freebsd-nq/sys/pci/if_al.c
Bill Paul 784733e9ec Change contigmalloc() lower memory bound from 1MB to 0 to improve
chances of allocations succeeding on systems with small amounts of
RAM.

Pointed out by: bde
1999-09-25 17:29:02 +00:00

1763 lines
38 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* ADMtek AL981 Comet and AN985 Centaur fast ethernet PCI NIC driver.
* Datasheets for the AL981 are available from http://www.admtek.com.tw.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The ADMtek AL981 Comet is still another DEC 21x4x clone. It's
* a reasonably close copy of the tulip, except for the receiver filter
* programming. Where the DEC chip has a special setup frame that
* needs to be downloaded into the transmit DMA engine, the ADMtek chip
* has physical address and multicast address registers.
*
* The AN985 is an update to the AL981 which is mostly the same, except
* for the following things:
* - The AN985 uses a 99C66 EEPROM which requires a slightly different
* bit sequence to initiate a read.
* - The AN985 uses a serial MII interface instead of providing direct
* access to the PHY registers (it uses an internal PHY though).
* Although the datasheet for the AN985 is not yet available, you can
* use an AL981 datasheet as a reference for most of the chip functions,
* except for the MII interface which matches the DEC 21x4x specification
* (bits 16, 17, 18 and 19 in the serial I/O register control the MII).
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
/* Enable workaround for small transmitter bug. */
#define AL_TX_STALL_WAR
#define AL_USEIOSPACE
#include <pci/if_alreg.h>
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct al_type al_devs[] = {
{ AL_VENDORID, AL_DEVICEID_AL981, "ADMtek AL981 10/100BaseTX" },
{ AL_VENDORID, AL_DEVICEID_AN985, "ADMtek AN985 10/100BaseTX" },
{ 0, 0, NULL }
};
static int al_probe __P((device_t));
static int al_attach __P((device_t));
static int al_detach __P((device_t));
static int al_newbuf __P((struct al_softc *,
struct al_desc *,
struct mbuf *));
static int al_encap __P((struct al_softc *,
struct mbuf *, u_int32_t *));
static void al_rxeof __P((struct al_softc *));
static void al_txeof __P((struct al_softc *));
static void al_tick __P((void *));
static void al_intr __P((void *));
static void al_start __P((struct ifnet *));
static int al_ioctl __P((struct ifnet *, u_long, caddr_t));
static void al_init __P((void *));
static void al_stop __P((struct al_softc *));
static void al_watchdog __P((struct ifnet *));
static void al_shutdown __P((device_t));
static int al_ifmedia_upd __P((struct ifnet *));
static void al_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void al_delay __P((struct al_softc *));
static void al_eeprom_idle __P((struct al_softc *));
static void al_eeprom_putbyte __P((struct al_softc *, int));
static void al_eeprom_getword __P((struct al_softc *, int, u_int16_t *));
static void al_read_eeprom __P((struct al_softc *, caddr_t, int,
int, int));
static void al_mii_writebit __P((struct al_softc *, int));
static int al_mii_readbit __P((struct al_softc *));
static void al_mii_sync __P((struct al_softc *));
static void al_mii_send __P((struct al_softc *, u_int32_t, int));
static int al_mii_readreg __P((struct al_softc *, struct al_mii_frame *));
static int al_mii_writereg __P((struct al_softc *, struct al_mii_frame *));
static int al_miibus_readreg __P((device_t, int, int));
static int al_miibus_writereg __P((device_t, int, int, int));
static void al_miibus_statchg __P((device_t));
static u_int32_t al_calchash __P((caddr_t));
static void al_setmulti __P((struct al_softc *));
static void al_reset __P((struct al_softc *));
static int al_list_rx_init __P((struct al_softc *));
