freebsd-nq/sys/dev/ath/if_ath.c
Adrian Chadd f6ede6300f [ath] Use the BSSID address logic for STA VAPs too.
For DWDS VAPs on ath(4) we need to ensure that the STA vap and hostap VAP
have different MAC addresses.  If the STA code path doesn't utilise the
address assign / reclaim path then it doesn't update the bitmap with which
address was allocated.

This should fix a bunch of corner issues I've been seeing with DWDS STA + AP
VAPs that I was working around with manual MAC address assignment.
2018-02-07 09:37:22 +00:00

7007 lines
186 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for the Atheros Wireless LAN controller.
*
* This software is derived from work of Atsushi Onoe; his contribution
* is greatly appreciated.
*/
#include "opt_inet.h"
#include "opt_ath.h"
/*
* This is needed for register operations which are performed
* by the driver - eg, calls to ath_hal_gettsf32().
*
* It's also required for any AH_DEBUG checks in here, eg the
* module dependencies.
*/
#include "opt_ah.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/priv.h>
#include <sys/module.h>
#include <sys/ktr.h>
#include <sys/smp.h> /* for mp_ncpus */
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#ifdef IEEE80211_SUPPORT_TDMA
#include <net80211/ieee80211_tdma.h>
#endif
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <dev/ath/if_athvar.h>
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
#include <dev/ath/ath_hal/ah_diagcodes.h>
#include <dev/ath/if_ath_debug.h>
#include <dev/ath/if_ath_misc.h>
#include <dev/ath/if_ath_tsf.h>
#include <dev/ath/if_ath_tx.h>
#include <dev/ath/if_ath_sysctl.h>
#include <dev/ath/if_ath_led.h>
#include <dev/ath/if_ath_keycache.h>
#include <dev/ath/if_ath_rx.h>
#include <dev/ath/if_ath_rx_edma.h>
#include <dev/ath/if_ath_tx_edma.h>
#include <dev/ath/if_ath_beacon.h>
#include <dev/ath/if_ath_btcoex.h>
#include <dev/ath/if_ath_btcoex_mci.h>
#include <dev/ath/if_ath_spectral.h>
#include <dev/ath/if_ath_lna_div.h>
#include <dev/ath/if_athdfs.h>
#include <dev/ath/if_ath_ioctl.h>
#include <dev/ath/if_ath_descdma.h>
#ifdef ATH_TX99_DIAG
#include <dev/ath/ath_tx99/ath_tx99.h>
#endif
#ifdef ATH_DEBUG_ALQ
#include <dev/ath/if_ath_alq.h>
#endif
/*
* Only enable this if you're working on PS-POLL support.
*/
#define ATH_SW_PSQ
/*
* ATH_BCBUF determines the number of vap's that can transmit
* beacons and also (currently) the number of vap's that can
* have unique mac addresses/bssid. When staggering beacons
* 4 is probably a good max as otherwise the beacons become
* very closely spaced and there is limited time for cab q traffic
* to go out. You can burst beacons instead but that is not good
* for stations in power save and at some point you really want
* another radio (and channel).
*
* The limit on the number of mac addresses is tied to our use of
* the U/L bit and tracking addresses in a byte; it would be
* worthwhile to allow more for applications like proxy sta.
