freebsd-nq/sys/net80211/ieee80211_superg.c
Pedro F. Giffuni fe267a5590 sys: general adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

No functional change intended.
2017-11-27 15:23:17 +00:00

1068 lines
29 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_wlan.h"
#ifdef IEEE80211_SUPPORT_SUPERG
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/endian.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_input.h>
#include <net80211/ieee80211_phy.h>
#include <net80211/ieee80211_superg.h>
/*
* Atheros fast-frame encapsulation format.
* FF max payload:
* 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500:
* 8 + 4 + 4 + 14 + 8 + 1500 + 6 + 14 + 8 + 1500
* = 3066
*/
/* fast frame header is 32-bits */
#define ATH_FF_PROTO 0x0000003f /* protocol */
#define ATH_FF_PROTO_S 0
#define ATH_FF_FTYPE 0x000000c0 /* frame type */
#define ATH_FF_FTYPE_S 6
#define ATH_FF_HLEN32 0x00000300 /* optional hdr length */
#define ATH_FF_HLEN32_S 8
#define ATH_FF_SEQNUM 0x001ffc00 /* sequence number */
#define ATH_FF_SEQNUM_S 10
#define ATH_FF_OFFSET 0xffe00000 /* offset to 2nd payload */
#define ATH_FF_OFFSET_S 21
#define ATH_FF_MAX_HDR_PAD 4
#define ATH_FF_MAX_SEP_PAD 6
#define ATH_FF_MAX_HDR 30
#define ATH_FF_PROTO_L2TUNNEL 0 /* L2 tunnel protocol */
#define ATH_FF_ETH_TYPE 0x88bd /* Ether type for encapsulated frames */
#define ATH_FF_SNAP_ORGCODE_0 0x00
#define ATH_FF_SNAP_ORGCODE_1 0x03
#define ATH_FF_SNAP_ORGCODE_2 0x7f
#define ATH_FF_TXQMIN 2 /* min txq depth for staging */
#define ATH_FF_TXQMAX 50 /* maximum # of queued frames allowed */
#define ATH_FF_STAGEMAX 5 /* max waiting period for staged frame*/
#define ETHER_HEADER_COPY(dst, src) \
memcpy(dst, src, sizeof(struct ether_header))
static int ieee80211_ffppsmin = 2; /* pps threshold for ff aggregation */
SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW,
&ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging");
static int ieee80211_ffagemax = -1; /* max time frames held on stage q */
SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax, CTLTYPE_INT | CTLFLAG_RW,
&ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I",
"max hold time for fast-frame staging (ms)");
static void
ff_age_all(void *arg, int npending)
{
struct ieee80211com *ic = arg;
/* XXX cache timer value somewhere (racy) */
ieee80211_ff_age_all(ic, ieee80211_ffagemax + 1);
}
void
ieee80211_superg_attach(struct ieee80211com *ic)
{
struct ieee80211_superg *sg;
IEEE80211_FF_LOCK_INIT(ic, ic->ic_name);
sg = (struct ieee80211_superg *) IEEE80211_MALLOC(
sizeof(struct ieee80211_superg), M_80211_VAP,
IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
if (sg == NULL) {
printf("%s: cannot allocate SuperG state block\n",
__func__);
return;
}
TIMEOUT_TASK_INIT(ic->ic_tq, &sg->ff_qtimer, 0, ff_age_all, ic);
ic->ic_superg = sg;
/*
* Default to not being so aggressive for FF/AMSDU
* aging, otherwise we may hold a frame around
* for way too long before we expire it out.