static int al_list_tx_init __P((struct al_softc *));
#ifdef AL_USEIOSPACE
#define AL_RES SYS_RES_IOPORT
#define AL_RID AL_PCI_LOIO
#else
#define AL_RES SYS_RES_MEMORY
#define AL_RID AL_PCI_LOMEM
#endif
static device_method_t al_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, al_probe),
DEVMETHOD(device_attach, al_attach),
DEVMETHOD(device_detach, al_detach),
DEVMETHOD(device_shutdown, al_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, al_miibus_readreg),
DEVMETHOD(miibus_writereg, al_miibus_writereg),
DEVMETHOD(miibus_statchg, al_miibus_statchg),
{ 0, 0 }
};
static driver_t al_driver = {
"al",
al_methods,
sizeof(struct al_softc),
};
static devclass_t al_devclass;
DRIVER_MODULE(if_al, pci, al_driver, al_devclass, 0, 0);
DRIVER_MODULE(miibus, al, miibus_driver, miibus_devclass, 0, 0);
#define AL_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | x)
#define AL_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~x)
#define SIO_SET(x) \
CSR_WRITE_4(sc, AL_SIO, \
CSR_READ_4(sc, AL_SIO) | x)
#define SIO_CLR(x) \
CSR_WRITE_4(sc, AL_SIO, \
CSR_READ_4(sc, AL_SIO) & ~x)
static void al_delay(sc)
struct al_softc *sc;
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, AL_BUSCTL);
}
static void al_eeprom_idle(sc)
struct al_softc *sc;
{
register int i;
CSR_WRITE_4(sc, AL_SIO, AL_SIO_EESEL);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_ROMCTL_READ);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_EE_CS);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_EE_CLK);
al_delay(sc);
for (i = 0; i < 25; i++) {
AL_CLRBIT(sc, AL_SIO, AL_SIO_EE_CLK);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_EE_CLK);
al_delay(sc);
}
AL_CLRBIT(sc, AL_SIO, AL_SIO_EE_CLK);
al_delay(sc);
AL_CLRBIT(sc, AL_SIO, AL_SIO_EE_CS);
al_delay(sc);
CSR_WRITE_4(sc, AL_SIO, 0x00000000);
return;
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void al_eeprom_putbyte(sc, addr)
struct al_softc *sc;
int addr;
{
register int d, i;
/*
* The AN985 has a 99C66 EEPROM on it instead of
* a 99C64. It uses a different bit sequence for
* specifying the "read" opcode.
*/
if (sc->al_did == AL_DEVICEID_AN985)
d = addr | (AL_EECMD_READ << 2);
else
d = addr | AL_EECMD_READ;
/*
* Feed in each bit and stobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(AL_SIO_EE_DATAIN);
} else {
SIO_CLR(AL_SIO_EE_DATAIN);
}
al_delay(sc);
SIO_SET(AL_SIO_EE_CLK);
al_delay(sc);
SIO_CLR(AL_SIO_EE_CLK);
al_delay(sc);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void al_eeprom_getword(sc, addr, dest)
struct al_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
al_eeprom_idle(sc);
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, AL_SIO, AL_SIO_EESEL);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_ROMCTL_READ);
al_delay(sc);
AL_SETBIT(sc, AL_SIO, AL_SIO_EE_CS);
al_delay(sc);
AL_CLRBIT(sc, AL_SIO, AL_SIO_EE_CLK);
al_delay(sc);
/*
* Send address of word we want to read.
*/
al_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(AL_SIO_EE_CLK);
al_delay(sc);
if (CSR_READ_4(sc, AL_SIO) & AL_SIO_EE_DATAOUT)
word |= i;
al_delay(sc);
SIO_CLR(AL_SIO_EE_CLK);
al_delay(sc);
}
/* Turn off EEPROM access mode. */
al_eeprom_idle(sc);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void al_read_eeprom(sc, dest, off, cnt, swap)
struct al_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
al_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* Write a bit to the MII bus.
*/
static void al_mii_writebit(sc, bit)
struct al_softc *sc;
int bit;
{
if (bit)
CSR_WRITE_4(sc, AL_SIO, AL_SIO_ROMCTL_WRITE|AL_SIO_MII_DATAOUT);
else
CSR_WRITE_4(sc, AL_SIO, AL_SIO_ROMCTL_WRITE);
AL_SETBIT(sc, AL_SIO, AL_SIO_MII_CLK);
AL_CLRBIT(sc, AL_SIO, AL_SIO_MII_CLK);
return;
}
/*
* Read a bit from the MII bus.