*/
CTASSERT(ATH_BCBUF <= 8);
static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void ath_vap_delete(struct ieee80211vap *);
static int ath_init(struct ath_softc *);
static void ath_stop(struct ath_softc *);
static int ath_reset_vap(struct ieee80211vap *, u_long);
static int ath_transmit(struct ieee80211com *, struct mbuf *);
static int ath_media_change(struct ifnet *);
static void ath_watchdog(void *);
static void ath_parent(struct ieee80211com *);
static void ath_fatal_proc(void *, int);
static void ath_bmiss_vap(struct ieee80211vap *);
static void ath_bmiss_proc(void *, int);
static void ath_key_update_begin(struct ieee80211vap *);
static void ath_key_update_end(struct ieee80211vap *);
static void ath_update_mcast_hw(struct ath_softc *);
static void ath_update_mcast(struct ieee80211com *);
static void ath_update_promisc(struct ieee80211com *);
static void ath_updateslot(struct ieee80211com *);
static void ath_bstuck_proc(void *, int);
static void ath_reset_proc(void *, int);
static int ath_desc_alloc(struct ath_softc *);
static void ath_desc_free(struct ath_softc *);
static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
const uint8_t [IEEE80211_ADDR_LEN]);
static void ath_node_cleanup(struct ieee80211_node *);
static void ath_node_free(struct ieee80211_node *);
static void ath_node_getsignal(const struct ieee80211_node *,
int8_t *, int8_t *);
static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
static int ath_tx_setup(struct ath_softc *, int, int);
static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
static void ath_tx_cleanup(struct ath_softc *);
static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
int dosched);
static void ath_tx_proc_q0(void *, int);
static void ath_tx_proc_q0123(void *, int);
static void ath_tx_proc(void *, int);
static void ath_txq_sched_tasklet(void *, int);
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
static void ath_scan_start(struct ieee80211com *);
static void ath_scan_end(struct ieee80211com *);
static void ath_set_channel(struct ieee80211com *);
#ifdef ATH_ENABLE_11N
static void ath_update_chw(struct ieee80211com *);
#endif /* ATH_ENABLE_11N */
static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *);
static void ath_calibrate(void *);
static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static void ath_setup_stationkey(struct ieee80211_node *);
static void ath_newassoc(struct ieee80211_node *, int);
static int ath_setregdomain(struct ieee80211com *,
struct ieee80211_regdomain *, int,
struct ieee80211_channel []);
static void ath_getradiocaps(struct ieee80211com *, int, int *,
struct ieee80211_channel []);
static int ath_getchannels(struct ath_softc *);
static int ath_rate_setup(struct ath_softc *, u_int mode);
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
static void ath_announce(struct ath_softc *);
static void ath_dfs_tasklet(void *, int);
static void ath_node_powersave(struct ieee80211_node *, int);
static int ath_node_set_tim(struct ieee80211_node *, int);
static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
#ifdef IEEE80211_SUPPORT_TDMA
#include <dev/ath/if_ath_tdma.h>
#endif
SYSCTL_DECL(_hw_ath);
/* XXX validate sysctl values */
static int ath_longcalinterval = 30; /* long cals every 30 secs */
SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
0, "long chip calibration interval (secs)");
static int ath_shortcalinterval = 100; /* short cals every 100 ms */
SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
0, "short chip calibration interval (msecs)");
static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */
SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
0, "reset chip calibration results (secs)");
static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */
SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
0, "ANI calibration (msecs)");
int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
0, "rx buffers allocated");
int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
0, "tx buffers allocated");
int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
0, "tx (mgmt) buffers allocated");
int ath_bstuck_threshold = 4; /* max missed beacons */
SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
0, "max missed beacon xmits before chip reset");
MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
void
ath_legacy_attach_comp_func(struct ath_softc *sc)
{
/*
* Special case certain configurations. Note the
* CAB queue is handled by these specially so don't
* include them when checking the txq setup mask.
*/
switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
case 0x01:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
break;
case 0x0f:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
break;
default:
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
break;
}
}
/*
* Set the target power mode.
*
* If this is called during a point in time where
* the hardware is being programmed elsewhere, it will
* simply store it away and update it when all current
* uses of the hardware are completed.
*
* If the chip is going into network sleep or power off, then
* we will wait until all uses of the chip are done before
* going into network sleep or power off.
*
* If the chip is being programmed full-awake, then immediately
* program it full-awake so we can actually stay awake rather than
* the chip potentially going to sleep underneath us.
*/
void
_ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen,
const char *file, int line)
{
ATH_LOCK_ASSERT(sc);
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n",
__func__,
file,
line,
power_state,
sc->sc_powersave_refcnt,
sc->sc_target_powerstate,
sc->sc_cur_powerstate);
sc->sc_target_powerstate = power_state;
/*
* Don't program the chip into network sleep if the chip
* is being programmed elsewhere.
*
* However, if the chip is being programmed /awake/, force
* the chip awake so we stay awake.
*/
if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) &&
power_state != sc->sc_cur_powerstate) {
sc->sc_cur_powerstate = power_state;
ath_hal_setpower(sc->sc_ah, power_state);
/*
* If the NIC is force-awake, then set the
* self-gen frame state appropriately.
*
* If the nic is in network sleep or full-sleep,
* we let the above call leave the self-gen
* state as "sleep".