*/
ieee80211_ffagemax = msecs_to_ticks(2);
}
void
ieee80211_superg_detach(struct ieee80211com *ic)
{
if (ic->ic_superg != NULL) {
struct timeout_task *qtask = &ic->ic_superg->ff_qtimer;
while (taskqueue_cancel_timeout(ic->ic_tq, qtask, NULL) != 0)
taskqueue_drain_timeout(ic->ic_tq, qtask);
IEEE80211_FREE(ic->ic_superg, M_80211_VAP);
ic->ic_superg = NULL;
}
IEEE80211_FF_LOCK_DESTROY(ic);
}
void
ieee80211_superg_vattach(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
if (ic->ic_superg == NULL) /* NB: can't do fast-frames w/o state */
vap->iv_caps &= ~IEEE80211_C_FF;
if (vap->iv_caps & IEEE80211_C_FF)
vap->iv_flags |= IEEE80211_F_FF;
/* NB: we only implement sta mode */
if (vap->iv_opmode == IEEE80211_M_STA &&
(vap->iv_caps & IEEE80211_C_TURBOP))
vap->iv_flags |= IEEE80211_F_TURBOP;
}
void
ieee80211_superg_vdetach(struct ieee80211vap *vap)
{
}
#define ATH_OUI_BYTES 0x00, 0x03, 0x7f
/*
* Add a WME information element to a frame.
*/
uint8_t *
ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix)
{
static const struct ieee80211_ath_ie info = {
.ath_id = IEEE80211_ELEMID_VENDOR,
.ath_len = sizeof(struct ieee80211_ath_ie) - 2,
.ath_oui = { ATH_OUI_BYTES },
.ath_oui_type = ATH_OUI_TYPE,
.ath_oui_subtype= ATH_OUI_SUBTYPE,
.ath_version = ATH_OUI_VERSION,
};
struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
memcpy(frm, &info, sizeof(info));
ath->ath_capability = caps;
if (defkeyix != IEEE80211_KEYIX_NONE) {
ath->ath_defkeyix[0] = (defkeyix & 0xff);
ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
} else {
ath->ath_defkeyix[0] = 0xff;
ath->ath_defkeyix[1] = 0x7f;
}
return frm + sizeof(info);
}
#undef ATH_OUI_BYTES
uint8_t *
ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss)
{
const struct ieee80211vap *vap = bss->ni_vap;
return ieee80211_add_ath(frm,
vap->iv_flags & IEEE80211_F_ATHEROS,
((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
bss->ni_authmode != IEEE80211_AUTH_8021X) ?
vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
}
void
ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie)
{
const struct ieee80211_ath_ie *ath =
(const struct ieee80211_ath_ie *) ie;
ni->ni_ath_flags = ath->ath_capability;
ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix);
}
int
ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm,
const struct ieee80211_frame *wh)
{
struct ieee80211vap *vap = ni->ni_vap;
const struct ieee80211_ath_ie *ath;
u_int len = frm[1];
int capschanged;
uint16_t defkeyix;
if (len < sizeof(struct ieee80211_ath_ie)-2) {
IEEE80211_DISCARD_IE(vap,
IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG,
wh, "Atheros", "too short, len %u", len);
return -1;
}
ath = (const struct ieee80211_ath_ie *)frm;
capschanged = (ni->ni_ath_flags != ath->ath_capability);
defkeyix = le16dec(ath->ath_defkeyix);
if (capschanged || defkeyix != ni->ni_ath_defkeyix) {
ni->ni_ath_flags = ath->ath_capability;
ni->ni_ath_defkeyix = defkeyix;
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
"ath ie change: new caps 0x%x defkeyix 0x%x",
ni->ni_ath_flags, ni->ni_ath_defkeyix);
}
if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) {
uint16_t curflags, newflags;
/*
* Check for turbo mode switch. Calculate flags
* for the new mode and effect the switch.
*/
newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags;
/* NB: BOOST is not in ic_flags, so get it from the ie */
if (ath->ath_capability & ATHEROS_CAP_BOOST)
newflags |= IEEE80211_CHAN_TURBO;
else
newflags &= ~IEEE80211_CHAN_TURBO;
if (newflags != curflags)
ieee80211_dturbo_switch(vap, newflags);
}
return capschanged;
}
/*
* Decap the encapsulated frame pair and dispatch the first
* for delivery. The second frame is returned for delivery
* via the normal path.
