freebsd-nq/sys/net/rtsock.c
Robert Watson d0728d7174 Introduce and use a sysinit-based initialization scheme for virtual
network stacks, VNET_SYSINIT:

- Add VNET_SYSINIT and VNET_SYSUNINIT macros to declare events that will
  occur each time a network stack is instantiated and destroyed.  In the
  !VIMAGE case, these are simply mapped into regular SYSINIT/SYSUNINIT.
  For the VIMAGE case, we instead use SYSINIT's to track their order and
  properties on registration, using them for each vnet when created/
  destroyed, or immediately on module load for already-started vnets.
- Remove vnet_modinfo mechanism that existed to serve this purpose
  previously, as well as its dependency scheme: we now just use the
  SYSINIT ordering scheme.
- Implement VNET_DOMAIN_SET() to allow protocol domains to declare that
  they want init functions to be called for each virtual network stack
  rather than just once at boot, compiling down to DOMAIN_SET() in the
  non-VIMAGE case.
- Walk all virtualized kernel subsystems and make use of these instead
  of modinfo or DOMAIN_SET() for init/uninit events.  In some cases,
  convert modular components from using modevent to using sysinit (where
  appropriate).  In some cases, do minor rejuggling of SYSINIT ordering
  to make room for or better manage events.

Portions submitted by:	jhb (VNET_SYSINIT), bz (cleanup)
Discussed with:		jhb, bz, julian, zec
Reviewed by:		bz
Approved by:		re (VIMAGE blanket)
2009-07-23 20:46:49 +00:00

1529 lines
38 KiB
C

/*-
* Copyright (c) 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)rtsock.c 8.7 (Berkeley) 10/12/95
* $FreeBSD$
*/
#include "opt_sctp.h"
#include "opt_mpath.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/domain.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/rwlock.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/vimage.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llatbl.h>
#include <net/netisr.h>
#include <net/raw_cb.h>
#include <net/route.h>
#include <net/vnet.h>
#include <netinet/in.h>
#ifdef INET6
#include <netinet6/scope6_var.h>
#endif
#if defined(INET) || defined(INET6)
#ifdef SCTP
extern void sctp_addr_change(struct ifaddr *ifa, int cmd);
#endif /* SCTP */
#endif
MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
/* NB: these are not modified */
static struct sockaddr route_src = { 2, PF_ROUTE, };
static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, };
static struct {
int ip_count; /* attached w/ AF_INET */
int ip6_count; /* attached w/ AF_INET6 */
int ipx_count; /* attached w/ AF_IPX */
int any_count; /* total attached */
} route_cb;
struct mtx rtsock_mtx;
MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
#define RTSOCK_LOCK() mtx_lock(&rtsock_mtx)
#define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
#define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED)
SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
struct walkarg {
int w_tmemsize;
int w_op, w_arg;
caddr_t w_tmem;
struct sysctl_req *w_req;
};
static void rts_input(struct mbuf *m);
static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
static int rt_msg2(int type, struct rt_addrinfo *rtinfo,
caddr_t cp, struct walkarg *w);
static int rt_xaddrs(caddr_t cp, caddr_t cplim,
struct rt_addrinfo *rtinfo);
static int sysctl_dumpentry(struct radix_node *rn, void *vw);
static int sysctl_iflist(int af, struct walkarg *w);
static int sysctl_ifmalist(int af, struct walkarg *w);
static int route_output(struct mbuf *m, struct socket *so);
static void rt_setmetrics(u_long which, const struct rt_metrics *in,
struct rt_metrics_lite *out);
static void rt_getmetrics(const struct rt_metrics_lite *in,
struct rt_metrics *out);
static void rt_dispatch(struct mbuf *, const struct sockaddr *);
static struct netisr_handler rtsock_nh = {
.nh_name = "rtsock",
.nh_handler = rts_input,
.nh_proto = NETISR_ROUTE,
.nh_policy = NETISR_POLICY_SOURCE,
};
static int
sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS)
{
int error, qlimit;
netisr_getqlimit(&rtsock_nh, &qlimit);
error = sysctl_handle_int(oidp, &qlimit, 0, req);
if (error || !req->newptr)
return (error);
if (qlimit < 1)
return (EINVAL);
return (netisr_setqlimit(&rtsock_nh, qlimit));
}
SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW,
0, 0, sysctl_route_netisr_maxqlen, "I",
"maximum routing socket dispatch queue length");
static void
rts_init(void)
{
int tmp;
if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
rtsock_nh.nh_qlimit = tmp;
netisr_register(&rtsock_nh);
}
SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0);
static void
rts_input(struct mbuf *m)
{
struct sockproto route_proto;
unsigned short *family;
struct m_tag *tag;
route_proto.sp_family = PF_ROUTE;
tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
if (tag != NULL) {
family = (unsigned short *)(tag + 1);
route_proto.sp_protocol = *family;
m_tag_delete(m, tag);
} else
route_proto.sp_protocol = 0;
raw_input(m, &route_proto, &route_src);
}
/*
* It really doesn't make any sense at all for this code to share much
* with raw_usrreq.c, since its functionality is so restricted. XXX
*/
static void
rts_abort(struct socket *so)
{
raw_usrreqs.pru_abort(so);
}
static void
rts_close(struct socket *so)
{
raw_usrreqs.pru_close(so);
}
/* pru_accept is EOPNOTSUPP */
static int
rts_attach(struct socket *so, int proto, struct thread *td)
{
struct rawcb *rp;
int s, error;
KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
/* XXX */
rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
if (rp == NULL)
return ENOBUFS;
/*
* The splnet() is necessary to block protocols from sending
* error notifications (like RTM_REDIRECT or RTM_LOSING) while
* this PCB is extant but incompletely initialized.
