freebsd-nq/sys/dev/usb/wlan/if_rum.c
Andriy Voskoboinyk 63a55eab9b usb/wlan/*: properly include "opt_wlan.h" into all drivers
Without it driver cannot be loaded when wlan(4) module is built with
'options IEEE80211_DEBUG_REFCNT'.
2018-03-10 23:16:24 +00:00

3308 lines
84 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
* Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
* Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2501USB/RT2601USB chipset driver
* http://www.ralinktech.com.tw/
*/
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kdb.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#endif
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_ratectl.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR rum_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/wlan/if_rumreg.h>
#include <dev/usb/wlan/if_rumvar.h>
#include <dev/usb/wlan/if_rumfw.h>
#ifdef USB_DEBUG
static int rum_debug = 0;
static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0,
"Debug level");
#endif
static const STRUCT_USB_HOST_ID rum_devs[] = {
#define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
RUM_DEV(ABOCOM, HWU54DM),
RUM_DEV(ABOCOM, RT2573_2),
RUM_DEV(ABOCOM, RT2573_3),
RUM_DEV(ABOCOM, RT2573_4),
RUM_DEV(ABOCOM, WUG2700),
RUM_DEV(AMIT, CGWLUSB2GO),
RUM_DEV(ASUS, RT2573_1),
RUM_DEV(ASUS, RT2573_2),
RUM_DEV(BELKIN, F5D7050A),
RUM_DEV(BELKIN, F5D9050V3),
RUM_DEV(CISCOLINKSYS, WUSB54GC),
RUM_DEV(CISCOLINKSYS, WUSB54GR),
RUM_DEV(CONCEPTRONIC2, C54RU2),
RUM_DEV(COREGA, CGWLUSB2GL),
RUM_DEV(COREGA, CGWLUSB2GPX),
RUM_DEV(DICKSMITH, CWD854F),
RUM_DEV(DICKSMITH, RT2573),
RUM_DEV(EDIMAX, EW7318USG),
RUM_DEV(DLINK2, DWLG122C1),
RUM_DEV(DLINK2, WUA1340),
RUM_DEV(DLINK2, DWA111),
RUM_DEV(DLINK2, DWA110),
RUM_DEV(GIGABYTE, GNWB01GS),
RUM_DEV(GIGABYTE, GNWI05GS),
RUM_DEV(GIGASET, RT2573),
RUM_DEV(GOODWAY, RT2573),
RUM_DEV(GUILLEMOT, HWGUSB254LB),
RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
RUM_DEV(HUAWEI3COM, WUB320G),
RUM_DEV(MELCO, G54HP),
RUM_DEV(MELCO, SG54HP),
RUM_DEV(MELCO, SG54HG),
RUM_DEV(MELCO, WLIUCG),
RUM_DEV(MELCO, WLRUCG),
RUM_DEV(MELCO, WLRUCGAOSS),
RUM_DEV(MSI, RT2573_1),
RUM_DEV(MSI, RT2573_2),
RUM_DEV(MSI, RT2573_3),
RUM_DEV(MSI, RT2573_4),
RUM_DEV(NOVATECH, RT2573),
RUM_DEV(PLANEX2, GWUS54HP),
RUM_DEV(PLANEX2, GWUS54MINI2),
RUM_DEV(PLANEX2, GWUSMM),
RUM_DEV(QCOM, RT2573),
RUM_DEV(QCOM, RT2573_2),
RUM_DEV(QCOM, RT2573_3),
RUM_DEV(RALINK, RT2573),
RUM_DEV(RALINK, RT2573_2),
RUM_DEV(RALINK, RT2671),
RUM_DEV(SITECOMEU, WL113R2),
RUM_DEV(SITECOMEU, WL172),
RUM_DEV(SPARKLAN, RT2573),
RUM_DEV(SURECOM, RT2573),
#undef RUM_DEV
};
static device_probe_t rum_match;
static device_attach_t rum_attach;
static device_detach_t rum_detach;
static usb_callback_t rum_bulk_read_callback;
static usb_callback_t rum_bulk_write_callback;
static usb_error_t rum_do_request(struct rum_softc *sc,
struct usb_device_request *req, void *data);
static usb_error_t rum_do_mcu_request(struct rum_softc *sc, int);
static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode,
int, const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void rum_vap_delete(struct ieee80211vap *);
static void rum_cmdq_cb(void *, int);
static int rum_cmd_sleepable(struct rum_softc *, const void *,
size_t, uint8_t, CMD_FUNC_PROTO);
static void rum_tx_free(struct rum_tx_data *, int);
static void rum_setup_tx_list(struct rum_softc *);
static void rum_reset_tx_list(struct rum_softc *,
struct ieee80211vap *);
static void rum_unsetup_tx_list(struct rum_softc *);
static void rum_beacon_miss(struct ieee80211vap *);
static void rum_sta_recv_mgmt(struct ieee80211_node *,
struct mbuf *, int,
const struct ieee80211_rx_stats *, int, int);
static int rum_set_power_state(struct rum_softc *, int);
static int rum_newstate(struct ieee80211vap *,
enum ieee80211_state, int);
static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int);
static void rum_setup_tx_desc(struct rum_softc *,
struct rum_tx_desc *, struct ieee80211_key *,
uint32_t, uint8_t, uint8_t, int, int, int);
static uint32_t rum_tx_crypto_flags(struct rum_softc *,
struct ieee80211_node *,
const struct ieee80211_key *);
static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
struct ieee80211_node *);
static int rum_tx_raw(struct rum_softc *, struct mbuf *,
struct ieee80211_node *,
const struct ieee80211_bpf_params *);
static int rum_tx_data(struct rum_softc *, struct mbuf *,
struct ieee80211_node *);
static int rum_transmit(struct ieee80211com *, struct mbuf *);
static void rum_start(struct rum_softc *);
static void rum_parent(struct ieee80211com *);
static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
int);
static uint32_t rum_read(struct rum_softc *, uint16_t);
static void rum_read_multi(struct rum_softc *, uint16_t, void *,
int);
static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t);
static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *,
size_t);
static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t);
static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t);
static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t,
uint32_t);
static int rum_bbp_busy(struct rum_softc *);
static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
static void rum_select_antenna(struct rum_softc *);
static void rum_enable_mrr(struct rum_softc *);
static void rum_set_txpreamble(struct rum_softc *);
static void rum_set_basicrates(struct rum_softc *);
static void rum_select_band(struct rum_softc *,
struct ieee80211_channel *);
static void rum_set_chan(struct rum_softc *,
struct ieee80211_channel *);
static void rum_set_maxretry(struct rum_softc *,
struct ieee80211vap *);
static int rum_enable_tsf_sync(struct rum_softc *);
static void rum_enable_tsf(struct rum_softc *);
static void rum_abort_tsf_sync(struct rum_softc *);
static void rum_get_tsf(struct rum_softc *, uint64_t *);
static void rum_update_slot_cb(struct rum_softc *,
union sec_param *, uint8_t);
static void rum_update_slot(struct ieee80211com *);
static int rum_wme_update(struct ieee80211com *);
static void rum_set_bssid(struct rum_softc *, const uint8_t *);
static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
static void rum_update_mcast(struct ieee80211com *);
static void rum_update_promisc(struct ieee80211com *);
static void rum_setpromisc(struct rum_softc *);
static const char *rum_get_rf(int);
static void rum_read_eeprom(struct rum_softc *);
static int rum_bbp_wakeup(struct rum_softc *);
static int rum_bbp_init(struct rum_softc *);
static void rum_clr_shkey_regs(struct rum_softc *);
static int rum_init(struct rum_softc *);
static void rum_stop(struct rum_softc *);
static void rum_load_microcode(struct rum_softc *, const uint8_t *,
size_t);
static int rum_set_sleep_time(struct rum_softc *, uint16_t);
static int rum_reset(struct ieee80211vap *, u_long);
static int rum_set_beacon(struct rum_softc *,
struct ieee80211vap *);
static int rum_alloc_beacon(struct rum_softc *,
struct ieee80211vap *);
static void rum_update_beacon_cb(struct rum_softc *,
union sec_param *, uint8_t);
static void rum_update_beacon(struct ieee80211vap *, int);
static int rum_common_key_set(struct rum_softc *,
struct ieee80211_key *, uint16_t);
static void rum_group_key_set_cb(struct rum_softc *,
union sec_param *, uint8_t);
static void rum_group_key_del_cb(struct rum_softc *,
union sec_param *, uint8_t);
static void rum_pair_key_set_cb(struct rum_softc *,
union sec_param *, uint8_t);
static void rum_pair_key_del_cb(struct rum_softc *,
union sec_param *, uint8_t);
static int rum_key_alloc(struct ieee80211vap *,
struct ieee80211_key *, ieee80211_keyix *,
ieee80211_keyix *);
static int rum_key_set(struct ieee80211vap *,
const struct ieee80211_key *);
static int rum_key_delete(struct ieee80211vap *,
const struct ieee80211_key *);
static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void rum_scan_start(struct ieee80211com *);
static void rum_scan_end(struct ieee80211com *);
static void rum_set_channel(struct ieee80211com *);
static void rum_getradiocaps(struct ieee80211com *, int, int *,
struct ieee80211_channel[]);
static int rum_get_rssi(struct rum_softc *, uint8_t);
static void rum_ratectl_start(struct rum_softc *,
struct ieee80211_node *);
static void rum_ratectl_timeout(void *);
static void rum_ratectl_task(void *, int);
static int rum_pause(struct rum_softc *, int);
static const struct {
uint32_t reg;
uint32_t val;
} rum_def_mac[] = {
{ RT2573_TXRX_CSR0, 0x025fb032 },
{ RT2573_TXRX_CSR1, 0x9eaa9eaf },
{ RT2573_TXRX_CSR2, 0x8a8b8c8d },
{ RT2573_TXRX_CSR3, 0x00858687 },
{ RT2573_TXRX_CSR7, 0x2e31353b },
{ RT2573_TXRX_CSR8, 0x2a2a2a2c },
{ RT2573_TXRX_CSR15, 0x0000000f },
{ RT2573_MAC_CSR6, 0x00000fff },
{ RT2573_MAC_CSR8, 0x016c030a },
{ RT2573_MAC_CSR10, 0x00000718 },
{ RT2573_MAC_CSR12, 0x00000004 },
{ RT2573_MAC_CSR13, 0x00007f00 },
{ RT2573_SEC_CSR2, 0x00000000 },
{ RT2573_SEC_CSR3, 0x00000000 },
{ RT2573_SEC_CSR4, 0x00000000 },
{ RT2573_PHY_CSR1, 0x000023b0 },