*/
struct mbuf *
ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m)
{
#define FF_LLC_SIZE (sizeof(struct ether_header) + sizeof(struct llc))
#define MS(x,f) (((x) & f) >> f##_S)
struct ieee80211vap *vap = ni->ni_vap;
struct llc *llc;
uint32_t ath;
struct mbuf *n;
int framelen;
/* NB: we assume caller does this check for us */
KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF),
("ff not negotiated"));
/*
* Check for fast-frame tunnel encapsulation.
*/
if (m->m_pkthdr.len < 3*FF_LLC_SIZE)
return m;
if (m->m_len < FF_LLC_SIZE &&
(m = m_pullup(m, FF_LLC_SIZE)) == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "fast-frame",
"%s", "m_pullup(llc) failed");
vap->iv_stats.is_rx_tooshort++;
return NULL;
}
llc = (struct llc *)(mtod(m, uint8_t *) +
sizeof(struct ether_header));
if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE))
return m;
m_adj(m, FF_LLC_SIZE);
m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath);
if (MS(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "fast-frame",
"unsupport tunnel protocol, header 0x%x", ath);
vap->iv_stats.is_ff_badhdr++;
m_freem(m);
return NULL;
}
/* NB: skip header and alignment padding */
m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2);
vap->iv_stats.is_ff_decap++;
/*
* Decap the first frame, bust it apart from the
* second and deliver; then decap the second frame
* and return it to the caller for normal delivery.
*/
m = ieee80211_decap1(m, &framelen);
if (m == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "fast-frame", "%s", "first decap failed");
vap->iv_stats.is_ff_tooshort++;
return NULL;
}
n = m_split(m, framelen, M_NOWAIT);
if (n == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "fast-frame",
"%s", "unable to split encapsulated frames");
vap->iv_stats.is_ff_split++;
m_freem(m); /* NB: must reclaim */
return NULL;
}
/* XXX not right for WDS */
vap->iv_deliver_data(vap, ni, m); /* 1st of pair */
/*
* Decap second frame.
*/
m_adj(n, roundup2(framelen, 4) - framelen); /* padding */
n = ieee80211_decap1(n, &framelen);
if (n == NULL) {
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
ni->ni_macaddr, "fast-frame", "%s", "second decap failed");
vap->iv_stats.is_ff_tooshort++;
}
/* XXX verify framelen against mbuf contents */
return n; /* 2nd delivered by caller */
#undef MS
#undef FF_LLC_SIZE
}
/*
* Fast frame encapsulation. There must be two packets
* chained with m_nextpkt. We do header adjustment for
* each, add the tunnel encapsulation, and then concatenate
* the mbuf chains to form a single frame for transmission.
*/
struct mbuf *
ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
struct ieee80211_key *key)
{
struct mbuf *m2;
struct ether_header eh1, eh2;
struct llc *llc;
struct mbuf *m;
int pad;
m2 = m1->m_nextpkt;
if (m2 == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: only one frame\n", __func__);
goto bad;
}
m1->m_nextpkt = NULL;
/*
* Adjust to include 802.11 header requirement.
*/
KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1);
if (m1 == NULL) {
printf("%s: failed initial mbuf_adjust\n", __func__);
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
m_freem(m2);
goto bad;
}
/*
* Copy second frame's Ethernet header out of line
* and adjust for possible padding in case there isn't room
* at the end of first frame.
*/
KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2);
if (m2 == NULL) {
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
printf("%s: failed second \n", __func__);
goto bad;
}
/*
* Now do tunnel encapsulation. First, each
* frame gets a standard encapsulation.
*/
m1 = ieee80211_ff_encap1(vap, m1, &eh1);
if (m1 == NULL)
goto bad;
m2 = ieee80211_ff_encap1(vap, m2, &eh2);
if (m2 == NULL)
goto bad;
/*
* Pad leading frame to a 4-byte boundary. If there
* is space at the end of the first frame, put it
* there; otherwise prepend to the front of the second
* frame. We know doing the second will always work
* because we reserve space above. We prefer appending
* as this typically has better DMA alignment properties.