* Probably we should try to do more of this work beforehand and
* eliminate the spl.
*/
s = splnet();
so->so_pcb = (caddr_t)rp;
so->so_fibnum = td->td_proc->p_fibnum;
error = raw_attach(so, proto);
rp = sotorawcb(so);
if (error) {
splx(s);
so->so_pcb = NULL;
free(rp, M_PCB);
return error;
}
RTSOCK_LOCK();
switch(rp->rcb_proto.sp_protocol) {
case AF_INET:
route_cb.ip_count++;
break;
case AF_INET6:
route_cb.ip6_count++;
break;
case AF_IPX:
route_cb.ipx_count++;
break;
}
route_cb.any_count++;
RTSOCK_UNLOCK();
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
splx(s);
return 0;
}
static int
rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
}
static int
rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
}
/* pru_connect2 is EOPNOTSUPP */
/* pru_control is EOPNOTSUPP */
static void
rts_detach(struct socket *so)
{
struct rawcb *rp = sotorawcb(so);
KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
RTSOCK_LOCK();
switch(rp->rcb_proto.sp_protocol) {
case AF_INET:
route_cb.ip_count--;
break;
case AF_INET6:
route_cb.ip6_count--;
break;
case AF_IPX:
route_cb.ipx_count--;
break;
}
route_cb.any_count--;
RTSOCK_UNLOCK();
raw_usrreqs.pru_detach(so);
}
static int
rts_disconnect(struct socket *so)
{
return (raw_usrreqs.pru_disconnect(so));
}
/* pru_listen is EOPNOTSUPP */
static int
rts_peeraddr(struct socket *so, struct sockaddr **nam)
{
return (raw_usrreqs.pru_peeraddr(so, nam));
}
/* pru_rcvd is EOPNOTSUPP */
/* pru_rcvoob is EOPNOTSUPP */
static int
rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct thread *td)
{
return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
}
/* pru_sense is null */
static int
rts_shutdown(struct socket *so)
{
return (raw_usrreqs.pru_shutdown(so));
}
static int
rts_sockaddr(struct socket *so, struct sockaddr **nam)
{
return (raw_usrreqs.pru_sockaddr(so, nam));
}
static struct pr_usrreqs route_usrreqs = {
.pru_abort = rts_abort,
.pru_attach = rts_attach,
.pru_bind = rts_bind,
.pru_connect = rts_connect,
.pru_detach = rts_detach,
.pru_disconnect = rts_disconnect,
.pru_peeraddr = rts_peeraddr,
.pru_send = rts_send,
.pru_shutdown = rts_shutdown,
.pru_sockaddr = rts_sockaddr,
.pru_close = rts_close,
};
#ifndef _SOCKADDR_UNION_DEFINED
#define _SOCKADDR_UNION_DEFINED
/*
* The union of all possible address formats we handle.
*/
union sockaddr_union {
struct sockaddr sa;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
};
#endif /* _SOCKADDR_UNION_DEFINED */
static int
rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp,
struct rtentry *rt, union sockaddr_union *saun, struct ucred *cred)
{
/* First, see if the returned address is part of the jail. */
if (prison_if(cred, rt->rt_ifa->ifa_addr) == 0) {
info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
return (0);
}
switch (info->rti_info[RTAX_DST]->sa_family) {
#ifdef INET
case AF_INET:
{
struct in_addr ia;
struct ifaddr *ifa;
int found;
found = 0;
/*
* Try to find an address on the given outgoing interface
* that belongs to the jail.
*/
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
struct sockaddr *sa;
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET)
continue;
ia = ((struct sockaddr_in *)sa)->sin_addr;
if (prison_check_ip4(cred, &ia) == 0) {
found = 1;
break;
}
}
IF_ADDR_UNLOCK(ifp);
if (!found) {
/*
* As a last resort return the 'default' jail address.