{ RT2573_PHY_CSR5, 0x00040a06 },
{ RT2573_PHY_CSR6, 0x00080606 },
{ RT2573_PHY_CSR7, 0x00000408 },
{ RT2573_AIFSN_CSR, 0x00002273 },
{ RT2573_CWMIN_CSR, 0x00002344 },
{ RT2573_CWMAX_CSR, 0x000034aa }
};
static const struct {
uint8_t reg;
uint8_t val;
} rum_def_bbp[] = {
{ 3, 0x80 },
{ 15, 0x30 },
{ 17, 0x20 },
{ 21, 0xc8 },
{ 22, 0x38 },
{ 23, 0x06 },
{ 24, 0xfe },
{ 25, 0x0a },
{ 26, 0x0d },
{ 32, 0x0b },
{ 34, 0x12 },
{ 37, 0x07 },
{ 39, 0xf8 },
{ 41, 0x60 },
{ 53, 0x10 },
{ 54, 0x18 },
{ 60, 0x10 },
{ 61, 0x04 },
{ 62, 0x04 },
{ 75, 0xfe },
{ 86, 0xfe },
{ 88, 0xfe },
{ 90, 0x0f },
{ 99, 0x00 },
{ 102, 0x16 },
{ 107, 0x04 }
};
static const uint8_t rum_chan_2ghz[] =
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
static const uint8_t rum_chan_5ghz[] =
{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64,
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
149, 153, 157, 161, 165 };
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rum_rf5226[] = {
{ 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
{ 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
{ 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
{ 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
{ 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
{ 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
{ 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
{ 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
{ 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
{ 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
{ 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
{ 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
{ 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
{ 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
{ 34, 0x00b03, 0x20266, 0x36014, 0x30282 },
{ 38, 0x00b03, 0x20267, 0x36014, 0x30284 },
{ 42, 0x00b03, 0x20268, 0x36014, 0x30286 },
{ 46, 0x00b03, 0x20269, 0x36014, 0x30288 },
{ 36, 0x00b03, 0x00266, 0x26014, 0x30288 },
{ 40, 0x00b03, 0x00268, 0x26014, 0x30280 },
{ 44, 0x00b03, 0x00269, 0x26014, 0x30282 },
{ 48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
{ 52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
{ 56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
{ 60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
{ 64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
}, rum_rf5225[] = {
{ 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
{ 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
{ 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
{ 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
{ 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
{ 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
{ 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
{ 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
{ 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
{ 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
{ 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
{ 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
{ 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
{ 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
{ 34, 0x00b33, 0x01266, 0x26014, 0x30282 },
{ 38, 0x00b33, 0x01267, 0x26014, 0x30284 },
{ 42, 0x00b33, 0x01268, 0x26014, 0x30286 },
{ 46, 0x00b33, 0x01269, 0x26014, 0x30288 },
{ 36, 0x00b33, 0x01266, 0x26014, 0x30288 },
{ 40, 0x00b33, 0x01268, 0x26014, 0x30280 },
{ 44, 0x00b33, 0x01269, 0x26014, 0x30282 },
{ 48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
{ 52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
{ 56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
{ 60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
{ 64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
};
static const struct usb_config rum_config[RUM_N_TRANSFER] = {
[RUM_BULK_WR] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = rum_bulk_write_callback,
.timeout = 5000, /* ms */
},
[RUM_BULK_RD] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = rum_bulk_read_callback,
},
};
static int
rum_match(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != 0)
return (ENXIO);
if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
}
static int
rum_attach(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
struct rum_softc *sc = device_get_softc(self);
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
uint8_t iface_index;
int error, ntries;
device_set_usb_desc(self);
sc->sc_udev = uaa->device;
sc->sc_dev = self;
RUM_LOCK_INIT(sc);
RUM_CMDQ_LOCK_INIT(sc);
mbufq_init(&sc->sc_snd, ifqmaxlen);
iface_index = RT2573_IFACE_INDEX;
error = usbd_transfer_setup(uaa->device, &iface_index,
sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(self, "could not allocate USB transfers, "
"err=%s\n", usbd_errstr(error));
goto detach;
}
RUM_LOCK(sc);
/* retrieve RT2573 rev. no */
for (ntries = 0; ntries < 100; ntries++) {
if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
break;
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
RUM_UNLOCK(sc);
goto detach;
}
/* retrieve MAC address and various other things from EEPROM */
rum_read_eeprom(sc);
device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
tmp, rum_get_rf(sc->rf_rev));
rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
RUM_UNLOCK(sc);
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(self);
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_IBSS /* IBSS mode supported */
| IEEE80211_C_MONITOR /* monitor mode supported */
| IEEE80211_C_HOSTAP /* HostAp mode supported */
| IEEE80211_C_AHDEMO /* adhoc demo mode */
| IEEE80211_C_TXPMGT /* tx power management */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_BGSCAN /* bg scanning supported */
| IEEE80211_C_WPA /* 802.11i */
| IEEE80211_C_WME /* 802.11e */
| IEEE80211_C_PMGT /* Station-side power mgmt */
| IEEE80211_C_SWSLEEP /* net80211 managed power mgmt */
;
ic->ic_cryptocaps =
IEEE80211_CRYPTO_WEP |
IEEE80211_CRYPTO_AES_CCM |
IEEE80211_CRYPTO_TKIPMIC |
IEEE80211_CRYPTO_TKIP;
rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
ic->ic_channels);
ieee80211_ifattach(ic);
ic->ic_update_promisc = rum_update_promisc;
ic->ic_raw_xmit = rum_raw_xmit;
ic->ic_scan_start = rum_scan_start;
ic->ic_scan_end = rum_scan_end;
ic->ic_set_channel = rum_set_channel;
ic->ic_getradiocaps = rum_getradiocaps;
ic->ic_transmit = rum_transmit;
ic->ic_parent = rum_parent;
ic->ic_vap_create = rum_vap_create;
ic->ic_vap_delete = rum_vap_delete;
ic->ic_updateslot = rum_update_slot;
ic->ic_wme.wme_update = rum_wme_update;
ic->ic_update_mcast = rum_update_mcast;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
RT2573_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
RT2573_RX_RADIOTAP_PRESENT);
TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc);
if (bootverbose)
ieee80211_announce(ic);
return (0);
detach:
rum_detach(self);
return (ENXIO); /* failure */
}
static int
rum_detach(device_t self)
{
struct rum_softc *sc = device_get_softc(self);
struct ieee80211com *ic = &sc->sc_ic;
/* Prevent further ioctls */
RUM_LOCK(sc);
sc->sc_detached = 1;
RUM_UNLOCK(sc);
/* stop all USB transfers */
usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
/* free TX list, if any */
RUM_LOCK(sc);
rum_unsetup_tx_list(sc);
RUM_UNLOCK(sc);
if (ic->ic_softc == sc) {
ieee80211_draintask(ic, &sc->cmdq_task);
ieee80211_ifdetach(ic);
}
mbufq_drain(&sc->sc_snd);
RUM_CMDQ_LOCK_DESTROY(sc);
RUM_LOCK_DESTROY(sc);
return (0);
}
static usb_error_t
rum_do_request(struct rum_softc *sc,
struct usb_device_request *req, void *data)
{
usb_error_t err;
int ntries = 10;
while (ntries--) {
err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
req, data, 0, NULL, 250 /* ms */);
if (err == 0)
break;
DPRINTFN(1, "Control request failed, %s (retrying)\n",
usbd_errstr(err));
if (rum_pause(sc, hz / 100))
break;
}
return (err);
}
static usb_error_t
rum_do_mcu_request(struct rum_softc *sc, int request)
{
struct usb_device_request req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2573_MCU_CNTL;
USETW(req.wValue, request);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return (rum_do_request(sc, &req, NULL));
}
static struct ieee80211vap *
rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct rum_softc *sc = ic->ic_softc;
struct rum_vap *rvp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
vap = &rvp->vap;
/* enable s/w bmiss handling for sta mode */
if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
/* out of memory */
free(rvp, M_80211_VAP);
return (NULL);
}
/* override state transition machine */
rvp->newstate = vap->iv_newstate;
vap->iv_newstate = rum_newstate;
vap->iv_key_alloc = rum_key_alloc;
vap->iv_key_set = rum_key_set;
vap->iv_key_delete = rum_key_delete;
vap->iv_update_beacon = rum_update_beacon;
vap->iv_reset = rum_reset;
vap->iv_max_aid = RT2573_ADDR_MAX;
if (opmode == IEEE80211_M_STA) {
/*
* Move device to the sleep state when
* beacon is received and there is no data for us.