*/
for (m = m1; m->m_next != NULL; m = m->m_next)
;
pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
if (pad) {
if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */
m2->m_data -= pad;
m2->m_len += pad;
m2->m_pkthdr.len += pad;
} else { /* append to first */
m->m_len += pad;
m1->m_pkthdr.len += pad;
}
}
/*
* A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the
* QoS header.
*
* XXX optimize by prepending together
*/
m->m_next = m2; /* NB: last mbuf from above */
m1->m_pkthdr.len += m2->m_pkthdr.len;
M_PREPEND(m1, sizeof(uint32_t)+2, M_NOWAIT);
if (m1 == NULL) { /* XXX cannot happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: no space for tunnel header\n", __func__);
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
M_PREPEND(m1, sizeof(struct llc), M_NOWAIT);
if (m1 == NULL) { /* XXX cannot happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: no space for llc header\n", __func__);
vap->iv_stats.is_tx_nobuf++;
return NULL;
}
llc = mtod(m1, struct llc *);
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
llc->llc_control = LLC_UI;
llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
vap->iv_stats.is_ff_encap++;
return m1;
bad:
vap->iv_stats.is_ff_encapfail++;
if (m1 != NULL)
m_freem(m1);
if (m2 != NULL)
m_freem(m2);
return NULL;
}
/*
* A-MSDU encapsulation.
*
* This assumes just two frames for now, since we're borrowing the
* same queuing code and infrastructure as fast-frames.
*
* There must be two packets chained with m_nextpkt.
* We do header adjustment for each, and then concatenate the mbuf chains
* to form a single frame for transmission.
*/
struct mbuf *
ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
struct ieee80211_key *key)
{
struct mbuf *m2;
struct ether_header eh1, eh2;
struct mbuf *m;
int pad;
m2 = m1->m_nextpkt;
if (m2 == NULL) {
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: only one frame\n", __func__);
goto bad;
}
m1->m_nextpkt = NULL;
/*
* Include A-MSDU header in adjusting header layout.
*/
KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
m1 = ieee80211_mbuf_adjust(vap,
hdrspace + sizeof(struct llc) + sizeof(uint32_t) +
sizeof(struct ether_header),
key, m1);
if (m1 == NULL) {
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
m_freem(m2);
goto bad;
}
/*
* Copy second frame's Ethernet header out of line
* and adjust for encapsulation headers. Note that
* we make room for padding in case there isn't room
* at the end of first frame.
*/
KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2);
if (m2 == NULL) {
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
goto bad;
}
/*
* Now do tunnel encapsulation. First, each
* frame gets a standard encapsulation.
*/
m1 = ieee80211_ff_encap1(vap, m1, &eh1);
if (m1 == NULL)
goto bad;
m2 = ieee80211_ff_encap1(vap, m2, &eh2);
if (m2 == NULL)
goto bad;
/*
* Pad leading frame to a 4-byte boundary. If there
* is space at the end of the first frame, put it
* there; otherwise prepend to the front of the second
* frame. We know doing the second will always work
* because we reserve space above. We prefer appending
* as this typically has better DMA alignment properties.
*/
for (m = m1; m->m_next != NULL; m = m->m_next)
;
pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
if (pad) {
if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */
m2->m_data -= pad;
m2->m_len += pad;
m2->m_pkthdr.len += pad;
} else { /* append to first */
m->m_len += pad;
m1->m_pkthdr.len += pad;
}
}
/*
* Now, stick 'em together.
*/
m->m_next = m2; /* NB: last mbuf from above */
m1->m_pkthdr.len += m2->m_pkthdr.len;
vap->iv_stats.is_amsdu_encap++;
return m1;
bad:
vap->iv_stats.is_amsdu_encapfail++;
if (m1 != NULL)
m_freem(m1);
if (m2 != NULL)
m_freem(m2);
return NULL;
}
static void
ff_transmit(struct ieee80211_node *ni, struct mbuf *m)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
IEEE80211_TX_LOCK_ASSERT(ic);
/* encap and xmit */
m = ieee80211_encap(vap, ni, m);
if (m != NULL)
(void) ieee80211_parent_xmitpkt(ic, m);
else
ieee80211_free_node(ni);
}
/*
* Flush frames to device; note we re-use the linked list
* the frames were stored on and use the sentinel (unchanged)
* which may be non-NULL.
