from origprops as well, since we
* do not need to clear or restore properties that won't change.
*/
static void
props_reduce(nvlist_t *props, nvlist_t *origprops)
{
nvpair_t *pair, *next_pair;
if (origprops == NULL)
return; /* all props need to be received */
pair = nvlist_next_nvpair(props, NULL);
while (pair != NULL) {
const char *propname = nvpair_name(pair);
nvpair_t *match;
next_pair = nvlist_next_nvpair(props, pair);
if ((nvlist_lookup_nvpair(origprops, propname,
&match) != 0) || !propval_equals(pair, match))
goto next; /* need to set received value */
/* don't clear the existing received value */
(void) nvlist_remove_nvpair(origprops, match);
/* don't bother receiving the property */
(void) nvlist_remove_nvpair(props, pair);
next:
pair = next_pair;
}
}
/*
* Extract properties that cannot be set PRIOR to the receipt of a dataset.
* For example, refquota cannot be set until after the receipt of a dataset,
* because in replication streams, an older/earlier snapshot may exceed the
* refquota. We want to receive the older/earlier snapshot, but setting
* refquota pre-receipt will set the dsl's ACTUAL quota, which will prevent
* the older/earlier snapshot from being received (with EDQUOT).
*
* The ZFS test "zfs_receive_011_pos" demonstrates such a scenario.
*
* libzfs will need to be judicious handling errors encountered by props
* extracted by this function.
*/
static nvlist_t *
extract_delay_props(nvlist_t *props)
{
nvlist_t *delayprops;
nvpair_t *nvp, *tmp;
static const zfs_prop_t delayable[] = {
ZFS_PROP_REFQUOTA,
ZFS_PROP_KEYLOCATION,
0
};
int i;
VERIFY(nvlist_alloc(&delayprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
for (nvp = nvlist_next_nvpair(props, NULL); nvp != NULL;
nvp = nvlist_next_nvpair(props, nvp)) {
/*
* strcmp() is safe because zfs_prop_to_name() always returns
* a bounded string.
*/
for (i = 0; delayable[i] != 0; i++) {
if (strcmp(zfs_prop_to_name(delayable[i]),
nvpair_name(nvp)) == 0) {
break;
}
}
if (delayable[i] != 0) {
tmp = nvlist_prev_nvpair(props, nvp);
VERIFY(nvlist_add_nvpair(delayprops, nvp) == 0);
VERIFY(nvlist_remove_nvpair(props, nvp) == 0);
nvp = tmp;
}
}
if (nvlist_empty(delayprops)) {
nvlist_free(delayprops);
delayprops = NULL;
}
return (delayprops);
}
#ifdef DEBUG
static boolean_t zfs_ioc_recv_inject_err;
#endif
/*
* nvlist 'errors' is always allocated. It will contain descriptions of
* encountered errors, if any. It's the callers responsibility to free.
*/
static int
zfs_ioc_recv_impl(char *tofs, char *tosnap, char *origin, nvlist_t *recvprops,
nvlist_t *localprops, nvlist_t *hidden_args, boolean_t force,
boolean_t resumable, int input_fd, dmu_replay_record_t *begin_record,
int cleanup_fd, uint64_t *read_bytes, uint64_t *errflags,
uint64_t *action_handle, nvlist_t **errors)
{
dmu_recv_cookie_t drc;
int error = 0;
int props_error = 0;
offset_t off;
nvlist_t *local_delayprops = NULL;
nvlist_t *recv_delayprops = NULL;
nvlist_t *origprops = NULL; /* existing properties */
nvlist_t *origrecvd = NULL; /* existing received properties */
boolean_t first_recvd_props = B_FALSE;
file_t *input_fp;
*read_bytes = 0;
*errflags = 0;
*errors = fnvlist_alloc();
input_fp = getf(input_fd);
if (input_fp == NULL)
return (SET_ERROR(EBADF));
error = dmu_recv_begin(tofs, tosnap, begin_record, force,
resumable, localprops, hidden_args, origin, &drc);
if (error != 0)
goto out;
/*
* Set properties before we receive the stream so that they are applied
* to the new data. Note that we must call dmu_recv_stream() if
* dmu_recv_begin() succeeds.
*/
if (recvprops != NULL && !drc.drc_newfs) {
if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >=
SPA_VERSION_RECVD_PROPS &&
!dsl_prop_get_hasrecvd(tofs))
first_recvd_props = B_TRUE;
/*
* If new received properties are supplied, they are to
* completely replace the existing received properties,
* so stash away the existing ones.
*/
if (dsl_prop_get_received(tofs, &origrecvd) == 0) {
nvlist_t *errlist = NULL;
/*
* Don't bother writing a property if its value won't
* change (and avoid the unnecessary security checks).
*
* The first receive after SPA_VERSION_RECVD_PROPS is a
* special case where we blow away all local properties
* regardless.
*/
if (!first_recvd_props)
props_reduce(recvprops, origrecvd);
if (zfs_check_clearable(tofs, origrecvd, &errlist) != 0)
(void) nvlist_merge(*errors, errlist, 0);
nvlist_free(errlist);
if (clear_received_props(tofs, origrecvd,
first_recvd_props ? NULL : recvprops) != 0)
*errflags |= ZPROP_ERR_NOCLEAR;
} else {
*errflags |= ZPROP_ERR_NOCLEAR;
}
}
/*
* Stash away existing properties so we can restore them on error unless
* we're doing the first receive after SPA_VERSION_RECVD_PROPS, in which
* case "origrecvd" will take care of that.
*/
if (localprops != NULL && !drc.drc_newfs && !first_recvd_props) {
objset_t *os;
if (dmu_objset_hold(tofs, FTAG, &os) == 0) {
if (dsl_prop_get_all(os, &origprops) != 0) {
*errflags |= ZPROP_ERR_NOCLEAR;
}
dmu_objset_rele(os, FTAG);
} else {
*errflags |= ZPROP_ERR_NOCLEAR;
}
}
if (recvprops != NULL) {
props_error = dsl_prop_set_hasrecvd(tofs);
if (props_error == 0) {
recv_delayprops = extract_delay_props(recvprops);
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED,
recvprops, *errors);
}
}
if (localprops != NULL) {
nvlist_t *oprops = fnvlist_alloc();
nvlist_t *xprops = fnvlist_alloc();
nvpair_t *nvp = NULL;
while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) {
if (nvpair_type(nvp) == DATA_TYPE_BOOLEAN) {
/* -x property */
const char *name = nvpair_name(nvp);
zfs_prop_t prop = zfs_name_to_prop(name);
if (prop != ZPROP_INVAL) {
if (!zfs_prop_inheritable(prop))
continue;
} else if (!zfs_prop_user(name))
continue;
fnvlist_add_boolean(xprops, name);
} else {
/* -o property=value */
fnvlist_add_nvpair(oprops, nvp);
}
}
local_delayprops = extract_delay_props(oprops);
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL,
oprops, *errors);
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED,
xprops, *errors);
nvlist_free(oprops);
nvlist_free(xprops);
}
off = input_fp->f_offset;
error = dmu_recv_stream(&drc, input_fp->f_vnode, &off, cleanup_fd,
action_handle);
if (error == 0) {
zfsvfs_t *zfsvfs = NULL;
zvol_state_t *zv = NULL;
if (getzfsvfs(tofs, &zfsvfs) == 0) {
/* online recv */
dsl_dataset_t *ds;
int end_err;
ds = dmu_objset_ds(zfsvfs->z_os);
error = zfs_suspend_fs(zfsvfs);
/*
* If the suspend fails, then the recv_end will
* likely also fail, and clean up after itself.
*/
end_err = dmu_recv_end(&drc, zfsvfs);
if (error == 0)
error = zfs_resume_fs(zfsvfs, ds);
error = error ? error : end_err;
deactivate_super(zfsvfs->z_sb);
} else if ((zv = zvol_suspend(tofs)) != NULL) {
error = dmu_recv_end(&drc, zvol_tag(zv));
zvol_resume(zv);
} else {
error = dmu_recv_end(&drc, NULL);
}
/* Set delayed properties now, after we're done receiving. */
if (recv_delayprops != NULL && error == 0) {
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED,
recv_delayprops, *errors);
}
if (local_delayprops != NULL && error == 0) {
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL,
local_delayprops, *errors);
}
}
/*
* Merge delayed props back in with initial props, in case
* we're DEBUG and zfs_ioc_recv_inject_err is set (which means
* we have to make sure clear_received_props() includes
* the delayed properties).
*
* Since zfs_ioc_recv_inject_err is only in DEBUG kernels,
* using ASSERT() will be just like a VERIFY.
*/
if (recv_delayprops != NULL) {
ASSERT(nvlist_merge(recvprops, recv_delayprops, 0) == 0);
nvlist_free(recv_delayprops);
}
if (local_delayprops != NULL) {
ASSERT(nvlist_merge(localprops, local_delayprops, 0) == 0);
nvlist_free(local_delayprops);
}
*read_bytes = off - input_fp->f_offset;
if (VOP_SEEK(input_fp->f_vnode, input_fp->f_offset, &off, NULL) == 0)
input_fp->f_offset = off;
#ifdef DEBUG
if (zfs_ioc_recv_inject_err) {
zfs_ioc_recv_inject_err = B_FALSE;
error = 1;
}
#endif
/*
* On error, restore the original props.
*/
if (error != 0 && recvprops != NULL && !drc.drc_newfs) {
if (clear_received_props(tofs, recvprops, NULL) != 0) {
/*
* We failed to clear the received properties.
* Since we may have left a $recvd value on the
* system, we can't clear the $hasrecvd flag.
*/
*errflags |= ZPROP_ERR_NORESTORE;
} else if (first_recvd_props) {
dsl_prop_unset_hasrecvd(tofs);
}
if (origrecvd == NULL && !drc.drc_newfs) {
/* We failed to stash the original properties. */
*errflags |= ZPROP_ERR_NORESTORE;
}
/*
* dsl_props_set() will not convert RECEIVED to LOCAL on or
* after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL
* explicitly if we're restoring local properties cleared in the
* first new-style receive.
*/
if (origrecvd != NULL &&
zfs_set_prop_nvlist(tofs, (first_recvd_props ?
ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED),
origrecvd, NULL) != 0) {
/*
* We stashed the original properties but failed to
* restore them.
*/
*errflags |= ZPROP_ERR_NORESTORE;
}
}
if (error != 0 && localprops != NULL && !drc.drc_newfs &&
!first_recvd_props) {
nvlist_t *setprops;
nvlist_t *inheritprops;
nvpair_t *nvp;
if (origprops == NULL) {
/* We failed to stash the original properties. */
*errflags |= ZPROP_ERR_NORESTORE;
goto out;
}
/* Restore original props */
setprops = fnvlist_alloc();
inheritprops = fnvlist_alloc();
nvp = NULL;
while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) {
const char *name = nvpair_name(nvp);
const char *source;
nvlist_t *attrs;
if (!nvlist_exists(origprops, name)) {
/*
* Property was not present or was explicitly
* inherited before the receive, restore this.
*/
fnvlist_add_boolean(inheritprops, name);
continue;
}
attrs = fnvlist_lookup_nvlist(origprops, name);
source = fnvlist_lookup_string(attrs, ZPROP_SOURCE);
/* Skip received properties */
if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0)
continue;
if (strcmp(source, tofs) == 0) {
/* Property was locally set */
fnvlist_add_nvlist(setprops, name, attrs);
} else {
/* Property was implicitly inherited */
fnvlist_add_boolean(inheritprops, name);
}
}
if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, setprops,
NULL) != 0)
*errflags |= ZPROP_ERR_NORESTORE;
if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, inheritprops,
NULL) != 0)
*errflags |= ZPROP_ERR_NORESTORE;
nvlist_free(setprops);
nvlist_free(inheritprops);
}
out:
releasef(input_fd);
nvlist_free(origrecvd);
nvlist_free(origprops);
if (error == 0)
error = props_error;
return (error);
}
/*
* inputs:
* zc_name name of containing filesystem (unused)
* zc_nvlist_src{_size} nvlist of properties to apply
* zc_nvlist_conf{_size} nvlist of properties to exclude
* (DATA_TYPE_BOOLEAN) and override (everything else)
* zc_value name of snapshot to create
* zc_string name of clone origin (if DRR_FLAG_CLONE)
* zc_cookie file descriptor to recv from
* zc_begin_record the BEGIN record of the stream (not byteswapped)
* zc_guid force flag
* zc_cleanup_fd cleanup-on-exit file descriptor
* zc_action_handle handle for this guid/ds mapping (or zero on first call)
*
* outputs:
* zc_cookie number of bytes read
* zc_obj zprop_errflags_t
* zc_action_handle handle for this guid/ds mapping
* zc_nvlist_dst{_size} error for each unapplied received property
*/
static int
zfs_ioc_recv(zfs_cmd_t *zc)
{
dmu_replay_record_t begin_record;
nvlist_t *errors = NULL;
nvlist_t *recvdprops = NULL;
nvlist_t *localprops = NULL;
char *origin = NULL;
char *tosnap;
char tofs[ZFS_MAX_DATASET_NAME_LEN];
int error = 0;
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
strchr(zc->zc_value, '@') == NULL ||
strchr(zc->zc_value, '%'))
return (SET_ERROR(EINVAL));
(void) strlcpy(tofs, zc->zc_value, sizeof (tofs));
tosnap = strchr(tofs, '@');
*tosnap++ = '\0';
if (zc->zc_nvlist_src != 0 &&
(error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &recvdprops)) != 0)
return (error);
if (zc->zc_nvlist_conf != 0 &&
(error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &localprops)) != 0)
return (error);
if (zc->zc_string[0])
origin = zc->zc_string;
begin_record.drr_type = DRR_BEGIN;
begin_record.drr_payloadlen = 0;
begin_record.drr_u.drr_begin = zc->zc_begin_record;
error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvdprops, localprops,
NULL, zc->zc_guid, B_FALSE, zc->zc_cookie, &begin_record,
zc->zc_cleanup_fd, &zc->zc_cookie, &zc->zc_obj,
&zc->zc_action_handle, &errors);
nvlist_free(recvdprops);
nvlist_free(localprops);
/*
* Now that all props, initial and delayed, are set, report the prop
* errors to the caller.
*/
if (zc->zc_nvlist_dst_size != 0 && errors != NULL &&
(nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 ||
put_nvlist(zc, errors) != 0)) {
/*
* Caller made zc->zc_nvlist_dst less than the minimum expected
* size or supplied an invalid address.
*/
error = SET_ERROR(EINVAL);
}
nvlist_free(errors);
return (error);
}
/*
* innvl: {
* "snapname" -> full name of the snapshot to create
* (optional) "props" -> received properties to set (nvlist)
* (optional) "localprops" -> override and exclude properties (nvlist)
* (optional) "origin" -> name of clone origin (DRR_FLAG_CLONE)
* "begin_record" -> non-byteswapped dmu_replay_record_t
* "input_fd" -> file descriptor to read stream from (int32)
* (optional) "force" -> force flag (value ignored)
* (optional) "resumable" -> resumable flag (value ignored)
* (optional) "cleanup_fd" -> cleanup-on-exit file descriptor
* (optional) "action_handle" -> handle for this guid/ds mapping
* (optional) "hidden_args" -> { "wkeydata" -> value }
* }
*
* outnvl: {
* "read_bytes" -> number of bytes read
* "error_flags" -> zprop_errflags_t
* "action_handle" -> handle for this guid/ds mapping
* "errors" -> error for each unapplied received property (nvlist)
* }
*/
static const zfs_ioc_key_t zfs_keys_recv_new[] = {
{"snapname", DATA_TYPE_STRING, 0},
{"props", DATA_TYPE_NVLIST, ZK_OPTIONAL},
{"localprops", DATA_TYPE_NVLIST, ZK_OPTIONAL},
{"origin", DATA_TYPE_STRING, ZK_OPTIONAL},
{"begin_record", DATA_TYPE_BYTE_ARRAY, 0},
{"input_fd", DATA_TYPE_INT32, 0},
{"force", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"resumable", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL},
{"action_handle", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL},
};
static int
zfs_ioc_recv_new(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
dmu_replay_record_t *begin_record;
uint_t begin_record_size;
nvlist_t *errors = NULL;
nvlist_t *recvprops = NULL;
nvlist_t *localprops = NULL;
nvlist_t *hidden_args = NULL;
char *snapname;
char *origin = NULL;
char *tosnap;
char tofs[ZFS_MAX_DATASET_NAME_LEN];
boolean_t force;
boolean_t resumable;
uint64_t action_handle = 0;
uint64_t read_bytes = 0;
uint64_t errflags = 0;
int input_fd = -1;
int cleanup_fd = -1;
int error;
snapname = fnvlist_lookup_string(innvl, "snapname");
if (dataset_namecheck(snapname, NULL, NULL) != 0 ||
strchr(snapname, '@') == NULL ||
strchr(snapname, '%'))
return (SET_ERROR(EINVAL));
(void) strcpy(tofs, snapname);
tosnap = strchr(tofs, '@');
*tosnap++ = '\0';
error = nvlist_lookup_string(innvl, "origin", &origin);
if (error && error != ENOENT)
return (error);
error = nvlist_lookup_byte_array(innvl, "begin_record",
(uchar_t **)&begin_record, &begin_record_size);
if (error != 0 || begin_record_size != sizeof (*begin_record))
return (SET_ERROR(EINVAL));
input_fd = fnvlist_lookup_int32(innvl, "input_fd");
force = nvlist_exists(innvl, "force");
resumable = nvlist_exists(innvl, "resumable");
error = nvlist_lookup_int32(innvl, "cleanup_fd", &cleanup_fd);
if (error && error != ENOENT)
return (error);
error = nvlist_lookup_uint64(innvl, "action_handle", &action_handle);
if (error && error != ENOENT)
return (error);
/* we still use "props" here for backwards compatibility */
error = nvlist_lookup_nvlist(innvl, "props", &recvprops);
if (error && error != ENOENT)
return (error);
error = nvlist_lookup_nvlist(innvl, "localprops", &localprops);
if (error && error != ENOENT)
return (error);
error = nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args);
if (error && error != ENOENT)
return (error);
error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvprops, localprops,
hidden_args, force, resumable, input_fd, begin_record, cleanup_fd,
&read_bytes, &errflags, &action_handle, &errors);
fnvlist_add_uint64(outnvl, "read_bytes", read_bytes);
fnvlist_add_uint64(outnvl, "error_flags", errflags);
fnvlist_add_uint64(outnvl, "action_handle", action_handle);
fnvlist_add_nvlist(outnvl, "errors", errors);
nvlist_free(errors);
nvlist_free(recvprops);
nvlist_free(localprops);
return (error);
}
/*
* inputs:
* zc_name name of snapshot to send
* zc_cookie file descriptor to send stream to
* zc_obj fromorigin flag (mutually exclusive with zc_fromobj)
* zc_sendobj objsetid of snapshot to send
* zc_fromobj objsetid of incremental fromsnap (may be zero)
* zc_guid if set, estimate size of stream only. zc_cookie is ignored.
* output size in zc_objset_type.
* zc_flags lzc_send_flags
*
* outputs:
* zc_objset_type estimated size, if zc_guid is set
*
* NOTE: This is no longer the preferred interface, any new functionality
* should be added to zfs_ioc_send_new() instead.
