Adrian Chadd 4473d4da67 Add the 11n chipset RF frontends to the linker set, even though they're not
attached this way.

The AR5212 based NICs have a variety of RF frontends, so there's a linker set
which the AR5212 attach routine calls. The same framework is used for the
AR5416 and later but as there's a fixed RF frontend for each 11n NIC, it
is just directly attached.

However in the case of compiling a cut down HAL (eg _just_ AR9130 WMAC support),
the linker set ends up being empty and this causes the compile to fail.

So this is just a workaround for that - it means those users who wish an 11n
only HAL can compile the 11n chipsets and RF frontend they need, and just
"ath_ar5212" for the AR5212/AR5416 common code, and it'll just work.

Sponsored by:	Hobnob, Inc.
2011-12-15 00:59:11 +00:00

401 lines
11 KiB
C

/*
* Copyright (c) 2008-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
/*
* NB: Merlin and later have a simpler RF backend.
*/
#include "ah.h"
#include "ah_internal.h"
#include "ah_eeprom_v14.h"
#include "ar9002/ar9287.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ar9287State {
RF_HAL_FUNCS base; /* public state, must be first */
uint16_t pcdacTable[1]; /* XXX */
};
#define AR9287(ah) ((struct ar9287State *) AH5212(ah)->ah_rfHal)
static HAL_BOOL ar9287GetChannelMaxMinPower(struct ath_hal *,
const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow);
int16_t ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c);
static void
ar9287WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
int writes)
{
(void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
freqIndex, writes);
}
/*
* Take the MHz channel value and set the Channel value
*
* ASSUMES: Writes enabled to analog bus
*
* Actual Expression,
*
* For 2GHz channel,
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*
* For 5GHz channel,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
* (freq_ref = 40MHz/(24>>amodeRefSel))
*
* For 5GHz channels which are 5MHz spaced,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*/
static HAL_BOOL
ar9287SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint16_t bMode, fracMode, aModeRefSel = 0;
uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
CHAN_CENTERS centers;
uint32_t refDivA = 24;
OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);
ar5416GetChannelCenters(ah, chan, &centers);
freq = centers.synth_center;
reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL);
reg32 &= 0xc0000000;
if (freq < 4800) { /* 2 GHz, fractional mode */
uint32_t txctl;
int regWrites = 0;
bMode = 1;
fracMode = 1;
aModeRefSel = 0;
channelSel = (freq * 0x10000)/15;
if (AR_SREV_KIWI_11_OR_LATER(ah)) {
if (freq == 2484) {
ath_hal_ini_write(ah,
&AH9287(ah)->ah_ini_cckFirJapan2484, 1,
regWrites);
} else {
ath_hal_ini_write(ah,
&AH9287(ah)->ah_ini_cckFirNormal, 1,
regWrites);
}
}
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
}
} else {
bMode = 0;
fracMode = 0;
if ((freq % 20) == 0) {
aModeRefSel = 3;
} else if ((freq % 10) == 0) {
aModeRefSel = 2;
} else {
aModeRefSel = 0;
/*
* Enable 2G (fractional) mode for channels which
* are 5MHz spaced
*/
fracMode = 1;
refDivA = 1;
channelSel = (freq * 0x8000)/15;
/* RefDivA setting */
OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
AR_AN_SYNTH9_REFDIVA, refDivA);
}
if (!fracMode) {
ndiv = (freq * (refDivA >> aModeRefSel))/60;
channelSel = ndiv & 0x1ff;
channelFrac = (ndiv & 0xfffffe00) * 2;
channelSel = (channelSel << 17) | channelFrac;
}
}
reg32 = reg32 | (bMode << 29) | (fracMode << 28) |
(aModeRefSel << 26) | (channelSel);
OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
AH_PRIVATE(ah)->ah_curchan = chan;
return AH_TRUE;
}
/*
* Return a reference to the requested RF Bank.
*/
static uint32_t *
ar9287GetRfBank(struct ath_hal *ah, int bank)
{
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
__func__, bank);
return AH_NULL;
}
/*
* Reads EEPROM header info from device structure and programs
* all rf registers
*/
static HAL_BOOL
ar9287SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
uint16_t modesIndex, uint16_t *rfXpdGain)
{
return AH_TRUE; /* nothing to do */
}
/*
* Read the transmit power levels from the structures taken from EEPROM
* Interpolate read transmit power values for this channel
* Organize the transmit power values into a table for writing into the hardware
*/
static HAL_BOOL
ar9287SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax,
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
{
return AH_TRUE;
}
#if 0
static int16_t
ar9287GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
{
int i, minIndex;
int16_t minGain,minPwr,minPcdac,retVal;
/* Assume NUM_POINTS_XPD0 > 0 */
