13e403fdea
Fix some wrong usages. Note: this does not affect generated binaries as this argument is not used. PR: 137213 Submitted by: Eygene Ryabinkin (initial version) MFC after: 1 month
2635 lines
68 KiB
C
2635 lines
68 KiB
C
/*-
|
|
* Copyright (c) 2005-2007, Joseph Koshy
|
|
* Copyright (c) 2007 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this software were developed by A. Joseph Koshy under
|
|
* sponsorship from the FreeBSD Foundation and Google, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Transform a hwpmc(4) log into human readable form, and into
|
|
* gprof(1) compatible profiles.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/gmon.h>
|
|
#include <sys/imgact_aout.h>
|
|
#include <sys/imgact_elf.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/pmc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/wait.h>
|
|
|
|
#include <netinet/in.h>
|
|
|
|
#include <assert.h>
|
|
#include <err.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <gelf.h>
|
|
#include <libgen.h>
|
|
#include <limits.h>
|
|
#include <netdb.h>
|
|
#include <pmc.h>
|
|
#include <pmclog.h>
|
|
#include <sysexits.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include "pmcstat.h"
|
|
|
|
#define min(A,B) ((A) < (B) ? (A) : (B))
|
|
#define max(A,B) ((A) > (B) ? (A) : (B))
|
|
|
|
#define PMCSTAT_ALLOCATE 1
|
|
|
|
/*
|
|
* PUBLIC INTERFACES
|
|
*
|
|
* pmcstat_initialize_logging() initialize this module, called first
|
|
* pmcstat_shutdown_logging() orderly shutdown, called last
|
|
* pmcstat_open_log() open an eventlog for processing
|
|
* pmcstat_process_log() print/convert an event log
|
|
* pmcstat_close_log() finish processing an event log
|
|
*
|
|
* IMPLEMENTATION NOTES
|
|
*
|
|
* We correlate each 'callchain' or 'sample' entry seen in the event
|
|
* log back to an executable object in the system. Executable objects
|
|
* include:
|
|
* - program executables,
|
|
* - shared libraries loaded by the runtime loader,
|
|
* - dlopen()'ed objects loaded by the program,
|
|
* - the runtime loader itself,
|
|
* - the kernel and kernel modules.
|
|
*
|
|
* Each process that we know about is treated as a set of regions that
|
|
* map to executable objects. Processes are described by
|
|
* 'pmcstat_process' structures. Executable objects are tracked by
|
|
* 'pmcstat_image' structures. The kernel and kernel modules are
|
|
* common to all processes (they reside at the same virtual addresses
|
|
* for all processes). Individual processes can have their text
|
|
* segments and shared libraries loaded at process-specific locations.
|
|
*
|
|
* A given executable object can be in use by multiple processes
|
|
* (e.g., libc.so) and loaded at a different address in each.
|
|
* pmcstat_pcmap structures track per-image mappings.
|
|
*
|
|
* The sample log could have samples from multiple PMCs; we
|
|
* generate one 'gmon.out' profile per PMC.
|
|
*
|
|
* IMPLEMENTATION OF GMON OUTPUT
|
|
*
|
|
* Each executable object gets one 'gmon.out' profile, per PMC in
|
|
* use. Creation of 'gmon.out' profiles is done lazily. The
|
|
* 'gmon.out' profiles generated for a given sampling PMC are
|
|
* aggregates of all the samples for that particular executable
|
|
* object.
|
|
*
|
|
* IMPLEMENTATION OF SYSTEM-WIDE CALLGRAPH OUTPUT
|
|
*
|
|
* Each active pmcid has its own callgraph structure, described by a
|
|
* 'struct pmcstat_callgraph'. Given a process id and a list of pc
|
|
* values, we map each pc value to a tuple (image, symbol), where
|
|
* 'image' denotes an executable object and 'symbol' is the closest
|
|
* symbol that precedes the pc value. Each pc value in the list is
|
|
* also given a 'rank' that reflects its depth in the call stack.
|
|
*/
|
|
|
|
typedef const void *pmcstat_interned_string;
|
|
|
|
/*
|
|
* 'pmcstat_pmcrecord' is a mapping from PMC ids to human-readable
|
|
* names.
|
|
*/
|
|
|
|
struct pmcstat_pmcrecord {
|
|
LIST_ENTRY(pmcstat_pmcrecord) pr_next;
|
|
pmc_id_t pr_pmcid;
|
|
pmcstat_interned_string pr_pmcname;
|
|
};
|
|
|
|
static LIST_HEAD(,pmcstat_pmcrecord) pmcstat_pmcs =
|
|
LIST_HEAD_INITIALIZER(pmcstat_pmcs);
|
|
|
|
|
|
/*
|
|
* struct pmcstat_gmonfile tracks a given 'gmon.out' file. These
|
|
* files are mmap()'ed in as needed.
|
|
*/
|
|
|
|
struct pmcstat_gmonfile {
|
|
LIST_ENTRY(pmcstat_gmonfile) pgf_next; /* list of entries */
|
|
int pgf_overflow; /* whether a count overflowed */
|
|
pmc_id_t pgf_pmcid; /* id of the associated pmc */
|
|
size_t pgf_nbuckets; /* #buckets in this gmon.out */
|
|
unsigned int pgf_nsamples; /* #samples in this gmon.out */
|
|
pmcstat_interned_string pgf_name; /* pathname of gmon.out file */
|
|
size_t pgf_ndatabytes; /* number of bytes mapped */
|
|
void *pgf_gmondata; /* pointer to mmap'ed data */
|
|
FILE *pgf_file; /* used when writing gmon arcs */
|
|
};
|
|
|
|
/*
|
|
* A 'pmcstat_image' structure describes an executable program on
|
|
* disk. 'pi_execpath' is a cookie representing the pathname of
|
|
* the executable. 'pi_start' and 'pi_end' are the least and greatest
|
|
* virtual addresses for the text segments in the executable.
|
|
* 'pi_gmonlist' contains a linked list of gmon.out files associated
|
|
* with this image.
|
|
*/
|
|
|
|
enum pmcstat_image_type {
|
|
PMCSTAT_IMAGE_UNKNOWN = 0, /* never looked at the image */
|
|
PMCSTAT_IMAGE_INDETERMINABLE, /* can't tell what the image is */
|
|
PMCSTAT_IMAGE_ELF32, /* ELF 32 bit object */
|
|
PMCSTAT_IMAGE_ELF64, /* ELF 64 bit object */
|
|
PMCSTAT_IMAGE_AOUT /* AOUT object */
|
|
};
|
|
|
|
struct pmcstat_image {
|
|
LIST_ENTRY(pmcstat_image) pi_next; /* hash link */
|
|
TAILQ_ENTRY(pmcstat_image) pi_lru; /* LRU list */
|
|
pmcstat_interned_string pi_execpath; /* cookie */
|
|
pmcstat_interned_string pi_samplename; /* sample path name */
|
|
pmcstat_interned_string pi_fullpath; /* path to FS object */
|
|
|
|
enum pmcstat_image_type pi_type; /* executable type */
|
|
|
|
/*
|
|
* Executables have pi_start and pi_end; these are zero
|
|
* for shared libraries.
|
|
*/
|
|
uintfptr_t pi_start; /* start address (inclusive) */
|
|
uintfptr_t pi_end; /* end address (exclusive) */
|
|
uintfptr_t pi_entry; /* entry address */
|
|
uintfptr_t pi_vaddr; /* virtual address where loaded */
|
|
int pi_isdynamic; /* whether a dynamic object */
|
|
int pi_iskernelmodule;
|
|
pmcstat_interned_string pi_dynlinkerpath; /* path in .interp */
|
|
|
|
/* All symbols associated with this object. */
|
|
struct pmcstat_symbol *pi_symbols;
|
|
size_t pi_symcount;
|
|
|
|
/*
|
|
* An image can be associated with one or more gmon.out files;
|
|
* one per PMC.
|
|
*/
|
|
LIST_HEAD(,pmcstat_gmonfile) pi_gmlist;
|
|
};
|
|
|
|
/*
|
|
* All image descriptors are kept in a hash table.
|
|
*/
|
|
static LIST_HEAD(,pmcstat_image) pmcstat_image_hash[PMCSTAT_NHASH];
|
|
|
|
/*
|
|
* A 'pmcstat_pcmap' structure maps a virtual address range to an
|
|
* underlying 'pmcstat_image' descriptor.
|
|
*/
|
|
struct pmcstat_pcmap {
|
|
TAILQ_ENTRY(pmcstat_pcmap) ppm_next;
|
|
uintfptr_t ppm_lowpc;
|
|
uintfptr_t ppm_highpc;
|
|
struct pmcstat_image *ppm_image;
|
|
};
|
|
|
|
/*
|
|
* A 'pmcstat_process' structure models processes. Each process is
|
|
* associated with a set of pmcstat_pcmap structures that map
|
|
* addresses inside it to executable objects. This set is implemented
|
|
* as a list, kept sorted in ascending order of mapped addresses.
|
|
*
|
|
* 'pp_pid' holds the pid of the process. When a process exits, the
|
|
* 'pp_isactive' field is set to zero, but the process structure is
|
|
* not immediately reclaimed because there may still be samples in the
|
|
* log for this process.
|
|
*/
|
|
|
|
struct pmcstat_process {
|
|
LIST_ENTRY(pmcstat_process) pp_next; /* hash-next */
|
|
pid_t pp_pid; /* associated pid */
|
|
int pp_isactive; /* whether active */
|
|
uintfptr_t pp_entryaddr; /* entry address */
|
|
TAILQ_HEAD(,pmcstat_pcmap) pp_map; /* address range map */
|
|
};
|
|
|
|
/*
|
|
* All process descriptors are kept in a hash table.
|
|
*/
|
|
static LIST_HEAD(,pmcstat_process) pmcstat_process_hash[PMCSTAT_NHASH];
|
|
|
|
static struct pmcstat_process *pmcstat_kernproc; /* kernel 'process' */
|
|
|
|
/*
|
|
* Each function symbol tracked by pmcstat(8).
|
|
*/
|
|
|
|
struct pmcstat_symbol {
|
|
pmcstat_interned_string ps_name;
|
|
uint64_t ps_start;
|
|
uint64_t ps_end;
|
|
};
|
|
|
|
/*
|
|
* Each call graph node is tracked by a pmcstat_cgnode struct.
|
|
*/
|
|
|
|
struct pmcstat_cgnode {
|
|
struct pmcstat_image *pcg_image;
|
|
uintfptr_t pcg_func;
|
|
uint32_t pcg_count;
|
|
uint32_t pcg_nchildren;
|
|
LIST_ENTRY(pmcstat_cgnode) pcg_sibling;
|
|
LIST_HEAD(,pmcstat_cgnode) pcg_children;
|
|
};
|
|
|
|
struct pmcstat_cgnode_hash {
|
|
struct pmcstat_cgnode *pch_cgnode;
|
|
uint32_t pch_pmcid;
|
|
LIST_ENTRY(pmcstat_cgnode_hash) pch_next;
|
|
};
|
|
|
|
static int pmcstat_cgnode_hash_count;
|
|
static pmcstat_interned_string pmcstat_previous_filename_printed;
|
|
|
|
/*
|
|
* The toplevel CG nodes (i.e., with rank == 0) are placed in a hash table.