*/
static int
zfs_ioc_send(zfs_cmd_t *zc)
{
int error;
offset_t off;
boolean_t estimate = (zc->zc_guid != 0);
boolean_t embedok = (zc->zc_flags & 0x1);
boolean_t large_block_ok = (zc->zc_flags & 0x2);
boolean_t compressok = (zc->zc_flags & 0x4);
boolean_t rawok = (zc->zc_flags & 0x8);
if (zc->zc_obj != 0) {
dsl_pool_t *dp;
dsl_dataset_t *tosnap;
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
if (dsl_dir_is_clone(tosnap->ds_dir))
zc->zc_fromobj =
dsl_dir_phys(tosnap->ds_dir)->dd_origin_obj;
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
}
if (estimate) {
dsl_pool_t *dp;
dsl_dataset_t *tosnap;
dsl_dataset_t *fromsnap = NULL;
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold_obj(dp, zc->zc_sendobj,
FTAG, &tosnap);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
if (zc->zc_fromobj != 0) {
error = dsl_dataset_hold_obj(dp, zc->zc_fromobj,
FTAG, &fromsnap);
if (error != 0) {
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
}
error = dmu_send_estimate(tosnap, fromsnap, compressok || rawok,
&zc->zc_objset_type);
if (fromsnap != NULL)
dsl_dataset_rele(fromsnap, FTAG);
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
} else {
file_t *fp = getf(zc->zc_cookie);
if (fp == NULL)
return (SET_ERROR(EBADF));
off = fp->f_offset;
error = dmu_send_obj(zc->zc_name, zc->zc_sendobj,
zc->zc_fromobj, embedok, large_block_ok, compressok, rawok,
zc->zc_cookie, fp->f_vnode, &off);
if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
fp->f_offset = off;
releasef(zc->zc_cookie);
}
return (error);
}
/*
* inputs:
* zc_name name of snapshot on which to report progress
* zc_cookie file descriptor of send stream
*
* outputs:
* zc_cookie number of bytes written in send stream thus far
*/
static int
zfs_ioc_send_progress(zfs_cmd_t *zc)
{
dsl_pool_t *dp;
dsl_dataset_t *ds;
dmu_sendarg_t *dsp = NULL;
int error;
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
mutex_enter(&ds->ds_sendstream_lock);
/*
* Iterate over all the send streams currently active on this dataset.
* If there's one which matches the specified file descriptor _and_ the
* stream was started by the current process, return the progress of
* that stream.
*/
for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL;
dsp = list_next(&ds->ds_sendstreams, dsp)) {
if (dsp->dsa_outfd == zc->zc_cookie &&
dsp->dsa_proc->group_leader == curproc->group_leader)
break;
}
if (dsp != NULL)
zc->zc_cookie = *(dsp->dsa_off);
else
error = SET_ERROR(ENOENT);
mutex_exit(&ds->ds_sendstream_lock);
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
static int
zfs_ioc_inject_fault(zfs_cmd_t *zc)
{
int id, error;
error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id,
&zc->zc_inject_record);
if (error == 0)
zc->zc_guid = (uint64_t)id;
return (error);
}
static int
zfs_ioc_clear_fault(zfs_cmd_t *zc)
{
return (zio_clear_fault((int)zc->zc_guid));
}
static int
zfs_ioc_inject_list_next(zfs_cmd_t *zc)
{
int id = (int)zc->zc_guid;
int error;
error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name),
&zc->zc_inject_record);
zc->zc_guid = id;
return (error);
}
static int
zfs_ioc_error_log(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
size_t count = (size_t)zc->zc_nvlist_dst_size;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst,
&count);
if (error == 0)
zc->zc_nvlist_dst_size = count;
else
zc->zc_nvlist_dst_size = spa_get_errlog_size(spa);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_clear(zfs_cmd_t *zc)
{
spa_t *spa;
vdev_t *vd;
int error;
/*
* On zpool clear we also fix up missing slogs
*/
mutex_enter(&spa_namespace_lock);
spa = spa_lookup(zc->zc_name);
if (spa == NULL) {
mutex_exit(&spa_namespace_lock);
return (SET_ERROR(EIO));
}
if (spa_get_log_state(spa) == SPA_LOG_MISSING) {
/* we need to let spa_open/spa_load clear the chains */
spa_set_log_state(spa, SPA_LOG_CLEAR);
}
spa->spa_last_open_failed = 0;
mutex_exit(&spa_namespace_lock);
if (zc->zc_cookie & ZPOOL_NO_REWIND) {
error = spa_open(zc->zc_name, &spa, FTAG);
} else {
nvlist_t *policy;
nvlist_t *config = NULL;
if (zc->zc_nvlist_src == 0)
return (SET_ERROR(EINVAL));
if ((error = get_nvlist(zc->zc_nvlist_src,
zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) {
error = spa_open_rewind(zc->zc_name, &spa, FTAG,
policy, &config);
if (config != NULL) {
int err;
if ((err = put_nvlist(zc, config)) != 0)
error = err;
nvlist_free(config);
}
nvlist_free(policy);
}
}
if (error != 0)
return (error);
spa_vdev_state_enter(spa, SCL_NONE);
if (zc->zc_guid == 0) {
vd = NULL;
} else {
vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE);
if (vd == NULL) {
(void) spa_vdev_state_exit(spa, NULL, ENODEV);
spa_close(spa, FTAG);
return (SET_ERROR(ENODEV));
}
}
vdev_clear(spa, vd);
(void) spa_vdev_state_exit(spa, spa_suspended(spa) ?
NULL : spa->spa_root_vdev, 0);
/*
* Resume any suspended I/Os.
*/
if (zio_resume(spa) != 0)
error = SET_ERROR(EIO);
spa_close(spa, FTAG);
return (error);
}
/*
* Reopen all the vdevs associated with the pool.
*
* innvl: {
* "scrub_restart" -> when true and scrub is running, allow to restart
* scrub as the side effect of the reopen (boolean).
* }
*
* outnvl is unused
*/
static const zfs_ioc_key_t zfs_keys_pool_reopen[] = {
{"scrub_restart", DATA_TYPE_BOOLEAN_VALUE, 0},
};
/* ARGSUSED */
static int
zfs_ioc_pool_reopen(const char *pool, nvlist_t *innvl, nvlist_t *outnvl)
{
spa_t *spa;
int error;
boolean_t scrub_restart = B_TRUE;
if (innvl) {
scrub_restart = fnvlist_lookup_boolean_value(innvl,
"scrub_restart");
}
error = spa_open(pool, &spa, FTAG);
if (error != 0)
return (error);
spa_vdev_state_enter(spa, SCL_NONE);
/*
* If the scrub_restart flag is B_FALSE and a scrub is already
* in progress then set spa_scrub_reopen flag to B_TRUE so that
* we don't restart the scrub as a side effect of the reopen.
* Otherwise, let vdev_open() decided if a resilver is required.
*/
spa->spa_scrub_reopen = (!scrub_restart &&
dsl_scan_scrubbing(spa->spa_dsl_pool));
vdev_reopen(spa->spa_root_vdev);
spa->spa_scrub_reopen = B_FALSE;
(void) spa_vdev_state_exit(spa, NULL, 0);
spa_close(spa, FTAG);
return (0);
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* zc_string name of conflicting snapshot, if there is one
*/
static int
zfs_ioc_promote(zfs_cmd_t *zc)
{
dsl_pool_t *dp;
dsl_dataset_t *ds, *ods;
char origin[ZFS_MAX_DATASET_NAME_LEN];
char *cp;
int error;
zc->zc_name[sizeof (zc->zc_name) - 1] = '\0';
if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 ||
strchr(zc->zc_name, '%'))
return (SET_ERROR(EINVAL));
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
if (!dsl_dir_is_clone(ds->ds_dir)) {
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
return (SET_ERROR(EINVAL));
}
error = dsl_dataset_hold_obj(dp,
dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &ods);
if (error != 0) {
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
dsl_dataset_name(ods, origin);
dsl_dataset_rele(ods, FTAG);
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
/*
* We don't need to unmount *all* the origin fs's snapshots, but
* it's easier.
*/
cp = strchr(origin, '@');
if (cp)
*cp = '\0';
(void) dmu_objset_find(origin,
zfs_unmount_snap_cb, NULL, DS_FIND_SNAPSHOTS);
return (dsl_dataset_promote(zc->zc_name, zc->zc_string));
}
/*
* Retrieve a single {user|group|project}{used|quota}@... property.
*
* inputs:
* zc_name name of filesystem
* zc_objset_type zfs_userquota_prop_t
* zc_value domain name (eg. "S-1-234-567-89")
* zc_guid RID/UID/GID
*
* outputs:
* zc_cookie property value
*/
static int
zfs_ioc_userspace_one(zfs_cmd_t *zc)
{
zfsvfs_t *zfsvfs;
int error;
if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
return (SET_ERROR(EINVAL));
error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE);
if (error != 0)
return (error);
error = zfs_userspace_one(zfsvfs,
zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie);
zfsvfs_rele(zfsvfs, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_objset_type zfs_userquota_prop_t
* zc_nvlist_dst[_size] buffer to fill (not really an nvlist)
*
* outputs:
* zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t)
* zc_cookie zap cursor
*/
static int
zfs_ioc_userspace_many(zfs_cmd_t *zc)
{
zfsvfs_t *zfsvfs;
int bufsize = zc->zc_nvlist_dst_size;
if (bufsize <= 0)
return (SET_ERROR(ENOMEM));
int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE);
if (error != 0)
return (error);
void *buf = vmem_alloc(bufsize, KM_SLEEP);
error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie,
buf, &zc->zc_nvlist_dst_size);
if (error == 0) {
error = xcopyout(buf,
(void *)(uintptr_t)zc->zc_nvlist_dst,
zc->zc_nvlist_dst_size);
}
vmem_free(buf, bufsize);
zfsvfs_rele(zfsvfs, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* none
*/
static int
zfs_ioc_userspace_upgrade(zfs_cmd_t *zc)
{
objset_t *os;
int error = 0;
zfsvfs_t *zfsvfs;
if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) {
if (!dmu_objset_userused_enabled(zfsvfs->z_os)) {
/*
* If userused is not enabled, it may be because the
* objset needs to be closed & reopened (to grow the
* objset_phys_t). Suspend/resume the fs will do that.