*
* Used only for IEEE80211_S_SLEEP state.
*/
rvp->recv_mgmt = vap->iv_recv_mgmt;
vap->iv_recv_mgmt = rum_sta_recv_mgmt;
/* Ignored while sleeping. */
rvp->bmiss = vap->iv_bmiss;
vap->iv_bmiss = rum_beacon_miss;
}
usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
ieee80211_ratectl_init(vap);
ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change,
ieee80211_media_status, mac);
ic->ic_opmode = opmode;
return vap;
}
static void
rum_vap_delete(struct ieee80211vap *vap)
{
struct rum_vap *rvp = RUM_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct rum_softc *sc = ic->ic_softc;
/* Put vap into INIT state. */
ieee80211_new_state(vap, IEEE80211_S_INIT, -1);
ieee80211_draintask(ic, &vap->iv_nstate_task);
RUM_LOCK(sc);
/* Cancel any unfinished Tx. */
rum_reset_tx_list(sc, vap);
RUM_UNLOCK(sc);
usb_callout_drain(&rvp->ratectl_ch);
ieee80211_draintask(ic, &rvp->ratectl_task);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
m_freem(rvp->bcn_mbuf);
free(rvp, M_80211_VAP);
}
static void
rum_cmdq_cb(void *arg, int pending)
{
struct rum_softc *sc = arg;
struct rum_cmdq *rc;
RUM_CMDQ_LOCK(sc);
while (sc->cmdq[sc->cmdq_first].func != NULL) {
rc = &sc->cmdq[sc->cmdq_first];
RUM_CMDQ_UNLOCK(sc);
RUM_LOCK(sc);
rc->func(sc, &rc->data, rc->rvp_id);
RUM_UNLOCK(sc);
RUM_CMDQ_LOCK(sc);
memset(rc, 0, sizeof (*rc));
sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE;
}
RUM_CMDQ_UNLOCK(sc);
}
static int
rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len,
uint8_t rvp_id, CMD_FUNC_PROTO)
{
struct ieee80211com *ic = &sc->sc_ic;
KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
RUM_CMDQ_LOCK(sc);
if (sc->cmdq[sc->cmdq_last].func != NULL) {
device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
RUM_CMDQ_UNLOCK(sc);
return EAGAIN;
}
if (ptr != NULL)
memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
sc->cmdq[sc->cmdq_last].rvp_id = rvp_id;
sc->cmdq[sc->cmdq_last].func = func;
sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE;
RUM_CMDQ_UNLOCK(sc);
ieee80211_runtask(ic, &sc->cmdq_task);
return 0;
}
static void
rum_tx_free(struct rum_tx_data *data, int txerr)
{
struct rum_softc *sc = data->sc;
if (data->m != NULL) {
ieee80211_tx_complete(data->ni, data->m, txerr);
data->m = NULL;
data->ni = NULL;
}
STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
sc->tx_nfree++;
}
static void
rum_setup_tx_list(struct rum_softc *sc)
{
struct rum_tx_data *data;
int i;
sc->tx_nfree = 0;
STAILQ_INIT(&sc->tx_q);
STAILQ_INIT(&sc->tx_free);
for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
data->sc = sc;
STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
sc->tx_nfree++;
}
}
static void
rum_reset_tx_list(struct rum_softc *sc, struct ieee80211vap *vap)
{
struct rum_tx_data *data, *tmp;
KASSERT(vap != NULL, ("%s: vap is NULL\n", __func__));
STAILQ_FOREACH_SAFE(data, &sc->tx_q, next, tmp) {
if (data->ni != NULL && data->ni->ni_vap == vap) {
ieee80211_free_node(data->ni);
data->ni = NULL;
KASSERT(data->m != NULL, ("%s: m is NULL\n",
__func__));
m_freem(data->m);
data->m = NULL;
STAILQ_REMOVE(&sc->tx_q, data, rum_tx_data, next);
STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
sc->tx_nfree++;
}
}
}
static void
rum_unsetup_tx_list(struct rum_softc *sc)
{
struct rum_tx_data *data;
int i;
/* make sure any subsequent use of the queues will fail */
sc->tx_nfree = 0;
STAILQ_INIT(&sc->tx_q);
STAILQ_INIT(&sc->tx_free);
/* free up all node references and mbufs */
for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
}
static void
rum_beacon_miss(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct rum_softc *sc = ic->ic_softc;
struct rum_vap *rvp = RUM_VAP(vap);
int sleep;
RUM_LOCK(sc);
if (sc->sc_sleeping && sc->sc_sleep_end < ticks) {
DPRINTFN(12, "dropping 'sleeping' bit, "
"device must be awake now\n");
sc->sc_sleeping = 0;
}
sleep = sc->sc_sleeping;
RUM_UNLOCK(sc);
if (!sleep)
rvp->bmiss(vap);
#ifdef USB_DEBUG
else
DPRINTFN(13, "bmiss event is ignored whilst sleeping\n");
#endif
}
static void
rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
const struct ieee80211_rx_stats *rxs,
int rssi, int nf)
{
struct ieee80211vap *vap = ni->ni_vap;
struct rum_softc *sc = vap->iv_ic->ic_softc;
struct rum_vap *rvp = RUM_VAP(vap);
if (vap->iv_state == IEEE80211_S_SLEEP &&
subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
RUM_LOCK(sc);
DPRINTFN(12, "beacon, mybss %d (flags %02X)\n",
!!(sc->last_rx_flags & RT2573_RX_MYBSS),
sc->last_rx_flags);
if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) ==
(RT2573_RX_MYBSS | RT2573_RX_BC)) {
/*
* Put it to sleep here; in case if there is a data
* for us, iv_recv_mgmt() will wakeup the device via
* SLEEP -> RUN state transition.