|
|
*/
|
|
|
|
static LIST_HEAD(,pmcstat_cgnode_hash) pmcstat_cgnode_hash[PMCSTAT_NHASH];
|
|
|
|
/* Misc. statistics */
|
|
static struct pmcstat_stats {
|
|
int ps_exec_aout; /* # a.out executables seen */
|
|
int ps_exec_elf; /* # elf executables seen */
|
|
int ps_exec_errors; /* # errors processing executables */
|
|
int ps_exec_indeterminable; /* # unknown executables seen */
|
|
int ps_samples_total; /* total number of samples processed */
|
|
int ps_samples_skipped; /* #samples filtered out for any reason */
|
|
int ps_samples_unknown_offset; /* #samples of rank 0 not in a map */
|
|
int ps_samples_indeterminable; /* #samples in indeterminable images */
|
|
int ps_callchain_dubious_frames;/* #dubious frame pointers seen */
|
|
} pmcstat_stats;
|
|
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
static void pmcstat_gmon_create_file(struct pmcstat_gmonfile *_pgf,
|
|
struct pmcstat_image *_image);
|
|
static pmcstat_interned_string pmcstat_gmon_create_name(const char *_sd,
|
|
struct pmcstat_image *_img, pmc_id_t _pmcid);
|
|
static void pmcstat_gmon_map_file(struct pmcstat_gmonfile *_pgf);
|
|
static void pmcstat_gmon_unmap_file(struct pmcstat_gmonfile *_pgf);
|
|
|
|
static void pmcstat_image_determine_type(struct pmcstat_image *_image,
|
|
struct pmcstat_args *_a);
|
|
static struct pmcstat_gmonfile *pmcstat_image_find_gmonfile(struct
|
|
pmcstat_image *_i, pmc_id_t _id);
|
|
static struct pmcstat_image *pmcstat_image_from_path(pmcstat_interned_string
|
|
_path, int _iskernelmodule);
|
|
static void pmcstat_image_get_aout_params(struct pmcstat_image *_image,
|
|
struct pmcstat_args *_a);
|
|
static void pmcstat_image_get_elf_params(struct pmcstat_image *_image,
|
|
struct pmcstat_args *_a);
|
|
static void pmcstat_image_increment_bucket(struct pmcstat_pcmap *_pcm,
|
|
uintfptr_t _pc, pmc_id_t _pmcid, struct pmcstat_args *_a);
|
|
static void pmcstat_image_link(struct pmcstat_process *_pp,
|
|
struct pmcstat_image *_i, uintfptr_t _lpc);
|
|
|
|
static void pmcstat_pmcid_add(pmc_id_t _pmcid,
|
|
pmcstat_interned_string _name, struct pmcstat_args *_a);
|
|
static const char *pmcstat_pmcid_to_name(pmc_id_t _pmcid);
|
|
|
|
static void pmcstat_process_aout_exec(struct pmcstat_process *_pp,
|
|
struct pmcstat_image *_image, uintfptr_t _entryaddr,
|
|
struct pmcstat_args *_a);
|
|
static void pmcstat_process_elf_exec(struct pmcstat_process *_pp,
|
|
struct pmcstat_image *_image, uintfptr_t _entryaddr,
|
|
struct pmcstat_args *_a);
|
|
static void pmcstat_process_exec(struct pmcstat_process *_pp,
|
|
pmcstat_interned_string _path, uintfptr_t _entryaddr,
|
|
struct pmcstat_args *_ao);
|
|
static struct pmcstat_process *pmcstat_process_lookup(pid_t _pid,
|
|
int _allocate);
|
|
static struct pmcstat_pcmap *pmcstat_process_find_map(
|
|
struct pmcstat_process *_p, uintfptr_t _pc);
|
|
|
|
static int pmcstat_string_compute_hash(const char *_string);
|
|
static void pmcstat_string_initialize(void);
|
|
static pmcstat_interned_string pmcstat_string_intern(const char *_s);
|
|
static pmcstat_interned_string pmcstat_string_lookup(const char *_s);
|
|
static int pmcstat_string_lookup_hash(pmcstat_interned_string _is);
|
|
static void pmcstat_string_shutdown(void);
|
|
static const char *pmcstat_string_unintern(pmcstat_interned_string _is);
|
|
|
|
|
|
/*
|
|
* A simple implementation of interned strings. Each interned string
|
|
* is assigned a unique address, so that subsequent string compares
|
|
* can be done by a simple pointer comparision instead of using
|
|
* strcmp(). This speeds up hash table lookups and saves memory if
|
|
* duplicate strings are the norm.
|
|
*/
|
|
struct pmcstat_string {
|
|
LIST_ENTRY(pmcstat_string) ps_next; /* hash link */
|
|
int ps_len;
|
|
int ps_hash;
|
|
char *ps_string;
|
|
};
|
|
|
|
static LIST_HEAD(,pmcstat_string) pmcstat_string_hash[PMCSTAT_NHASH];
|
|
|
|
/*
|
|
* Compute a 'hash' value for a string.
|
|
*/
|
|
|
|
static int
|
|
pmcstat_string_compute_hash(const char *s)
|
|
{
|
|
int hash;
|
|
|
|
for (hash = 0; *s; s++)
|
|
hash ^= *s;
|
|
|
|
return (hash & PMCSTAT_HASH_MASK);
|
|
}
|
|
|
|
/*
|
|
* Intern a copy of string 's', and return a pointer to the
|
|
* interned structure.
|
|
*/
|
|
|
|
static pmcstat_interned_string
|
|
pmcstat_string_intern(const char *s)
|
|
{
|
|
struct pmcstat_string *ps;
|
|
const struct pmcstat_string *cps;
|
|
int hash, len;
|
|
|
|
if ((cps = pmcstat_string_lookup(s)) != NULL)
|
|
return (cps);
|
|
|
|
hash = pmcstat_string_compute_hash(s);
|
|
len = strlen(s);
|
|
|
|
if ((ps = malloc(sizeof(*ps))) == NULL)
|
|
err(EX_OSERR, "ERROR: Could not intern string");
|
|
ps->ps_len = len;
|
|
ps->ps_hash = hash;
|
|
ps->ps_string = strdup(s);
|
|
LIST_INSERT_HEAD(&pmcstat_string_hash[hash], ps, ps_next);
|
|
return ((pmcstat_interned_string) ps);
|
|
}
|
|
|
|
static const char *
|
|
pmcstat_string_unintern(pmcstat_interned_string str)
|
|
{
|
|
const char *s;
|
|
|
|
s = ((const struct pmcstat_string *) str)->ps_string;
|
|
return (s);
|
|
}
|
|
|
|
static pmcstat_interned_string
|
|
pmcstat_string_lookup(const char *s)
|
|
{
|
|
struct pmcstat_string *ps;
|
|
int hash, len;
|
|
|
|
hash = pmcstat_string_compute_hash(s);
|
|
len = strlen(s);
|
|
|
|
LIST_FOREACH(ps, &pmcstat_string_hash[hash], ps_next)
|
|
if (ps->ps_len == len && ps->ps_hash == hash &&
|
|
strcmp(ps->ps_string, s) == 0)
|
|
return (ps);
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
pmcstat_string_lookup_hash(pmcstat_interned_string s)
|
|
{
|
|
const struct pmcstat_string *ps;
|
|
|
|
ps = (const struct pmcstat_string *) s;
|
|
return (ps->ps_hash);
|
|
}
|
|
|
|
/*
|
|
* Initialize the string interning facility.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_string_initialize(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < PMCSTAT_NHASH; i++)
|
|
LIST_INIT(&pmcstat_string_hash[i]);
|
|
}
|
|
|
|
/*
|
|
* Destroy the string table, free'ing up space.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_string_shutdown(void)
|
|
{
|
|
int i;
|
|
struct pmcstat_string *ps, *pstmp;
|
|
|
|
for (i = 0; i < PMCSTAT_NHASH; i++)
|
|
LIST_FOREACH_SAFE(ps, &pmcstat_string_hash[i], ps_next,
|
|
pstmp) {
|
|
LIST_REMOVE(ps, ps_next);
|
|
free(ps->ps_string);
|
|
free(ps);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a gmon.out file and size it.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_gmon_create_file(struct pmcstat_gmonfile *pgf,
|
|
struct pmcstat_image *image)
|
|
{
|
|
int fd;
|
|
size_t count;
|
|
struct gmonhdr gm;
|
|
const char *pathname;
|
|
char buffer[DEFAULT_BUFFER_SIZE];
|
|
|
|
pathname = pmcstat_string_unintern(pgf->pgf_name);
|
|
if ((fd = open(pathname, O_RDWR|O_NOFOLLOW|O_CREAT,
|
|
S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
|
|
err(EX_OSERR, "ERROR: Cannot open \"%s\"", pathname);
|
|
|
|
gm.lpc = image->pi_start;
|
|
gm.hpc = image->pi_end;
|
|
gm.ncnt = (pgf->pgf_nbuckets * sizeof(HISTCOUNTER)) +
|
|
sizeof(struct gmonhdr);
|
|
gm.version = GMONVERSION;
|
|
gm.profrate = 0; /* use ticks */
|
|
gm.histcounter_type = 0; /* compatibility with moncontrol() */
|
|
gm.spare[0] = gm.spare[1] = 0;
|
|
|
|
/* Write out the gmon header */
|
|
if (write(fd, &gm, sizeof(gm)) < 0)
|
|
goto error;
|
|
|
|
/* Zero fill the samples[] array */
|
|
(void) memset(buffer, 0, sizeof(buffer));
|
|
|
|
count = pgf->pgf_ndatabytes - sizeof(struct gmonhdr);
|
|
while (count > sizeof(buffer)) {
|
|
if (write(fd, &buffer, sizeof(buffer)) < 0)
|
|
goto error;
|
|
count -= sizeof(buffer);
|
|
}
|
|
|
|
if (write(fd, &buffer, count) < 0)
|
|
goto error;
|
|
|
|
(void) close(fd);
|
|
|
|
return;
|
|
|
|
error:
|
|
err(EX_OSERR, "ERROR: Cannot write \"%s\"", pathname);
|
|
}
|
|
|
|
/*
|
|
* Determine the full pathname of a gmon.out file for a given
|
|
* (image,pmcid) combination. Return the interned string.
|
|
*/
|
|
|
|
pmcstat_interned_string
|
|
pmcstat_gmon_create_name(const char *samplesdir, struct pmcstat_image *image,
|
|
pmc_id_t pmcid)
|
|
{
|
|
const char *pmcname;
|
|
char fullpath[PATH_MAX];
|
|
|
|
pmcname = pmcstat_pmcid_to_name(pmcid);
|
|
|
|
(void) snprintf(fullpath, sizeof(fullpath),
|
|
"%s/%s/%s", samplesdir, pmcname,
|
|
pmcstat_string_unintern(image->pi_samplename));
|
|
|
|
return (pmcstat_string_intern(fullpath));
|
|
}
|
|
|
|
|
|
/*
|
|
* Mmap in a gmon.out file for processing.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_gmon_map_file(struct pmcstat_gmonfile *pgf)
|
|
{
|
|
int fd;
|
|
const char *pathname;
|
|
|
|
pathname = pmcstat_string_unintern(pgf->pgf_name);
|
|
|
|
/* the gmon.out file must already exist */
|
|
if ((fd = open(pathname, O_RDWR | O_NOFOLLOW, 0)) < 0)
|
|
err(EX_OSERR, "ERROR: cannot open \"%s\"", pathname);
|
|
|
|
pgf->pgf_gmondata = mmap(NULL, pgf->pgf_ndatabytes,
|
|
PROT_READ|PROT_WRITE, MAP_NOSYNC|MAP_SHARED, fd, 0);
|
|
|
|
if (pgf->pgf_gmondata == MAP_FAILED)
|
|
err(EX_OSERR, "ERROR: cannot map \"%s\"", pathname);
|
|
|
|
(void) close(fd);
|
|
}
|
|
|
|
/*
|
|
* Unmap a gmon.out file after sync'ing its data to disk.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_gmon_unmap_file(struct pmcstat_gmonfile *pgf)
|
|
{
|
|
(void) msync(pgf->pgf_gmondata, pgf->pgf_ndatabytes,
|
|
MS_SYNC);
|
|
(void) munmap(pgf->pgf_gmondata, pgf->pgf_ndatabytes);
|
|
pgf->pgf_gmondata = NULL;
|
|
}
|
|
|
|
static void
|
|
pmcstat_gmon_append_arc(struct pmcstat_image *image, pmc_id_t pmcid,
|
|
uintptr_t rawfrom, uintptr_t rawto, uint32_t count)
|
|
{
|
|
struct rawarc arc; /* from <sys/gmon.h> */
|
|
const char *pathname;
|
|
struct pmcstat_gmonfile *pgf;
|
|
|
|
if ((pgf = pmcstat_image_find_gmonfile(image, pmcid)) == NULL)
|
|
return;
|
|
|
|
if (pgf->pgf_file == NULL) {
|
|
pathname = pmcstat_string_unintern(pgf->pgf_name);
|
|
if ((pgf->pgf_file = fopen(pathname, "a")) == NULL)
|
|
return;
|
|
}
|
|
|
|
arc.raw_frompc = rawfrom + image->pi_vaddr;
|
|
arc.raw_selfpc = rawto + image->pi_vaddr;
|
|
arc.raw_count = count;
|
|
|
|
(void) fwrite(&arc, sizeof(arc), 1, pgf->pgf_file);
|
|
|
|
}
|
|
|
|
static struct pmcstat_gmonfile *
|
|
pmcstat_image_find_gmonfile(struct pmcstat_image *image, pmc_id_t pmcid)
|
|
{
|
|
struct pmcstat_gmonfile *pgf;
|
|
LIST_FOREACH(pgf, &image->pi_gmlist, pgf_next)
|
|
if (pgf->pgf_pmcid == pmcid)
|
|
return (pgf);
|
|
return (NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* Determine whether a given executable image is an A.OUT object, and
|
|
* if so, fill in its parameters from the text file.
|
|
* Sets image->pi_type.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_image_get_aout_params(struct pmcstat_image *image,
|
|
struct pmcstat_args *a)
|
|
{
|
|
int fd;
|
|
ssize_t nbytes;
|
|
struct exec ex;
|
|
const char *path;
|
|
char buffer[PATH_MAX];
|
|
|
|
path = pmcstat_string_unintern(image->pi_execpath);
|
|
assert(path != NULL);
|
|
|
|
if (image->pi_iskernelmodule)
|
|
errx(EX_SOFTWARE, "ERROR: a.out kernel modules are "
|
|
"unsupported \"%s\"", path);
|
|
|
|
(void) snprintf(buffer, sizeof(buffer), "%s%s",
|
|
a->pa_fsroot, path);
|
|
|
|
if ((fd = open(buffer, O_RDONLY, 0)) < 0 ||
|
|
(nbytes = read(fd, &ex, sizeof(ex))) < 0) {
|
|
warn("WARNING: Cannot determine type of \"%s\"", path);
|
|
image->pi_type = PMCSTAT_IMAGE_INDETERMINABLE;
|
|
if (fd != -1)
|
|
(void) close(fd);
|
|
return;
|
|
}
|
|
|
|
(void) close(fd);
|
|
|
|
if ((unsigned) nbytes != sizeof(ex) ||
|
|
N_BADMAG(ex))
|
|
return;
|
|
|
|
image->pi_type = PMCSTAT_IMAGE_AOUT;
|
|
|
|
/* TODO: the rest of a.out processing */
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Helper function.