*/
static int al_mii_readbit(sc)
struct al_softc *sc;
{
CSR_WRITE_4(sc, AL_SIO, AL_SIO_ROMCTL_READ|AL_SIO_MII_DIR);
CSR_READ_4(sc, AL_SIO);
AL_SETBIT(sc, AL_SIO, AL_SIO_MII_CLK);
AL_CLRBIT(sc, AL_SIO, AL_SIO_MII_CLK);
if (CSR_READ_4(sc, AL_SIO) & AL_SIO_MII_DATAIN)
return(1);
return(0);
}
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void al_mii_sync(sc)
struct al_softc *sc;
{
register int i;
CSR_WRITE_4(sc, AL_SIO, AL_SIO_ROMCTL_WRITE);
for (i = 0; i < 32; i++)
al_mii_writebit(sc, 1);
return;
}
/*
* Clock a series of bits through the MII.
*/
static void al_mii_send(sc, bits, cnt)
struct al_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
for (i = (0x1 << (cnt - 1)); i; i >>= 1)
al_mii_writebit(sc, bits & i);
}
/*
* Read an PHY register through the MII.
*/
static int al_mii_readreg(sc, frame)
struct al_softc *sc;
struct al_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = AL_MII_STARTDELIM;
frame->mii_opcode = AL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Sync the PHYs.
*/
al_mii_sync(sc);
/*
* Send command/address info.
*/
al_mii_send(sc, frame->mii_stdelim, 2);
al_mii_send(sc, frame->mii_opcode, 2);
al_mii_send(sc, frame->mii_phyaddr, 5);
al_mii_send(sc, frame->mii_regaddr, 5);
#ifdef notdef
/* Idle bit */
al_mii_writebit(sc, 1);
al_mii_writebit(sc, 0);
#endif
/* Check for ack */
ack = al_mii_readbit(sc);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
al_mii_readbit(sc);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
if (!ack) {
if (al_mii_readbit(sc))
frame->mii_data |= i;
}
}
fail:
al_mii_writebit(sc, 0);
al_mii_writebit(sc, 0);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int al_mii_writereg(sc, frame)
struct al_softc *sc;
struct al_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = AL_MII_STARTDELIM;
frame->mii_opcode = AL_MII_WRITEOP;
frame->mii_turnaround = AL_MII_TURNAROUND;
/*
* Sync the PHYs.
*/
al_mii_sync(sc);
al_mii_send(sc, frame->mii_stdelim, 2);
al_mii_send(sc, frame->mii_opcode, 2);
al_mii_send(sc, frame->mii_phyaddr, 5);
al_mii_send(sc, frame->mii_regaddr, 5);
al_mii_send(sc, frame->mii_turnaround, 2);
al_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
al_mii_writebit(sc, 0);
al_mii_writebit(sc, 0);
splx(s);
return(0);
}
static int al_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct al_mii_frame frame;
u_int16_t rval = 0;
u_int16_t phy_reg = 0;
struct al_softc *sc;
sc = device_get_softc(dev);
/*
* Note: both the AL981 and AN985 have internal PHYs,
* however the AL981 provides direct access to the PHY
* registers while the AN985 uses a serial MII interface.
* The AN985's MII interface is also buggy in that you
* can read from any MII address (0 to 31), but only address 1
* behaves normally. To deal with both cases, we pretend
* that the PHY is at MII address 1.