*/
ia = ((struct sockaddr_in *)rt->rt_ifa->ifa_addr)->
sin_addr;
if (prison_get_ip4(cred, &ia) != 0)
return (ESRCH);
}
bzero(&saun->sin, sizeof(struct sockaddr_in));
saun->sin.sin_len = sizeof(struct sockaddr_in);
saun->sin.sin_family = AF_INET;
saun->sin.sin_addr.s_addr = ia.s_addr;
info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin;
break;
}
#endif
#ifdef INET6
case AF_INET6:
{
struct in6_addr ia6;
struct ifaddr *ifa;
int found;
found = 0;
/*
* Try to find an address on the given outgoing interface
* that belongs to the jail.
*/
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
struct sockaddr *sa;
sa = ifa->ifa_addr;
if (sa->sa_family != AF_INET6)
continue;
bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr,
&ia6, sizeof(struct in6_addr));
if (prison_check_ip6(cred, &ia6) == 0) {
found = 1;
break;
}
}
IF_ADDR_UNLOCK(ifp);
if (!found) {
/*
* As a last resort return the 'default' jail address.
*/
ia6 = ((struct sockaddr_in6 *)rt->rt_ifa->ifa_addr)->
sin6_addr;
if (prison_get_ip6(cred, &ia6) != 0)
return (ESRCH);
}
bzero(&saun->sin6, sizeof(struct sockaddr_in6));
saun->sin6.sin6_len = sizeof(struct sockaddr_in6);
saun->sin6.sin6_family = AF_INET6;
bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr));
if (sa6_recoverscope(&saun->sin6) != 0)
return (ESRCH);
info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6;
break;
}
#endif
default:
return (ESRCH);
}
return (0);
}
/*ARGSUSED*/
static int
route_output(struct mbuf *m, struct socket *so)
{
#define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
struct rt_msghdr *rtm = NULL;
struct rtentry *rt = NULL;
struct radix_node_head *rnh;
struct rt_addrinfo info;
int len, error = 0;
struct ifnet *ifp = NULL;
union sockaddr_union saun;
#define senderr(e) { error = e; goto flush;}
if (m == NULL || ((m->m_len < sizeof(long)) &&
(m = m_pullup(m, sizeof(long))) == NULL))
return (ENOBUFS);
if ((m->m_flags & M_PKTHDR) == 0)
panic("route_output");
len = m->m_pkthdr.len;
if (len < sizeof(*rtm) ||
len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
info.rti_info[RTAX_DST] = NULL;
senderr(EINVAL);
}
R_Malloc(rtm, struct rt_msghdr *, len);
if (rtm == NULL) {
info.rti_info[RTAX_DST] = NULL;
senderr(ENOBUFS);
}
m_copydata(m, 0, len, (caddr_t)rtm);
if (rtm->rtm_version != RTM_VERSION) {
info.rti_info[RTAX_DST] = NULL;
senderr(EPROTONOSUPPORT);
}
rtm->rtm_pid = curproc->p_pid;
bzero(&info, sizeof(info));
info.rti_addrs = rtm->rtm_addrs;
if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
info.rti_info[RTAX_DST] = NULL;
senderr(EINVAL);
}
info.rti_flags = rtm->rtm_flags;
if (info.rti_info[RTAX_DST] == NULL ||
info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
(info.rti_info[RTAX_GATEWAY] != NULL &&
info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
senderr(EINVAL);
/*
* Verify that the caller has the appropriate privilege; RTM_GET
* is the only operation the non-superuser is allowed.
*/
if (rtm->rtm_type != RTM_GET) {
error = priv_check(curthread, PRIV_NET_ROUTE);
if (error)
senderr(error);
}
switch (rtm->rtm_type) {
struct rtentry *saved_nrt;
case RTM_ADD:
if (info.rti_info[RTAX_GATEWAY] == NULL)
senderr(EINVAL);
saved_nrt = NULL;
/* support for new ARP code */
if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK &&
(rtm->rtm_flags & RTF_LLDATA) != 0) {
error = lla_rt_output(rtm, &info);
break;
}
error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt,
so->so_fibnum);
if (error == 0 && saved_nrt) {
RT_LOCK(saved_nrt);
rt_setmetrics(rtm->rtm_inits,
&rtm->rtm_rmx, &saved_nrt->rt_rmx);
rtm->rtm_index = saved_nrt->rt_ifp->if_index;
RT_REMREF(saved_nrt);
RT_UNLOCK(saved_nrt);
}
break;
case RTM_DELETE:
saved_nrt = NULL;
/* support for new ARP code */
if (info.rti_info[RTAX_GATEWAY] &&
(info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
(rtm->rtm_flags & RTF_LLDATA) != 0) {
error = lla_rt_output(rtm, &info);
break;
}
error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt,
so->so_fibnum);
if (error == 0) {
RT_LOCK(saved_nrt);
rt = saved_nrt;
goto report;
}
break;
case RTM_GET:
case RTM_CHANGE:
case RTM_LOCK:
rnh = rt_tables_get_rnh(so->so_fibnum,
info.rti_info[RTAX_DST]->sa_family);
if (rnh == NULL)
senderr(EAFNOSUPPORT);
RADIX_NODE_HEAD_RLOCK(rnh);
rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
info.rti_info[RTAX_NETMASK], rnh);
if (rt == NULL) { /* XXX looks bogus */
RADIX_NODE_HEAD_RUNLOCK(rnh);
senderr(ESRCH);
}
#ifdef RADIX_MPATH
/*
* for RTM_CHANGE/LOCK, if we got multipath routes,
* we require users to specify a matching RTAX_GATEWAY.