|
|
*/
|
|
|
|
static int
|
|
pmcstat_symbol_compare(const void *a, const void *b)
|
|
{
|
|
const struct pmcstat_symbol *sym1, *sym2;
|
|
|
|
sym1 = (const struct pmcstat_symbol *) a;
|
|
sym2 = (const struct pmcstat_symbol *) b;
|
|
|
|
if (sym1->ps_end <= sym2->ps_start)
|
|
return (-1);
|
|
if (sym1->ps_start >= sym2->ps_end)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Map an address to a symbol in an image.
|
|
*/
|
|
|
|
static struct pmcstat_symbol *
|
|
pmcstat_symbol_search(struct pmcstat_image *image, uintfptr_t addr)
|
|
{
|
|
struct pmcstat_symbol sym;
|
|
|
|
if (image->pi_symbols == NULL)
|
|
return (NULL);
|
|
|
|
sym.ps_name = NULL;
|
|
sym.ps_start = addr;
|
|
sym.ps_end = addr + 1;
|
|
|
|
return (bsearch((void *) &sym, image->pi_symbols,
|
|
image->pi_symcount, sizeof(struct pmcstat_symbol),
|
|
pmcstat_symbol_compare));
|
|
}
|
|
|
|
/*
|
|
* Add the list of symbols in the given section to the list associated
|
|
* with the object.
|
|
*/
|
|
static void
|
|
pmcstat_image_add_symbols(struct pmcstat_image *image, Elf *e,
|
|
Elf_Scn *scn, GElf_Shdr *sh)
|
|
{
|
|
int firsttime;
|
|
size_t n, newsyms, nshsyms, nfuncsyms;
|
|
struct pmcstat_symbol *symptr;
|
|
char *fnname;
|
|
GElf_Sym sym;
|
|
Elf_Data *data;
|
|
|
|
if ((data = elf_getdata(scn, NULL)) == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Determine the number of functions named in this
|
|
* section.
|
|
*/
|
|
|
|
nshsyms = sh->sh_size / sh->sh_entsize;
|
|
for (n = nfuncsyms = 0; n < nshsyms; n++) {
|
|
if (gelf_getsym(data, (int) n, &sym) != &sym)
|
|
return;
|
|
if (GELF_ST_TYPE(sym.st_info) == STT_FUNC)
|
|
nfuncsyms++;
|
|
}
|
|
|
|
if (nfuncsyms == 0)
|
|
return;
|
|
|
|
/*
|
|
* Allocate space for the new entries.
|
|
*/
|
|
firsttime = image->pi_symbols == NULL;
|
|
symptr = realloc(image->pi_symbols,
|
|
sizeof(*symptr) * (image->pi_symcount + nfuncsyms));
|
|
if (symptr == image->pi_symbols) /* realloc() failed. */
|
|
return;
|
|
image->pi_symbols = symptr;
|
|
|
|
/*
|
|
* Append new symbols to the end of the current table.
|
|
*/
|
|
symptr += image->pi_symcount;
|
|
|
|
for (n = newsyms = 0; n < nshsyms; n++) {
|
|
if (gelf_getsym(data, (int) n, &sym) != &sym)
|
|
return;
|
|
if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
|
|
continue;
|
|
|
|
if (!firsttime && pmcstat_symbol_search(image, sym.st_value))
|
|
continue; /* We've seen this symbol already. */
|
|
|
|
if ((fnname = elf_strptr(e, sh->sh_link, sym.st_name))
|
|
== NULL)
|
|
continue;
|
|
|
|
symptr->ps_name = pmcstat_string_intern(fnname);
|
|
symptr->ps_start = sym.st_value - image->pi_vaddr;
|
|
symptr->ps_end = symptr->ps_start + sym.st_size;
|
|
symptr++;
|
|
|
|
newsyms++;
|
|
}
|
|
|
|
image->pi_symcount += newsyms;
|
|
|
|
assert(newsyms <= nfuncsyms);
|
|
|
|
/*
|
|
* Return space to the system if there were duplicates.
|
|
*/
|
|
if (newsyms < nfuncsyms)
|
|
image->pi_symbols = realloc(image->pi_symbols,
|
|
sizeof(*symptr) * image->pi_symcount);
|
|
|
|
/*
|
|
* Keep the list of symbols sorted.
|
|
*/
|
|
qsort(image->pi_symbols, image->pi_symcount, sizeof(*symptr),
|
|
pmcstat_symbol_compare);
|
|
|
|
/*
|
|
* Deal with function symbols that have a size of 'zero' by
|
|
* making them extend to the next higher address. These
|
|
* symbols are usually defined in assembly code.
|
|
*/
|
|
for (symptr = image->pi_symbols;
|
|
symptr < image->pi_symbols + (image->pi_symcount - 1);
|
|
symptr++)
|
|
if (symptr->ps_start == symptr->ps_end)
|
|
symptr->ps_end = (symptr+1)->ps_start;
|
|
}
|
|
|
|
/*
|
|
* Examine an ELF file to determine the size of its text segment.
|
|
* Sets image->pi_type if anything conclusive can be determined about
|
|
* this image.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_image_get_elf_params(struct pmcstat_image *image,
|
|
struct pmcstat_args *a)
|
|
{
|
|
int fd;
|
|
size_t i, nph, nsh;
|
|
const char *path, *elfbase;
|
|
uintfptr_t minva, maxva;
|
|
Elf *e;
|
|
Elf_Scn *scn;
|
|
GElf_Ehdr eh;
|
|
GElf_Phdr ph;
|
|
GElf_Shdr sh;
|
|
enum pmcstat_image_type image_type;
|
|
char buffer[PATH_MAX];
|
|
|
|
assert(image->pi_type == PMCSTAT_IMAGE_UNKNOWN);
|
|
|
|
image->pi_start = minva = ~(uintfptr_t) 0;
|
|
image->pi_end = maxva = (uintfptr_t) 0;
|
|
image->pi_type = image_type = PMCSTAT_IMAGE_INDETERMINABLE;
|
|
image->pi_isdynamic = 0;
|
|
image->pi_dynlinkerpath = NULL;
|
|
image->pi_vaddr = 0;
|
|
|
|
path = pmcstat_string_unintern(image->pi_execpath);
|
|
assert(path != NULL);
|
|
|
|
/*
|
|
* Look for kernel modules under FSROOT/KERNELPATH/NAME,
|
|
* and user mode executable objects under FSROOT/PATHNAME.
|
|
*/
|
|
if (image->pi_iskernelmodule)
|
|
(void) snprintf(buffer, sizeof(buffer), "%s%s/%s",
|
|
a->pa_fsroot, a->pa_kernel, path);
|
|
else
|
|
(void) snprintf(buffer, sizeof(buffer), "%s%s",
|
|
a->pa_fsroot, path);
|
|
|
|
e = NULL;
|
|
if ((fd = open(buffer, O_RDONLY, 0)) < 0 ||
|
|
(e = elf_begin(fd, ELF_C_READ, NULL)) == NULL ||
|
|
(elf_kind(e) != ELF_K_ELF)) {
|
|
warnx("WARNING: Cannot determine the type of \"%s\".",
|
|
buffer);
|
|
goto done;
|
|
}
|
|
|
|
if (gelf_getehdr(e, &eh) != &eh) {
|
|
warnx("WARNING: Cannot retrieve the ELF Header for "
|
|
"\"%s\": %s.", buffer, elf_errmsg(-1));
|
|
goto done;
|
|
}
|
|
|
|
if (eh.e_type != ET_EXEC && eh.e_type != ET_DYN &&
|
|
!(image->pi_iskernelmodule && eh.e_type == ET_REL)) {
|
|
warnx("WARNING: \"%s\" is of an unsupported ELF type.",
|
|
buffer);
|
|
goto done;
|
|
}
|
|
|
|
image_type = eh.e_ident[EI_CLASS] == ELFCLASS32 ?
|
|
PMCSTAT_IMAGE_ELF32 : PMCSTAT_IMAGE_ELF64;
|
|
|
|
/*
|
|
* Determine the virtual address where an executable would be
|
|
* loaded. Additionally, for dynamically linked executables,
|
|
* save the pathname to the runtime linker.
|
|
*/
|
|
if (eh.e_type == ET_EXEC) {
|
|
if (elf_getphnum(e, &nph) == 0) {
|
|
warnx("WARNING: Could not determine the number of "
|
|
"program headers in \"%s\": %s.", buffer,
|
|
elf_errmsg(-1));
|
|
goto done;
|
|
}
|
|
for (i = 0; i < eh.e_phnum; i++) {
|
|
if (gelf_getphdr(e, i, &ph) != &ph) {
|
|
warnx("WARNING: Retrieval of PHDR entry #%ju "
|
|
"in \"%s\" failed: %s.", (uintmax_t) i,
|
|
buffer, elf_errmsg(-1));
|
|
goto done;
|
|
}
|
|
switch (ph.p_type) {
|
|
case PT_DYNAMIC:
|
|
image->pi_isdynamic = 1;
|
|
break;
|
|
case PT_INTERP:
|
|
if ((elfbase = elf_rawfile(e, NULL)) == NULL) {
|
|
warnx("WARNING: Cannot retrieve the "
|
|
"interpreter for \"%s\": %s.",
|
|
buffer, elf_errmsg(-1));
|
|
goto done;
|
|
}
|
|
image->pi_dynlinkerpath =
|
|
pmcstat_string_intern(elfbase +
|
|
ph.p_offset);
|
|
break;
|
|
case PT_LOAD:
|
|
if (ph.p_offset == 0)
|
|
image->pi_vaddr = ph.p_vaddr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the min and max VA associated with this ELF object.
|
|
*/
|
|
if (elf_getshnum(e, &nsh) == 0) {
|
|
warnx("WARNING: Could not determine the number of sections "
|
|
"for \"%s\": %s.", buffer, elf_errmsg(-1));
|
|
goto done;
|
|
}
|
|
|
|
for (i = 0; i < nsh; i++) {
|
|
if ((scn = elf_getscn(e, i)) == NULL ||
|
|
gelf_getshdr(scn, &sh) != &sh) {
|
|
warnx("WARNING: Could not retrieve section header "
|
|
"#%ju in \"%s\": %s.", (uintmax_t) i, buffer,
|
|
elf_errmsg(-1));
|
|
goto done;
|
|
}
|
|
if (sh.sh_flags & SHF_EXECINSTR) {
|
|
minva = min(minva, sh.sh_addr);
|
|
maxva = max(maxva, sh.sh_addr + sh.sh_size);
|
|
}
|
|
if (sh.sh_type == SHT_SYMTAB || sh.sh_type == SHT_DYNSYM)
|
|
pmcstat_image_add_symbols(image, e, scn, &sh);
|
|
}
|
|
|
|
image->pi_start = minva;
|
|
image->pi_end = maxva;
|
|
image->pi_type = image_type;
|
|
image->pi_fullpath = pmcstat_string_intern(buffer);
|
|
|
|
done:
|
|
(void) elf_end(e);
|
|
if (fd >= 0)
|
|
(void) close(fd);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Given an image descriptor, determine whether it is an ELF, or AOUT.
|
|
* If no handler claims the image, set its type to 'INDETERMINABLE'.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_image_determine_type(struct pmcstat_image *image,
|
|
struct pmcstat_args *a)
|
|
{
|
|
assert(image->pi_type == PMCSTAT_IMAGE_UNKNOWN);
|
|
|
|
/* Try each kind of handler in turn */
|
|
if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN)
|
|
pmcstat_image_get_elf_params(image, a);
|
|
if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN)
|
|
pmcstat_image_get_aout_params(image, a);
|
|
|
|
/*
|
|
* Otherwise, remember that we tried to determine
|
|
* the object's type and had failed.
|
|
*/
|
|
if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN)
|
|
image->pi_type = PMCSTAT_IMAGE_INDETERMINABLE;
|
|
}
|
|
|
|
/*
|
|
* Locate an image descriptor given an interned path, adding a fresh
|
|
* descriptor to the cache if necessary. This function also finds a
|
|
* suitable name for this image's sample file.
|
|
*
|
|
* We defer filling in the file format specific parts of the image
|
|
* structure till the time we actually see a sample that would fall
|
|
* into this image.
|
|
*/
|
|
|
|
static struct pmcstat_image *
|
|
pmcstat_image_from_path(pmcstat_interned_string internedpath,
|
|
int iskernelmodule)
|
|
{
|
|
int count, hash, nlen;
|
|
struct pmcstat_image *pi;
|
|
char *sn;
|
|
char name[NAME_MAX];
|
|
|
|
hash = pmcstat_string_lookup_hash(internedpath);
|
|
|
|
/* First, look for an existing entry. */
|
|
LIST_FOREACH(pi, &pmcstat_image_hash[hash], pi_next)
|
|
if (pi->pi_execpath == internedpath &&
|
|
pi->pi_iskernelmodule == iskernelmodule)
|
|
return (pi);
|
|
|
|
/*
|
|
* Allocate a new entry and place it at the head of the hash
|
|
* and LRU lists.