*/
dsl_dataset_t *ds, *newds;
ds = dmu_objset_ds(zfsvfs->z_os);
error = zfs_suspend_fs(zfsvfs);
if (error == 0) {
dmu_objset_refresh_ownership(ds, &newds,
B_TRUE, zfsvfs);
error = zfs_resume_fs(zfsvfs, newds);
}
}
if (error == 0)
error = dmu_objset_userspace_upgrade(zfsvfs->z_os);
deactivate_super(zfsvfs->z_sb);
} else {
/* XXX kind of reading contents without owning */
error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os);
if (error != 0)
return (error);
error = dmu_objset_userspace_upgrade(os);
dmu_objset_rele_flags(os, B_TRUE, FTAG);
}
return (error);
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* none
*/
static int
zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc)
{
objset_t *os;
int error;
error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os);
if (error != 0)
return (error);
if (dmu_objset_userobjspace_upgradable(os) ||
dmu_objset_projectquota_upgradable(os)) {
mutex_enter(&os->os_upgrade_lock);
if (os->os_upgrade_id == 0) {
/* clear potential error code and retry */
os->os_upgrade_status = 0;
mutex_exit(&os->os_upgrade_lock);
dmu_objset_id_quota_upgrade(os);
} else {
mutex_exit(&os->os_upgrade_lock);
}
dsl_pool_rele(dmu_objset_pool(os), FTAG);
taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id);
error = os->os_upgrade_status;
} else {
dsl_pool_rele(dmu_objset_pool(os), FTAG);
}
dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, FTAG);
return (error);
}
static int
zfs_ioc_share(zfs_cmd_t *zc)
{
return (SET_ERROR(ENOSYS));
}
ace_t full_access[] = {
{(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0}
};
/*
* inputs:
* zc_name name of containing filesystem
* zc_obj object # beyond which we want next in-use object #
*
* outputs:
* zc_obj next in-use object #
*/
static int
zfs_ioc_next_obj(zfs_cmd_t *zc)
{
objset_t *os = NULL;
int error;
error = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (error != 0)
return (error);
error = dmu_object_next(os, &zc->zc_obj, B_FALSE, 0);
dmu_objset_rele(os, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value prefix name for snapshot
* zc_cleanup_fd cleanup-on-exit file descriptor for calling process
*
* outputs:
* zc_value short name of new snapshot
*/
static int
zfs_ioc_tmp_snapshot(zfs_cmd_t *zc)
{
char *snap_name;
char *hold_name;
int error;
minor_t minor;
error = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor);
if (error != 0)
return (error);
snap_name = kmem_asprintf("%s-%016llx", zc->zc_value,
(u_longlong_t)ddi_get_lbolt64());
hold_name = kmem_asprintf("%%%s", zc->zc_value);
error = dsl_dataset_snapshot_tmp(zc->zc_name, snap_name, minor,
hold_name);
if (error == 0)
(void) strlcpy(zc->zc_value, snap_name,
sizeof (zc->zc_value));
strfree(snap_name);
strfree(hold_name);
zfs_onexit_fd_rele(zc->zc_cleanup_fd);
return (error);
}
/*
* inputs:
* zc_name name of "to" snapshot
* zc_value name of "from" snapshot
* zc_cookie file descriptor to write diff data on
*
* outputs:
* dmu_diff_record_t's to the file descriptor
*/
static int
zfs_ioc_diff(zfs_cmd_t *zc)
{
file_t *fp;
offset_t off;
int error;
fp = getf(zc->zc_cookie);
if (fp == NULL)
return (SET_ERROR(EBADF));
off = fp->f_offset;
error = dmu_diff(zc->zc_name, zc->zc_value, fp->f_vnode, &off);
if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
fp->f_offset = off;
releasef(zc->zc_cookie);
return (error);
}
static int
zfs_ioc_smb_acl(zfs_cmd_t *zc)
{
return (SET_ERROR(ENOTSUP));
}
/*
* innvl: {
* "holds" -> { snapname -> holdname (string), ... }
* (optional) "cleanup_fd" -> fd (int32)
* }
*
* outnvl: {
* snapname -> error value (int32)
* ...
* }
*/
static const zfs_ioc_key_t zfs_keys_hold[] = {
{"holds", DATA_TYPE_NVLIST, 0},
{"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist)
{
nvpair_t *pair;
nvlist_t *holds;
int cleanup_fd = -1;
int error;
minor_t minor = 0;
holds = fnvlist_lookup_nvlist(args, "holds");
/* make sure the user didn't pass us any invalid (empty) tags */
for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
pair = nvlist_next_nvpair(holds, pair)) {
char *htag;
error = nvpair_value_string(pair, &htag);
if (error != 0)
return (SET_ERROR(error));
if (strlen(htag) == 0)
return (SET_ERROR(EINVAL));
}
if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) {
error = zfs_onexit_fd_hold(cleanup_fd, &minor);
if (error != 0)
return (error);
}
error = dsl_dataset_user_hold(holds, minor, errlist);
if (minor != 0)
zfs_onexit_fd_rele(cleanup_fd);
return (error);
}
/*
* innvl is not used.
*
* outnvl: {
* holdname -> time added (uint64 seconds since epoch)
* ...
* }
*/
static const zfs_ioc_key_t zfs_keys_get_holds[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_get_holds(const char *snapname, nvlist_t *args, nvlist_t *outnvl)
{
return (dsl_dataset_get_holds(snapname, outnvl));
}
/*
* innvl: {
* snapname -> { holdname, ... }
* ...
* }
*
* outnvl: {
* snapname -> error value (int32)
* ...
* }
*/
static const zfs_ioc_key_t zfs_keys_release[] = {
{"<snapname>...", DATA_TYPE_NVLIST, ZK_WILDCARDLIST},
};
/* ARGSUSED */
static int
zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist)
{
return (dsl_dataset_user_release(holds, errlist));
}
/*
* inputs:
* zc_guid flags (ZEVENT_NONBLOCK)
* zc_cleanup_fd zevent file descriptor
*
* outputs:
* zc_nvlist_dst next nvlist event
* zc_cookie dropped events since last get
*/
static int
zfs_ioc_events_next(zfs_cmd_t *zc)
{
zfs_zevent_t *ze;
nvlist_t *event = NULL;
minor_t minor;
uint64_t dropped = 0;
int error;
error = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze);
if (error != 0)
return (error);
do {
error = zfs_zevent_next(ze, &event,
&zc->zc_nvlist_dst_size, &dropped);
if (event != NULL) {
zc->zc_cookie = dropped;
error = put_nvlist(zc, event);
nvlist_free(event);
}
if (zc->zc_guid & ZEVENT_NONBLOCK)
break;
if ((error == 0) || (error != ENOENT))
break;
error = zfs_zevent_wait(ze);
if (error != 0)
break;
} while (1);
zfs_zevent_fd_rele(zc->zc_cleanup_fd);
return (error);
}
/*
* outputs:
* zc_cookie cleared events count
*/
static int
zfs_ioc_events_clear(zfs_cmd_t *zc)
{
int count;
zfs_zevent_drain_all(&count);
zc->zc_cookie = count;
return (0);
}
/*
* inputs:
* zc_guid eid | ZEVENT_SEEK_START | ZEVENT_SEEK_END
* zc_cleanup zevent file descriptor
*/
static int
zfs_ioc_events_seek(zfs_cmd_t *zc)
{
zfs_zevent_t *ze;
minor_t minor;
int error;
error = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze);
if (error != 0)
return (error);
error = zfs_zevent_seek(ze, zc->zc_guid);
zfs_zevent_fd_rele(zc->zc_cleanup_fd);
return (error);
}
/*
* inputs:
* zc_name name of new filesystem or snapshot
* zc_value full name of old snapshot
*
* outputs:
* zc_cookie space in bytes
* zc_objset_type compressed space in bytes
* zc_perm_action uncompressed space in bytes
*/
static int
zfs_ioc_space_written(zfs_cmd_t *zc)
{
int error;
dsl_pool_t *dp;
dsl_dataset_t *new, *old;
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &new);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
error = dsl_dataset_hold(dp, zc->zc_value, FTAG, &old);
if (error != 0) {
dsl_dataset_rele(new, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
error = dsl_dataset_space_written(old, new, &zc->zc_cookie,
&zc->zc_objset_type, &zc->zc_perm_action);
dsl_dataset_rele(old, FTAG);
dsl_dataset_rele(new, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
/*
* innvl: {
* "firstsnap" -> snapshot name
* }
*
* outnvl: {
* "used" -> space in bytes
* "compressed" -> compressed space in bytes
* "uncompressed" -> uncompressed space in bytes
* }
*/
static const zfs_ioc_key_t zfs_keys_space_snaps[] = {
{"firstsnap", DATA_TYPE_STRING, 0},
};
static int
zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl, nvlist_t *outnvl)
{
int error;
dsl_pool_t *dp;
dsl_dataset_t *new, *old;
char *firstsnap;
uint64_t used, comp, uncomp;
firstsnap = fnvlist_lookup_string(innvl, "firstsnap");
error = dsl_pool_hold(lastsnap, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, lastsnap, FTAG, &new);
if (error == 0 && !new->ds_is_snapshot) {
dsl_dataset_rele(new, FTAG);
error = SET_ERROR(EINVAL);
}
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
error = dsl_dataset_hold(dp, firstsnap, FTAG, &old);
if (error == 0 && !old->ds_is_snapshot) {
dsl_dataset_rele(old, FTAG);
error = SET_ERROR(EINVAL);
}
if (error != 0) {
dsl_dataset_rele(new, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
error = dsl_dataset_space_wouldfree(old, new, &used, &comp, &uncomp);
dsl_dataset_rele(old, FTAG);
dsl_dataset_rele(new, FTAG);
dsl_pool_rele(dp, FTAG);
fnvlist_add_uint64(outnvl, "used", used);
fnvlist_add_uint64(outnvl, "compressed", comp);
fnvlist_add_uint64(outnvl, "uncompressed", uncomp);
return (error);
}
/*
* innvl: {
* "fd" -> file descriptor to write stream to (int32)
* (optional) "fromsnap" -> full snap name to send an incremental from
* (optional) "largeblockok" -> (value ignored)
* indicates that blocks > 128KB are permitted
* (optional) "embedok" -> (value ignored)
* presence indicates DRR_WRITE_EMBEDDED records are permitted
* (optional) "compressok" -> (value ignored)
* presence indicates compressed DRR_WRITE records are permitted
* (optional) "rawok" -> (value ignored)
* presence indicates raw encrypted records should be used.
* (optional) "resume_object" and "resume_offset" -> (uint64)
* if present, resume send stream from specified object and offset.