*/
if (phy != 1)
return(0);
if (sc->al_did == AL_DEVICEID_AN985) {
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
al_mii_readreg(sc, &frame);
return(frame.mii_data);
}
switch(reg) {
case MII_BMCR:
phy_reg = AL_BMCR;
break;
case MII_BMSR:
phy_reg = AL_BMSR;
break;
case MII_PHYIDR1:
phy_reg = AL_VENID;
break;
case MII_PHYIDR2:
phy_reg = AL_DEVID;
break;
case MII_ANAR:
phy_reg = AL_ANAR;
break;
case MII_ANLPAR:
phy_reg = AL_LPAR;
break;
case MII_ANER:
phy_reg = AL_ANER;
break;
default:
printf("al%d: read: bad phy register %x\n",
sc->al_unit, reg);
return(0);
break;
}
rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
if (rval == 0xFFFF)
return(0);
return(rval);
}
static int al_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct al_mii_frame frame;
struct al_softc *sc;
u_int16_t phy_reg = 0;
sc = device_get_softc(dev);
if (phy != 1)
return(0);
if (sc->al_did == AL_DEVICEID_AN985) {
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
al_mii_writereg(sc, &frame);
return(0);
}
switch(reg) {
case MII_BMCR:
phy_reg = AL_BMCR;
break;
case MII_BMSR:
phy_reg = AL_BMSR;
break;
case MII_PHYIDR1:
phy_reg = AL_VENID;
break;
case MII_PHYIDR2:
phy_reg = AL_DEVID;
break;
case MII_ANAR:
phy_reg = AL_ANAR;
break;
case MII_ANLPAR:
phy_reg = AL_LPAR;
break;
case MII_ANER:
phy_reg = AL_ANER;
break;
default:
printf("al%d: phy_write: bad phy register %x\n",
sc->al_unit, reg);
return(0);
break;
}
CSR_WRITE_4(sc, phy_reg, data);
return(0);
}
static void al_miibus_statchg(dev)
device_t dev;
{
return;
}
/*
* Calculate CRC of a multicast group address, return the lower 6 bits.
*/
static u_int32_t al_calchash(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return((crc >> 26) & 0x0000003F);
}
static void al_setmulti(sc)
struct al_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
u_int32_t rxfilt;
ifp = &sc->arpcom.ac_if;
rxfilt = CSR_READ_4(sc, AL_NETCFG);
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
rxfilt |= AL_NETCFG_RX_ALLMULTI;
CSR_WRITE_4(sc, AL_NETCFG, rxfilt);
return;
} else
rxfilt &= ~AL_NETCFG_RX_ALLMULTI;
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, AL_MAR0, 0);
CSR_WRITE_4(sc, AL_MAR1, 0);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = al_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
CSR_WRITE_4(sc, AL_MAR0, hashes[0]);
CSR_WRITE_4(sc, AL_MAR1, hashes[1]);
CSR_WRITE_4(sc, AL_NETCFG, rxfilt);
return;
}
static void al_reset(sc)
struct al_softc *sc;
{
register int i;
AL_SETBIT(sc, AL_BUSCTL, AL_BUSCTL_RESET);
for (i = 0; i < AL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, AL_BUSCTL) & AL_BUSCTL_RESET))
break;
}
#ifdef notdef
if (i == AL_TIMEOUT)
printf("al%d: reset never completed!\n", sc->al_unit);
#endif
CSR_WRITE_4(sc, AL_BUSCTL, AL_BUSCTL_ARBITRATION);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for an ADMtek chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int al_probe(dev)
device_t dev;
{
struct al_type *t;
t = al_devs;
while(t->al_name != NULL) {
if ((pci_get_vendor(dev) == t->al_vid) &&
(pci_get_device(dev) == t->al_did)) {
device_set_desc(dev, t->al_name);
return(0);
}
t++;
}
return(ENXIO);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int al_attach(dev)
device_t dev;
{
int s;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct al_softc *sc;
struct ifnet *ifp;
int unit, error = 0, rid;
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct al_softc));
sc->al_did = pci_get_device(dev);
/*
* Handle power management nonsense.
*/
command = pci_read_config(dev, AL_PCI_CAPID, 4) & 0x000000FF;
if (command == 0x01) {
command = pci_read_config(dev, AL_PCI_PWRMGMTCTRL, 4);
if (command & AL_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, AL_PCI_LOIO, 4);
membase = pci_read_config(dev, AL_PCI_LOMEM, 4);
irq = pci_read_config(dev, AL_PCI_INTLINE, 4);
/* Reset the power state. */
printf("al%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & AL_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_write_config(dev, AL_PCI_PWRMGMTCTRL, command, 4);
/* Restore PCI config data. */
pci_write_config(dev, AL_PCI_LOIO, iobase, 4);
pci_write_config(dev, AL_PCI_LOMEM, membase, 4);
pci_write_config(dev, AL_PCI_INTLINE, irq, 4);
}
}
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
#ifdef AL_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("al%d: failed to enable I/O ports!\n", unit);
error = ENXIO;;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("al%d: failed to enable memory mapping!\n", unit);
error = ENXIO;;
goto fail;
}
#endif
rid = AL_RID;
sc->al_res = bus_alloc_resource(dev, AL_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->al_res == NULL) {
printf("al%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->al_btag = rman_get_bustag(sc->al_res);
sc->al_bhandle = rman_get_bushandle(sc->al_res);
/* Allocate interrupt */
rid = 0;
sc->al_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->al_irq == NULL) {
printf("al%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, AL_RES, AL_RID, sc->al_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->al_irq, INTR_TYPE_NET,
al_intr, sc, &sc->al_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->al_res);
bus_release_resource(dev, AL_RES, AL_RID, sc->al_res);
printf("al%d: couldn't set up irq\n", unit);
goto fail;
}
/* Save the cache line size. */
sc->al_cachesize = pci_read_config(dev, AL_PCI_CACHELEN, 4) & 0xFF;
/* Reset the adapter. */
al_reset(sc);
/*
* Get station address from the EEPROM.