|
|
*/
|
|
pi = malloc(sizeof(*pi));
|
|
if (pi == NULL)
|
|
return (NULL);
|
|
|
|
pi->pi_type = PMCSTAT_IMAGE_UNKNOWN;
|
|
pi->pi_execpath = internedpath;
|
|
pi->pi_start = ~0;
|
|
pi->pi_end = 0;
|
|
pi->pi_entry = 0;
|
|
pi->pi_vaddr = 0;
|
|
pi->pi_isdynamic = 0;
|
|
pi->pi_iskernelmodule = iskernelmodule;
|
|
pi->pi_dynlinkerpath = NULL;
|
|
pi->pi_symbols = NULL;
|
|
pi->pi_symcount = 0;
|
|
|
|
/*
|
|
* Look for a suitable name for the sample files associated
|
|
* with this image: if `basename(path)`+".gmon" is available,
|
|
* we use that, otherwise we try iterating through
|
|
* `basename(path)`+ "~" + NNN + ".gmon" till we get a free
|
|
* entry.
|
|
*/
|
|
if ((sn = basename(pmcstat_string_unintern(internedpath))) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot process \"%s\"",
|
|
pmcstat_string_unintern(internedpath));
|
|
|
|
nlen = strlen(sn);
|
|
nlen = min(nlen, (int) (sizeof(name) - sizeof(".gmon")));
|
|
|
|
snprintf(name, sizeof(name), "%.*s.gmon", nlen, sn);
|
|
|
|
/* try use the unabridged name first */
|
|
if (pmcstat_string_lookup(name) == NULL)
|
|
pi->pi_samplename = pmcstat_string_intern(name);
|
|
else {
|
|
/*
|
|
* Otherwise use a prefix from the original name and
|
|
* upto 3 digits.
|
|
*/
|
|
nlen = strlen(sn);
|
|
nlen = min(nlen, (int) (sizeof(name)-sizeof("~NNN.gmon")));
|
|
count = 0;
|
|
do {
|
|
if (++count > 999)
|
|
errx(EX_CANTCREAT, "ERROR: cannot create a "
|
|
"gmon file for \"%s\"", name);
|
|
snprintf(name, sizeof(name), "%.*s~%3.3d.gmon",
|
|
nlen, sn, count);
|
|
if (pmcstat_string_lookup(name) == NULL) {
|
|
pi->pi_samplename =
|
|
pmcstat_string_intern(name);
|
|
count = 0;
|
|
}
|
|
} while (count > 0);
|
|
}
|
|
|
|
|
|
LIST_INIT(&pi->pi_gmlist);
|
|
|
|
LIST_INSERT_HEAD(&pmcstat_image_hash[hash], pi, pi_next);
|
|
|
|
return (pi);
|
|
}
|
|
|
|
/*
|
|
* Increment the bucket in the gmon.out file corresponding to 'pmcid'
|
|
* and 'pc'.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_image_increment_bucket(struct pmcstat_pcmap *map, uintfptr_t pc,
|
|
pmc_id_t pmcid, struct pmcstat_args *a)
|
|
{
|
|
struct pmcstat_image *image;
|
|
struct pmcstat_gmonfile *pgf;
|
|
uintfptr_t bucket;
|
|
HISTCOUNTER *hc;
|
|
|
|
assert(pc >= map->ppm_lowpc && pc < map->ppm_highpc);
|
|
|
|
image = map->ppm_image;
|
|
|
|
/*
|
|
* If this is the first time we are seeing a sample for
|
|
* this executable image, try determine its parameters.
|
|
*/
|
|
if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN)
|
|
pmcstat_image_determine_type(image, a);
|
|
|
|
assert(image->pi_type != PMCSTAT_IMAGE_UNKNOWN);
|
|
|
|
/* Ignore samples in images that we know nothing about. */
|
|
if (image->pi_type == PMCSTAT_IMAGE_INDETERMINABLE) {
|
|
pmcstat_stats.ps_samples_indeterminable++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Find the gmon file corresponding to 'pmcid', creating it if
|
|
* needed.
|
|
*/
|
|
pgf = pmcstat_image_find_gmonfile(image, pmcid);
|
|
if (pgf == NULL) {
|
|
if ((pgf = calloc(1, sizeof(*pgf))) == NULL)
|
|
err(EX_OSERR, "ERROR:");
|
|
|
|
pgf->pgf_gmondata = NULL; /* mark as unmapped */
|
|
pgf->pgf_name = pmcstat_gmon_create_name(a->pa_samplesdir,
|
|
image, pmcid);
|
|
pgf->pgf_pmcid = pmcid;
|
|
assert(image->pi_end > image->pi_start);
|
|
pgf->pgf_nbuckets = (image->pi_end - image->pi_start) /
|
|
FUNCTION_ALIGNMENT; /* see <machine/profile.h> */
|
|
pgf->pgf_ndatabytes = sizeof(struct gmonhdr) +
|
|
pgf->pgf_nbuckets * sizeof(HISTCOUNTER);
|
|
pgf->pgf_nsamples = 0;
|
|
pgf->pgf_file = NULL;
|
|
|
|
pmcstat_gmon_create_file(pgf, image);
|
|
|
|
LIST_INSERT_HEAD(&image->pi_gmlist, pgf, pgf_next);
|
|
}
|
|
|
|
/*
|
|
* Map the gmon file in if needed. It may have been mapped
|
|
* out under memory pressure.
|
|
*/
|
|
if (pgf->pgf_gmondata == NULL)
|
|
pmcstat_gmon_map_file(pgf);
|
|
|
|
assert(pgf->pgf_gmondata != NULL);
|
|
|
|
/*
|
|
*
|
|
*/
|
|
|
|
bucket = (pc - map->ppm_lowpc) / FUNCTION_ALIGNMENT;
|
|
|
|
assert(bucket < pgf->pgf_nbuckets);
|
|
|
|
hc = (HISTCOUNTER *) ((uintptr_t) pgf->pgf_gmondata +
|
|
sizeof(struct gmonhdr));
|
|
|
|
/* saturating add */
|
|
if (hc[bucket] < 0xFFFFU) /* XXX tie this to sizeof(HISTCOUNTER) */
|
|
hc[bucket]++;
|
|
else /* mark that an overflow occurred */
|
|
pgf->pgf_overflow = 1;
|
|
|
|
pgf->pgf_nsamples++;
|
|
}
|
|
|
|
/*
|
|
* Record the fact that PC values from 'start' to 'end' come from
|
|
* image 'image'.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_image_link(struct pmcstat_process *pp, struct pmcstat_image *image,
|
|
uintfptr_t start)
|
|
{
|
|
struct pmcstat_pcmap *pcm, *pcmnew;
|
|
uintfptr_t offset;
|
|
|
|
assert(image->pi_type != PMCSTAT_IMAGE_UNKNOWN &&
|
|
image->pi_type != PMCSTAT_IMAGE_INDETERMINABLE);
|
|
|
|
if ((pcmnew = malloc(sizeof(*pcmnew))) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot create a map entry");
|
|
|
|
/*
|
|
* Adjust the map entry to only cover the text portion
|
|
* of the object.
|
|
*/
|
|
|
|
offset = start - image->pi_vaddr;
|
|
pcmnew->ppm_lowpc = image->pi_start + offset;
|
|
pcmnew->ppm_highpc = image->pi_end + offset;
|
|
pcmnew->ppm_image = image;
|
|
|
|
assert(pcmnew->ppm_lowpc < pcmnew->ppm_highpc);
|
|
|
|
/* Overlapped mmap()'s are assumed to never occur. */
|
|
TAILQ_FOREACH(pcm, &pp->pp_map, ppm_next)
|
|
if (pcm->ppm_lowpc >= pcmnew->ppm_highpc)
|
|
break;
|
|
|
|
if (pcm == NULL)
|
|
TAILQ_INSERT_TAIL(&pp->pp_map, pcmnew, ppm_next);
|
|
else
|
|
TAILQ_INSERT_BEFORE(pcm, pcmnew, ppm_next);
|
|
}
|
|
|
|
/*
|
|
* Unmap images in the range [start..end) associated with process
|
|
* 'pp'.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_image_unmap(struct pmcstat_process *pp, uintfptr_t start,
|
|
uintfptr_t end)
|
|
{
|
|
struct pmcstat_pcmap *pcm, *pcmtmp, *pcmnew;
|
|
|
|
assert(pp != NULL);
|
|
assert(start < end);
|
|
|
|
/*
|
|
* Cases:
|
|
* - we could have the range completely in the middle of an
|
|
* existing pcmap; in this case we have to split the pcmap
|
|
* structure into two (i.e., generate a 'hole').
|
|
* - we could have the range covering multiple pcmaps; these
|
|
* will have to be removed.
|
|
* - we could have either 'start' or 'end' falling in the
|
|
* middle of a pcmap; in this case shorten the entry.
|
|
*/
|
|
TAILQ_FOREACH_SAFE(pcm, &pp->pp_map, ppm_next, pcmtmp) {
|
|
assert(pcm->ppm_lowpc < pcm->ppm_highpc);
|
|
if (pcm->ppm_highpc <= start)
|
|
continue;
|
|
if (pcm->ppm_lowpc >= end)
|
|
return;
|
|
if (pcm->ppm_lowpc >= start && pcm->ppm_highpc <= end) {
|
|
/*
|
|
* The current pcmap is completely inside the
|
|
* unmapped range: remove it entirely.
|
|
*/
|
|
TAILQ_REMOVE(&pp->pp_map, pcm, ppm_next);
|
|
free(pcm);
|
|
} else if (pcm->ppm_lowpc < start && pcm->ppm_highpc > end) {
|
|
/*
|
|
* Split this pcmap into two; curtail the
|
|
* current map to end at [start-1], and start
|
|
* the new one at [end].
|
|
*/
|
|
if ((pcmnew = malloc(sizeof(*pcmnew))) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot split a map "
|
|
"entry");
|
|
|
|
pcmnew->ppm_image = pcm->ppm_image;
|
|
|
|
pcmnew->ppm_lowpc = end;
|
|
pcmnew->ppm_highpc = pcm->ppm_highpc;
|
|
|
|
pcm->ppm_highpc = start;
|
|
|
|
TAILQ_INSERT_AFTER(&pp->pp_map, pcm, pcmnew, ppm_next);
|
|
|
|
return;
|
|
} else if (pcm->ppm_lowpc < start && pcm->ppm_highpc <= end)
|
|
pcm->ppm_highpc = start;
|
|
else if (pcm->ppm_lowpc >= start && pcm->ppm_highpc > end)
|
|
pcm->ppm_lowpc = end;
|
|
else
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a {pmcid,name} mapping.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_pmcid_add(pmc_id_t pmcid, pmcstat_interned_string ps,
|
|
struct pmcstat_args *a)
|
|
{
|
|
struct pmcstat_pmcrecord *pr;
|
|
struct stat st;
|
|
char fullpath[PATH_MAX];
|
|
|
|
/* Replace an existing name for the PMC. */
|
|
LIST_FOREACH(pr, &pmcstat_pmcs, pr_next)
|
|
if (pr->pr_pmcid == pmcid) {
|
|
pr->pr_pmcname = ps;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, allocate a new descriptor and create the
|
|
* appropriate directory to hold gmon.out files.
|
|
*/
|
|
if ((pr = malloc(sizeof(*pr))) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot allocate pmc record");
|
|
|
|
pr->pr_pmcid = pmcid;
|
|
pr->pr_pmcname = ps;
|
|
LIST_INSERT_HEAD(&pmcstat_pmcs, pr, pr_next);
|
|
|
|
(void) snprintf(fullpath, sizeof(fullpath), "%s/%s", a->pa_samplesdir,
|
|
pmcstat_string_unintern(ps));
|
|
|
|
/* If the path name exists, it should be a directory */
|
|
if (stat(fullpath, &st) == 0 && S_ISDIR(st.st_mode))
|
|
return;
|
|
|
|
if (mkdir(fullpath, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) < 0)
|
|
err(EX_OSERR, "ERROR: Cannot create directory \"%s\"",
|
|
fullpath);
|
|
}
|
|
|
|
/*
|
|
* Given a pmcid in use, find its human-readable name.
|
|
*/
|
|
|
|
static const char *
|
|
pmcstat_pmcid_to_name(pmc_id_t pmcid)
|
|
{
|
|
struct pmcstat_pmcrecord *pr;
|
|
char fullpath[PATH_MAX];
|
|
|
|
LIST_FOREACH(pr, &pmcstat_pmcs, pr_next)
|
|
if (pr->pr_pmcid == pmcid)
|
|
return (pmcstat_string_unintern(pr->pr_pmcname));
|
|
|
|
/* create a default name and add this entry */
|
|
if ((pr = malloc(sizeof(*pr))) == NULL)
|
|
err(EX_OSERR, "ERROR: ");
|
|
pr->pr_pmcid = pmcid;
|
|
|
|
(void) snprintf(fullpath, sizeof(fullpath), "%X", (unsigned int) pmcid);
|
|
pr->pr_pmcname = pmcstat_string_intern(fullpath);
|
|
|
|
LIST_INSERT_HEAD(&pmcstat_pmcs, pr, pr_next);
|
|
|
|
return (pmcstat_string_unintern(pr->pr_pmcname));
|
|
}
|
|
|
|
/*
|
|
* Associate an AOUT image with a process.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_process_aout_exec(struct pmcstat_process *pp,
|
|
struct pmcstat_image *image, uintfptr_t entryaddr,
|
|
struct pmcstat_args *a)
|
|
{
|
|
(void) pp;
|
|
(void) image;
|
|
(void) entryaddr;
|
|
(void) a;
|
|
/* TODO Implement a.out handling */
|
|
}
|
|
|
|
/*
|
|
* Associate an ELF image with a process.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_process_elf_exec(struct pmcstat_process *pp,
|
|
struct pmcstat_image *image, uintfptr_t entryaddr,
|
|
struct pmcstat_args *a)
|
|
{
|
|
uintmax_t libstart;
|
|
struct pmcstat_image *rtldimage;
|
|
|
|
assert(image->pi_type == PMCSTAT_IMAGE_ELF32 ||
|
|
image->pi_type == PMCSTAT_IMAGE_ELF64);
|
|
|
|
/* Create a map entry for the base executable. */
|
|
pmcstat_image_link(pp, image, image->pi_vaddr);
|
|
|
|
/*
|
|
* For dynamically linked executables we need to determine
|
|
* where the dynamic linker was mapped to for this process,
|
|
* Subsequent executable objects that are mapped in by the
|
|
* dynamic linker will be tracked by log events of type
|
|
* PMCLOG_TYPE_MAP_IN.