*/
static void
ff_flush(struct mbuf *head, struct mbuf *last)
{
struct mbuf *m, *next;
struct ieee80211_node *ni;
struct ieee80211vap *vap;
for (m = head; m != last; m = next) {
next = m->m_nextpkt;
m->m_nextpkt = NULL;
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
vap = ni->ni_vap;
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
"%s: flush frame, age %u", __func__, M_AGE_GET(m));
vap->iv_stats.is_ff_flush++;
ff_transmit(ni, m);
}
}
/*
* Age frames on the staging queue.
*/
void
ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq,
int quanta)
{
struct mbuf *m, *head;
struct ieee80211_node *ni;
IEEE80211_FF_LOCK(ic);
if (sq->depth == 0) {
IEEE80211_FF_UNLOCK(ic);
return; /* nothing to do */
}
KASSERT(sq->head != NULL, ("stageq empty"));
head = sq->head;
while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) {
int tid = WME_AC_TO_TID(M_WME_GETAC(m));
/* clear staging ref to frame */
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty"));
ni->ni_tx_superg[tid] = NULL;
sq->head = m->m_nextpkt;
sq->depth--;
}
if (m == NULL)
sq->tail = NULL;
else
M_AGE_SUB(m, quanta);
IEEE80211_FF_UNLOCK(ic);
IEEE80211_TX_LOCK(ic);
ff_flush(head, m);
IEEE80211_TX_UNLOCK(ic);
}
static void
stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m)
{
int age = ieee80211_ffagemax;
IEEE80211_FF_LOCK_ASSERT(ic);
if (sq->tail != NULL) {
sq->tail->m_nextpkt = m;
age -= M_AGE_GET(sq->head);
} else {
sq->head = m;
struct timeout_task *qtask = &ic->ic_superg->ff_qtimer;
taskqueue_enqueue_timeout(ic->ic_tq, qtask, age);
}
KASSERT(age >= 0, ("age %d", age));
M_AGE_SET(m, age);
m->m_nextpkt = NULL;
sq->tail = m;
sq->depth++;
}
static void
stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged)
{
struct mbuf *m, *mprev;
IEEE80211_FF_LOCK_ASSERT(ic);
mprev = NULL;
for (m = sq->head; m != NULL; m = m->m_nextpkt) {
if (m == mstaged) {
if (mprev == NULL)
sq->head = m->m_nextpkt;
else
mprev->m_nextpkt = m->m_nextpkt;
if (sq->tail == m)
sq->tail = mprev;
sq->depth--;
return;
}
mprev = m;
}
printf("%s: packet not found\n", __func__);
}
static uint32_t
ff_approx_txtime(struct ieee80211_node *ni,
const struct mbuf *m1, const struct mbuf *m2)
{
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211vap *vap = ni->ni_vap;
uint32_t framelen;
uint32_t frame_time;
/*
* Approximate the frame length to be transmitted. A swag to add
* the following maximal values to the skb payload:
* - 32: 802.11 encap + CRC
* - 24: encryption overhead (if wep bit)
* - 4 + 6: fast-frame header and padding
* - 16: 2 LLC FF tunnel headers
* - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd)
*/
framelen = m1->m_pkthdr.len + 32 +
ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR;
if (vap->iv_flags & IEEE80211_F_PRIVACY)
framelen += 24;
if (m2 != NULL)
framelen += m2->m_pkthdr.len;
/*
* For now, we assume non-shortgi, 20MHz, just because I want to
* at least test 802.11n.