*/
rum_set_power_state(sc, 1);
}
RUM_UNLOCK(sc);
}
rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
}
static int
rum_set_power_state(struct rum_softc *sc, int sleep)
{
usb_error_t uerror;
RUM_LOCK_ASSERT(sc);
DPRINTFN(12, "moving to %s state (sleep time %u)\n",
sleep ? "sleep" : "awake", sc->sc_sleep_time);
uerror = rum_do_mcu_request(sc,
sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP);
if (uerror != USB_ERR_NORMAL_COMPLETION) {
device_printf(sc->sc_dev,
"%s: could not change power state: %s\n",
__func__, usbd_errstr(uerror));
return (EIO);
}
sc->sc_sleeping = !!sleep;
sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0;
return (0);
}
static int
rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct rum_vap *rvp = RUM_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct rum_softc *sc = ic->ic_softc;
const struct ieee80211_txparam *tp;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
usb_error_t uerror;
int ret = 0;
ostate = vap->iv_state;
DPRINTF("%s -> %s\n",
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
RUM_LOCK(sc);
usb_callout_stop(&rvp->ratectl_ch);
if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) {
rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
/*
* Ignore any errors;
* any subsequent TX will wakeup it anyway
*/
(void) rum_set_power_state(sc, 0);
}
switch (nstate) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN)
rum_abort_tsf_sync(sc);
break;
case IEEE80211_S_RUN:
if (ostate == IEEE80211_S_SLEEP)
break; /* already handled */
ni = ieee80211_ref_node(vap->iv_bss);
if (vap->iv_opmode != IEEE80211_M_MONITOR) {
if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
ni->ni_chan == IEEE80211_CHAN_ANYC) {
ret = EINVAL;
goto run_fail;
}
rum_update_slot_cb(sc, NULL, 0);
rum_enable_mrr(sc);
rum_set_txpreamble(sc);
rum_set_basicrates(sc);
rum_set_maxretry(sc, vap);
IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
rum_set_bssid(sc, sc->sc_bssid);
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_IBSS) {
if ((ret = rum_alloc_beacon(sc, vap)) != 0)
goto run_fail;
}
if (vap->iv_opmode != IEEE80211_M_MONITOR &&
vap->iv_opmode != IEEE80211_M_AHDEMO) {
if ((ret = rum_enable_tsf_sync(sc)) != 0)
goto run_fail;
} else
rum_enable_tsf(sc);
/* enable automatic rate adaptation */
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
rum_ratectl_start(sc, ni);
run_fail:
ieee80211_free_node(ni);
break;
case IEEE80211_S_SLEEP:
/* Implemented for STA mode only. */
if (vap->iv_opmode != IEEE80211_M_STA)
break;
uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
if (uerror != USB_ERR_NORMAL_COMPLETION) {
ret = EIO;
break;
}
uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
if (uerror != USB_ERR_NORMAL_COMPLETION) {
ret = EIO;
break;
}
ret = rum_set_power_state(sc, 1);
if (ret != 0) {
device_printf(sc->sc_dev,
"%s: could not move to the SLEEP state: %s\n",
__func__, usbd_errstr(uerror));
}
break;
default:
break;
}
RUM_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret);
}
static void
rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct rum_softc *sc = usbd_xfer_softc(xfer);
struct ieee80211vap *vap;
struct rum_tx_data *data;
struct mbuf *m;
struct usb_page_cache *pc;
unsigned int len;
int actlen, sumlen;
usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
/* free resources */
data = usbd_xfer_get_priv(xfer);
rum_tx_free(data, 0);
usbd_xfer_set_priv(xfer, NULL);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&sc->tx_q);
if (data) {
STAILQ_REMOVE_HEAD(&sc->tx_q, next);
m = data->m;
if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
DPRINTFN(0, "data overflow, %u bytes\n",
m->m_pkthdr.len);
m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
}
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
m->m_pkthdr.len);
vap = data->ni->ni_vap;
if (ieee80211_radiotap_active_vap(vap)) {
struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = data->rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(vap, m);
}
/* align end on a 4-bytes boundary */
len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
if ((len % 64) == 0)
len += 4;
DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
m->m_pkthdr.len, len);
usbd_xfer_set_frame_len(xfer, 0, len);
usbd_xfer_set_priv(xfer, data);
usbd_transfer_submit(xfer);
}
rum_start(sc);
break;
default: /* Error */
DPRINTFN(11, "transfer error, %s\n",
usbd_errstr(error));
counter_u64_add(sc->sc_ic.ic_oerrors, 1);
data = usbd_xfer_get_priv(xfer);
if (data != NULL) {
rum_tx_free(data, error);
usbd_xfer_set_priv(xfer, NULL);
}
if (error != USB_ERR_CANCELLED) {
if (error == USB_ERR_TIMEOUT)
device_printf(sc->sc_dev, "device timeout\n");
/*
* Try to clear stall first, also if other
* errors occur, hence clearing stall
* introduces a 50 ms delay:
*/
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
}
static void
rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct rum_softc *sc = usbd_xfer_softc(xfer);
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame_min *wh;
struct ieee80211_node *ni;
struct mbuf *m = NULL;
struct usb_page_cache *pc;
uint32_t flags;
uint8_t rssi = 0;
int len;
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(15, "rx done, actlen=%d\n", len);
if (len < RT2573_RX_DESC_SIZE) {
DPRINTF("%s: xfer too short %d\n",
device_get_nameunit(sc->sc_dev), len);
counter_u64_add(ic->ic_ierrors, 1);
goto tr_setup;
}
len -= RT2573_RX_DESC_SIZE;
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
flags = le32toh(sc->sc_rx_desc.flags);
sc->last_rx_flags = flags;
if (len < ((flags >> 16) & 0xfff)) {
DPRINTFN(5, "%s: frame is truncated from %d to %d "
"bytes\n", device_get_nameunit(sc->sc_dev),
(flags >> 16) & 0xfff, len);
counter_u64_add(ic->ic_ierrors, 1);
goto tr_setup;
}
len = (flags >> 16) & 0xfff;
if (len < sizeof(struct ieee80211_frame_ack)) {
DPRINTFN(5, "%s: frame too short %d\n",
device_get_nameunit(sc->sc_dev), len);
counter_u64_add(ic->ic_ierrors, 1);
goto tr_setup;
}
if (flags & RT2573_RX_CRC_ERROR) {
/*
* This should not happen since we did not
* request to receive those frames when we
* filled RUM_TXRX_CSR2:
*/
DPRINTFN(5, "PHY or CRC error\n");
counter_u64_add(ic->ic_ierrors, 1);
goto tr_setup;
}
if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) {
switch (flags & RT2573_RX_DEC_MASK) {
case RT2573_RX_IV_ERROR:
DPRINTFN(5, "IV/EIV error\n");
break;
case RT2573_RX_MIC_ERROR:
DPRINTFN(5, "MIC error\n");
break;
case RT2573_RX_KEY_ERROR:
DPRINTFN(5, "Key error\n");
break;
}
counter_u64_add(ic->ic_ierrors, 1);
goto tr_setup;
}
m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
DPRINTF("could not allocate mbuf\n");
counter_u64_add(ic->ic_ierrors, 1);
goto tr_setup;
}
usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
mtod(m, uint8_t *), len);
wh = mtod(m, struct ieee80211_frame_min *);
if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
(flags & RT2573_RX_CIP_MASK) !=
RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) {
wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
m->m_flags |= M_WEP;
}
/* finalize mbuf */
m->m_pkthdr.len = m->m_len = len;
if (ieee80211_radiotap_active(ic)) {
struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
(flags & RT2573_RX_OFDM) ?
IEEE80211_T_OFDM : IEEE80211_T_CCK);
rum_get_tsf(sc, &tap->wr_tsf);
tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
tap->wr_antnoise = RT2573_NOISE_FLOOR;
tap->wr_antenna = sc->rx_ant;
}
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
/*
* At the end of a USB callback it is always safe to unlock
* the private mutex of a device! That is why we do the
* "ieee80211_input" here, and not some lines up!
*/
RUM_UNLOCK(sc);
if (m) {
if (m->m_len >= sizeof(struct ieee80211_frame_min))
ni = ieee80211_find_rxnode(ic, wh);
else
ni = NULL;
if (ni != NULL) {
(void) ieee80211_input(ni, m, rssi,
RT2573_NOISE_FLOOR);
ieee80211_free_node(ni);
} else
(void) ieee80211_input_all(ic, m, rssi,
RT2573_NOISE_FLOOR);
}
RUM_LOCK(sc);
rum_start(sc);
return;
default: /* Error */
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
return;
}
}
static uint8_t
rum_plcp_signal(int rate)
{
switch (rate) {
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* CCK rates (NB: not IEEE std, device-specific) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
}
return 0xff; /* XXX unsupported/unknown rate */
}
/*
* Map net80211 cipher to RT2573 security mode.
*/
static uint8_t
rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen)
{
switch (cipher) {
case IEEE80211_CIPHER_WEP:
return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104);
case IEEE80211_CIPHER_TKIP:
return RT2573_MODE_TKIP;
case IEEE80211_CIPHER_AES_CCM:
return RT2573_MODE_AES_CCMP;
default:
device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
return 0;
}
}
static void
rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid,
int hdrlen, int len, int rate)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wmeParams *wmep = &sc->wme_params[qid];
uint16_t plcp_length;
int remainder;
flags |= RT2573_TX_VALID;
flags |= len << 16;
if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
const struct ieee80211_cipher *cip = k->wk_cipher;
len += cip->ic_header + cip->ic_trailer + cip->ic_miclen;
desc->eiv = 0; /* for WEP */
cip->ic_setiv(k, (uint8_t *)&desc->iv);
}
/* setup PLCP fields */
desc->plcp_signal = rum_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
flags |= RT2573_TX_OFDM;
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
if (rate == 0)
rate = 2; /* avoid division by zero */
plcp_length = howmany(16 * len, rate);
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RT2573_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
desc->flags = htole32(flags);
desc->hdrlen = hdrlen;
desc->xflags = xflags;
desc->wme = htole16(RT2573_QID(qid) |
RT2573_AIFSN(wmep->wmep_aifsn) |
RT2573_LOGCWMIN(wmep->wmep_logcwmin) |
RT2573_LOGCWMAX(wmep->wmep_logcwmax));
}
static int
rum_sendprot(struct rum_softc *sc,
const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
{
struct ieee80211com *ic = ni->ni_ic;
struct rum_tx_data *data;
struct mbuf *mprot;
int protrate, flags;
RUM_LOCK_ASSERT(sc);
mprot = ieee80211_alloc_prot(ni, m, rate, prot);
if (mprot == NULL) {
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
device_printf(sc->sc_dev,
"could not allocate mbuf for protection mode %d\n", prot);
return (ENOBUFS);
}
protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
flags = 0;
if (prot == IEEE80211_PROT_RTSCTS)
flags |= RT2573_TX_NEED_ACK;
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
data->m = mprot;
data->ni = ieee80211_ref_node(ni);
data->rate = protrate;
rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0,
mprot->m_pkthdr.len, protrate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
return 0;
}
static uint32_t
rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni,
const struct ieee80211_key *k)
{
struct ieee80211vap *vap = ni->ni_vap;
u_int cipher;
uint32_t flags = 0;
uint8_t mode, pos;
if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
cipher = k->wk_cipher->ic_cipher;
pos = k->wk_keyix;
mode = rum_crypto_mode(sc, cipher, k->wk_keylen);
if (mode == 0)
return 0;
flags |= RT2573_TX_CIP_MODE(mode);
/* Do not trust GROUP flag */
if (!(k >= &vap->iv_nw_keys[0] &&
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]))
flags |= RT2573_TX_KEY_PAIR;
else
pos += 0 * RT2573_SKEY_MAX; /* vap id */
flags |= RT2573_TX_KEY_ID(pos);
if (cipher == IEEE80211_CIPHER_TKIP)
flags |= RT2573_TX_TKIPMIC;
}
return flags;
}
static int
rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
const struct ieee80211_txparam *tp = ni->ni_txparms;
struct ieee80211com *ic = &sc->sc_ic;
struct rum_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
uint32_t flags = 0;
uint16_t dur;
uint8_t ac, type, xflags = 0;
int hdrlen;
RUM_LOCK_ASSERT(sc);
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
wh = mtod(m0, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
hdrlen = ieee80211_anyhdrsize(wh);
ac = M_WME_GETAC(m0);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_get_txkey(ni, m0);
if (k == NULL)
return (ENOENT);
if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
!k->wk_cipher->ic_encap(k, m0))
return (ENOBUFS);
wh = mtod(m0, struct ieee80211_frame *);
}
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2573_TX_NEED_ACK;
dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
ic->ic_flags & IEEE80211_F_SHPREAMBLE);
USETW(wh->i_dur, dur);
/* tell hardware to add timestamp for probe responses */
if (type == IEEE80211_FC0_TYPE_MGT &&
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= RT2573_TX_TIMESTAMP;
}
if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
xflags |= RT2573_TX_HWSEQ;
if (k != NULL)
flags |= rum_tx_crypto_flags(sc, ni, k);
data->m = m0;
data->ni = ni;
data->rate = tp->mgmtrate;
rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
m0->m_pkthdr.len, tp->mgmtrate);
DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
return (0);
}
static int
rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211_frame *wh;
struct rum_tx_data *data;
uint32_t flags;
uint8_t ac, type, xflags = 0;
int rate, error;
RUM_LOCK_ASSERT(sc);
wh = mtod(m0, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
ac = params->ibp_pri & 3;
rate = params->ibp_rate0;
if (!ieee80211_isratevalid(ic->ic_rt, rate))
return (EINVAL);
flags = 0;
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
flags |= RT2573_TX_NEED_ACK;
if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
error = rum_sendprot(sc, m0, ni,
params->ibp_flags & IEEE80211_BPF_RTS ?
IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
rate);
if (error || sc->tx_nfree == 0)
return (ENOBUFS);
flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
}
if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
xflags |= RT2573_TX_HWSEQ;
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
data->m = m0;
data->ni = ni;
data->rate = rate;
/* XXX need to setup descriptor ourself */
rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0,
m0->m_pkthdr.len, rate);
DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
m0->m_pkthdr.len, rate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
return 0;
}
static int
rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = &sc->sc_ic;
struct rum_tx_data *data;
struct ieee80211_frame *wh;
const struct ieee80211_txparam *tp = ni->ni_txparms;
struct ieee80211_key *k = NULL;
uint32_t flags = 0;
uint16_t dur;
uint8_t ac, type, qos, xflags = 0;
int error, hdrlen, rate;
RUM_LOCK_ASSERT(sc);
wh = mtod(m0, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
hdrlen = ieee80211_anyhdrsize(wh);
if (IEEE80211_QOS_HAS_SEQ(wh))
qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
else
qos = 0;
ac = M_WME_GETAC(m0);
if (m0->m_flags & M_EAPOL)
rate = tp->mgmtrate;
else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
rate = tp->mcastrate;
else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
rate = tp->ucastrate;
else {
(void) ieee80211_ratectl_rate(ni, NULL, 0);
rate = ni->ni_txrate;
}
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_get_txkey(ni, m0);
if (k == NULL) {
m_freem(m0);
return (ENOENT);
}
if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
!k->wk_cipher->ic_encap(k, m0)) {
m_freem(m0);
return (ENOBUFS);
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
xflags |= RT2573_TX_HWSEQ;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
int prot = IEEE80211_PROT_NONE;
if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
prot = IEEE80211_PROT_RTSCTS;
else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
prot = ic->ic_protmode;
if (prot != IEEE80211_PROT_NONE) {
error = rum_sendprot(sc, m0, ni, prot, rate);
if (error || sc->tx_nfree == 0) {
m_freem(m0);
return ENOBUFS;
}
flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
}
}
if (k != NULL)
flags |= rum_tx_crypto_flags(sc, ni, k);
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
data->m = m0;
data->ni = ni;
data->rate = rate;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* Unicast frame, check if an ACK is expected. */
if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
IEEE80211_QOS_ACKPOLICY_NOACK)
flags |= RT2573_TX_NEED_ACK;
dur = ieee80211_ack_duration(ic->ic_rt, rate,
ic->ic_flags & IEEE80211_F_SHPREAMBLE);
USETW(wh->i_dur, dur);
}
rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
m0->m_pkthdr.len, rate);
DPRINTFN(10, "sending frame len=%d rate=%d\n",
m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
return 0;
}
static int
rum_transmit(struct ieee80211com *ic, struct mbuf *m)
{
struct rum_softc *sc = ic->ic_softc;
int error;
RUM_LOCK(sc);
if (!sc->sc_running) {
RUM_UNLOCK(sc);
return (ENXIO);
}
error = mbufq_enqueue(&sc->sc_snd, m);
if (error) {
RUM_UNLOCK(sc);
return (error);
}
rum_start(sc);
RUM_UNLOCK(sc);
return (0);
}
static void
rum_start(struct rum_softc *sc)
{
struct ieee80211_node *ni;
struct mbuf *m;
RUM_LOCK_ASSERT(sc);
if (!sc->sc_running)
return;
while (sc->tx_nfree >= RUM_TX_MINFREE &&
(m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
if (rum_tx_data(sc, m, ni) != 0) {
if_inc_counter(ni->ni_vap->iv_ifp,
IFCOUNTER_OERRORS, 1);
ieee80211_free_node(ni);
break;
}
}
}
static void
rum_parent(struct ieee80211com *ic)
{
struct rum_softc *sc = ic->ic_softc;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
RUM_LOCK(sc);
if (sc->sc_detached) {
RUM_UNLOCK(sc);
return;
}
RUM_UNLOCK(sc);
if (ic->ic_nrunning > 0) {
if (rum_init(sc) == 0)
ieee80211_start_all(ic);
else
ieee80211_stop(vap);
} else
rum_stop(sc);
}
static void
rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
{
struct usb_device_request req;
usb_error_t error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2573_READ_EEPROM;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
error = rum_do_request(sc, &req, buf);
if (error != 0) {
device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
usbd_errstr(error));
}
}
static uint32_t
rum_read(struct rum_softc *sc, uint16_t reg)
{
uint32_t val;
rum_read_multi(sc, reg, &val, sizeof val);
return le32toh(val);
}
static void
rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
{
struct usb_device_request req;
usb_error_t error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2573_READ_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
error = rum_do_request(sc, &req, buf);
if (error != 0) {
device_printf(sc->sc_dev,
"could not multi read MAC register: %s\n",
usbd_errstr(error));
}
}
static usb_error_t
rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
{
uint32_t tmp = htole32(val);
return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
}
static usb_error_t
rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
{
struct usb_device_request req;
usb_error_t error;
size_t offset;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2573_WRITE_MULTI_MAC;
USETW(req.wValue, 0);
/* write at most 64 bytes at a time */
for (offset = 0; offset < len; offset += 64) {
USETW(req.wIndex, reg + offset);
USETW(req.wLength, MIN(len - offset, 64));
error = rum_do_request(sc, &req, (char *)buf + offset);
if (error != 0) {
device_printf(sc->sc_dev,
"could not multi write MAC register: %s\n",
usbd_errstr(error));
return (error);
}
}
return (USB_ERR_NORMAL_COMPLETION);
}
static usb_error_t
rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
{
return (rum_write(sc, reg, rum_read(sc, reg) | mask));
}
static usb_error_t
rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
{
return (rum_write(sc, reg, rum_read(sc, reg) & ~mask));
}
static usb_error_t
rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset)
{
return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set));
}
static int
rum_bbp_busy(struct rum_softc *sc)
{
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
break;
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100)
return (ETIMEDOUT);
return (0);
}
static void
rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
DPRINTFN(2, "reg=0x%08x\n", reg);
if (rum_bbp_busy(sc) != 0) {
device_printf(sc->sc_dev, "could not write to BBP\n");
return;
}
tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
rum_write(sc, RT2573_PHY_CSR3, tmp);
}
static uint8_t
rum_bbp_read(struct rum_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
DPRINTFN(2, "reg=0x%08x\n", reg);
if (rum_bbp_busy(sc) != 0) {
device_printf(sc->sc_dev, "could not read BBP\n");
return 0;
}
val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
rum_write(sc, RT2573_PHY_CSR3, val);
for (ntries = 0; ntries < 100; ntries++) {
val = rum_read(sc, RT2573_PHY_CSR3);
if (!(val & RT2573_BBP_BUSY))
return val & 0xff;
if (rum_pause(sc, hz / 100))
break;
}
device_printf(sc->sc_dev, "could not read BBP\n");
return 0;
}
static void
rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
break;
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to RF\n");
return;
}
tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
(reg & 3);
rum_write(sc, RT2573_PHY_CSR4, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
}
static void
rum_select_antenna(struct rum_softc *sc)
{
uint8_t bbp4, bbp77;
uint32_t tmp;
bbp4 = rum_bbp_read(sc, 4);
bbp77 = rum_bbp_read(sc, 77);
/* TBD */
/* make sure Rx is disabled before switching antenna */
tmp = rum_read(sc, RT2573_TXRX_CSR0);
rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
rum_bbp_write(sc, 4, bbp4);
rum_bbp_write(sc, 77, bbp77);
rum_write(sc, RT2573_TXRX_CSR0, tmp);
}
/*
* Enable multi-rate retries for frames sent at OFDM rates.