|
|
*/
|
|
|
|
if (image->pi_isdynamic) {
|
|
|
|
/*
|
|
* The runtime loader gets loaded just after the maximum
|
|
* possible heap address. Like so:
|
|
*
|
|
* [ TEXT DATA BSS HEAP -->*RTLD SHLIBS <--STACK]
|
|
* ^ ^
|
|
* 0 VM_MAXUSER_ADDRESS
|
|
|
|
*
|
|
* The exact address where the loader gets mapped in
|
|
* will vary according to the size of the executable
|
|
* and the limits on the size of the process'es data
|
|
* segment at the time of exec(). The entry address
|
|
* recorded at process exec time corresponds to the
|
|
* 'start' address inside the dynamic linker. From
|
|
* this we can figure out the address where the
|
|
* runtime loader's file object had been mapped to.
|
|
*/
|
|
rtldimage = pmcstat_image_from_path(image->pi_dynlinkerpath,
|
|
0);
|
|
if (rtldimage == NULL) {
|
|
warnx("WARNING: Cannot find image for \"%s\".",
|
|
pmcstat_string_unintern(image->pi_dynlinkerpath));
|
|
pmcstat_stats.ps_exec_errors++;
|
|
return;
|
|
}
|
|
|
|
if (rtldimage->pi_type == PMCSTAT_IMAGE_UNKNOWN)
|
|
pmcstat_image_get_elf_params(rtldimage, a);
|
|
|
|
if (rtldimage->pi_type != PMCSTAT_IMAGE_ELF32 &&
|
|
rtldimage->pi_type != PMCSTAT_IMAGE_ELF64) {
|
|
warnx("WARNING: rtld not an ELF object \"%s\".",
|
|
pmcstat_string_unintern(image->pi_dynlinkerpath));
|
|
return;
|
|
}
|
|
|
|
libstart = entryaddr - rtldimage->pi_entry;
|
|
pmcstat_image_link(pp, rtldimage, libstart);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the process descriptor corresponding to a PID. If 'allocate'
|
|
* is zero, we return a NULL if a pid descriptor could not be found or
|
|
* a process descriptor process. If 'allocate' is non-zero, then we
|
|
* will attempt to allocate a fresh process descriptor. Zombie
|
|
* process descriptors are only removed if a fresh allocation for the
|
|
* same PID is requested.
|
|
*/
|
|
|
|
static struct pmcstat_process *
|
|
pmcstat_process_lookup(pid_t pid, int allocate)
|
|
{
|
|
uint32_t hash;
|
|
struct pmcstat_pcmap *ppm, *ppmtmp;
|
|
struct pmcstat_process *pp, *pptmp;
|
|
|
|
hash = (uint32_t) pid & PMCSTAT_HASH_MASK; /* simplicity wins */
|
|
|
|
LIST_FOREACH_SAFE(pp, &pmcstat_process_hash[hash], pp_next, pptmp)
|
|
if (pp->pp_pid == pid) {
|
|
/* Found a descriptor, check and process zombies */
|
|
if (allocate && pp->pp_isactive == 0) {
|
|
/* remove maps */
|
|
TAILQ_FOREACH_SAFE(ppm, &pp->pp_map, ppm_next,
|
|
ppmtmp) {
|
|
TAILQ_REMOVE(&pp->pp_map, ppm, ppm_next);
|
|
free(ppm);
|
|
}
|
|
/* remove process entry */
|
|
LIST_REMOVE(pp, pp_next);
|
|
free(pp);
|
|
break;
|
|
}
|
|
return (pp);
|
|
}
|
|
|
|
if (!allocate)
|
|
return (NULL);
|
|
|
|
if ((pp = malloc(sizeof(*pp))) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot allocate pid descriptor");
|
|
|
|
pp->pp_pid = pid;
|
|
pp->pp_isactive = 1;
|
|
|
|
TAILQ_INIT(&pp->pp_map);
|
|
|
|
LIST_INSERT_HEAD(&pmcstat_process_hash[hash], pp, pp_next);
|
|
return (pp);
|
|
}
|
|
|
|
/*
|
|
* Associate an image and a process.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_process_exec(struct pmcstat_process *pp,
|
|
pmcstat_interned_string path, uintfptr_t entryaddr,
|
|
struct pmcstat_args *a)
|
|
{
|
|
struct pmcstat_image *image;
|
|
|
|
if ((image = pmcstat_image_from_path(path, 0)) == NULL) {
|
|
pmcstat_stats.ps_exec_errors++;
|
|
return;
|
|
}
|
|
|
|
if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN)
|
|
pmcstat_image_determine_type(image, a);
|
|
|
|
assert(image->pi_type != PMCSTAT_IMAGE_UNKNOWN);
|
|
|
|
switch (image->pi_type) {
|
|
case PMCSTAT_IMAGE_ELF32:
|
|
case PMCSTAT_IMAGE_ELF64:
|
|
pmcstat_stats.ps_exec_elf++;
|
|
pmcstat_process_elf_exec(pp, image, entryaddr, a);
|
|
break;
|
|
|
|
case PMCSTAT_IMAGE_AOUT:
|
|
pmcstat_stats.ps_exec_aout++;
|
|
pmcstat_process_aout_exec(pp, image, entryaddr, a);
|
|
break;
|
|
|
|
case PMCSTAT_IMAGE_INDETERMINABLE:
|
|
pmcstat_stats.ps_exec_indeterminable++;
|
|
break;
|
|
|
|
default:
|
|
err(EX_SOFTWARE, "ERROR: Unsupported executable type for "
|
|
"\"%s\"", pmcstat_string_unintern(path));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Find the map entry associated with process 'p' at PC value 'pc'.
|
|
*/
|
|
|
|
static struct pmcstat_pcmap *
|
|
pmcstat_process_find_map(struct pmcstat_process *p, uintfptr_t pc)
|
|
{
|
|
struct pmcstat_pcmap *ppm;
|
|
|
|
TAILQ_FOREACH(ppm, &p->pp_map, ppm_next) {
|
|
if (pc >= ppm->ppm_lowpc && pc < ppm->ppm_highpc)
|
|
return (ppm);
|
|
if (pc < ppm->ppm_lowpc)
|
|
return (NULL);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static struct pmcstat_cgnode *
|
|
pmcstat_cgnode_allocate(struct pmcstat_image *image, uintfptr_t pc)
|
|
{
|
|
struct pmcstat_cgnode *cg;
|
|
|
|
if ((cg = malloc(sizeof(*cg))) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot allocate callgraph node");
|
|
|
|
cg->pcg_image = image;
|
|
cg->pcg_func = pc;
|
|
|
|
cg->pcg_count = 0;
|
|
cg->pcg_nchildren = 0;
|
|
LIST_INIT(&cg->pcg_children);
|
|
|
|
return (cg);
|
|
}
|
|
|
|
/*
|
|
* Free a node and its children.
|
|
*/
|
|
static void
|
|
pmcstat_cgnode_free(struct pmcstat_cgnode *cg)
|
|
{
|
|
struct pmcstat_cgnode *cgc, *cgtmp;
|
|
|
|
LIST_FOREACH_SAFE(cgc, &cg->pcg_children, pcg_sibling, cgtmp)
|
|
pmcstat_cgnode_free(cgc);
|
|
free(cg);
|
|
}
|
|
|
|
/*
|
|
* Look for a callgraph node associated with pmc `pmcid' in the global
|
|
* hash table that corresponds to the given `pc' value in the process
|
|
* `pp'.
|
|
*/
|
|
static struct pmcstat_cgnode *
|
|
pmcstat_cgnode_hash_lookup_pc(struct pmcstat_process *pp, uint32_t pmcid,
|
|
uintfptr_t pc, int usermode)
|
|
{
|
|
struct pmcstat_pcmap *ppm;
|
|
struct pmcstat_symbol *sym;
|
|
struct pmcstat_image *image;
|
|
struct pmcstat_cgnode *cg;
|
|
struct pmcstat_cgnode_hash *h;
|
|
uintfptr_t loadaddress;
|
|
unsigned int i, hash;
|
|
|
|
ppm = pmcstat_process_find_map(usermode ? pp : pmcstat_kernproc, pc);
|
|
if (ppm == NULL)
|
|
return (NULL);
|
|
|
|
image = ppm->ppm_image;
|
|
|
|
loadaddress = ppm->ppm_lowpc + image->pi_vaddr - image->pi_start;
|
|
pc -= loadaddress; /* Convert to an offset in the image. */
|
|
|
|
/*
|
|
* Try determine the function at this offset. If we can't
|
|
* find a function round leave the `pc' value alone.
|
|
*/
|
|
if ((sym = pmcstat_symbol_search(image, pc)) != NULL)
|
|
pc = sym->ps_start;
|
|
|
|
for (hash = i = 0; i < sizeof(uintfptr_t); i++)
|
|
hash += (pc >> i) & 0xFF;
|
|
|
|
hash &= PMCSTAT_HASH_MASK;
|
|
|
|
cg = NULL;
|
|
LIST_FOREACH(h, &pmcstat_cgnode_hash[hash], pch_next)
|
|
{
|
|
if (h->pch_pmcid != pmcid)
|
|
continue;
|
|
|
|
cg = h->pch_cgnode;
|
|
|
|
assert(cg != NULL);
|
|
|
|
if (cg->pcg_image == image && cg->pcg_func == pc)
|
|
return (cg);
|
|
}
|
|
|
|
/*
|
|
* We haven't seen this (pmcid, pc) tuple yet, so allocate a
|
|
* new callgraph node and a new hash table entry for it.
|
|
*/
|
|
cg = pmcstat_cgnode_allocate(image, pc);
|
|
if ((h = malloc(sizeof(*h))) == NULL)
|
|
err(EX_OSERR, "ERROR: Could not allocate callgraph node");
|
|
|
|
h->pch_pmcid = pmcid;
|
|
h->pch_cgnode = cg;
|
|
LIST_INSERT_HEAD(&pmcstat_cgnode_hash[hash], h, pch_next);
|
|
|
|
pmcstat_cgnode_hash_count++;
|
|
|
|
return (cg);
|
|
}
|
|
|
|
/*
|
|
* Compare two callgraph nodes for sorting.
|
|
*/
|
|
static int
|
|
pmcstat_cgnode_compare(const void *a, const void *b)
|
|
{
|
|
const struct pmcstat_cgnode *const *pcg1, *const *pcg2, *cg1, *cg2;
|
|
|
|
pcg1 = (const struct pmcstat_cgnode *const *) a;
|
|
cg1 = *pcg1;
|
|
pcg2 = (const struct pmcstat_cgnode *const *) b;
|
|
cg2 = *pcg2;
|
|
|
|
/* Sort in reverse order */
|
|
if (cg1->pcg_count < cg2->pcg_count)
|
|
return (1);
|
|
if (cg1->pcg_count > cg2->pcg_count)
|
|
return (-1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find (allocating if a needed) a callgraph node in the given
|
|
* parent with the same (image, pcoffset) pair.
|
|
*/
|
|
|
|
static struct pmcstat_cgnode *
|
|
pmcstat_cgnode_find(struct pmcstat_cgnode *parent, struct pmcstat_image *image,
|
|
uintfptr_t pcoffset)
|
|
{
|
|
struct pmcstat_cgnode *child;
|
|
|
|
LIST_FOREACH(child, &parent->pcg_children, pcg_sibling) {
|
|
if (child->pcg_image == image &&
|
|
child->pcg_func == pcoffset)
|
|
return (child);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new structure.
|
|
*/
|
|
|
|
child = pmcstat_cgnode_allocate(image, pcoffset);
|
|
|
|
/*
|
|
* Link it into the parent.