*
* for RTM_GET, gate is optional even with multipath.
* if gate == NULL the first match is returned.
* (no need to call rt_mpath_matchgate if gate == NULL)
*/
if (rn_mpath_capable(rnh) &&
(rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
if (!rt) {
RADIX_NODE_HEAD_RUNLOCK(rnh);
senderr(ESRCH);
}
}
#endif
RT_LOCK(rt);
RT_ADDREF(rt);
RADIX_NODE_HEAD_RUNLOCK(rnh);
/*
* Fix for PR: 82974
*
* RTM_CHANGE/LOCK need a perfect match, rn_lookup()
* returns a perfect match in case a netmask is
* specified. For host routes only a longest prefix
* match is returned so it is necessary to compare the
* existence of the netmask. If both have a netmask
* rnh_lookup() did a perfect match and if none of them
* have a netmask both are host routes which is also a
* perfect match.
*/
if (rtm->rtm_type != RTM_GET &&
(!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) {
RT_UNLOCK(rt);
senderr(ESRCH);
}
switch(rtm->rtm_type) {
case RTM_GET:
report:
RT_LOCK_ASSERT(rt);
if ((rt->rt_flags & RTF_HOST) == 0
? jailed(curthread->td_ucred)
: prison_if(curthread->td_ucred,
rt_key(rt)) != 0) {
RT_UNLOCK(rt);
senderr(ESRCH);
}
info.rti_info[RTAX_DST] = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_GENMASK] = 0;
if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
ifp = rt->rt_ifp;
if (ifp) {
info.rti_info[RTAX_IFP] =
ifp->if_addr->ifa_addr;
error = rtm_get_jailed(&info, ifp, rt,
&saun, curthread->td_ucred);
if (error != 0) {
RT_UNLOCK(rt);
senderr(error);
}
if (ifp->if_flags & IFF_POINTOPOINT)
info.rti_info[RTAX_BRD] =
rt->rt_ifa->ifa_dstaddr;
rtm->rtm_index = ifp->if_index;
} else {
info.rti_info[RTAX_IFP] = NULL;
info.rti_info[RTAX_IFA] = NULL;
}
} else if ((ifp = rt->rt_ifp) != NULL) {
rtm->rtm_index = ifp->if_index;
}
len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
if (len > rtm->rtm_msglen) {
struct rt_msghdr *new_rtm;
R_Malloc(new_rtm, struct rt_msghdr *, len);
if (new_rtm == NULL) {
RT_UNLOCK(rt);
senderr(ENOBUFS);
}
bcopy(rtm, new_rtm, rtm->rtm_msglen);
Free(rtm); rtm = new_rtm;
}
(void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
rtm->rtm_flags = rt->rt_flags;
rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
rtm->rtm_addrs = info.rti_addrs;
break;
case RTM_CHANGE:
/*
* New gateway could require new ifaddr, ifp;
* flags may also be different; ifp may be specified
* by ll sockaddr when protocol address is ambiguous
*/
if (((rt->rt_flags & RTF_GATEWAY) &&
info.rti_info[RTAX_GATEWAY] != NULL) ||
info.rti_info[RTAX_IFP] != NULL ||
(info.rti_info[RTAX_IFA] != NULL &&
!sa_equal(info.rti_info[RTAX_IFA],
rt->rt_ifa->ifa_addr))) {
RT_UNLOCK(rt);
RADIX_NODE_HEAD_LOCK(rnh);
error = rt_getifa_fib(&info, rt->rt_fibnum);
/*
* XXXRW: Really we should release this
* reference later, but this maintains
* historical behavior.