* }
*
* outnvl is unused
*/
static const zfs_ioc_key_t zfs_keys_send_new[] = {
{"fd", DATA_TYPE_INT32, 0},
{"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL},
{"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_send_new(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl)
{
int error;
offset_t off;
char *fromname = NULL;
int fd;
file_t *fp;
boolean_t largeblockok;
boolean_t embedok;
boolean_t compressok;
boolean_t rawok;
uint64_t resumeobj = 0;
uint64_t resumeoff = 0;
fd = fnvlist_lookup_int32(innvl, "fd");
(void) nvlist_lookup_string(innvl, "fromsnap", &fromname);
largeblockok = nvlist_exists(innvl, "largeblockok");
embedok = nvlist_exists(innvl, "embedok");
compressok = nvlist_exists(innvl, "compressok");
rawok = nvlist_exists(innvl, "rawok");
(void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj);
(void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff);
if ((fp = getf(fd)) == NULL)
return (SET_ERROR(EBADF));
off = fp->f_offset;
error = dmu_send(snapname, fromname, embedok, largeblockok, compressok,
rawok, fd, resumeobj, resumeoff, fp->f_vnode, &off);
if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0)
fp->f_offset = off;
releasef(fd);
return (error);
}
/*
* Determine approximately how large a zfs send stream will be -- the number
* of bytes that will be written to the fd supplied to zfs_ioc_send_new().
*
* innvl: {
* (optional) "from" -> full snap or bookmark name to send an incremental
* from
* (optional) "largeblockok" -> (value ignored)
* indicates that blocks > 128KB are permitted
* (optional) "embedok" -> (value ignored)
* presence indicates DRR_WRITE_EMBEDDED records are permitted
* (optional) "compressok" -> (value ignored)
* presence indicates compressed DRR_WRITE records are permitted
* (optional) "rawok" -> (value ignored)
* presence indicates raw encrypted records should be used.
* }
*
* outnvl: {
* "space" -> bytes of space (uint64)
* }
*/
static const zfs_ioc_key_t zfs_keys_send_space[] = {
{"from", DATA_TYPE_STRING, ZK_OPTIONAL},
{"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL},
{"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
};
static int
zfs_ioc_send_space(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl)
{
dsl_pool_t *dp;
dsl_dataset_t *tosnap;
int error;
char *fromname;
boolean_t compressok;
boolean_t rawok;
uint64_t space;
error = dsl_pool_hold(snapname, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, snapname, FTAG, &tosnap);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
compressok = nvlist_exists(innvl, "compressok");
rawok = nvlist_exists(innvl, "rawok");
error = nvlist_lookup_string(innvl, "from", &fromname);
if (error == 0) {
if (strchr(fromname, '@') != NULL) {
/*
* If from is a snapshot, hold it and use the more
* efficient dmu_send_estimate to estimate send space
* size using deadlists.
*/
dsl_dataset_t *fromsnap;
error = dsl_dataset_hold(dp, fromname, FTAG, &fromsnap);
if (error != 0)
goto out;
error = dmu_send_estimate(tosnap, fromsnap,
compressok || rawok, &space);
dsl_dataset_rele(fromsnap, FTAG);
} else if (strchr(fromname, '#') != NULL) {
/*
* If from is a bookmark, fetch the creation TXG of the
* snapshot it was created from and use that to find
* blocks that were born after it.
*/
zfs_bookmark_phys_t frombm;
error = dsl_bookmark_lookup(dp, fromname, tosnap,
&frombm);
if (error != 0)
goto out;
error = dmu_send_estimate_from_txg(tosnap,
frombm.zbm_creation_txg, compressok || rawok,
&space);
} else {
/*
* from is not properly formatted as a snapshot or
* bookmark
*/
error = SET_ERROR(EINVAL);
goto out;
}
} else {
/*
* If estimating the size of a full send, use dmu_send_estimate.
*/
error = dmu_send_estimate(tosnap, NULL, compressok || rawok,
&space);
}
fnvlist_add_uint64(outnvl, "space", space);
out:
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
/*
* Sync the currently open TXG to disk for the specified pool.
* This is somewhat similar to 'zfs_sync()'.
* For cases that do not result in error this ioctl will wait for
* the currently open TXG to commit before returning back to the caller.
*
* innvl: {
* "force" -> when true, force uberblock update even if there is no dirty data.
* In addition this will cause the vdev configuration to be written
* out including updating the zpool cache file. (boolean_t)
* }
*
* onvl is unused
*/
static const zfs_ioc_key_t zfs_keys_pool_sync[] = {
{"force", DATA_TYPE_BOOLEAN_VALUE, 0},
};
/* ARGSUSED */
static int
zfs_ioc_pool_sync(const char *pool, nvlist_t *innvl, nvlist_t *onvl)
{
int err;
boolean_t force = B_FALSE;
spa_t *spa;
if ((err = spa_open(pool, &spa, FTAG)) != 0)
return (err);
if (innvl)
force = fnvlist_lookup_boolean_value(innvl, "force");
if (force) {
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_WRITER);
vdev_config_dirty(spa->spa_root_vdev);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
txg_wait_synced(spa_get_dsl(spa), 0);
spa_close(spa, FTAG);
return (err);
}
/*
* Load a user's wrapping key into the kernel.
* innvl: {
* "hidden_args" -> { "wkeydata" -> value }
* raw uint8_t array of encryption wrapping key data (32 bytes)
* (optional) "noop" -> (value ignored)
* presence indicated key should only be verified, not loaded
* }
*/
static const zfs_ioc_key_t zfs_keys_load_key[] = {
{"hidden_args", DATA_TYPE_NVLIST, 0},
{"noop", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_load_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl)
{
int ret;
dsl_crypto_params_t *dcp = NULL;
nvlist_t *hidden_args;
boolean_t noop = nvlist_exists(innvl, "noop");
if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) {
ret = SET_ERROR(EINVAL);
goto error;
}
hidden_args = fnvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS);
ret = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
hidden_args, &dcp);
if (ret != 0)
goto error;
ret = spa_keystore_load_wkey(dsname, dcp, noop);
if (ret != 0)
goto error;
dsl_crypto_params_free(dcp, noop);
return (0);
error:
dsl_crypto_params_free(dcp, B_TRUE);
return (ret);
}
/*
* Unload a user's wrapping key from the kernel.
* Both innvl and outnvl are unused.
*/
static const zfs_ioc_key_t zfs_keys_unload_key[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_unload_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl)
{
int ret = 0;
if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) {
ret = (SET_ERROR(EINVAL));
goto out;
}
ret = spa_keystore_unload_wkey(dsname);
if (ret != 0)
goto out;
out:
return (ret);
}
/*
* Changes a user's wrapping key used to decrypt a dataset. The keyformat,
* keylocation, pbkdf2salt, and pbkdf2iters properties can also be specified
* here to change how the key is derived in userspace.
*
* innvl: {
* "hidden_args" (optional) -> { "wkeydata" -> value }
* raw uint8_t array of new encryption wrapping key data (32 bytes)
* "props" (optional) -> { prop -> value }
* }
*
* outnvl is unused
*/
static const zfs_ioc_key_t zfs_keys_change_key[] = {
{"crypt_cmd", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL},
{"props", DATA_TYPE_NVLIST, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_change_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl)
{
int ret;
uint64_t cmd = DCP_CMD_NONE;
dsl_crypto_params_t *dcp = NULL;
nvlist_t *args = NULL, *hidden_args = NULL;
if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) {
ret = (SET_ERROR(EINVAL));
goto error;
}
(void) nvlist_lookup_uint64(innvl, "crypt_cmd", &cmd);
(void) nvlist_lookup_nvlist(innvl, "props", &args);
(void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args);
ret = dsl_crypto_params_create_nvlist(cmd, args, hidden_args, &dcp);
if (ret != 0)
goto error;
ret = spa_keystore_change_key(dsname, dcp);
if (ret != 0)
goto error;
dsl_crypto_params_free(dcp, B_FALSE);
return (0);
error:
dsl_crypto_params_free(dcp, B_TRUE);
return (ret);
}
static zfs_ioc_vec_t zfs_ioc_vec[ZFS_IOC_LAST - ZFS_IOC_FIRST];
static void
zfs_ioctl_register_legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck,
boolean_t log_history, zfs_ioc_poolcheck_t pool_check)
{
zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST];
ASSERT3U(ioc, >=, ZFS_IOC_FIRST);
ASSERT3U(ioc, <, ZFS_IOC_LAST);
ASSERT3P(vec->zvec_legacy_func, ==, NULL);
ASSERT3P(vec->zvec_func, ==, NULL);
vec->zvec_legacy_func = func;
vec->zvec_secpolicy = secpolicy;
vec->zvec_namecheck = namecheck;
vec->zvec_allow_log = log_history;
vec->zvec_pool_check = pool_check;
}
/*
* See the block comment at the beginning of this file for details on
* each argument to this function.