minGain = data->pDataPerXPD[0].xpd_gain;
for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
if (data->pDataPerXPD[i].xpd_gain < minGain) {
minIndex = i;
minGain = data->pDataPerXPD[i].xpd_gain;
}
}
minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
for (i=1; i<NUM_POINTS_XPD0; i++) {
if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
}
}
retVal = minPwr - (minPcdac*2);
return(retVal);
}
#endif
static HAL_BOOL
ar9287GetChannelMaxMinPower(struct ath_hal *ah,
const struct ieee80211_channel *chan,
int16_t *maxPow, int16_t *minPow)
{
#if 0
struct ath_hal_5212 *ahp = AH5212(ah);
int numChannels=0,i,last;
int totalD, totalF,totalMin;
EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
*maxPow = 0;
if (IS_CHAN_A(chan)) {
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11A].pDataPerChannel;
numChannels = powerArray[headerInfo11A].numChannels;
} else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
/* XXX - is this correct? Should we also use the same power for turbo G? */
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11G].pDataPerChannel;
numChannels = powerArray[headerInfo11G].numChannels;
} else if (IS_CHAN_B(chan)) {
powerArray = ahp->ah_modePowerArray5112;
data = powerArray[headerInfo11B].pDataPerChannel;
numChannels = powerArray[headerInfo11B].numChannels;
} else {
return (AH_TRUE);
}
/* Make sure the channel is in the range of the TP values
* (freq piers)
*/
if ((numChannels < 1) ||
(chan->channel < data[0].channelValue) ||
(chan->channel > data[numChannels-1].channelValue))
return(AH_FALSE);
/* Linearly interpolate the power value now */
for (last=0,i=0;
(i<numChannels) && (chan->channel > data[i].channelValue);
last=i++);
totalD = data[i].channelValue - data[last].channelValue;
if (totalD > 0) {
totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
totalMin = ar9287GetMinPower(ah,&data[i]) - ar9287GetMinPower(ah, &data[last]);
*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9287GetMinPower(ah, &data[last])*totalD)/totalD);
return (AH_TRUE);
} else {
if (chan->channel == data[i].channelValue) {
*maxPow = data[i].maxPower_t4;
*minPow = ar9287GetMinPower(ah, &data[i]);
return(AH_TRUE);
} else
return(AH_FALSE);
}
#else
*maxPow = *minPow = 0;
return AH_FALSE;
#endif
}
/*
* The ordering of nfarray is thus:
*
* nfarray[0]: Chain 0 ctl
* nfarray[1]: Chain 1 ctl
* nfarray[2]: Chain 2 ctl
* nfarray[3]: Chain 0 ext
* nfarray[4]: Chain 1 ext
* nfarray[5]: Chain 2 ext
*/
static void
ar9287GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
{
int16_t nf;
nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ctl] [chain 0] is %d\n", nf);
nfarray[0] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ctl] [chain 1] is %d\n", nf);
nfarray[1] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ext] [chain 0] is %d\n", nf);
nfarray[3] = nf;
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
HALDEBUG(ah, HAL_DEBUG_NFCAL,
"NF calibrated [ext] [chain 1] is %d\n", nf);
nfarray[4] = nf;
/* Chain 2 - invalid */
nfarray[2] = 0;
nfarray[5] = 0;
}
/*
* Adjust NF based on statistical values for 5GHz frequencies.
* Stubbed:Not used by Fowl
*/
int16_t
ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
{
return 0;
}
/*
* Free memory for analog bank scratch buffers
*/
static void
ar9287RfDetach(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(ahp->ah_rfHal != AH_NULL);
ath_hal_free(ahp->ah_rfHal);
ahp->ah_rfHal = AH_NULL;
}
HAL_BOOL
ar9287RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
struct ath_hal_5212 *ahp = AH5212(ah);
struct ar9287State *priv;
HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__);
HALASSERT(ahp->ah_rfHal == AH_NULL);
priv = ath_hal_malloc(sizeof(struct ar9287State));
if (priv == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: cannot allocate private state\n", __func__);
*status = HAL_ENOMEM; /* XXX */
return AH_FALSE;
}
priv->base.rfDetach = ar9287RfDetach;
priv->base.writeRegs = ar9287WriteRegs;
priv->base.getRfBank = ar9287GetRfBank;
priv->base.setChannel = ar9287SetChannel;
priv->base.setRfRegs = ar9287SetRfRegs;
priv->base.setPowerTable = ar9287SetPowerTable;
priv->base.getChannelMaxMinPower = ar9287GetChannelMaxMinPower;
priv->base.getNfAdjust = ar9287GetNfAdjust;
ahp->ah_pcdacTable = priv->pcdacTable;
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
ahp->ah_rfHal = &priv->base;
/*
* Set noise floor adjust method; we arrange a
* direct call instead of thunking.
*/
AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
AH_PRIVATE(ah)->ah_getNoiseFloor = ar9287GetNoiseFloor;
return AH_TRUE;
}
static HAL_BOOL
ar9287RfProbe(struct ath_hal *ah)
{
return (AR_SREV_KIWI(ah));
}
AH_RF(RF9287, ar9287RfProbe, ar9287RfAttach);