*/
if (info.rti_ifa != NULL)
ifa_free(info.rti_ifa);
RADIX_NODE_HEAD_UNLOCK(rnh);
if (error != 0)
senderr(error);
RT_LOCK(rt);
}
if (info.rti_ifa != NULL &&
info.rti_ifa != rt->rt_ifa &&
rt->rt_ifa != NULL &&
rt->rt_ifa->ifa_rtrequest != NULL) {
rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt,
&info);
ifa_free(rt->rt_ifa);
}
if (info.rti_info[RTAX_GATEWAY] != NULL) {
RT_UNLOCK(rt);
RADIX_NODE_HEAD_LOCK(rnh);
RT_LOCK(rt);
error = rt_setgate(rt, rt_key(rt),
info.rti_info[RTAX_GATEWAY]);
RADIX_NODE_HEAD_UNLOCK(rnh);
if (error != 0) {
RT_UNLOCK(rt);
senderr(error);
}
rt->rt_flags |= RTF_GATEWAY;
}
if (info.rti_ifa != NULL &&
info.rti_ifa != rt->rt_ifa) {
ifa_ref(info.rti_ifa);
rt->rt_ifa = info.rti_ifa;
rt->rt_ifp = info.rti_ifp;
}
/* Allow some flags to be toggled on change. */
rt->rt_flags = (rt->rt_flags & ~RTF_FMASK) |
(rtm->rtm_flags & RTF_FMASK);
rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
&rt->rt_rmx);
rtm->rtm_index = rt->rt_ifp->if_index;
if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
/* FALLTHROUGH */
case RTM_LOCK:
/* We don't support locks anymore */
break;
}
RT_UNLOCK(rt);
break;
default:
senderr(EOPNOTSUPP);
}
flush:
if (rtm) {
if (error)
rtm->rtm_errno = error;
else
rtm->rtm_flags |= RTF_DONE;
}
if (rt) /* XXX can this be true? */
RTFREE(rt);
{
struct rawcb *rp = NULL;
/*
* Check to see if we don't want our own messages.
*/
if ((so->so_options & SO_USELOOPBACK) == 0) {
if (route_cb.any_count <= 1) {
if (rtm)
Free(rtm);
m_freem(m);
return (error);
}
/* There is another listener, so construct message */
rp = sotorawcb(so);
}
if (rtm) {
m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
if (m->m_pkthdr.len < rtm->rtm_msglen) {
m_freem(m);
m = NULL;
} else if (m->m_pkthdr.len > rtm->rtm_msglen)
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
Free(rtm);
}
if (m) {
if (rp) {
/*
* XXX insure we don't get a copy by
* invalidating our protocol
*/
unsigned short family = rp->rcb_proto.sp_family;
rp->rcb_proto.sp_family = 0;
rt_dispatch(m, info.rti_info[RTAX_DST]);
rp->rcb_proto.sp_family = family;
} else
rt_dispatch(m, info.rti_info[RTAX_DST]);
}
}
return (error);
#undef sa_equal
}
static void
rt_setmetrics(u_long which, const struct rt_metrics *in,
struct rt_metrics_lite *out)
{
#define metric(f, e) if (which & (f)) out->e = in->e;
/*
* Only these are stored in the routing entry since introduction
* of tcp hostcache. The rest is ignored.
*/
metric(RTV_MTU, rmx_mtu);
metric(RTV_WEIGHT, rmx_weight);
/* Userland -> kernel timebase conversion. */
if (which & RTV_EXPIRE)
out->rmx_expire = in->rmx_expire ?
in->rmx_expire - time_second + time_uptime : 0;
#undef metric
}
static void
rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
{
#define metric(e) out->e = in->e;
bzero(out, sizeof(*out));
metric(rmx_mtu);
metric(rmx_weight);
/* Kernel -> userland timebase conversion. */
out->rmx_expire = in->rmx_expire ?
in->rmx_expire - time_uptime + time_second : 0;
#undef metric
}
/*
* Extract the addresses of the passed sockaddrs.
* Do a little sanity checking so as to avoid bad memory references.
* This data is derived straight from userland.
*/
static int
rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
{
struct sockaddr *sa;
int i;
for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
if ((rtinfo->rti_addrs & (1 << i)) == 0)
continue;
sa = (struct sockaddr *)cp;
/*
* It won't fit.
*/
if (cp + sa->sa_len > cplim)
return (EINVAL);
/*
* there are no more.. quit now
* If there are more bits, they are in error.
* I've seen this. route(1) can evidently generate these.
* This causes kernel to core dump.
* for compatibility, If we see this, point to a safe address.