*/
static void
zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func,
zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck,
zfs_ioc_poolcheck_t pool_check, boolean_t smush_outnvlist,
boolean_t allow_log, const zfs_ioc_key_t *nvl_keys, size_t num_keys)
{
zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST];
ASSERT3U(ioc, >=, ZFS_IOC_FIRST);
ASSERT3U(ioc, <, ZFS_IOC_LAST);
ASSERT3P(vec->zvec_legacy_func, ==, NULL);
ASSERT3P(vec->zvec_func, ==, NULL);
/* if we are logging, the name must be valid */
ASSERT(!allow_log || namecheck != NO_NAME);
vec->zvec_name = name;
vec->zvec_func = func;
vec->zvec_secpolicy = secpolicy;
vec->zvec_namecheck = namecheck;
vec->zvec_pool_check = pool_check;
vec->zvec_smush_outnvlist = smush_outnvlist;
vec->zvec_allow_log = allow_log;
vec->zvec_nvl_keys = nvl_keys;
vec->zvec_nvl_key_count = num_keys;
}
static void
zfs_ioctl_register_pool(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
zfs_secpolicy_func_t *secpolicy, boolean_t log_history,
zfs_ioc_poolcheck_t pool_check)
{
zfs_ioctl_register_legacy(ioc, func, secpolicy,
POOL_NAME, log_history, pool_check);
}
static void
zfs_ioctl_register_dataset_nolog(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
zfs_secpolicy_func_t *secpolicy, zfs_ioc_poolcheck_t pool_check)
{
zfs_ioctl_register_legacy(ioc, func, secpolicy,
DATASET_NAME, B_FALSE, pool_check);
}
static void
zfs_ioctl_register_pool_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func)
{
zfs_ioctl_register_legacy(ioc, func, zfs_secpolicy_config,
POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
}
static void
zfs_ioctl_register_pool_meta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
zfs_secpolicy_func_t *secpolicy)
{
zfs_ioctl_register_legacy(ioc, func, secpolicy,
NO_NAME, B_FALSE, POOL_CHECK_NONE);
}
static void
zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc,
zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy)
{
zfs_ioctl_register_legacy(ioc, func, secpolicy,
DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED);
}
static void
zfs_ioctl_register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func)
{
zfs_ioctl_register_dataset_read_secpolicy(ioc, func,
zfs_secpolicy_read);
}
static void
zfs_ioctl_register_dataset_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
zfs_secpolicy_func_t *secpolicy)
{
zfs_ioctl_register_legacy(ioc, func, secpolicy,
DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
}
static void
zfs_ioctl_init(void)
{
zfs_ioctl_register("snapshot", ZFS_IOC_SNAPSHOT,
zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_snapshot, ARRAY_SIZE(zfs_keys_snapshot));
zfs_ioctl_register("log_history", ZFS_IOC_LOG_HISTORY,
zfs_ioc_log_history, zfs_secpolicy_log_history, NO_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE,
zfs_keys_log_history, ARRAY_SIZE(zfs_keys_log_history));
zfs_ioctl_register("space_snaps", ZFS_IOC_SPACE_SNAPS,
zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE,
zfs_keys_space_snaps, ARRAY_SIZE(zfs_keys_space_snaps));
zfs_ioctl_register("send", ZFS_IOC_SEND_NEW,
zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE,
zfs_keys_send_new, ARRAY_SIZE(zfs_keys_send_new));
zfs_ioctl_register("send_space", ZFS_IOC_SEND_SPACE,
zfs_ioc_send_space, zfs_secpolicy_read, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE,
zfs_keys_send_space, ARRAY_SIZE(zfs_keys_send_space));
zfs_ioctl_register("create", ZFS_IOC_CREATE,
zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_create, ARRAY_SIZE(zfs_keys_create));
zfs_ioctl_register("clone", ZFS_IOC_CLONE,
zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_clone, ARRAY_SIZE(zfs_keys_clone));
zfs_ioctl_register("remap", ZFS_IOC_REMAP,
zfs_ioc_remap, zfs_secpolicy_remap, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE,
zfs_keys_remap, ARRAY_SIZE(zfs_keys_remap));
zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS,
zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_destroy_snaps, ARRAY_SIZE(zfs_keys_destroy_snaps));
zfs_ioctl_register("hold", ZFS_IOC_HOLD,
zfs_ioc_hold, zfs_secpolicy_hold, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_hold, ARRAY_SIZE(zfs_keys_hold));
zfs_ioctl_register("release", ZFS_IOC_RELEASE,
zfs_ioc_release, zfs_secpolicy_release, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_release, ARRAY_SIZE(zfs_keys_release));
zfs_ioctl_register("get_holds", ZFS_IOC_GET_HOLDS,
zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE,
zfs_keys_get_holds, ARRAY_SIZE(zfs_keys_get_holds));
zfs_ioctl_register("rollback", ZFS_IOC_ROLLBACK,
zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE,
zfs_keys_rollback, ARRAY_SIZE(zfs_keys_rollback));
zfs_ioctl_register("bookmark", ZFS_IOC_BOOKMARK,
zfs_ioc_bookmark, zfs_secpolicy_bookmark, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_bookmark, ARRAY_SIZE(zfs_keys_bookmark));
zfs_ioctl_register("get_bookmarks", ZFS_IOC_GET_BOOKMARKS,
zfs_ioc_get_bookmarks, zfs_secpolicy_read, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE,
zfs_keys_get_bookmarks, ARRAY_SIZE(zfs_keys_get_bookmarks));
zfs_ioctl_register("destroy_bookmarks", ZFS_IOC_DESTROY_BOOKMARKS,
zfs_ioc_destroy_bookmarks, zfs_secpolicy_destroy_bookmarks,
POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_destroy_bookmarks,
ARRAY_SIZE(zfs_keys_destroy_bookmarks));
zfs_ioctl_register("receive", ZFS_IOC_RECV_NEW,
zfs_ioc_recv_new, zfs_secpolicy_recv_new, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_recv_new, ARRAY_SIZE(zfs_keys_recv_new));
zfs_ioctl_register("load-key", ZFS_IOC_LOAD_KEY,
zfs_ioc_load_key, zfs_secpolicy_load_key,
DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE,
zfs_keys_load_key, ARRAY_SIZE(zfs_keys_load_key));
zfs_ioctl_register("unload-key", ZFS_IOC_UNLOAD_KEY,
zfs_ioc_unload_key, zfs_secpolicy_load_key,
DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE,
zfs_keys_unload_key, ARRAY_SIZE(zfs_keys_unload_key));
zfs_ioctl_register("change-key", ZFS_IOC_CHANGE_KEY,
zfs_ioc_change_key, zfs_secpolicy_change_key,
DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY,
B_TRUE, B_TRUE, zfs_keys_change_key,
ARRAY_SIZE(zfs_keys_change_key));
zfs_ioctl_register("sync", ZFS_IOC_POOL_SYNC,
zfs_ioc_pool_sync, zfs_secpolicy_none, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE,
zfs_keys_pool_sync, ARRAY_SIZE(zfs_keys_pool_sync));
zfs_ioctl_register("reopen", ZFS_IOC_POOL_REOPEN, zfs_ioc_pool_reopen,
zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED, B_TRUE,
B_TRUE, zfs_keys_pool_reopen, ARRAY_SIZE(zfs_keys_pool_reopen));
zfs_ioctl_register("channel_program", ZFS_IOC_CHANNEL_PROGRAM,
zfs_ioc_channel_program, zfs_secpolicy_config,
POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE,
B_TRUE, zfs_keys_channel_program,
ARRAY_SIZE(zfs_keys_channel_program));
zfs_ioctl_register("zpool_checkpoint", ZFS_IOC_POOL_CHECKPOINT,
zfs_ioc_pool_checkpoint, zfs_secpolicy_config, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_pool_checkpoint, ARRAY_SIZE(zfs_keys_pool_checkpoint));
zfs_ioctl_register("zpool_discard_checkpoint",
ZFS_IOC_POOL_DISCARD_CHECKPOINT, zfs_ioc_pool_discard_checkpoint,
zfs_secpolicy_config, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_pool_discard_checkpoint,
ARRAY_SIZE(zfs_keys_pool_discard_checkpoint));
zfs_ioctl_register("initialize", ZFS_IOC_POOL_INITIALIZE,
zfs_ioc_pool_initialize, zfs_secpolicy_config, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_pool_initialize, ARRAY_SIZE(zfs_keys_pool_initialize));
/* IOCTLS that use the legacy function signature */
zfs_ioctl_register_legacy(ZFS_IOC_POOL_FREEZE, zfs_ioc_pool_freeze,
zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY);
zfs_ioctl_register_pool(ZFS_IOC_POOL_CREATE, zfs_ioc_pool_create,
zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE);
zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SCAN,
zfs_ioc_pool_scan);
zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_UPGRADE,
zfs_ioc_pool_upgrade);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ADD,
zfs_ioc_vdev_add);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_REMOVE,
zfs_ioc_vdev_remove);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SET_STATE,
zfs_ioc_vdev_set_state);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ATTACH,
zfs_ioc_vdev_attach);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_DETACH,
zfs_ioc_vdev_detach);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETPATH,
zfs_ioc_vdev_setpath);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETFRU,
zfs_ioc_vdev_setfru);
zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SET_PROPS,
zfs_ioc_pool_set_props);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SPLIT,
zfs_ioc_vdev_split);
zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_REGUID,
zfs_ioc_pool_reguid);
zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_CONFIGS,
zfs_ioc_pool_configs, zfs_secpolicy_none);
zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_TRYIMPORT,
zfs_ioc_pool_tryimport, zfs_secpolicy_config);
zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_FAULT,
zfs_ioc_inject_fault, zfs_secpolicy_inject);
zfs_ioctl_register_pool_meta(ZFS_IOC_CLEAR_FAULT,
zfs_ioc_clear_fault, zfs_secpolicy_inject);
zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_LIST_NEXT,
zfs_ioc_inject_list_next, zfs_secpolicy_inject);
/*
* pool destroy, and export don't log the history as part of
* zfsdev_ioctl, but rather zfs_ioc_pool_export
* does the logging of those commands.