|
|
*/
|
|
LIST_INSERT_HEAD(&parent->pcg_children, child, pcg_sibling);
|
|
parent->pcg_nchildren++;
|
|
|
|
return (child);
|
|
}
|
|
|
|
/*
|
|
* Print one callgraph node. The output format is:
|
|
*
|
|
* indentation %(parent's samples) #nsamples function@object
|
|
*/
|
|
static void
|
|
pmcstat_cgnode_print(struct pmcstat_args *a, struct pmcstat_cgnode *cg,
|
|
int depth, uint32_t total)
|
|
{
|
|
uint32_t n;
|
|
const char *space;
|
|
struct pmcstat_symbol *sym;
|
|
struct pmcstat_cgnode **sortbuffer, **cgn, *pcg;
|
|
|
|
space = " ";
|
|
|
|
if (depth > 0)
|
|
(void) fprintf(a->pa_graphfile, "%*s", depth, space);
|
|
|
|
if (cg->pcg_count == total)
|
|
(void) fprintf(a->pa_graphfile, "100.0%% ");
|
|
else
|
|
(void) fprintf(a->pa_graphfile, "%05.2f%% ",
|
|
100.0 * cg->pcg_count / total);
|
|
|
|
n = fprintf(a->pa_graphfile, " [%u] ", cg->pcg_count);
|
|
|
|
/* #samples is a 12 character wide field. */
|
|
if (n < 12)
|
|
(void) fprintf(a->pa_graphfile, "%*s", 12 - n, space);
|
|
|
|
if (depth > 0)
|
|
(void) fprintf(a->pa_graphfile, "%*s", depth, space);
|
|
|
|
sym = pmcstat_symbol_search(cg->pcg_image, cg->pcg_func);
|
|
if (sym)
|
|
(void) fprintf(a->pa_graphfile, "%s",
|
|
pmcstat_string_unintern(sym->ps_name));
|
|
else
|
|
(void) fprintf(a->pa_graphfile, "%p",
|
|
(void *) (cg->pcg_image->pi_vaddr + cg->pcg_func));
|
|
|
|
if (pmcstat_previous_filename_printed !=
|
|
cg->pcg_image->pi_fullpath) {
|
|
pmcstat_previous_filename_printed = cg->pcg_image->pi_fullpath;
|
|
(void) fprintf(a->pa_graphfile, " @ %s\n",
|
|
pmcstat_string_unintern(
|
|
pmcstat_previous_filename_printed));
|
|
} else
|
|
(void) fprintf(a->pa_graphfile, "\n");
|
|
|
|
if (cg->pcg_nchildren == 0)
|
|
return;
|
|
|
|
if ((sortbuffer = (struct pmcstat_cgnode **)
|
|
malloc(sizeof(struct pmcstat_cgnode *) *
|
|
cg->pcg_nchildren)) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot print callgraph");
|
|
cgn = sortbuffer;
|
|
|
|
LIST_FOREACH(pcg, &cg->pcg_children, pcg_sibling)
|
|
*cgn++ = pcg;
|
|
|
|
assert(cgn - sortbuffer == (int) cg->pcg_nchildren);
|
|
|
|
qsort(sortbuffer, cg->pcg_nchildren, sizeof(struct pmcstat_cgnode *),
|
|
pmcstat_cgnode_compare);
|
|
|
|
for (cgn = sortbuffer, n = 0; n < cg->pcg_nchildren; n++, cgn++)
|
|
pmcstat_cgnode_print(a, *cgn, depth+1, cg->pcg_count);
|
|
|
|
free(sortbuffer);
|
|
}
|
|
|
|
/*
|
|
* Record a callchain.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_record_callchain(struct pmcstat_process *pp, uint32_t pmcid,
|
|
uint32_t nsamples, uintfptr_t *cc, int usermode, struct pmcstat_args *a)
|
|
{
|
|
uintfptr_t pc, loadaddress;
|
|
uint32_t n;
|
|
struct pmcstat_image *image;
|
|
struct pmcstat_pcmap *ppm;
|
|
struct pmcstat_symbol *sym;
|
|
struct pmcstat_cgnode *parent, *child;
|
|
|
|
/*
|
|
* Find the callgraph node recorded in the global hash table
|
|
* for this (pmcid, pc).
|
|
*/
|
|
|
|
pc = cc[0];
|
|
parent = pmcstat_cgnode_hash_lookup_pc(pp, pmcid, pc, usermode);
|
|
if (parent == NULL) {
|
|
pmcstat_stats.ps_callchain_dubious_frames++;
|
|
return;
|
|
}
|
|
|
|
parent->pcg_count++;
|
|
|
|
/*
|
|
* For each return address in the call chain record, subject
|
|
* to the maximum depth desired.
|
|
* - Find the image associated with the sample. Stop if there
|
|
* there is no valid image at that address.
|
|
* - Find the function that overlaps the return address.
|
|
* - If found: use the start address of the function.
|
|
* If not found (say an object's symbol table is not present or
|
|
* is incomplete), round down to th gprof bucket granularity.
|
|
* - Convert return virtual address to an offset in the image.
|
|
* - Look for a child with the same {offset,image} tuple,
|
|
* inserting one if needed.
|
|
* - Increment the count of occurrences of the child.
|
|
*/
|
|
|
|
for (n = 1; n < (uint32_t) a->pa_graphdepth && n < nsamples; n++,
|
|
parent = child) {
|
|
pc = cc[n];
|
|
|
|
ppm = pmcstat_process_find_map(usermode ? pp :
|
|
pmcstat_kernproc, pc);
|
|
if (ppm == NULL)
|
|
return;
|
|
|
|
image = ppm->ppm_image;
|
|
loadaddress = ppm->ppm_lowpc + image->pi_vaddr -
|
|
image->pi_start;
|
|
pc -= loadaddress;
|
|
|
|
if ((sym = pmcstat_symbol_search(image, pc)) != NULL)
|
|
pc = sym->ps_start;
|
|
|
|
child = pmcstat_cgnode_find(parent, image, pc);
|
|
child->pcg_count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Printing a callgraph for a PMC.
|
|
*/
|
|
static void
|
|
pmcstat_callgraph_print_for_pmcid(struct pmcstat_args *a,
|
|
struct pmcstat_pmcrecord *pmcr)
|
|
{
|
|
int n, nentries;
|
|
uint32_t nsamples, pmcid;
|
|
struct pmcstat_cgnode **sortbuffer, **cgn;
|
|
struct pmcstat_cgnode_hash *pch;
|
|
|
|
/*
|
|
* We pull out all callgraph nodes in the top-level hash table
|
|
* with a matching PMC id. We then sort these based on the
|
|
* frequency of occurrence. Each callgraph node is then
|
|
* printed.
|
|
*/
|
|
|
|
nsamples = 0;
|
|
pmcid = pmcr->pr_pmcid;
|
|
if ((sortbuffer = (struct pmcstat_cgnode **)
|
|
malloc(sizeof(struct pmcstat_cgnode *) *
|
|
pmcstat_cgnode_hash_count)) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot sort callgraph");
|
|
cgn = sortbuffer;
|
|
|
|
memset(sortbuffer, 0xFF, pmcstat_cgnode_hash_count *
|
|
sizeof(struct pmcstat_cgnode **));
|
|
|
|
for (n = 0; n < PMCSTAT_NHASH; n++)
|
|
LIST_FOREACH(pch, &pmcstat_cgnode_hash[n], pch_next)
|
|
if (pch->pch_pmcid == pmcid) {
|
|
nsamples += pch->pch_cgnode->pcg_count;
|
|
*cgn++ = pch->pch_cgnode;
|
|
}
|
|
|
|
nentries = cgn - sortbuffer;
|
|
assert(nentries <= pmcstat_cgnode_hash_count);
|
|
|
|
if (nentries == 0)
|
|
return;
|
|
|
|
qsort(sortbuffer, nentries, sizeof(struct pmcstat_cgnode *),
|
|
pmcstat_cgnode_compare);
|
|
|
|
(void) fprintf(a->pa_graphfile,
|
|
"@ %s [%u samples]\n\n",
|
|
pmcstat_string_unintern(pmcr->pr_pmcname),
|
|
nsamples);
|
|
|
|
for (cgn = sortbuffer, n = 0; n < nentries; n++, cgn++) {
|
|
pmcstat_previous_filename_printed = NULL;
|
|
pmcstat_cgnode_print(a, *cgn, 0, nsamples);
|
|
(void) fprintf(a->pa_graphfile, "\n");
|
|
}
|
|
|
|
free(sortbuffer);
|
|
}
|
|
|
|
/*
|
|
* Print out callgraphs.
|
|
*/
|
|
|
|
static void
|
|
pmcstat_callgraph_print(struct pmcstat_args *a)
|
|
{
|
|
struct pmcstat_pmcrecord *pmcr;
|
|
|
|
LIST_FOREACH(pmcr, &pmcstat_pmcs, pr_next)
|
|
pmcstat_callgraph_print_for_pmcid(a, pmcr);
|
|
}
|
|
|
|
static void
|
|
pmcstat_cgnode_do_gmon_arcs(struct pmcstat_cgnode *cg, pmc_id_t pmcid)
|
|
{
|
|
struct pmcstat_cgnode *cgc;
|
|
|
|
/*
|
|
* Look for child nodes that belong to the same image.
|
|
*/
|
|
|
|
LIST_FOREACH(cgc, &cg->pcg_children, pcg_sibling) {
|
|
if (cgc->pcg_image == cg->pcg_image)
|
|
pmcstat_gmon_append_arc(cg->pcg_image, pmcid,
|
|
cgc->pcg_func, cg->pcg_func, cgc->pcg_count);
|
|
if (cgc->pcg_nchildren > 0)
|
|
pmcstat_cgnode_do_gmon_arcs(cgc, pmcid);
|
|
}
|
|
}
|
|
|
|
static void
|
|
pmcstat_callgraph_do_gmon_arcs_for_pmcid(pmc_id_t pmcid)
|
|
{
|
|
int n;
|
|
struct pmcstat_cgnode_hash *pch;
|
|
|
|
for (n = 0; n < PMCSTAT_NHASH; n++)
|
|
LIST_FOREACH(pch, &pmcstat_cgnode_hash[n], pch_next)
|
|
if (pch->pch_pmcid == pmcid &&
|
|
pch->pch_cgnode->pcg_nchildren > 1)
|
|
pmcstat_cgnode_do_gmon_arcs(pch->pch_cgnode,
|
|
pmcid);
|
|
}
|
|
|
|
|
|
static void
|
|
pmcstat_callgraph_do_gmon_arcs(void)
|
|
{
|
|
struct pmcstat_pmcrecord *pmcr;
|
|
|
|
LIST_FOREACH(pmcr, &pmcstat_pmcs, pr_next)
|
|
pmcstat_callgraph_do_gmon_arcs_for_pmcid(pmcr->pr_pmcid);
|
|
}
|
|
|
|
/*
|
|
* Convert a hwpmc(4) log to profile information. A system-wide
|
|
* callgraph is generated if FLAG_DO_CALLGRAPHS is set. gmon.out
|
|
* files usable by gprof(1) are created if FLAG_DO_GPROF is set.
|
|
*/
|
|
static int
|
|
pmcstat_analyze_log(struct pmcstat_args *a)
|
|
{
|
|
uint32_t cpu, cpuflags;
|
|
uintfptr_t pc, newpc;
|
|
pid_t pid;
|
|
struct pmcstat_image *image;
|
|
struct pmcstat_symbol *sym;
|
|
struct pmcstat_process *pp, *ppnew;
|
|
struct pmcstat_pcmap *ppm, *ppmtmp;
|
|
struct pmclog_ev ev;
|
|
pmcstat_interned_string image_path;
|
|
|
|
assert(a->pa_flags & FLAG_DO_ANALYSIS);
|
|
|
|
if (elf_version(EV_CURRENT) == EV_NONE)
|
|
err(EX_UNAVAILABLE, "Elf library intialization failed");
|
|
|
|
while (pmclog_read(a->pa_logparser, &ev) == 0) {
|
|
assert(ev.pl_state == PMCLOG_OK);
|
|
|
|
switch (ev.pl_type) {
|
|
case PMCLOG_TYPE_INITIALIZE:
|
|
if ((ev.pl_u.pl_i.pl_version & 0xFF000000) !=
|
|
PMC_VERSION_MAJOR << 24 && a->pa_verbosity > 0)
|
|
warnx("WARNING: Log version 0x%x does not "
|
|
"match compiled version 0x%x.",
|
|
ev.pl_u.pl_i.pl_version,
|
|
PMC_VERSION_MAJOR);
|
|
break;
|
|
|
|
case PMCLOG_TYPE_MAP_IN:
|
|
/*
|
|
* Introduce an address range mapping for a
|
|
* userland process or the kernel (pid == -1).
|
|
*
|
|
* We always allocate a process descriptor so
|
|
* that subsequent samples seen for this
|
|
* address range are mapped to the current
|
|
* object being mapped in.
|
|
*/
|
|
pid = ev.pl_u.pl_mi.pl_pid;
|
|
if (pid == -1)
|
|
pp = pmcstat_kernproc;
|
|
else
|
|
pp = pmcstat_process_lookup(pid,
|
|
PMCSTAT_ALLOCATE);
|
|
|
|
assert(pp != NULL);
|
|
|
|
image_path = pmcstat_string_intern(ev.pl_u.pl_mi.
|
|
pl_pathname);
|
|
image = pmcstat_image_from_path(image_path, pid == -1);
|
|
if (image->pi_type == PMCSTAT_IMAGE_UNKNOWN)
|
|
pmcstat_image_determine_type(image, a);
|
|
if (image->pi_type != PMCSTAT_IMAGE_INDETERMINABLE)
|
|
pmcstat_image_link(pp, image,
|
|
ev.pl_u.pl_mi.pl_start);
|
|
break;
|
|
|
|
case PMCLOG_TYPE_MAP_OUT:
|
|
/*
|
|
* Remove an address map.