* In 802.11b/g mode, allow fallback to CCK rates.
*/
static void
rum_enable_mrr(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
rum_setbits(sc, RT2573_TXRX_CSR4,
RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK);
} else {
rum_modbits(sc, RT2573_TXRX_CSR4,
RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK);
}
}
static void
rum_set_txpreamble(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
else
rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
}
static void
rum_set_basicrates(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* update basic rate set */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
/* 11b basic rates: 1, 2Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0x3);
} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
/* 11a basic rates: 6, 12, 24Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0x150);
} else {
/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0xf);
}
}
/*
* Reprogram MAC/BBP to switch to a new band. Values taken from the reference
* driver.
*/
static void
rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
{
uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
/* update all BBP registers that depend on the band */
bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
}
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
}
sc->bbp17 = bbp17;
rum_bbp_write(sc, 17, bbp17);
rum_bbp_write(sc, 96, bbp96);
rum_bbp_write(sc, 104, bbp104);
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
rum_bbp_write(sc, 75, 0x80);
rum_bbp_write(sc, 86, 0x80);
rum_bbp_write(sc, 88, 0x80);
}
rum_bbp_write(sc, 35, bbp35);
rum_bbp_write(sc, 97, bbp97);
rum_bbp_write(sc, 98, bbp98);
if (IEEE80211_IS_CHAN_2GHZ(c)) {
rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ,
RT2573_PA_PE_5GHZ);
} else {
rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ,
RT2573_PA_PE_2GHZ);
}
}
static void
rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct rfprog *rfprog;
uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
int8_t power;
int i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
/* select the appropriate RF settings based on what EEPROM says */
rfprog = (sc->rf_rev == RT2573_RF_5225 ||
sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++);
power = sc->txpow[i];
if (power < 0) {
bbp94 += power;
power = 0;
} else if (power > 31) {
bbp94 += power - 31;
power = 31;
}
/*
* If we are switching from the 2GHz band to the 5GHz band or
* vice-versa, BBP registers need to be reprogrammed.
*/
if (c->ic_flags != ic->ic_curchan->ic_flags) {
rum_select_band(sc, c);
rum_select_antenna(sc);
}
ic->ic_curchan = c;
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_pause(sc, hz / 100);
/* enable smart mode for MIMO-capable RFs */
bbp3 = rum_bbp_read(sc, 3);
bbp3 &= ~RT2573_SMART_MODE;
if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
bbp3 |= RT2573_SMART_MODE;
rum_bbp_write(sc, 3, bbp3);
if (bbp94 != RT2573_BBPR94_DEFAULT)
rum_bbp_write(sc, 94, bbp94);
/* give the chip some extra time to do the switchover */
rum_pause(sc, hz / 100);
}
static void
rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap)
{
struct ieee80211_node *ni = vap->iv_bss;
const struct ieee80211_txparam *tp = ni->ni_txparms;
struct rum_vap *rvp = RUM_VAP(vap);
rvp->maxretry = MIN(tp->maxretry, 0xf);
rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) |
RT2573_LONG_RETRY(rvp->maxretry),
RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK);
}
/*
* Enable TSF synchronization and tell h/w to start sending beacons for IBSS
* and HostAP operating modes.
*/
static int
rum_enable_tsf_sync(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint32_t tmp;
uint16_t bintval;
if (vap->iv_opmode != IEEE80211_M_STA) {
/*
* Change default 16ms TBTT adjustment to 8ms.
* Must be done before enabling beacon generation.
*/
if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0)
return EIO;
}
tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
/* set beacon interval (in 1/16ms unit) */
bintval = vap->iv_bss->ni_intval;
tmp |= bintval * 16;
tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN;
switch (vap->iv_opmode) {
case IEEE80211_M_STA:
/*
* Local TSF is always updated with remote TSF on beacon
* reception.
*/
tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA);
break;
case IEEE80211_M_IBSS:
/*
* Local TSF is updated with remote TSF on beacon reception
* only if the remote TSF is greater than local TSF.
*/
tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS);
tmp |= RT2573_BCN_TX_EN;
break;
case IEEE80211_M_HOSTAP:
/* SYNC with nobody */
tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP);
tmp |= RT2573_BCN_TX_EN;
break;
default:
device_printf(sc->sc_dev,
"Enabling TSF failed. undefined opmode %d\n",
vap->iv_opmode);
return EINVAL;
}
if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0)
return EIO;
/* refresh current sleep time */
return (rum_set_sleep_time(sc, bintval));
}
static void
rum_enable_tsf(struct rum_softc *sc)
{
rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN |
RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff);
}
static void
rum_abort_tsf_sync(struct rum_softc *sc)
{
rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff);
}
static void
rum_get_tsf(struct rum_softc *sc, uint64_t *buf)
{
rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf));
}
static void
rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t slottime;
slottime = IEEE80211_GET_SLOTTIME(ic);
rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff);
DPRINTF("setting slot time to %uus\n", slottime);
}
static void
rum_update_slot(struct ieee80211com *ic)
{
rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb);
}
static int
rum_wme_update(struct ieee80211com *ic)
{
struct chanAccParams chp;
const struct wmeParams *chanp;
struct rum_softc *sc = ic->ic_softc;
int error = 0;
ieee80211_wme_ic_getparams(ic, &chp);
chanp = chp.cap_wmeParams;
RUM_LOCK(sc);
error = rum_write(sc, RT2573_AIFSN_CSR,
chanp[WME_AC_VO].wmep_aifsn << 12 |
chanp[WME_AC_VI].wmep_aifsn << 8 |
chanp[WME_AC_BK].wmep_aifsn << 4 |
chanp[WME_AC_BE].wmep_aifsn);
if (error)
goto print_err;
error = rum_write(sc, RT2573_CWMIN_CSR,
chanp[WME_AC_VO].wmep_logcwmin << 12 |
chanp[WME_AC_VI].wmep_logcwmin << 8 |
chanp[WME_AC_BK].wmep_logcwmin << 4 |
chanp[WME_AC_BE].wmep_logcwmin);
if (error)
goto print_err;
error = rum_write(sc, RT2573_CWMAX_CSR,
chanp[WME_AC_VO].wmep_logcwmax << 12 |
chanp[WME_AC_VI].wmep_logcwmax << 8 |
chanp[WME_AC_BK].wmep_logcwmax << 4 |
chanp[WME_AC_BE].wmep_logcwmax);
if (error)
goto print_err;
error = rum_write(sc, RT2573_TXOP01_CSR,
chanp[WME_AC_BK].wmep_txopLimit << 16 |
chanp[WME_AC_BE].wmep_txopLimit);
if (error)
goto print_err;
error = rum_write(sc, RT2573_TXOP23_CSR,
chanp[WME_AC_VO].wmep_txopLimit << 16 |
chanp[WME_AC_VI].wmep_txopLimit);
if (error)
goto print_err;
memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC);
print_err:
RUM_UNLOCK(sc);
if (error != 0) {
device_printf(sc->sc_dev, "%s: WME update failed, error %d\n",
__func__, error);
}
return (error);
}
static void
rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
{
rum_write(sc, RT2573_MAC_CSR4,
bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
rum_write(sc, RT2573_MAC_CSR5,
bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1));
}
static void
rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
{
rum_write(sc, RT2573_MAC_CSR2,
addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
rum_write(sc, RT2573_MAC_CSR3,
addr[4] | addr[5] << 8 | 0xff << 16);
}
static void
rum_setpromisc(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_promisc == 0)
rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
else
rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ?