*/
zfs_ioctl_register_pool(ZFS_IOC_POOL_DESTROY, zfs_ioc_pool_destroy,
zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED);
zfs_ioctl_register_pool(ZFS_IOC_POOL_EXPORT, zfs_ioc_pool_export,
zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED);
zfs_ioctl_register_pool(ZFS_IOC_POOL_STATS, zfs_ioc_pool_stats,
zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE);
zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_PROPS, zfs_ioc_pool_get_props,
zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE);
zfs_ioctl_register_pool(ZFS_IOC_ERROR_LOG, zfs_ioc_error_log,
zfs_secpolicy_inject, B_FALSE, POOL_CHECK_SUSPENDED);
zfs_ioctl_register_pool(ZFS_IOC_DSOBJ_TO_DSNAME,
zfs_ioc_dsobj_to_dsname,
zfs_secpolicy_diff, B_FALSE, POOL_CHECK_SUSPENDED);
zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_HISTORY,
zfs_ioc_pool_get_history,
zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED);
zfs_ioctl_register_pool(ZFS_IOC_POOL_IMPORT, zfs_ioc_pool_import,
zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE);
zfs_ioctl_register_pool(ZFS_IOC_CLEAR, zfs_ioc_clear,
zfs_secpolicy_config, B_TRUE, POOL_CHECK_READONLY);
zfs_ioctl_register_dataset_read(ZFS_IOC_SPACE_WRITTEN,
zfs_ioc_space_written);
zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_RECVD_PROPS,
zfs_ioc_objset_recvd_props);
zfs_ioctl_register_dataset_read(ZFS_IOC_NEXT_OBJ,
zfs_ioc_next_obj);
zfs_ioctl_register_dataset_read(ZFS_IOC_GET_FSACL,
zfs_ioc_get_fsacl);
zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_STATS,
zfs_ioc_objset_stats);
zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_ZPLPROPS,
zfs_ioc_objset_zplprops);
zfs_ioctl_register_dataset_read(ZFS_IOC_DATASET_LIST_NEXT,
zfs_ioc_dataset_list_next);
zfs_ioctl_register_dataset_read(ZFS_IOC_SNAPSHOT_LIST_NEXT,
zfs_ioc_snapshot_list_next);
zfs_ioctl_register_dataset_read(ZFS_IOC_SEND_PROGRESS,
zfs_ioc_send_progress);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_DIFF,
zfs_ioc_diff, zfs_secpolicy_diff);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_STATS,
zfs_ioc_obj_to_stats, zfs_secpolicy_diff);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_PATH,
zfs_ioc_obj_to_path, zfs_secpolicy_diff);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_ONE,
zfs_ioc_userspace_one, zfs_secpolicy_userspace_one);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_MANY,
zfs_ioc_userspace_many, zfs_secpolicy_userspace_many);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_SEND,
zfs_ioc_send, zfs_secpolicy_send);
zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_PROP, zfs_ioc_set_prop,
zfs_secpolicy_none);
zfs_ioctl_register_dataset_modify(ZFS_IOC_DESTROY, zfs_ioc_destroy,
zfs_secpolicy_destroy);
zfs_ioctl_register_dataset_modify(ZFS_IOC_RENAME, zfs_ioc_rename,
zfs_secpolicy_rename);
zfs_ioctl_register_dataset_modify(ZFS_IOC_RECV, zfs_ioc_recv,
zfs_secpolicy_recv);
zfs_ioctl_register_dataset_modify(ZFS_IOC_PROMOTE, zfs_ioc_promote,
zfs_secpolicy_promote);
zfs_ioctl_register_dataset_modify(ZFS_IOC_INHERIT_PROP,
zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop);
zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_FSACL, zfs_ioc_set_fsacl,
zfs_secpolicy_set_fsacl);
zfs_ioctl_register_dataset_nolog(ZFS_IOC_SHARE, zfs_ioc_share,
zfs_secpolicy_share, POOL_CHECK_NONE);
zfs_ioctl_register_dataset_nolog(ZFS_IOC_SMB_ACL, zfs_ioc_smb_acl,
zfs_secpolicy_smb_acl, POOL_CHECK_NONE);
zfs_ioctl_register_dataset_nolog(ZFS_IOC_USERSPACE_UPGRADE,
zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
zfs_ioctl_register_dataset_nolog(ZFS_IOC_TMP_SNAPSHOT,
zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
/*
* ZoL functions
*/
zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_NEXT, zfs_ioc_events_next,
zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE);
zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_CLEAR, zfs_ioc_events_clear,
zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE);
zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_SEEK, zfs_ioc_events_seek,
zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE);
}
/*
* Verify that for non-legacy ioctls the input nvlist
* pairs match against the expected input.
*
* Possible errors are:
* ZFS_ERR_IOC_ARG_UNAVAIL An unrecognized nvpair was encountered
* ZFS_ERR_IOC_ARG_REQUIRED A required nvpair is missing
* ZFS_ERR_IOC_ARG_BADTYPE Invalid type for nvpair
*/
static int
zfs_check_input_nvpairs(nvlist_t *innvl, const zfs_ioc_vec_t *vec)
{
const zfs_ioc_key_t *nvl_keys = vec->zvec_nvl_keys;
boolean_t required_keys_found = B_FALSE;
/*
* examine each input pair
*/
for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL);
pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) {
char *name = nvpair_name(pair);
data_type_t type = nvpair_type(pair);
boolean_t identified = B_FALSE;
/*
* check pair against the documented names and type
*/
for (int k = 0; k < vec->zvec_nvl_key_count; k++) {
/* if not a wild card name, check for an exact match */
if ((nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) == 0 &&
strcmp(nvl_keys[k].zkey_name, name) != 0)
continue;
identified = B_TRUE;
if (nvl_keys[k].zkey_type != DATA_TYPE_ANY &&
nvl_keys[k].zkey_type != type) {
return (SET_ERROR(ZFS_ERR_IOC_ARG_BADTYPE));
}
if (nvl_keys[k].zkey_flags & ZK_OPTIONAL)
continue;
required_keys_found = B_TRUE;
break;
}
/* allow an 'optional' key, everything else is invalid */
if (!identified &&
(strcmp(name, "optional") != 0 ||
type != DATA_TYPE_NVLIST)) {
return (SET_ERROR(ZFS_ERR_IOC_ARG_UNAVAIL));
}
}
/* verify that all required keys were found */
for (int k = 0; k < vec->zvec_nvl_key_count; k++) {
if (nvl_keys[k].zkey_flags & ZK_OPTIONAL)
continue;
if (nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) {
/* at least one non-optionial key is expected here */
if (!required_keys_found)
return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED));
continue;
}
if (!nvlist_exists(innvl, nvl_keys[k].zkey_name))
return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED));
}
return (0);
}
int
pool_status_check(const char *name, zfs_ioc_namecheck_t type,
zfs_ioc_poolcheck_t check)
{
spa_t *spa;
int error;
ASSERT(type == POOL_NAME || type == DATASET_NAME);
if (check & POOL_CHECK_NONE)
return (0);
error = spa_open(name, &spa, FTAG);
if (error == 0) {
if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa))
error = SET_ERROR(EAGAIN);
else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa))
error = SET_ERROR(EROFS);
spa_close(spa, FTAG);
}
return (error);
}
static void *
zfsdev_get_state_impl(minor_t minor, enum zfsdev_state_type which)
{
zfsdev_state_t *zs;
for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) {
if (zs->zs_minor == minor) {
smp_rmb();
switch (which) {
case ZST_ONEXIT:
return (zs->zs_onexit);
case ZST_ZEVENT:
return (zs->zs_zevent);
case ZST_ALL:
return (zs);
}
}
}
return (NULL);
}
void *
zfsdev_get_state(minor_t minor, enum zfsdev_state_type which)
{
void *ptr;
ptr = zfsdev_get_state_impl(minor, which);
return (ptr);
}
int
zfsdev_getminor(struct file *filp, minor_t *minorp)
{
zfsdev_state_t *zs, *fpd;
ASSERT(filp != NULL);
ASSERT(!MUTEX_HELD(&zfsdev_state_lock));
fpd = filp->private_data;
if (fpd == NULL)
return (SET_ERROR(EBADF));
mutex_enter(&zfsdev_state_lock);
for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) {
if (zs->zs_minor == -1)
continue;
if (fpd == zs) {
*minorp = fpd->zs_minor;
mutex_exit(&zfsdev_state_lock);
return (0);
}
}
mutex_exit(&zfsdev_state_lock);
return (SET_ERROR(EBADF));
}
/*
* Find a free minor number. The zfsdev_state_list is expected to
* be short since it is only a list of currently open file handles.
*/
minor_t
zfsdev_minor_alloc(void)
{
static minor_t last_minor = 0;
minor_t m;
ASSERT(MUTEX_HELD(&zfsdev_state_lock));
for (m = last_minor + 1; m != last_minor; m++) {
if (m > ZFSDEV_MAX_MINOR)
m = 1;
if (zfsdev_get_state_impl(m, ZST_ALL) == NULL) {
last_minor = m;
return (m);
}
}
return (0);
}
static int
zfsdev_state_init(struct file *filp)
{
zfsdev_state_t *zs, *zsprev = NULL;
minor_t minor;
boolean_t newzs = B_FALSE;
ASSERT(MUTEX_HELD(&zfsdev_state_lock));
minor = zfsdev_minor_alloc();
if (minor == 0)
return (SET_ERROR(ENXIO));
for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) {
if (zs->zs_minor == -1)
break;
zsprev = zs;
}
if (!zs) {
zs = kmem_zalloc(sizeof (zfsdev_state_t), KM_SLEEP);
newzs = B_TRUE;
}
zs->zs_file = filp;
filp->private_data = zs;
zfs_onexit_init((zfs_onexit_t **)&zs->zs_onexit);
zfs_zevent_init((zfs_zevent_t **)&zs->zs_zevent);
/*
* In order to provide for lock-free concurrent read access
* to the minor list in zfsdev_get_state_impl(), new entries
* must be completely written before linking them into the
* list whereas existing entries are already linked; the last
* operation must be updating zs_minor (from -1 to the new
* value).
*/
if (newzs) {
zs->zs_minor = minor;
smp_wmb();
zsprev->zs_next = zs;
} else {
smp_wmb();
zs->zs_minor = minor;
}
return (0);
}
static int
zfsdev_state_destroy(struct file *filp)
{
zfsdev_state_t *zs;
ASSERT(MUTEX_HELD(&zfsdev_state_lock));
ASSERT(filp->private_data != NULL);
zs = filp->private_data;
zs->zs_minor = -1;
zfs_onexit_destroy(zs->zs_onexit);
zfs_zevent_destroy(zs->zs_zevent);
return (0);
}
static int
zfsdev_open(struct inode *ino, struct file *filp)
{
int error;
mutex_enter(&zfsdev_state_lock);
error = zfsdev_state_init(filp);
mutex_exit(&zfsdev_state_lock);
return (-error);
}
static int
zfsdev_release(struct inode *ino, struct file *filp)
{
int error;
mutex_enter(&zfsdev_state_lock);
error = zfsdev_state_destroy(filp);
mutex_exit(&zfsdev_state_lock);
return (-error);
}
static long
zfsdev_ioctl(struct file *filp, unsigned cmd, unsigned long arg)
{
zfs_cmd_t *zc;
uint_t vecnum;
int error, rc, flag = 0;
const zfs_ioc_vec_t *vec;
char *saved_poolname = NULL;
nvlist_t *innvl = NULL;
fstrans_cookie_t cookie;
vecnum = cmd - ZFS_IOC_FIRST;
if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0]))
return (-SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL));
vec = &zfs_ioc_vec[vecnum];
/*
* The registered ioctl list may be sparse, verify that either
* a normal or legacy handler are registered.