*/
if (sa->sa_len == 0) {
rtinfo->rti_info[i] = &sa_zero;
return (0); /* should be EINVAL but for compat */
}
/* accept it */
rtinfo->rti_info[i] = sa;
cp += SA_SIZE(sa);
}
return (0);
}
static struct mbuf *
rt_msg1(int type, struct rt_addrinfo *rtinfo)
{
struct rt_msghdr *rtm;
struct mbuf *m;
int i;
struct sockaddr *sa;
int len, dlen;
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
case RTM_DELMADDR:
case RTM_NEWMADDR:
len = sizeof(struct ifma_msghdr);
break;
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
case RTM_IFANNOUNCE:
case RTM_IEEE80211:
len = sizeof(struct if_announcemsghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
if (len > MCLBYTES)
panic("rt_msg1");
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m && len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
m = NULL;
}
}
if (m == NULL)
return (m);
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = NULL;
rtm = mtod(m, struct rt_msghdr *);
bzero((caddr_t)rtm, len);
for (i = 0; i < RTAX_MAX; i++) {
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = SA_SIZE(sa);
m_copyback(m, len, dlen, (caddr_t)sa);
len += dlen;
}
if (m->m_pkthdr.len != len) {
m_freem(m);
return (NULL);
}
rtm->rtm_msglen = len;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
return (m);
}
static int
rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
{
int i;
int len, dlen, second_time = 0;
caddr_t cp0;
rtinfo->rti_addrs = 0;
again:
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
len = sizeof(struct ifa_msghdr);
break;
case RTM_IFINFO:
len = sizeof(struct if_msghdr);
break;
case RTM_NEWMADDR:
len = sizeof(struct ifma_msghdr);
break;
default:
len = sizeof(struct rt_msghdr);
}
cp0 = cp;
if (cp0)
cp += len;
for (i = 0; i < RTAX_MAX; i++) {
struct sockaddr *sa;
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = SA_SIZE(sa);
if (cp) {
bcopy((caddr_t)sa, cp, (unsigned)dlen);
cp += dlen;
}
len += dlen;
}
len = ALIGN(len);
if (cp == NULL && w != NULL && !second_time) {
struct walkarg *rw = w;
if (rw->w_req) {
if (rw->w_tmemsize < len) {
if (rw->w_tmem)
free(rw->w_tmem, M_RTABLE);
rw->w_tmem = (caddr_t)
malloc(len, M_RTABLE, M_NOWAIT);
if (rw->w_tmem)
rw->w_tmemsize = len;
}
if (rw->w_tmem) {
cp = rw->w_tmem;
second_time = 1;
goto again;
}
}
}
if (cp) {
struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
rtm->rtm_version = RTM_VERSION;
rtm->rtm_type = type;
rtm->rtm_msglen = len;
}
return (len);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that a redirect has occured, a routing lookup
* has failed, or that a protocol has detected timeouts to a particular
* destination.
*/
void
rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
{
struct rt_msghdr *rtm;
struct mbuf *m;
struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
if (route_cb.any_count == 0)
return;
m = rt_msg1(type, rtinfo);
if (m == NULL)
return;
rtm = mtod(m, struct rt_msghdr *);
rtm->rtm_flags = RTF_DONE | flags;
rtm->rtm_errno = error;
rtm->rtm_addrs = rtinfo->rti_addrs;
rt_dispatch(m, sa);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that the status of a network interface has changed.
*/
void
rt_ifmsg(struct ifnet *ifp)
{
struct if_msghdr *ifm;
struct mbuf *m;
struct rt_addrinfo info;
if (route_cb.any_count == 0)
return;
bzero((caddr_t)&info, sizeof(info));
m = rt_msg1(RTM_IFINFO, &info);
if (m == NULL)
return;
ifm = mtod(m, struct if_msghdr *);
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = 0;
rt_dispatch(m, NULL);
}
/*
* This is called to generate messages from the routing socket
* indicating a network interface has had addresses associated with it.
* if we ever reverse the logic and replace messages TO the routing
* socket indicate a request to configure interfaces, then it will
* be unnecessary as the routing socket will automatically generate
* copies of it.
*/
void
rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
{
struct rt_addrinfo info;
struct sockaddr *sa = NULL;
int pass;
struct mbuf *m = NULL;
struct ifnet *ifp = ifa->ifa_ifp;
KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE,
("unexpected cmd %u", cmd));
#if defined(INET) || defined(INET6)
#ifdef SCTP
/*
* notify the SCTP stack
* this will only get called when an address is added/deleted
* XXX pass the ifaddr struct instead if ifa->ifa_addr...
*/
sctp_addr_change(ifa, cmd);
#endif /* SCTP */
#endif
if (route_cb.any_count == 0)
return;
for (pass = 1; pass < 3; pass++) {
bzero((caddr_t)&info, sizeof(info));
if ((cmd == RTM_ADD && pass == 1) ||
(cmd == RTM_DELETE && pass == 2)) {
struct ifa_msghdr *ifam;
int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
if ((m = rt_msg1(ncmd, &info)) == NULL)
continue;
ifam = mtod(m, struct ifa_msghdr *);
ifam->ifam_index = ifp->if_index;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_addrs = info.rti_addrs;
}
if ((cmd == RTM_ADD && pass == 2) ||
(cmd == RTM_DELETE && pass == 1)) {
struct rt_msghdr *rtm;
if (rt == NULL)
continue;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_DST] = sa = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
if ((m = rt_msg1(cmd, &info)) == NULL)
continue;
rtm = mtod(m, struct rt_msghdr *);
rtm->rtm_index = ifp->if_index;
rtm->rtm_flags |= rt->rt_flags;
rtm->rtm_errno = error;
rtm->rtm_addrs = info.rti_addrs;
}
rt_dispatch(m, sa);
}
}
/*
* This is the analogue to the rt_newaddrmsg which performs the same
* function but for multicast group memberhips. This is easier since
* there is no route state to worry about.