"entering" : "leaving");
}
static void
rum_update_promisc(struct ieee80211com *ic)
{
struct rum_softc *sc = ic->ic_softc;
RUM_LOCK(sc);
if (sc->sc_running)
rum_setpromisc(sc);
RUM_UNLOCK(sc);
}
static void
rum_update_mcast(struct ieee80211com *ic)
{
/* Ignore. */
}
static const char *
rum_get_rf(int rev)
{
switch (rev) {
case RT2573_RF_2527: return "RT2527 (MIMO XR)";
case RT2573_RF_2528: return "RT2528";
case RT2573_RF_5225: return "RT5225 (MIMO XR)";
case RT2573_RF_5226: return "RT5226";
default: return "unknown";
}
}
static void
rum_read_eeprom(struct rum_softc *sc)
{
uint16_t val;
#ifdef RUM_DEBUG
int i;
#endif
/* read MAC address */
rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
val = le16toh(val);
sc->rf_rev = (val >> 11) & 0x1f;
sc->hw_radio = (val >> 10) & 0x1;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
DPRINTF("RF revision=%d\n", sc->rf_rev);
rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
val = le16toh(val);
sc->ext_5ghz_lna = (val >> 6) & 0x1;
sc->ext_2ghz_lna = (val >> 4) & 0x1;
DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
sc->ext_2ghz_lna, sc->ext_5ghz_lna);
rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
val = le16toh(val);
if ((val & 0xff) != 0xff)
sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
/* Only [-10, 10] is valid */
if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
sc->rssi_2ghz_corr = 0;
rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
val = le16toh(val);
if ((val & 0xff) != 0xff)
sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
/* Only [-10, 10] is valid */
if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
sc->rssi_5ghz_corr = 0;
if (sc->ext_2ghz_lna)
sc->rssi_2ghz_corr -= 14;
if (sc->ext_5ghz_lna)
sc->rssi_5ghz_corr -= 14;
DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
val = le16toh(val);
if ((val & 0xff) != 0xff)
sc->rffreq = val & 0xff;
DPRINTF("RF freq=%d\n", sc->rffreq);
/* read Tx power for all a/b/g channels */
rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
/* XXX default Tx power for 802.11a channels */
memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
#ifdef RUM_DEBUG
for (i = 0; i < 14; i++)
DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]);
#endif
/* read default values for BBP registers */
rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
#ifdef RUM_DEBUG
for (i = 0; i < 14; i++) {
if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
continue;
DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
sc->bbp_prom[i].val);
}
#endif
}
static int
rum_bbp_wakeup(struct rum_softc *sc)
{
unsigned int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (rum_read(sc, RT2573_MAC_CSR12) & 8)
break;
rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"timeout waiting for BBP/RF to wakeup\n");
return (ETIMEDOUT);
}
return (0);
}
static int
rum_bbp_init(struct rum_softc *sc)
{
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
const uint8_t val = rum_bbp_read(sc, 0);
if (val != 0 && val != 0xff)
break;
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for BBP\n");
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < nitems(rum_def_bbp); i++)
rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
/* write vendor-specific BBP values (from EEPROM) */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
continue;
rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
return 0;
}
static void
rum_clr_shkey_regs(struct rum_softc *sc)
{
rum_write(sc, RT2573_SEC_CSR0, 0);
rum_write(sc, RT2573_SEC_CSR1, 0);
rum_write(sc, RT2573_SEC_CSR5, 0);
}
static int
rum_init(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint32_t tmp;
int i, ret;
RUM_LOCK(sc);
if (sc->sc_running) {
ret = 0;
goto end;
}
/* initialize MAC registers to default values */
for (i = 0; i < nitems(rum_def_mac); i++)
rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
/* reset some WME parameters to default values */
sc->wme_params[0].wmep_aifsn = 2;
sc->wme_params[0].wmep_logcwmin = 4;
sc->wme_params[0].wmep_logcwmax = 10;
/* set host ready */
rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
rum_write(sc, RT2573_MAC_CSR1, 0);
/* wait for BBP/RF to wakeup */
if ((ret = rum_bbp_wakeup(sc)) != 0)
goto end;
if ((ret = rum_bbp_init(sc)) != 0)
goto end;
/* select default channel */
rum_select_band(sc, ic->ic_curchan);
rum_select_antenna(sc);
rum_set_chan(sc, ic->ic_curchan);
/* clear STA registers */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
/* clear security registers (if required) */
if (sc->sc_clr_shkeys == 0) {
rum_clr_shkey_regs(sc);
sc->sc_clr_shkeys = 1;
}
rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
/* initialize ASIC */
rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY);
/*
* Allocate Tx and Rx xfer queues.
*/
rum_setup_tx_list(sc);
/* update Rx filter */
tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
RT2573_DROP_ACKCTS;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RT2573_DROP_TODS;
if (ic->ic_promisc == 0)
tmp |= RT2573_DROP_NOT_TO_ME;
}
rum_write(sc, RT2573_TXRX_CSR0, tmp);
sc->sc_running = 1;
usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
end: RUM_UNLOCK(sc);
if (ret != 0)
rum_stop(sc);
return ret;
}
static void
rum_stop(struct rum_softc *sc)
{
RUM_LOCK(sc);
if (!sc->sc_running) {
RUM_UNLOCK(sc);
return;
}
sc->sc_running = 0;
RUM_UNLOCK(sc);
/*
* Drain the USB transfers, if not already drained:
*/
usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
RUM_LOCK(sc);
rum_unsetup_tx_list(sc);
/* disable Rx */
rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX);
/* reset ASIC */
rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
rum_write(sc, RT2573_MAC_CSR1, 0);
RUM_UNLOCK(sc);
}
static void
rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
{
uint16_t reg = RT2573_MCU_CODE_BASE;
usb_error_t err;
/* copy firmware image into NIC */
for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
err = rum_write(sc, reg, UGETDW(ucode));
if (err) {
/* firmware already loaded ? */
device_printf(sc->sc_dev, "Firmware load "
"failure! (ignored)\n");
break;
}
}
err = rum_do_mcu_request(sc, RT2573_MCU_RUN);
if (err != USB_ERR_NORMAL_COMPLETION) {
device_printf(sc->sc_dev, "could not run firmware: %s\n",
usbd_errstr(err));
}
/* give the chip some time to boot */
rum_pause(sc, hz / 8);
}
static int
rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval)
{
struct ieee80211com *ic = &sc->sc_ic;
usb_error_t uerror;
int exp, delay;
RUM_LOCK_ASSERT(sc);
exp = ic->ic_lintval / bintval;
delay = ic->ic_lintval % bintval;
if (exp > RT2573_TBCN_EXP_MAX)
exp = RT2573_TBCN_EXP_MAX;
if (delay > RT2573_TBCN_DELAY_MAX)
delay = RT2573_TBCN_DELAY_MAX;
uerror = rum_modbits(sc, RT2573_MAC_CSR11,
RT2573_TBCN_EXP(exp) |
RT2573_TBCN_DELAY(delay),
RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) |
RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX));
if (uerror != USB_ERR_NORMAL_COMPLETION)
return (EIO);
sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay);
return (0);
}
static int
rum_reset(struct ieee80211vap *vap, u_long cmd)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_node *ni;
struct rum_softc *sc = ic->ic_softc;
int error;
switch (cmd) {
case IEEE80211_IOC_POWERSAVE:
case IEEE80211_IOC_PROTMODE:
case IEEE80211_IOC_RTSTHRESHOLD:
error = 0;
break;
case IEEE80211_IOC_POWERSAVESLEEP:
ni = ieee80211_ref_node(vap->iv_bss);
RUM_LOCK(sc);
error = rum_set_sleep_time(sc, ni->ni_intval);
if (vap->iv_state == IEEE80211_S_SLEEP) {
/* Use new values for wakeup timer. */
rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
}
/* XXX send reassoc */
RUM_UNLOCK(sc);
ieee80211_free_node(ni);
break;
default:
error = ENETRESET;
break;
}
return (error);
}
static int
rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct rum_vap *rvp = RUM_VAP(vap);
struct mbuf *m = rvp->bcn_mbuf;
const struct ieee80211_txparam *tp;
struct rum_tx_desc desc;
RUM_LOCK_ASSERT(sc);
if (m == NULL)
return EINVAL;
if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
return EINVAL;
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP,
RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate);
/* copy the Tx descriptor into NIC memory */
if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc,
RT2573_TX_DESC_SIZE) != 0)
return EIO;
/* copy beacon header and payload into NIC memory */
if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE,
mtod(m, uint8_t *), m->m_pkthdr.len) != 0)
return EIO;
return 0;
}
static int
rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
{
struct rum_vap *rvp = RUM_VAP(vap);
struct ieee80211_node *ni = vap->iv_bss;
struct mbuf *m;
if (ni->ni_chan == IEEE80211_CHAN_ANYC)
return EINVAL;
m = ieee80211_beacon_alloc(ni);
if (m == NULL)
return ENOMEM;
if (rvp->bcn_mbuf != NULL)
m_freem(rvp->bcn_mbuf);
rvp->bcn_mbuf = m;
return (rum_set_beacon(sc, vap));
}
static void
rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data,
uint8_t rvp_id)
{
struct ieee80211vap *vap = data->vap;
rum_set_beacon(sc, vap);
}
static void
rum_update_beacon(struct ieee80211vap *vap, int item)
{
struct ieee80211com *ic = vap->iv_ic;
struct rum_softc *sc = ic->ic_softc;
struct rum_vap *rvp = RUM_VAP(vap);
struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
struct ieee80211_node *ni = vap->iv_bss;
struct mbuf *m = rvp->bcn_mbuf;
int mcast = 0;
RUM_LOCK(sc);
if (m == NULL) {
m = ieee80211_beacon_alloc(ni);
if (m == NULL) {
device_printf(sc->sc_dev,
"%s: could not allocate beacon frame\n", __func__);