|
|
*/
|
|
pid = ev.pl_u.pl_mo.pl_pid;
|
|
if (pid == -1)
|
|
pp = pmcstat_kernproc;
|
|
else
|
|
pp = pmcstat_process_lookup(pid, 0);
|
|
|
|
if (pp == NULL) /* unknown process */
|
|
break;
|
|
|
|
pmcstat_image_unmap(pp, ev.pl_u.pl_mo.pl_start,
|
|
ev.pl_u.pl_mo.pl_end);
|
|
break;
|
|
|
|
case PMCLOG_TYPE_PCSAMPLE:
|
|
/*
|
|
* Note: the `PCSAMPLE' log entry is not
|
|
* generated by hpwmc(4) after version 2.
|
|
*/
|
|
|
|
/*
|
|
* We bring in the gmon file for the image
|
|
* currently associated with the PMC & pid
|
|
* pair and increment the appropriate entry
|
|
* bin inside this.
|
|
*/
|
|
pmcstat_stats.ps_samples_total++;
|
|
|
|
pc = ev.pl_u.pl_s.pl_pc;
|
|
pp = pmcstat_process_lookup(ev.pl_u.pl_s.pl_pid,
|
|
PMCSTAT_ALLOCATE);
|
|
if ((ppm = pmcstat_process_find_map(pp, pc)) == NULL &&
|
|
(ppm = pmcstat_process_find_map(pmcstat_kernproc,
|
|
pc)) == NULL) { /* unknown process,offset pair */
|
|
pmcstat_stats.ps_samples_unknown_offset++;
|
|
break;
|
|
}
|
|
|
|
pmcstat_image_increment_bucket(ppm, pc,
|
|
ev.pl_u.pl_s.pl_pmcid, a);
|
|
|
|
break;
|
|
|
|
case PMCLOG_TYPE_CALLCHAIN:
|
|
pmcstat_stats.ps_samples_total++;
|
|
|
|
cpuflags = ev.pl_u.pl_cc.pl_cpuflags;
|
|
cpu = PMC_CALLCHAIN_CPUFLAGS_TO_CPU(cpuflags);
|
|
|
|
/* Filter on the CPU id. */
|
|
if ((a->pa_cpumask & (1 << cpu)) == 0) {
|
|
pmcstat_stats.ps_samples_skipped++;
|
|
break;
|
|
}
|
|
|
|
pp = pmcstat_process_lookup(ev.pl_u.pl_cc.pl_pid,
|
|
PMCSTAT_ALLOCATE);
|
|
|
|
if ((a->pa_flags & FLAG_WANTS_MAPPINGS) == 0)
|
|
pmcstat_record_callchain(pp,
|
|
ev.pl_u.pl_cc.pl_pmcid,
|
|
ev.pl_u.pl_cc.pl_npc, ev.pl_u.pl_cc.pl_pc,
|
|
PMC_CALLCHAIN_CPUFLAGS_TO_USERMODE(cpuflags), a);
|
|
|
|
if ((a->pa_flags &
|
|
(FLAG_DO_GPROF | FLAG_WANTS_MAPPINGS)) == 0)
|
|
break;
|
|
|
|
pc = ev.pl_u.pl_cc.pl_pc[0];
|
|
if (PMC_CALLCHAIN_CPUFLAGS_TO_USERMODE(cpuflags) == 0)
|
|
pp = pmcstat_kernproc;
|
|
ppm = pmcstat_process_find_map(pp, pc);
|
|
if (ppm == NULL) {
|
|
|
|
/* Unknown offset. */
|
|
pmcstat_stats.ps_samples_unknown_offset++;
|
|
break;
|
|
}
|
|
if (a->pa_flags & FLAG_WANTS_MAPPINGS) {
|
|
image = ppm->ppm_image;
|
|
newpc = pc - (ppm->ppm_lowpc +
|
|
(image->pi_vaddr - image->pi_start));
|
|
sym = pmcstat_symbol_search(image, newpc);
|
|
if (sym == NULL)
|
|
break;
|
|
fprintf(a->pa_graphfile, "%p %s 0x%jx 0x%jx\n",
|
|
(void *)pc,
|
|
pmcstat_string_unintern(sym->ps_name),
|
|
(uintmax_t)(sym->ps_start +
|
|
image->pi_vaddr), (uintmax_t)(sym->ps_end +
|
|
image->pi_vaddr));
|
|
break;
|
|
}
|
|
|
|
pmcstat_image_increment_bucket(ppm, pc,
|
|
ev.pl_u.pl_cc.pl_pmcid, a);
|
|
|
|
break;
|
|
|
|
case PMCLOG_TYPE_PMCALLOCATE:
|
|
/*
|
|
* Record the association pmc id between this
|
|
* PMC and its name.
|
|
*/
|
|
pmcstat_pmcid_add(ev.pl_u.pl_a.pl_pmcid,
|
|
pmcstat_string_intern(ev.pl_u.pl_a.pl_evname), a);
|
|
break;
|
|
|
|
case PMCLOG_TYPE_PROCEXEC:
|
|
|
|
/*
|
|
* Change the executable image associated with
|
|
* a process.
|
|
*/
|
|
pp = pmcstat_process_lookup(ev.pl_u.pl_x.pl_pid,
|
|
PMCSTAT_ALLOCATE);
|
|
|
|
/* delete the current process map */
|
|
TAILQ_FOREACH_SAFE(ppm, &pp->pp_map, ppm_next, ppmtmp) {
|
|
TAILQ_REMOVE(&pp->pp_map, ppm, ppm_next);
|
|
free(ppm);
|
|
}
|
|
|
|
/* associate this process image */
|
|
image_path = pmcstat_string_intern(
|
|
ev.pl_u.pl_x.pl_pathname);
|
|
assert(image_path != NULL);
|
|
pmcstat_process_exec(pp, image_path,
|
|
ev.pl_u.pl_x.pl_entryaddr, a);
|
|
break;
|
|
|
|
case PMCLOG_TYPE_PROCEXIT:
|
|
|
|
/*
|
|
* Due to the way the log is generated, the
|
|
* last few samples corresponding to a process
|
|
* may appear in the log after the process
|
|
* exit event is recorded. Thus we keep the
|
|
* process' descriptor and associated data
|
|
* structures around, but mark the process as
|
|
* having exited.
|
|
*/
|
|
pp = pmcstat_process_lookup(ev.pl_u.pl_e.pl_pid, 0);
|
|
if (pp == NULL)
|
|
break;
|
|
pp->pp_isactive = 0; /* mark as a zombie */
|
|
break;
|
|
|
|
case PMCLOG_TYPE_SYSEXIT:
|
|
pp = pmcstat_process_lookup(ev.pl_u.pl_se.pl_pid, 0);
|
|
if (pp == NULL)
|
|
break;
|
|
pp->pp_isactive = 0; /* make a zombie */
|
|
break;
|
|
|
|
case PMCLOG_TYPE_PROCFORK:
|
|
|
|
/*
|
|
* Allocate a process descriptor for the new
|
|
* (child) process.
|
|
*/
|
|
ppnew =
|
|
pmcstat_process_lookup(ev.pl_u.pl_f.pl_newpid,
|
|
PMCSTAT_ALLOCATE);
|
|
|
|
/*
|
|
* If we had been tracking the parent, clone
|
|
* its address maps.
|
|
*/
|
|
pp = pmcstat_process_lookup(ev.pl_u.pl_f.pl_oldpid, 0);
|
|
if (pp == NULL)
|
|
break;
|
|
TAILQ_FOREACH(ppm, &pp->pp_map, ppm_next)
|
|
pmcstat_image_link(ppnew, ppm->ppm_image,
|
|
ppm->ppm_lowpc);
|
|
break;
|
|
|
|
default: /* other types of entries are not relevant */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ev.pl_state == PMCLOG_EOF)
|
|
return (PMCSTAT_FINISHED);
|
|
else if (ev.pl_state == PMCLOG_REQUIRE_DATA)
|
|
return (PMCSTAT_RUNNING);
|
|
|
|
err(EX_DATAERR, "ERROR: event parsing failed (record %jd, "
|
|
"offset 0x%jx)", (uintmax_t) ev.pl_count + 1, ev.pl_offset);
|
|
}
|
|
|
|
/*
|
|
* Print log entries as text.
|
|
*/
|
|
|
|
static int
|
|
pmcstat_print_log(struct pmcstat_args *a)
|
|
{
|
|
struct pmclog_ev ev;
|
|
uint32_t npc;
|
|
|
|
while (pmclog_read(a->pa_logparser, &ev) == 0) {
|
|
assert(ev.pl_state == PMCLOG_OK);
|
|
switch (ev.pl_type) {
|
|
case PMCLOG_TYPE_CALLCHAIN:
|
|
PMCSTAT_PRINT_ENTRY(a, "callchain",
|
|
"%d 0x%x %d %d %c", ev.pl_u.pl_cc.pl_pid,
|
|
ev.pl_u.pl_cc.pl_pmcid,
|
|
PMC_CALLCHAIN_CPUFLAGS_TO_CPU(ev.pl_u.pl_cc. \
|
|
pl_cpuflags), ev.pl_u.pl_cc.pl_npc,
|
|
PMC_CALLCHAIN_CPUFLAGS_TO_USERMODE(ev.pl_u.pl_cc.\
|
|
pl_cpuflags) ? 'u' : 's');
|
|
for (npc = 0; npc < ev.pl_u.pl_cc.pl_npc; npc++)
|
|
PMCSTAT_PRINT_ENTRY(a, "...", "%p",
|
|
(void *) ev.pl_u.pl_cc.pl_pc[npc]);
|
|
break;
|
|
case PMCLOG_TYPE_CLOSELOG:
|
|
PMCSTAT_PRINT_ENTRY(a,"closelog",);
|
|
break;
|
|
case PMCLOG_TYPE_DROPNOTIFY:
|
|
PMCSTAT_PRINT_ENTRY(a,"drop",);
|
|
break;
|
|
case PMCLOG_TYPE_INITIALIZE:
|
|
PMCSTAT_PRINT_ENTRY(a,"initlog","0x%x \"%s\"",
|
|
ev.pl_u.pl_i.pl_version,
|
|
pmc_name_of_cputype(ev.pl_u.pl_i.pl_arch));
|
|
if ((ev.pl_u.pl_i.pl_version & 0xFF000000) !=
|
|
PMC_VERSION_MAJOR << 24 && a->pa_verbosity > 0)
|
|
warnx("WARNING: Log version 0x%x != expected "
|
|
"version 0x%x.", ev.pl_u.pl_i.pl_version,
|
|
PMC_VERSION);
|
|
break;
|
|
case PMCLOG_TYPE_MAP_IN:
|
|
PMCSTAT_PRINT_ENTRY(a,"map-in","%d %p \"%s\"",
|
|
ev.pl_u.pl_mi.pl_pid,
|
|
(void *) ev.pl_u.pl_mi.pl_start,
|
|
ev.pl_u.pl_mi.pl_pathname);
|
|
break;
|
|
case PMCLOG_TYPE_MAP_OUT:
|
|
PMCSTAT_PRINT_ENTRY(a,"map-out","%d %p %p",
|
|
ev.pl_u.pl_mo.pl_pid,
|
|
(void *) ev.pl_u.pl_mo.pl_start,
|
|
(void *) ev.pl_u.pl_mo.pl_end);
|
|
break;
|
|
case PMCLOG_TYPE_PCSAMPLE:
|
|
PMCSTAT_PRINT_ENTRY(a,"sample","0x%x %d %p %c",
|
|
ev.pl_u.pl_s.pl_pmcid,
|
|
ev.pl_u.pl_s.pl_pid,
|
|
(void *) ev.pl_u.pl_s.pl_pc,
|
|
ev.pl_u.pl_s.pl_usermode ? 'u' : 's');
|
|
break;
|
|
case PMCLOG_TYPE_PMCALLOCATE:
|
|
PMCSTAT_PRINT_ENTRY(a,"allocate","0x%x \"%s\" 0x%x",
|
|
ev.pl_u.pl_a.pl_pmcid,
|
|
ev.pl_u.pl_a.pl_evname,
|
|
ev.pl_u.pl_a.pl_flags);
|
|
break;
|
|
case PMCLOG_TYPE_PMCATTACH:
|
|
PMCSTAT_PRINT_ENTRY(a,"attach","0x%x %d \"%s\"",
|
|
ev.pl_u.pl_t.pl_pmcid,
|
|
ev.pl_u.pl_t.pl_pid,
|
|
ev.pl_u.pl_t.pl_pathname);
|
|
break;
|
|
case PMCLOG_TYPE_PMCDETACH:
|
|
PMCSTAT_PRINT_ENTRY(a,"detach","0x%x %d",
|
|
ev.pl_u.pl_d.pl_pmcid,
|
|
ev.pl_u.pl_d.pl_pid);
|
|
break;
|
|
case PMCLOG_TYPE_PROCCSW:
|
|
PMCSTAT_PRINT_ENTRY(a,"cswval","0x%x %d %jd",
|
|
ev.pl_u.pl_c.pl_pmcid,
|
|
ev.pl_u.pl_c.pl_pid,
|
|
ev.pl_u.pl_c.pl_value);
|
|
break;
|
|
case PMCLOG_TYPE_PROCEXEC:
|
|
PMCSTAT_PRINT_ENTRY(a,"exec","0x%x %d %p \"%s\"",
|
|
ev.pl_u.pl_x.pl_pmcid,
|
|
ev.pl_u.pl_x.pl_pid,
|
|
(void *) ev.pl_u.pl_x.pl_entryaddr,
|
|
ev.pl_u.pl_x.pl_pathname);
|
|
break;
|
|
case PMCLOG_TYPE_PROCEXIT:
|
|
PMCSTAT_PRINT_ENTRY(a,"exitval","0x%x %d %jd",
|
|
ev.pl_u.pl_e.pl_pmcid,
|
|
ev.pl_u.pl_e.pl_pid,
|
|
ev.pl_u.pl_e.pl_value);
|
|
break;
|
|
case PMCLOG_TYPE_PROCFORK:
|
|
PMCSTAT_PRINT_ENTRY(a,"fork","%d %d",
|
|
ev.pl_u.pl_f.pl_oldpid,
|
|
ev.pl_u.pl_f.pl_newpid);
|
|
break;
|
|
case PMCLOG_TYPE_USERDATA:
|
|
PMCSTAT_PRINT_ENTRY(a,"userdata","0x%x",
|
|
ev.pl_u.pl_u.pl_userdata);
|
|
break;
|
|
case PMCLOG_TYPE_SYSEXIT:
|
|
PMCSTAT_PRINT_ENTRY(a,"exit","%d",
|
|
ev.pl_u.pl_se.pl_pid);
|
|
break;
|
|
default:
|
|
fprintf(a->pa_printfile, "unknown event (type %d).\n",
|
|
ev.pl_type);
|
|
}
|
|
}
|
|
|
|
if (ev.pl_state == PMCLOG_EOF)
|
|
return (PMCSTAT_FINISHED);
|
|
else if (ev.pl_state == PMCLOG_REQUIRE_DATA)
|
|
return (PMCSTAT_RUNNING);
|
|
|
|
errx(EX_DATAERR, "ERROR: event parsing failed "
|
|
"(record %jd, offset 0x%jx).",
|
|
(uintmax_t) ev.pl_count + 1, ev.pl_offset);
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/*
|
|
* Public Interfaces.