*/
void
rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
{
struct rt_addrinfo info;
struct mbuf *m = NULL;
struct ifnet *ifp = ifma->ifma_ifp;
struct ifma_msghdr *ifmam;
if (route_cb.any_count == 0)
return;
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
/*
* If a link-layer address is present, present it as a ``gateway''
* (similarly to how ARP entries, e.g., are presented).
*/
info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
m = rt_msg1(cmd, &info);
if (m == NULL)
return;
ifmam = mtod(m, struct ifma_msghdr *);
KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
__func__));
ifmam->ifmam_index = ifp->if_index;
ifmam->ifmam_addrs = info.rti_addrs;
rt_dispatch(m, ifma->ifma_addr);
}
static struct mbuf *
rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
struct rt_addrinfo *info)
{
struct if_announcemsghdr *ifan;
struct mbuf *m;
if (route_cb.any_count == 0)
return NULL;
bzero((caddr_t)info, sizeof(*info));
m = rt_msg1(type, info);
if (m != NULL) {
ifan = mtod(m, struct if_announcemsghdr *);
ifan->ifan_index = ifp->if_index;
strlcpy(ifan->ifan_name, ifp->if_xname,
sizeof(ifan->ifan_name));
ifan->ifan_what = what;
}
return m;
}
/*
* This is called to generate routing socket messages indicating
* IEEE80211 wireless events.
* XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
*/
void
rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
{
struct mbuf *m;
struct rt_addrinfo info;
m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
if (m != NULL) {
/*
* Append the ieee80211 data. Try to stick it in the
* mbuf containing the ifannounce msg; otherwise allocate
* a new mbuf and append.
*
* NB: we assume m is a single mbuf.
*/
if (data_len > M_TRAILINGSPACE(m)) {
struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
if (n == NULL) {
m_freem(m);
return;
}
bcopy(data, mtod(n, void *), data_len);
n->m_len = data_len;
m->m_next = n;
} else if (data_len > 0) {
bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
m->m_len += data_len;
}
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len += data_len;
mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
rt_dispatch(m, NULL);
}
}
/*
* This is called to generate routing socket messages indicating
* network interface arrival and departure.
*/
void
rt_ifannouncemsg(struct ifnet *ifp, int what)
{
struct mbuf *m;
struct rt_addrinfo info;
m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
if (m != NULL)
rt_dispatch(m, NULL);
}
static void
rt_dispatch(struct mbuf *m, const struct sockaddr *sa)
{
struct m_tag *tag;
/*
* Preserve the family from the sockaddr, if any, in an m_tag for
* use when injecting the mbuf into the routing socket buffer from
* the netisr.
*/
if (sa != NULL) {
tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
M_NOWAIT);
if (tag == NULL) {
m_freem(m);
return;
}
*(unsigned short *)(tag + 1) = sa->sa_family;
m_tag_prepend(m, tag);
}
#ifdef VIMAGE
if (V_loif)
m->m_pkthdr.rcvif = V_loif;
else {
m_freem(m);
return;
}
#endif
netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */
}
/*
* This is used in dumping the kernel table via sysctl().