*/
al_read_eeprom(sc, (caddr_t)&eaddr, AL_EE_NODEADDR, 3, 0);
/*
* An ADMtek chip was detected. Inform the world.
*/
printf("al%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->al_unit = unit;
callout_handle_init(&sc->al_stat_ch);
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->al_ldata = contigmalloc(sizeof(struct al_list_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->al_ldata == NULL) {
printf("al%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->al_irq, sc->al_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->al_irq);
bus_release_resource(dev, AL_RES, AL_RID, sc->al_res);
error = ENXIO;
goto fail;
}
bzero(sc->al_ldata, sizeof(struct al_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "al";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = al_ioctl;
ifp->if_output = ether_output;
ifp->if_start = al_start;
ifp->if_watchdog = al_watchdog;
ifp->if_init = al_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = AL_TX_LIST_CNT - 1;
/*
* Do MII setup.
*/
if (mii_phy_probe(dev, &sc->al_miibus,
al_ifmedia_upd, al_ifmedia_sts)) {
printf("al%d: MII without any PHY!\n", sc->al_unit);
bus_teardown_intr(dev, sc->al_irq, sc->al_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->al_irq);
bus_release_resource(dev, AL_RES, AL_RID, sc->al_res);
error = ENXIO;
goto fail;
}
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
fail:
splx(s);
return(error);
}
static int al_detach(dev)
device_t dev;
{
struct al_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
al_reset(sc);
al_stop(sc);
if_detach(ifp);
bus_generic_detach(dev);
device_delete_child(dev, sc->al_miibus);
bus_teardown_intr(dev, sc->al_irq, sc->al_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->al_irq);
bus_release_resource(dev, AL_RES, AL_RID, sc->al_res);
contigfree(sc->al_ldata, sizeof(struct al_list_data), M_DEVBUF);
splx(s);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int al_list_tx_init(sc)
struct al_softc *sc;
{
struct al_chain_data *cd;
struct al_list_data *ld;
int i;
cd = &sc->al_cdata;
ld = sc->al_ldata;
for (i = 0; i < AL_TX_LIST_CNT; i++) {
if (i == (AL_TX_LIST_CNT - 1)) {
ld->al_tx_list[i].al_nextdesc =
&ld->al_tx_list[0];
ld->al_tx_list[i].al_next =
vtophys(&ld->al_tx_list[0]);
} else {
ld->al_tx_list[i].al_nextdesc =
&ld->al_tx_list[i + 1];
ld->al_tx_list[i].al_next =
vtophys(&ld->al_tx_list[i + 1]);
}
ld->al_tx_list[i].al_mbuf = NULL;
ld->al_tx_list[i].al_data = 0;
ld->al_tx_list[i].al_ctl = 0;
}
cd->al_tx_prod = cd->al_tx_cons = cd->al_tx_cnt = 0;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int al_list_rx_init(sc)
struct al_softc *sc;
{
struct al_chain_data *cd;
struct al_list_data *ld;
int i;
cd = &sc->al_cdata;
ld = sc->al_ldata;
for (i = 0; i < AL_RX_LIST_CNT; i++) {
if (al_newbuf(sc, &ld->al_rx_list[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (AL_RX_LIST_CNT - 1)) {
ld->al_rx_list[i].al_nextdesc =
&ld->al_rx_list[0];
ld->al_rx_list[i].al_next =
vtophys(&ld->al_rx_list[0]);
} else {
ld->al_rx_list[i].al_nextdesc =
&ld->al_rx_list[i + 1];
ld->al_rx_list[i].al_next =
vtophys(&ld->al_rx_list[i + 1]);
}
}
cd->al_rx_prod = 0;
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int al_newbuf(sc, c, m)