RUM_UNLOCK(sc);
return;
}
rvp->bcn_mbuf = m;
}
switch (item) {
case IEEE80211_BEACON_ERP:
rum_update_slot(ic);
break;
case IEEE80211_BEACON_TIM:
mcast = 1; /*TODO*/
break;
default:
break;
}
RUM_UNLOCK(sc);
setbit(bo->bo_flags, item);
ieee80211_beacon_update(ni, m, mcast);
rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb);
}
static int
rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k,
uint16_t base)
{
if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen))
return EIO;
if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE,
k->wk_txmic, 8))
return EIO;
if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8,
k->wk_rxmic, 8))
return EIO;
}
return 0;
}
static void
rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data,
uint8_t rvp_id)
{
struct ieee80211_key *k = &data->key;
uint8_t mode;
if (sc->sc_clr_shkeys == 0) {
rum_clr_shkey_regs(sc);
sc->sc_clr_shkeys = 1;
}
mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
if (mode == 0)
goto print_err;
DPRINTFN(1, "setting group key %d for vap %d, mode %d "
"(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
(k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
(k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
/* Install the key. */
if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0)
goto print_err;
/* Set cipher mode. */
if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX,
RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX)
!= 0)
goto print_err;
/* Mark this key as valid. */
if (rum_setbits(sc, RT2573_SEC_CSR0,
1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0)
goto print_err;
return;
print_err:
device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n",
__func__, k->wk_keyix, rvp_id);
}
static void
rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data,
uint8_t rvp_id)
{
struct ieee80211_key *k = &data->key;
DPRINTF("%s: removing group key %d for vap %d\n", __func__,
k->wk_keyix, rvp_id);
rum_clrbits(sc,
rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX);
rum_clrbits(sc, RT2573_SEC_CSR0,
rvp_id * RT2573_SKEY_MAX + k->wk_keyix);
}
static void
rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data,
uint8_t rvp_id)
{
struct ieee80211_key *k = &data->key;
uint8_t buf[IEEE80211_ADDR_LEN + 1];
uint8_t mode;
mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
if (mode == 0)
goto print_err;
DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d "
"(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
(k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
(k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
/* Install the key. */
if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0)
goto print_err;
IEEE80211_ADDR_COPY(buf, k->wk_macaddr);
buf[IEEE80211_ADDR_LEN] = mode;
/* Set transmitter address and cipher mode. */
if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix),
buf, sizeof buf) != 0)
goto print_err;
/* Enable key table lookup for this vap. */
if (sc->vap_key_count[rvp_id]++ == 0)
if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0)
goto print_err;
/* Mark this key as valid. */
if (rum_setbits(sc,
k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
1 << (k->wk_keyix % 32)) != 0)
goto print_err;
return;
print_err:
device_printf(sc->sc_dev,
"%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix,
rvp_id);
}
static void
rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data,
uint8_t rvp_id)
{
struct ieee80211_key *k = &data->key;
DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix);
rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
1 << (k->wk_keyix % 32));
sc->keys_bmap &= ~(1ULL << k->wk_keyix);
if (--sc->vap_key_count[rvp_id] == 0)
rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id);
}
static int
rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
{
struct rum_softc *sc = vap->iv_ic->ic_softc;
uint8_t i;
if (!(&vap->iv_nw_keys[0] <= k &&
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
RUM_LOCK(sc);
for (i = 0; i < RT2573_ADDR_MAX; i++) {
if ((sc->keys_bmap & (1ULL << i)) == 0) {
sc->keys_bmap |= (1ULL << i);
*keyix = i;
break;
}
}
RUM_UNLOCK(sc);
if (i == RT2573_ADDR_MAX) {
device_printf(sc->sc_dev,
"%s: no free space in the key table\n",
__func__);
return 0;
}
} else
*keyix = 0;
} else {
*keyix = ieee80211_crypto_get_key_wepidx(vap, k);
}
*rxkeyix = *keyix;
return 1;
}
static int
rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
{
struct rum_softc *sc = vap->iv_ic->ic_softc;
int group;
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
/* Not for us. */
return 1;
}
group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
group ? rum_group_key_set_cb : rum_pair_key_set_cb);
}
static int
rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
{
struct rum_softc *sc = vap->iv_ic->ic_softc;
int group;
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
/* Not for us. */
return 1;
}
group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
group ? rum_group_key_del_cb : rum_pair_key_del_cb);
}
static int
rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct rum_softc *sc = ni->ni_ic->ic_softc;
int ret;
RUM_LOCK(sc);
/* prevent management frames from being sent if we're not ready */
if (!sc->sc_running) {
ret = ENETDOWN;
goto bad;
}
if (sc->tx_nfree < RUM_TX_MINFREE) {
ret = EIO;
goto bad;
}
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
if ((ret = rum_tx_mgt(sc, m, ni)) != 0)
goto bad;
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
if ((ret = rum_tx_raw(sc, m, ni, params)) != 0)
goto bad;
}
RUM_UNLOCK(sc);
return 0;
bad:
RUM_UNLOCK(sc);
m_freem(m);
return ret;
}
static void
rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct rum_vap *rvp = RUM_VAP(vap);
/* clear statistic registers (STA_CSR0 to STA_CSR5) */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
}
static void
rum_ratectl_timeout(void *arg)
{
struct rum_vap *rvp = arg;
struct ieee80211vap *vap = &rvp->vap;
struct ieee80211com *ic = vap->iv_ic;
ieee80211_runtask(ic, &rvp->ratectl_task);
}
static void
rum_ratectl_task(void *arg, int pending)
{
struct rum_vap *rvp = arg;
struct ieee80211vap *vap = &rvp->vap;
struct rum_softc *sc = vap->iv_ic->ic_softc;
struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
int ok[3], fail;
RUM_LOCK(sc);
/* read and clear statistic registers (STA_CSR0 to STA_CSR5) */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */
ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */
ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */
fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
txs->nframes = ok[0] + ok[1] + ok[2] + fail;
txs->nsuccess = txs->nframes - fail;
/* XXX at least */
txs->nretries = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1);
if (txs->nframes != 0)
ieee80211_ratectl_tx_update(vap, txs);
/* count TX retry-fail as Tx errors */
if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
RUM_UNLOCK(sc);
}
static void
rum_scan_start(struct ieee80211com *ic)
{
struct rum_softc *sc = ic->ic_softc;
RUM_LOCK(sc);
rum_abort_tsf_sync(sc);
rum_set_bssid(sc, ieee80211broadcastaddr);
RUM_UNLOCK(sc);
}
static void
rum_scan_end(struct ieee80211com *ic)
{
struct rum_softc *sc = ic->ic_softc;
if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
RUM_LOCK(sc);
if (ic->ic_opmode != IEEE80211_M_AHDEMO)
rum_enable_tsf_sync(sc);
else
rum_enable_tsf(sc);
rum_set_bssid(sc, sc->sc_bssid);
RUM_UNLOCK(sc);
}
}
static void
rum_set_channel(struct ieee80211com *ic)
{
struct rum_softc *sc = ic->ic_softc;
RUM_LOCK(sc);
rum_set_chan(sc, ic->ic_curchan);
RUM_UNLOCK(sc);
}
static void
rum_getradiocaps(struct ieee80211com *ic,
int maxchans, int *nchans, struct ieee80211_channel chans[])
{
struct rum_softc *sc = ic->ic_softc;
uint8_t bands[IEEE80211_MODE_BYTES];
memset(bands, 0, sizeof(bands));
setbit(bands, IEEE80211_MODE_11B);
setbit(bands, IEEE80211_MODE_11G);
ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
rum_chan_2ghz, nitems(rum_chan_2ghz), bands, 0);
if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
setbit(bands, IEEE80211_MODE_11A);
ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0);
}
}
static int
rum_get_rssi(struct rum_softc *sc, uint8_t raw)
{
struct ieee80211com *ic = &sc->sc_ic;
int lna, agc, rssi;
lna = (raw >> 5) & 0x3;
agc = raw & 0x1f;
if (lna == 0) {
/*
* No RSSI mapping
*
* NB: Since RSSI is relative to noise floor, -1 is
* adequate for caller to know error happened.
*/
return -1;
}
rssi = (2 * agc) - RT2573_NOISE_FLOOR;
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
rssi += sc->rssi_2ghz_corr;
if (lna == 1)
rssi -= 64;
else if (lna == 2)
rssi -= 74;
else if (lna == 3)
rssi -= 90;
} else {
rssi += sc->rssi_5ghz_corr;
if (!sc->ext_5ghz_lna && lna != 1)
rssi += 4;
if (lna == 1)
rssi -= 64;
else if (lna == 2)
rssi -= 86;
else if (lna == 3)
rssi -= 100;
}
return rssi;
}
static int
rum_pause(struct rum_softc *sc, int timeout)
{
usb_pause_mtx(&sc->sc_mtx, timeout);
return (0);
}
static device_method_t rum_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, rum_match),
DEVMETHOD(device_attach, rum_attach),
DEVMETHOD(device_detach, rum_detach),
DEVMETHOD_END
};
static driver_t rum_driver = {
.name = "rum",
.methods = rum_methods,
.size = sizeof(struct rum_softc),
};
static devclass_t rum_devclass;
DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0);
MODULE_DEPEND(rum, wlan, 1, 1, 1);
MODULE_DEPEND(rum, usb, 1, 1, 1);
MODULE_VERSION(rum, 1);
USB_PNP_HOST_INFO(rum_devs);