*/
static int
sysctl_dumpentry(struct radix_node *rn, void *vw)
{
struct walkarg *w = vw;
struct rtentry *rt = (struct rtentry *)rn;
int error = 0, size;
struct rt_addrinfo info;
if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
return 0;
if ((rt->rt_flags & RTF_HOST) == 0
? jailed(w->w_req->td->td_ucred)
: prison_if(w->w_req->td->td_ucred, rt_key(rt)) != 0)
return (0);
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_DST] = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_GENMASK] = 0;
if (rt->rt_ifp) {
info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
}
size = rt_msg2(RTM_GET, &info, NULL, w);
if (w->w_req && w->w_tmem) {
struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
rtm->rtm_flags = rt->rt_flags;
/*
* let's be honest about this being a retarded hack
*/
rtm->rtm_fmask = rt->rt_rmx.rmx_pksent;
rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
rtm->rtm_index = rt->rt_ifp->if_index;
rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
rtm->rtm_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
return (error);
}
return (error);
}
static int
sysctl_iflist(int af, struct walkarg *w)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct rt_addrinfo info;
int len, error = 0;
bzero((caddr_t)&info, sizeof(info));
IFNET_RLOCK();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
ifa = ifp->if_addr;
info.rti_info[RTAX_IFP] = ifa->ifa_addr;
len = rt_msg2(RTM_IFINFO, &info, NULL, w);
info.rti_info[RTAX_IFP] = NULL;
if (w->w_req && w->w_tmem) {
struct if_msghdr *ifm;
ifm = (struct if_msghdr *)w->w_tmem;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len);
if (error)
goto done;
}
while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
if (af && af != ifa->ifa_addr->sa_family)
continue;
if (prison_if(w->w_req->td->td_ucred,
ifa->ifa_addr) != 0)
continue;
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
if (w->w_req && w->w_tmem) {
struct ifa_msghdr *ifam;
ifam = (struct ifa_msghdr *)w->w_tmem;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
if (error)
goto done;
}
}
info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
info.rti_info[RTAX_BRD] = NULL;
}
done:
IFNET_RUNLOCK();
return (error);
}
static int
sysctl_ifmalist(int af, struct walkarg *w)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
struct rt_addrinfo info;
int len, error = 0;
struct ifaddr *ifa;
bzero((caddr_t)&info, sizeof(info));
IFNET_RLOCK();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
ifa = ifp->if_addr;
info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (af && af != ifma->ifma_addr->sa_family)
continue;
if (prison_if(w->w_req->td->td_ucred,
ifma->ifma_addr) != 0)
continue;
info.rti_info[RTAX_IFA] = ifma->ifma_addr;
info.rti_info[RTAX_GATEWAY] =
(ifma->ifma_addr->sa_family != AF_LINK) ?
ifma->ifma_lladdr : NULL;
len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
if (w->w_req && w->w_tmem) {
struct ifma_msghdr *ifmam;
ifmam = (struct ifma_msghdr *)w->w_tmem;
ifmam->ifmam_index = ifma->ifma_ifp->if_index;
ifmam->ifmam_flags = 0;
ifmam->ifmam_addrs = info.rti_addrs;
error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
if (error) {
IF_ADDR_UNLOCK(ifp);
goto done;
}
}
}
IF_ADDR_UNLOCK(ifp);
}
done:
IFNET_RUNLOCK();
return (error);
}
static int
sysctl_rtsock(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct radix_node_head *rnh = NULL; /* silence compiler. */
int i, lim, error = EINVAL;
u_char af;
struct walkarg w;
name ++;
namelen--;
if (req->newptr)
return (EPERM);
if (namelen != 3)
return ((namelen < 3) ? EISDIR : ENOTDIR);
af = name[0];
if (af > AF_MAX)
return (EINVAL);
bzero(&w, sizeof(w));
w.w_op = name[1];
w.w_arg = name[2];
w.w_req = req;
error = sysctl_wire_old_buffer(req, 0);
if (error)
return (error);
switch (w.w_op) {
case NET_RT_DUMP:
case NET_RT_FLAGS:
if (af == 0) { /* dump all tables */
i = 1;
lim = AF_MAX;
} else /* dump only one table */
i = lim = af;
/*
* take care of llinfo entries, the caller must
* specify an AF
*/
if (w.w_op == NET_RT_FLAGS &&
(w.w_arg == 0 || w.w_arg & RTF_LLINFO)) {
if (af != 0)
error = lltable_sysctl_dumparp(af, w.w_req);
else
error = EINVAL;
break;
}
/*
* take care of routing entries
*/
for (error = 0; error == 0 && i <= lim; i++)
rnh = rt_tables_get_rnh(req->td->td_proc->p_fibnum, i);
if (rnh != NULL) {
RADIX_NODE_HEAD_LOCK(rnh);
error = rnh->rnh_walktree(rnh,
sysctl_dumpentry, &w);
RADIX_NODE_HEAD_UNLOCK(rnh);
} else if (af != 0)
error = EAFNOSUPPORT;
break;
case NET_RT_IFLIST:
error = sysctl_iflist(af, &w);
break;
case NET_RT_IFMALIST:
error = sysctl_ifmalist(af, &w);
break;
}
if (w.w_tmem)
free(w.w_tmem, M_RTABLE);
return (error);
}
SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
/*
* Definitions of protocols supported in the ROUTE domain.
*/
static struct domain routedomain; /* or at least forward */
static struct protosw routesw[] = {
{
.pr_type = SOCK_RAW,
.pr_domain = &routedomain,
.pr_flags = PR_ATOMIC|PR_ADDR,
.pr_output = route_output,
.pr_ctlinput = raw_ctlinput,
.pr_init = raw_init,
.pr_usrreqs = &route_usrreqs
}
};
static struct domain routedomain = {
.dom_family = PF_ROUTE,
.dom_name = "route",
.dom_protosw = routesw,
.dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])]
};
VNET_DOMAIN_SET(route);