struct al_softc *sc;
struct al_desc *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("al%d: no memory for rx list "
"-- packet dropped!\n", sc->al_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("al%d: no memory for rx list "
"-- packet dropped!\n", sc->al_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
c->al_mbuf = m_new;
c->al_data = vtophys(mtod(m_new, caddr_t));
c->al_ctl = AL_RXCTL_RLINK | AL_RXLEN;
c->al_status = AL_RXSTAT_OWN;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void al_rxeof(sc)
struct al_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct al_desc *cur_rx;
int i, total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
i = sc->al_cdata.al_rx_prod;
while(!(sc->al_ldata->al_rx_list[i].al_status & AL_RXSTAT_OWN)) {
struct mbuf *m0 = NULL;
cur_rx = &sc->al_ldata->al_rx_list[i];
rxstat = cur_rx->al_status;
m = cur_rx->al_mbuf;
cur_rx->al_mbuf = NULL;
total_len = AL_RXBYTES(rxstat);
AL_INC(i, AL_RX_LIST_CNT);
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & AL_RXSTAT_RXERR) {
ifp->if_ierrors++;
if (rxstat & AL_RXSTAT_COLLSEEN)
ifp->if_collisions++;
al_newbuf(sc, cur_rx, m);
al_init(sc);
return;
}
/* No errors; receive the packet. */
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
total_len + ETHER_ALIGN, 0, ifp, NULL);
al_newbuf(sc, cur_rx, m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m_adj(m0, ETHER_ALIGN);
m = m0;
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
sc->al_cdata.al_rx_prod = i;
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void al_txeof(sc)
struct al_softc *sc;
{
struct al_desc *cur_tx = NULL;
struct ifnet *ifp;
u_int32_t idx;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
idx = sc->al_cdata.al_tx_cons;
while(idx != sc->al_cdata.al_tx_prod) {
u_int32_t txstat;
cur_tx = &sc->al_ldata->al_tx_list[idx];
txstat = cur_tx->al_status;
if (txstat & AL_TXSTAT_OWN)
break;
if (!(cur_tx->al_ctl & AL_TXCTL_LASTFRAG)) {
sc->al_cdata.al_tx_cnt--;
AL_INC(idx, AL_TX_LIST_CNT);
continue;
}
if (txstat & AL_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & AL_TXSTAT_EXCESSCOLL)
ifp->if_collisions++;
if (txstat & AL_TXSTAT_LATECOLL)
ifp->if_collisions++;
al_init(sc);
return;
}
ifp->if_collisions += (txstat & AL_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
if (cur_tx->al_mbuf != NULL) {
m_freem(cur_tx->al_mbuf);
cur_tx->al_mbuf = NULL;
}
sc->al_cdata.al_tx_cnt--;
AL_INC(idx, AL_TX_LIST_CNT);
ifp->if_timer = 0;
}
sc->al_cdata.al_tx_cons = idx;
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
static void al_tick(xsc)
void *xsc;
{
struct al_softc *sc;
struct mii_data *mii;
int s;
s = splimp();
sc = xsc;
mii = device_get_softc(sc->al_miibus);
mii_tick(mii);
sc->al_stat_ch = timeout(al_tick, sc, hz);
splx(s);
return;
};
static void al_intr(arg)
void *arg;
{
struct al_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Supress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
al_stop(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, AL_IMR, 0x00000000);
for (;;) {
status = CSR_READ_4(sc, AL_ISR);
if (status)
CSR_WRITE_4(sc, AL_ISR, status);
if ((status & AL_INTRS) == 0)