*/
if (vec->zvec_func == NULL && vec->zvec_legacy_func == NULL)
return (-SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL));
zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP);
error = ddi_copyin((void *)arg, zc, sizeof (zfs_cmd_t), flag);
if (error != 0) {
error = SET_ERROR(EFAULT);
goto out;
}
zc->zc_iflags = flag & FKIOCTL;
if (zc->zc_nvlist_src_size > MAX_NVLIST_SRC_SIZE) {
/*
* Make sure the user doesn't pass in an insane value for
* zc_nvlist_src_size. We have to check, since we will end
* up allocating that much memory inside of get_nvlist(). This
* prevents a nefarious user from allocating tons of kernel
* memory.
*
* Also, we return EINVAL instead of ENOMEM here. The reason
* being that returning ENOMEM from an ioctl() has a special
* connotation; that the user's size value is too small and
* needs to be expanded to hold the nvlist. See
* zcmd_expand_dst_nvlist() for details.
*/
error = SET_ERROR(EINVAL); /* User's size too big */
} else if (zc->zc_nvlist_src_size != 0) {
error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &innvl);
if (error != 0)
goto out;
}
/*
* Ensure that all pool/dataset names are valid before we pass down to
* the lower layers.
*/
zc->zc_name[sizeof (zc->zc_name) - 1] = '\0';
switch (vec->zvec_namecheck) {
case POOL_NAME:
if (pool_namecheck(zc->zc_name, NULL, NULL) != 0)
error = SET_ERROR(EINVAL);
else
error = pool_status_check(zc->zc_name,
vec->zvec_namecheck, vec->zvec_pool_check);
break;
case DATASET_NAME:
if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0)
error = SET_ERROR(EINVAL);
else
error = pool_status_check(zc->zc_name,
vec->zvec_namecheck, vec->zvec_pool_check);
break;
case NO_NAME:
break;
}
/*
* Ensure that all input pairs are valid before we pass them down
* to the lower layers.
*
* The vectored functions can use fnvlist_lookup_{type} for any
* required pairs since zfs_check_input_nvpairs() confirmed that
* they exist and are of the correct type.
*/
if (error == 0 && vec->zvec_func != NULL) {
error = zfs_check_input_nvpairs(innvl, vec);
if (error != 0)
goto out;
}
if (error == 0) {
cookie = spl_fstrans_mark();
error = vec->zvec_secpolicy(zc, innvl, CRED());
spl_fstrans_unmark(cookie);
}
if (error != 0)
goto out;
/* legacy ioctls can modify zc_name */
saved_poolname = strdup(zc->zc_name);
if (saved_poolname == NULL) {
error = SET_ERROR(ENOMEM);
goto out;
} else {
saved_poolname[strcspn(saved_poolname, "/@#")] = '\0';
}
if (vec->zvec_func != NULL) {
nvlist_t *outnvl;
int puterror = 0;
spa_t *spa;
nvlist_t *lognv = NULL;
ASSERT(vec->zvec_legacy_func == NULL);
/*
* Add the innvl to the lognv before calling the func,
* in case the func changes the innvl.
*/
if (vec->zvec_allow_log) {
lognv = fnvlist_alloc();
fnvlist_add_string(lognv, ZPOOL_HIST_IOCTL,
vec->zvec_name);
if (!nvlist_empty(innvl)) {
fnvlist_add_nvlist(lognv, ZPOOL_HIST_INPUT_NVL,
innvl);
}
}
outnvl = fnvlist_alloc();
cookie = spl_fstrans_mark();
error = vec->zvec_func(zc->zc_name, innvl, outnvl);
spl_fstrans_unmark(cookie);
/*
* Some commands can partially execute, modify state, and still
* return an error. In these cases, attempt to record what
* was modified.
*/
if ((error == 0 ||
(cmd == ZFS_IOC_CHANNEL_PROGRAM && error != EINVAL)) &&
vec->zvec_allow_log &&
spa_open(zc->zc_name, &spa, FTAG) == 0) {
if (!nvlist_empty(outnvl)) {
fnvlist_add_nvlist(lognv, ZPOOL_HIST_OUTPUT_NVL,
outnvl);
}
if (error != 0) {
fnvlist_add_int64(lognv, ZPOOL_HIST_ERRNO,
error);
}
(void) spa_history_log_nvl(spa, lognv);
spa_close(spa, FTAG);
}
fnvlist_free(lognv);
if (!nvlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) {
int smusherror = 0;
if (vec->zvec_smush_outnvlist) {
smusherror = nvlist_smush(outnvl,
zc->zc_nvlist_dst_size);
}
if (smusherror == 0)
puterror = put_nvlist(zc, outnvl);
}
if (puterror != 0)
error = puterror;
nvlist_free(outnvl);
} else {
cookie = spl_fstrans_mark();
error = vec->zvec_legacy_func(zc);
spl_fstrans_unmark(cookie);
}
out:
nvlist_free(innvl);
rc = ddi_copyout(zc, (void *)arg, sizeof (zfs_cmd_t), flag);
if (error == 0 && rc != 0)
error = SET_ERROR(EFAULT);
if (error == 0 && vec->zvec_allow_log) {
char *s = tsd_get(zfs_allow_log_key);
if (s != NULL)
strfree(s);
(void) tsd_set(zfs_allow_log_key, saved_poolname);
} else {
if (saved_poolname != NULL)
strfree(saved_poolname);
}
kmem_free(zc, sizeof (zfs_cmd_t));
return (-error);
}
#ifdef CONFIG_COMPAT
static long
zfsdev_compat_ioctl(struct file *filp, unsigned cmd, unsigned long arg)
{
return (zfsdev_ioctl(filp, cmd, arg));
}
#else
#define zfsdev_compat_ioctl NULL
#endif
static const struct file_operations zfsdev_fops = {
.open = zfsdev_open,
.release = zfsdev_release,
.unlocked_ioctl = zfsdev_ioctl,
.compat_ioctl = zfsdev_compat_ioctl,
.owner = THIS_MODULE,
};
static struct miscdevice zfs_misc = {
.minor = ZFS_DEVICE_MINOR,
.name = ZFS_DRIVER,
.fops = &zfsdev_fops,
};
MODULE_ALIAS_MISCDEV(ZFS_DEVICE_MINOR);
MODULE_ALIAS("devname:zfs");
static int
zfs_attach(void)
{
int error;
mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL);
zfsdev_state_list = kmem_zalloc(sizeof (zfsdev_state_t), KM_SLEEP);
zfsdev_state_list->zs_minor = -1;
error = misc_register(&zfs_misc);
if (error == -EBUSY) {
/*
* Fallback to dynamic minor allocation in the event of a
* collision with a reserved minor in linux/miscdevice.h.
* In this case the kernel modules must be manually loaded.
*/
printk(KERN_INFO "ZFS: misc_register() with static minor %d "
"failed %d, retrying with MISC_DYNAMIC_MINOR\n",
ZFS_DEVICE_MINOR, error);
zfs_misc.minor = MISC_DYNAMIC_MINOR;
error = misc_register(&zfs_misc);
}
if (error)
printk(KERN_INFO "ZFS: misc_register() failed %d\n", error);
return (error);
}
static void
zfs_detach(void)
{
zfsdev_state_t *zs, *zsprev = NULL;
misc_deregister(&zfs_misc);
mutex_destroy(&zfsdev_state_lock);
for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) {
if (zsprev)
kmem_free(zsprev, sizeof (zfsdev_state_t));
zsprev = zs;
}
if (zsprev)
kmem_free(zsprev, sizeof (zfsdev_state_t));
}
static void
zfs_allow_log_destroy(void *arg)
{
char *poolname = arg;
if (poolname != NULL)
strfree(poolname);
}
#ifdef DEBUG
#define ZFS_DEBUG_STR " (DEBUG mode)"
#else
#define ZFS_DEBUG_STR ""
#endif
static int __init
_init(void)
{
int error;
error = -vn_set_pwd("/");
if (error) {
printk(KERN_NOTICE
"ZFS: Warning unable to set pwd to '/': %d\n", error);
return (error);
}
if ((error = -zvol_init()) != 0)
return (error);
spa_init(FREAD | FWRITE);
zfs_init();
zfs_ioctl_init();
zfs_sysfs_init();
if ((error = zfs_attach()) != 0)
goto out;
tsd_create(&zfs_fsyncer_key, NULL);
tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
tsd_create(&zfs_allow_log_key, zfs_allow_log_destroy);
printk(KERN_NOTICE "ZFS: Loaded module v%s-%s%s, "
"ZFS pool version %s, ZFS filesystem version %s\n",
ZFS_META_VERSION, ZFS_META_RELEASE, ZFS_DEBUG_STR,
SPA_VERSION_STRING, ZPL_VERSION_STRING);
#ifndef CONFIG_FS_POSIX_ACL
printk(KERN_NOTICE "ZFS: Posix ACLs disabled by kernel\n");
#endif /* CONFIG_FS_POSIX_ACL */
return (0);
out:
zfs_sysfs_fini();
zfs_fini();
spa_fini();
(void) zvol_fini();
printk(KERN_NOTICE "ZFS: Failed to Load ZFS Filesystem v%s-%s%s"
", rc = %d\n", ZFS_META_VERSION, ZFS_META_RELEASE,
ZFS_DEBUG_STR, error);
return (error);
}
static void __exit
_fini(void)
{
zfs_detach();
zfs_sysfs_fini();
zfs_fini();
spa_fini();
zvol_fini();
tsd_destroy(&zfs_fsyncer_key);
tsd_destroy(&rrw_tsd_key);
tsd_destroy(&zfs_allow_log_key);
printk(KERN_NOTICE "ZFS: Unloaded module v%s-%s%s\n",
ZFS_META_VERSION, ZFS_META_RELEASE, ZFS_DEBUG_STR);
}
#if defined(_KERNEL)
module_init(_init);
module_exit(_fini);
MODULE_DESCRIPTION("ZFS");
MODULE_AUTHOR(ZFS_META_AUTHOR);
MODULE_LICENSE(ZFS_META_LICENSE);
MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
#endif