*/
if (ni->ni_txrate & IEEE80211_RATE_MCS)
frame_time = ieee80211_compute_duration_ht(framelen,
ni->ni_txrate,
IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate),
0, /* isht40 */
0); /* isshortgi */
else
frame_time = ieee80211_compute_duration(ic->ic_rt, framelen,
ni->ni_txrate, 0);
return (frame_time);
}
/*
* Check if the supplied frame can be partnered with an existing
* or pending frame. Return a reference to any frame that should be
* sent on return; otherwise return NULL.
*/
struct mbuf *
ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_superg *sg = ic->ic_superg;
const int pri = M_WME_GETAC(m);
struct ieee80211_stageq *sq;
struct ieee80211_tx_ampdu *tap;
struct mbuf *mstaged;
uint32_t txtime, limit;
IEEE80211_TX_UNLOCK_ASSERT(ic);
IEEE80211_LOCK(ic);
limit = IEEE80211_TXOP_TO_US(
ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
IEEE80211_UNLOCK(ic);
/*
* Check if the supplied frame can be aggregated.
*
* NB: we allow EAPOL frames to be aggregated with other ucast traffic.
* Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
* be aggregated with other types of frames when encryption is on?
*/
IEEE80211_FF_LOCK(ic);
tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)];
mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)];
/* XXX NOTE: reusing packet counter state from A-MPDU */
/*
* XXX NOTE: this means we're double-counting; it should just
* be done in ieee80211_output.c once for both superg and A-MPDU.
*/
ieee80211_txampdu_count_packet(tap);
/*
* When not in station mode never aggregate a multicast
* frame; this insures, for example, that a combined frame
* does not require multiple encryption keys.
*/
if (vap->iv_opmode != IEEE80211_M_STA &&
ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) {
/* XXX flush staged frame? */
IEEE80211_FF_UNLOCK(ic);
return m;
}
/*
* If there is no frame to combine with and the pps is
* too low; then do not attempt to aggregate this frame.
*/
if (mstaged == NULL &&
ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) {
IEEE80211_FF_UNLOCK(ic);
return m;
}
sq = &sg->ff_stageq[pri];
/*
* Check the txop limit to insure the aggregate fits.
*/
if (limit != 0 &&
(txtime = ff_approx_txtime(ni, m, mstaged)) > limit) {
/*
* Aggregate too long, return to the caller for direct
* transmission. In addition, flush any pending frame
* before sending this one.
*/
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: txtime %u exceeds txop limit %u\n",
__func__, txtime, limit);
ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL;
if (mstaged != NULL)
stageq_remove(ic, sq, mstaged);
IEEE80211_FF_UNLOCK(ic);
if (mstaged != NULL) {
IEEE80211_TX_LOCK(ic);
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
"%s: flush staged frame", __func__);
/* encap and xmit */
ff_transmit(ni, mstaged);
IEEE80211_TX_UNLOCK(ic);
}
return m; /* NB: original frame */
}
/*
* An aggregation candidate. If there's a frame to partner
* with then combine and return for processing. Otherwise
* save this frame and wait for a partner to show up (or
* the frame to be flushed). Note that staged frames also
* hold their node reference.
*/
if (mstaged != NULL) {
ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL;
stageq_remove(ic, sq, mstaged);
IEEE80211_FF_UNLOCK(ic);
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
"%s: aggregate fast-frame", __func__);
/*
* Release the node reference; we only need
* the one already in mstaged.
*/
KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni,
("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni));
ieee80211_free_node(ni);
m->m_nextpkt = NULL;
mstaged->m_nextpkt = m;
mstaged->m_flags |= M_FF; /* NB: mark for encap work */
} else {
KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL,
("ni_tx_superg[]: %p",
ni->ni_tx_superg[WME_AC_TO_TID(pri)]));
ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m;
stageq_add(ic, sq, m);
IEEE80211_FF_UNLOCK(ic);
IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
"%s: stage frame, %u queued", __func__, sq->depth);
/* NB: mstaged is NULL */
}
return mstaged;
}
struct mbuf *
ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m)
{
/*
* XXX TODO: actually enforce the node support
* and HTCAP requirements for the maximum A-MSDU
* size.