break;
if ((status & AL_ISR_TX_OK) ||
(status & AL_ISR_TX_NOBUF))
al_txeof(sc);
if (status & AL_ISR_TX_IDLE) {
al_txeof(sc);
if (sc->al_cdata.al_tx_cnt) {
AL_SETBIT(sc, AL_NETCFG, AL_NETCFG_TX_ON);
CSR_WRITE_4(sc, AL_TXSTART, 0xFFFFFFFF);
}
}
if (status & AL_ISR_TX_UNDERRUN) {
u_int32_t cfg;
cfg = CSR_READ_4(sc, AL_NETCFG);
if ((cfg & AL_NETCFG_TX_THRESH) == AL_TXTHRESH_160BYTES)
AL_SETBIT(sc, AL_NETCFG, AL_NETCFG_STORENFWD);
else
CSR_WRITE_4(sc, AL_NETCFG, cfg + 0x4000);
}
if (status & AL_ISR_RX_OK)
al_rxeof(sc);
if ((status & AL_ISR_RX_WATDOGTIMEO) ||
(status & AL_ISR_RX_IDLE) ||
(status & AL_ISR_RX_NOBUF)) {
al_rxeof(sc);
al_init(sc);
}
if (status & AL_ISR_BUS_ERR) {
al_reset(sc);
al_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, AL_IMR, AL_INTRS);
if (ifp->if_snd.ifq_head != NULL) {
al_start(ifp);
}
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int al_encap(sc, m_head, txidx)
struct al_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct al_desc *f = NULL;
struct mbuf *m;
int frag, cur, cnt = 0;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
cur = frag = *txidx;
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
#ifdef AL_TX_STALL_WAR
/*
* Work around some strange behavior in the Comet. For
* some reason, the transmitter will sometimes wedge if
* we queue up a descriptor chain that wraps from the end
* of the transmit list back to the beginning. If we reach
* the end of the list and still have more packets to queue,
* don't queue them now: end the transmit session here and
* then wait until it finishes before sending the other
* packets.
*/
if (*txidx != sc->al_cdata.al_tx_prod &&
frag == (AL_TX_LIST_CNT - 1))
return(ENOBUFS);
#endif
if ((AL_TX_LIST_CNT -
(sc->al_cdata.al_tx_cnt + cnt)) < 2)
return(ENOBUFS);
f = &sc->al_ldata->al_tx_list[frag];
f->al_ctl = AL_TXCTL_TLINK | m->m_len;
if (cnt == 0) {
f->al_status = 0;
f->al_ctl |= AL_TXCTL_FIRSTFRAG;
} else
f->al_status = AL_TXSTAT_OWN;
f->al_data = vtophys(mtod(m, vm_offset_t));
cur = frag;
AL_INC(frag, AL_TX_LIST_CNT);
cnt++;
}
}
if (m != NULL)
return(ENOBUFS);
sc->al_ldata->al_tx_list[cur].al_mbuf = m_head;
sc->al_ldata->al_tx_list[cur].al_ctl |=
AL_TXCTL_LASTFRAG|AL_TXCTL_FINT;
sc->al_ldata->al_tx_list[*txidx].al_status |= AL_TXSTAT_OWN;
sc->al_cdata.al_tx_cnt += cnt;
*txidx = frag;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void al_start(ifp)
struct ifnet *ifp;
{
struct al_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t idx;
sc = ifp->if_softc;
if (ifp->if_flags & IFF_OACTIVE)
return;
idx = sc->al_cdata.al_tx_prod;
while(sc->al_ldata->al_tx_list[idx].al_mbuf == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (al_encap(sc, m_head, &idx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m_head);
}
/* Transmit */
sc->al_cdata.al_tx_prod = idx;
CSR_WRITE_4(sc, AL_TXSTART, 0xFFFFFFFF);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void al_init(xsc)
void *xsc;
{
struct al_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
int s;
s = splimp();
mii = device_get_softc(sc->al_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
al_stop(sc);
al_reset(sc);
/*
* Set cache alignment and burst length.