|
|
*/
|
|
|
|
/*
|
|
* Close a logfile, after first flushing all in-module queued data.
|
|
*/
|
|
|
|
int
|
|
pmcstat_close_log(struct pmcstat_args *a)
|
|
{
|
|
if (pmc_flush_logfile() < 0 ||
|
|
pmc_configure_logfile(-1) < 0)
|
|
err(EX_OSERR, "ERROR: logging failed");
|
|
a->pa_flags &= ~(FLAG_HAS_OUTPUT_LOGFILE | FLAG_HAS_PIPE);
|
|
return (a->pa_flags & FLAG_HAS_PIPE ? PMCSTAT_EXITING :
|
|
PMCSTAT_FINISHED);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Open a log file, for reading or writing.
|
|
*
|
|
* The function returns the fd of a successfully opened log or -1 in
|
|
* case of failure.
|
|
*/
|
|
|
|
int
|
|
pmcstat_open_log(const char *path, int mode)
|
|
{
|
|
int error, fd;
|
|
size_t hlen;
|
|
const char *p, *errstr;
|
|
struct addrinfo hints, *res, *res0;
|
|
char hostname[MAXHOSTNAMELEN];
|
|
|
|
errstr = NULL;
|
|
fd = -1;
|
|
|
|
/*
|
|
* If 'path' is "-" then open one of stdin or stdout depending
|
|
* on the value of 'mode'.
|
|
*
|
|
* If 'path' contains a ':' and does not start with a '/' or '.',
|
|
* and is being opened for writing, treat it as a "host:port"
|
|
* specification and open a network socket.
|
|
*
|
|
* Otherwise, treat 'path' as a file name and open that.
|
|
*/
|
|
if (path[0] == '-' && path[1] == '\0')
|
|
fd = (mode == PMCSTAT_OPEN_FOR_READ) ? 0 : 1;
|
|
else if (mode == PMCSTAT_OPEN_FOR_WRITE && path[0] != '/' &&
|
|
path[0] != '.' && strchr(path, ':') != NULL) {
|
|
|
|
p = strrchr(path, ':');
|
|
hlen = p - path;
|
|
if (p == path || hlen >= sizeof(hostname)) {
|
|
errstr = strerror(EINVAL);
|
|
goto done;
|
|
}
|
|
|
|
assert(hlen < sizeof(hostname));
|
|
(void) strncpy(hostname, path, hlen);
|
|
hostname[hlen] = '\0';
|
|
|
|
(void) memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = AF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
if ((error = getaddrinfo(hostname, p+1, &hints, &res0)) != 0) {
|
|
errstr = gai_strerror(error);
|
|
goto done;
|
|
}
|
|
|
|
fd = -1;
|
|
for (res = res0; res; res = res->ai_next) {
|
|
if ((fd = socket(res->ai_family, res->ai_socktype,
|
|
res->ai_protocol)) < 0) {
|
|
errstr = strerror(errno);
|
|
continue;
|
|
}
|
|
if (connect(fd, res->ai_addr, res->ai_addrlen) < 0) {
|
|
errstr = strerror(errno);
|
|
(void) close(fd);
|
|
fd = -1;
|
|
continue;
|
|
}
|
|
errstr = NULL;
|
|
break;
|
|
}
|
|
freeaddrinfo(res0);
|
|
|
|
} else if ((fd = open(path, mode == PMCSTAT_OPEN_FOR_READ ?
|
|
O_RDONLY : (O_WRONLY|O_CREAT|O_TRUNC),
|
|
S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
|
|
errstr = strerror(errno);
|
|
|
|
done:
|
|
if (errstr)
|
|
errx(EX_OSERR, "ERROR: Cannot open \"%s\" for %s: %s.", path,
|
|
(mode == PMCSTAT_OPEN_FOR_READ ? "reading" : "writing"),
|
|
errstr);
|
|
|
|
return (fd);
|
|
}
|
|
|
|
/*
|
|
* Process a log file in offline analysis mode.
|
|
*/
|
|
|
|
int
|
|
pmcstat_process_log(struct pmcstat_args *a)
|
|
{
|
|
|
|
/*
|
|
* If analysis has not been asked for, just print the log to
|
|
* the current output file.
|
|
*/
|
|
if (a->pa_flags & FLAG_DO_PRINT)
|
|
return (pmcstat_print_log(a));
|
|
else
|
|
return (pmcstat_analyze_log(a));
|
|
}
|
|
|
|
/*
|
|
* Initialize module.
|
|
*/
|
|
|
|
void
|
|
pmcstat_initialize_logging(struct pmcstat_args *a)
|
|
{
|
|
int i;
|
|
|
|
(void) a;
|
|
|
|
/* use a convenient format for 'ldd' output */
|
|
if (setenv("LD_TRACE_LOADED_OBJECTS_FMT1","%o \"%p\" %x\n",1) != 0)
|
|
err(EX_OSERR, "ERROR: Cannot setenv");
|
|
|
|
/* Initialize hash tables */
|
|
pmcstat_string_initialize();
|
|
for (i = 0; i < PMCSTAT_NHASH; i++) {
|
|
LIST_INIT(&pmcstat_image_hash[i]);
|
|
LIST_INIT(&pmcstat_process_hash[i]);
|
|
}
|
|
|
|
/*
|
|
* Create a fake 'process' entry for the kernel with pid -1.
|
|
* hwpmc(4) will subsequently inform us about where the kernel
|
|
* and any loaded kernel modules are mapped.
|
|
*/
|
|
if ((pmcstat_kernproc = pmcstat_process_lookup((pid_t) -1,
|
|
PMCSTAT_ALLOCATE)) == NULL)
|
|
err(EX_OSERR, "ERROR: Cannot initialize logging");
|
|
}
|
|
|
|
/*
|
|
* Shutdown module.
|
|
*/
|
|
|
|
void
|
|
pmcstat_shutdown_logging(struct pmcstat_args *a)
|
|
{
|
|
int i;
|
|
FILE *mf;
|
|
struct pmcstat_gmonfile *pgf, *pgftmp;
|
|
struct pmcstat_image *pi, *pitmp;
|
|
struct pmcstat_process *pp, *pptmp;
|
|
struct pmcstat_cgnode_hash *pch, *pchtmp;
|
|
|
|
/* determine where to send the map file */
|
|
mf = NULL;
|
|
if (a->pa_mapfilename != NULL)
|
|
mf = (strcmp(a->pa_mapfilename, "-") == 0) ?
|
|
a->pa_printfile : fopen(a->pa_mapfilename, "w");
|
|
|
|
if (mf == NULL && a->pa_flags & FLAG_DO_GPROF &&
|
|
a->pa_verbosity >= 2)
|
|
mf = a->pa_printfile;
|
|
|
|
if (mf)
|
|
(void) fprintf(mf, "MAP:\n");
|
|
|
|
|
|
if (a->pa_flags & FLAG_DO_CALLGRAPHS)
|
|
pmcstat_callgraph_print(a);
|
|
|
|
/*
|
|
* Sync back all gprof flat profile data.
|
|
*/
|
|
for (i = 0; i < PMCSTAT_NHASH; i++) {
|
|
LIST_FOREACH(pi, &pmcstat_image_hash[i], pi_next) {
|
|
if (mf)
|
|
(void) fprintf(mf, " \"%s\" => \"%s\"",
|
|
pmcstat_string_unintern(pi->pi_execpath),
|
|
pmcstat_string_unintern(
|
|
pi->pi_samplename));
|
|
|
|
/* flush gmon.out data to disk */
|
|
LIST_FOREACH(pgf, &pi->pi_gmlist, pgf_next) {
|
|
pmcstat_gmon_unmap_file(pgf);
|
|
if (mf)
|
|
(void) fprintf(mf, " %s/%d",
|
|
pmcstat_pmcid_to_name(
|
|
pgf->pgf_pmcid),
|
|
pgf->pgf_nsamples);
|
|
if (pgf->pgf_overflow && a->pa_verbosity >= 1)
|
|
warnx("WARNING: profile \"%s\" "
|
|
"overflowed.",
|
|
pmcstat_string_unintern(
|
|
pgf->pgf_name));
|
|
}
|
|
|
|
if (mf)
|
|
(void) fprintf(mf, "\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute arcs and add these to the gprof files.
|
|
*/
|
|
if (a->pa_flags & FLAG_DO_GPROF && a->pa_graphdepth > 1)
|
|
pmcstat_callgraph_do_gmon_arcs();
|
|
|
|
/*
|
|
* Free memory.
|
|
*/
|
|
for (i = 0; i < PMCSTAT_NHASH; i++) {
|
|
LIST_FOREACH_SAFE(pch, &pmcstat_cgnode_hash[i], pch_next,
|
|
pchtmp) {
|
|
pmcstat_cgnode_free(pch->pch_cgnode);
|
|
free(pch);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < PMCSTAT_NHASH; i++) {
|
|
LIST_FOREACH_SAFE(pi, &pmcstat_image_hash[i], pi_next, pitmp)
|
|
{
|
|
LIST_FOREACH_SAFE(pgf, &pi->pi_gmlist, pgf_next,
|
|
pgftmp) {
|
|
if (pgf->pgf_file)
|
|
(void) fclose(pgf->pgf_file);
|
|
LIST_REMOVE(pgf, pgf_next);
|
|
free(pgf);
|
|
}
|
|
if (pi->pi_symbols)
|
|
free(pi->pi_symbols);
|
|
|
|
LIST_REMOVE(pi, pi_next);
|
|
free(pi);
|
|
}
|
|
|
|
LIST_FOREACH_SAFE(pp, &pmcstat_process_hash[i], pp_next,
|
|
pptmp) {
|
|
LIST_REMOVE(pp, pp_next);
|
|
free(pp);
|
|
}
|
|
}
|
|
|
|
pmcstat_string_shutdown();
|
|
|
|
/*
|
|
* Print errors unless -q was specified. Print all statistics
|
|
* if verbosity > 1.
|
|
*/
|
|
#define PRINT(N,V,A) do { \
|
|
if (pmcstat_stats.ps_##V || (A)->pa_verbosity >= 2) \
|
|
(void) fprintf((A)->pa_printfile, " %-40s %d\n",\
|
|
N, pmcstat_stats.ps_##V); \
|
|
} while (0)
|
|
|
|
if (a->pa_verbosity >= 1 && a->pa_flags & FLAG_DO_GPROF) {
|
|
(void) fprintf(a->pa_printfile, "CONVERSION STATISTICS:\n");
|
|
PRINT("#exec/a.out", exec_aout, a);
|
|
PRINT("#exec/elf", exec_elf, a);
|
|
PRINT("#exec/unknown", exec_indeterminable, a);
|
|
PRINT("#exec handling errors", exec_errors, a);
|
|
PRINT("#samples/total", samples_total, a);
|
|
PRINT("#samples/unclaimed", samples_unknown_offset, a);
|
|
PRINT("#samples/unknown-object", samples_indeterminable, a);
|
|
PRINT("#callchain/dubious-frames", callchain_dubious_frames,
|
|
a);
|
|
}
|
|
|
|
if (mf)
|
|
(void) fclose(mf);
|
|
}
|