*/
/* First: software A-MSDU transmit? */
if (! ieee80211_amsdu_tx_ok(ni))
return (m);
/* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */
if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST))
return (m);
/* Next - needs to be a data frame, non-broadcast, etc */
if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
return (m);
return (ieee80211_ff_check(ni, m));
}
void
ieee80211_ff_node_init(struct ieee80211_node *ni)
{
/*
* Clean FF state on re-associate. This handles the case
* where a station leaves w/o notifying us and then returns
* before node is reaped for inactivity.
*/
ieee80211_ff_node_cleanup(ni);
}
void
ieee80211_ff_node_cleanup(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_superg *sg = ic->ic_superg;
struct mbuf *m, *next_m, *head;
int tid;
IEEE80211_FF_LOCK(ic);
head = NULL;
for (tid = 0; tid < WME_NUM_TID; tid++) {
int ac = TID_TO_WME_AC(tid);
/*
* XXX Initialise the packet counter.
*
* This may be double-work for 11n stations;
* but without it we never setup things.
*/
ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]);
m = ni->ni_tx_superg[tid];
if (m != NULL) {
ni->ni_tx_superg[tid] = NULL;
stageq_remove(ic, &sg->ff_stageq[ac], m);
m->m_nextpkt = head;
head = m;
}
}
IEEE80211_FF_UNLOCK(ic);
/*
* Free mbufs, taking care to not dereference the mbuf after
* we free it (hence grabbing m_nextpkt before we free it.)
*/
m = head;
while (m != NULL) {
next_m = m->m_nextpkt;
m_freem(m);
ieee80211_free_node(ni);
m = next_m;
}
}
/*
* Switch between turbo and non-turbo operating modes.
* Use the specified channel flags to locate the new
* channel, update 802.11 state, and then call back into
* the driver to effect the change.
*/
void
ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_channel *chan;
chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags);
if (chan == NULL) { /* XXX should not happen */
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: no channel with freq %u flags 0x%x\n",
__func__, ic->ic_bsschan->ic_freq, newflags);
return;
}
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
"%s: %s -> %s (freq %u flags 0x%x)\n", __func__,
ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)],
ieee80211_phymode_name[ieee80211_chan2mode(chan)],
chan->ic_freq, chan->ic_flags);
ic->ic_bsschan = chan;
ic->ic_prevchan = ic->ic_curchan;
ic->ic_curchan = chan;
ic->ic_rt = ieee80211_get_ratetable(chan);
ic->ic_set_channel(ic);
ieee80211_radiotap_chan_change(ic);
/* NB: do not need to reset ERP state 'cuz we're in sta mode */
}
/*
* Return the current ``state'' of an Atheros capbility.
* If associated in station mode report the negotiated
* setting. Otherwise report the current setting.
*/
static int
getathcap(struct ieee80211vap *vap, int cap)
{
if (vap->iv_opmode == IEEE80211_M_STA &&
vap->iv_state == IEEE80211_S_RUN)
return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0;
else
return (vap->iv_flags & cap) != 0;
}
static int
superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
{
switch (ireq->i_type) {
case IEEE80211_IOC_FF:
ireq->i_val = getathcap(vap, IEEE80211_F_FF);
break;
case IEEE80211_IOC_TURBOP:
ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP);
break;
default:
return ENOSYS;
}
return 0;
}
IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211);
static int
superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
{
switch (ireq->i_type) {
case IEEE80211_IOC_FF:
if (ireq->i_val) {
if ((vap->iv_caps & IEEE80211_C_FF) == 0)
return EOPNOTSUPP;
vap->iv_flags |= IEEE80211_F_FF;
} else
vap->iv_flags &= ~IEEE80211_F_FF;
return ENETRESET;
case IEEE80211_IOC_TURBOP:
if (ireq->i_val) {
if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0)
return EOPNOTSUPP;
vap->iv_flags |= IEEE80211_F_TURBOP;
} else
vap->iv_flags &= ~IEEE80211_F_TURBOP;
return ENETRESET;
default:
return ENOSYS;
}
}
IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211);
#endif /* IEEE80211_SUPPORT_SUPERG */