*/
CSR_WRITE_4(sc, AL_BUSCTL, AL_BUSCTL_ARBITRATION);
AL_SETBIT(sc, AL_BUSCTL, AL_BURSTLEN_16LONG);
switch(sc->al_cachesize) {
case 32:
AL_SETBIT(sc, AL_BUSCTL, AL_CACHEALIGN_32LONG);
break;
case 16:
AL_SETBIT(sc, AL_BUSCTL, AL_CACHEALIGN_16LONG);
break;
case 8:
AL_SETBIT(sc, AL_BUSCTL, AL_CACHEALIGN_8LONG);
break;
case 0:
default:
AL_SETBIT(sc, AL_BUSCTL, AL_CACHEALIGN_NONE);
break;
}
AL_CLRBIT(sc, AL_NETCFG, AL_NETCFG_HEARTBEAT);
AL_CLRBIT(sc, AL_NETCFG, AL_NETCFG_STORENFWD);
AL_CLRBIT(sc, AL_NETCFG, AL_NETCFG_TX_THRESH);
if (IFM_SUBTYPE(sc->ifmedia.ifm_media) == IFM_10_T)
AL_SETBIT(sc, AL_NETCFG, AL_TXTHRESH_160BYTES);
else
AL_SETBIT(sc, AL_NETCFG, AL_TXTHRESH_72BYTES);
/* Init our MAC address */
CSR_WRITE_4(sc, AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
CSR_WRITE_4(sc, AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
/* Init circular RX list. */
if (al_list_rx_init(sc) == ENOBUFS) {
printf("al%d: initialization failed: no "
"memory for rx buffers\n", sc->al_unit);
al_stop(sc);
(void)splx(s);
return;
}
/*
* Init tx descriptors.
*/
al_list_tx_init(sc);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
AL_SETBIT(sc, AL_NETCFG, AL_NETCFG_RX_PROMISC);
} else {
AL_CLRBIT(sc, AL_NETCFG, AL_NETCFG_RX_PROMISC);
}
/*
* Load the multicast filter.
*/
al_setmulti(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, AL_RXADDR, vtophys(&sc->al_ldata->al_rx_list[0]));
CSR_WRITE_4(sc, AL_TXADDR, vtophys(&sc->al_ldata->al_tx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, AL_IMR, AL_INTRS);
CSR_WRITE_4(sc, AL_ISR, 0xFFFFFFFF);
/* Enable receiver and transmitter. */
AL_SETBIT(sc, AL_NETCFG, AL_NETCFG_TX_ON|AL_NETCFG_RX_ON);
CSR_WRITE_4(sc, AL_RXSTART, 0xFFFFFFFF);
mii_mediachg(mii);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
sc->al_stat_ch = timeout(al_tick, sc, hz);
return;
}
/*
* Set media options.
*/
static int al_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct al_softc *sc;
sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
al_init(sc);
return(0);
}
/*
* Report current media status.
*/
static void al_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct al_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->al_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int al_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct al_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
al_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
al_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
al_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->al_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void al_watchdog(ifp)
struct ifnet *ifp;
{
struct al_softc *sc;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("al%d: watchdog timeout\n", sc->al_unit);
al_stop(sc);
al_reset(sc);
al_init(sc);
if (ifp->if_snd.ifq_head != NULL)
al_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void al_stop(sc)
struct al_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
untimeout(al_tick, sc, sc->al_stat_ch);
AL_CLRBIT(sc, AL_NETCFG, (AL_NETCFG_RX_ON|AL_NETCFG_TX_ON));
CSR_WRITE_4(sc, AL_IMR, 0x00000000);
CSR_WRITE_4(sc, AL_TXADDR, 0x00000000);
CSR_WRITE_4(sc, AL_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < AL_RX_LIST_CNT; i++) {
if (sc->al_ldata->al_rx_list[i].al_mbuf != NULL) {
m_freem(sc->al_ldata->al_rx_list[i].al_mbuf);
sc->al_ldata->al_rx_list[i].al_mbuf = NULL;
}
}
bzero((char *)&sc->al_ldata->al_rx_list,
sizeof(sc->al_ldata->al_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < AL_TX_LIST_CNT; i++) {
if (sc->al_ldata->al_tx_list[i].al_mbuf != NULL) {
m_freem(sc->al_ldata->al_tx_list[i].al_mbuf);
sc->al_ldata->al_tx_list[i].al_mbuf = NULL;
}
}
bzero((char *)&sc->al_ldata->al_tx_list,
sizeof(sc->al_ldata->al_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void al_shutdown(dev)
device_t dev;
{
struct al_softc *sc;
sc = device_get_softc(dev);
/*al_stop(sc); */
return;
}