*/
if (selfgen &&
sc->sc_cur_powerstate == HAL_PM_AWAKE &&
sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
ath_hal_setselfgenpower(sc->sc_ah,
sc->sc_target_selfgen_state);
}
}
}
/*
* Set the current self-generated frames state.
*
* This is separate from the target power mode. The chip may be
* awake but the desired state is "sleep", so frames sent to the
* destination has PWRMGT=1 in the 802.11 header. The NIC also
* needs to know to set PWRMGT=1 in self-generated frames.
*/
void
_ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
{
ATH_LOCK_ASSERT(sc);
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
__func__,
file,
line,
power_state,
sc->sc_target_selfgen_state);
sc->sc_target_selfgen_state = power_state;
/*
* If the NIC is force-awake, then set the power state.
* Network-state and full-sleep will already transition it to
* mark self-gen frames as sleeping - and we can't
* guarantee the NIC is awake to program the self-gen frame
* setting anyway.
*/
if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
ath_hal_setselfgenpower(sc->sc_ah, power_state);
}
}
/*
* Set the hardware power mode and take a reference.
*
* This doesn't update the target power mode in the driver;
* it just updates the hardware power state.
*
* XXX it should only ever force the hardware awake; it should
* never be called to set it asleep.
*/
void
_ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
{
ATH_LOCK_ASSERT(sc);
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
__func__,
file,
line,
power_state,
sc->sc_powersave_refcnt);
sc->sc_powersave_refcnt++;
/*
* Only do the power state change if we're not programming
* it elsewhere.
*/
if (power_state != sc->sc_cur_powerstate) {
ath_hal_setpower(sc->sc_ah, power_state);
sc->sc_cur_powerstate = power_state;
/*
* Adjust the self-gen powerstate if appropriate.
*/
if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
ath_hal_setselfgenpower(sc->sc_ah,
sc->sc_target_selfgen_state);
}
}
}
/*
* Restore the power save mode to what it once was.
*
* This will decrement the reference counter and once it hits
* zero, it'll restore the powersave state.
*/
void
_ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
{
ATH_LOCK_ASSERT(sc);
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
__func__,
file,
line,
sc->sc_powersave_refcnt,
sc->sc_target_powerstate);
if (sc->sc_powersave_refcnt == 0)
device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
else
sc->sc_powersave_refcnt--;
if (sc->sc_powersave_refcnt == 0 &&
sc->sc_target_powerstate != sc->sc_cur_powerstate) {
sc->sc_cur_powerstate = sc->sc_target_powerstate;
ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
}
/*
* Adjust the self-gen powerstate if appropriate.
*/
if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
ath_hal_setselfgenpower(sc->sc_ah,
sc->sc_target_selfgen_state);
}
}
/*
* Configure the initial HAL configuration values based on bus
* specific parameters.
*
* Some PCI IDs and other information may need tweaking.
*
* XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
* if BT antenna diversity isn't enabled.
*
* So, let's also figure out how to enable BT diversity for AR9485.
*/
static void
ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
{
/* XXX TODO: only for PCI devices? */
if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
ah_config->ath_hal_min_gainidx = AH_TRUE;
ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
/* XXX low_rssi_thresh */
/* XXX fast_div_bias */
device_printf(sc->sc_dev, "configuring for %s\n",
(sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
"CUS198" : "CUS230");
}
if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
device_printf(sc->sc_dev, "CUS217 card detected\n");
if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
device_printf(sc->sc_dev, "CUS252 card detected\n");
if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV)
device_printf(sc->sc_dev,
"Bluetooth Antenna Diversity card detected\n");
if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
device_printf(sc->sc_dev, "Killer Wireless card detected\n");
#if 0
/*
* Some WB335 cards do not support antenna diversity. Since
* we use a hardcoded value for AR9565 instead of using the
* EEPROM/OTP data, remove the combining feature from
* the HW capabilities bitmap.
*/
if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
}
if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
}
#endif
if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
ah_config->ath_hal_pcie_waen = 0x0040473b;
device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
}
#if 0
if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
ah->config.no_pll_pwrsave = true;
device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
}
#endif
}
/*
* Attempt to fetch the MAC address from the kernel environment.
*
* Returns 0, macaddr in macaddr if successful; -1 otherwise.
*/
static int
ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
{
char devid_str[32];
int local_mac = 0;
char *local_macstr;
/*
* Fetch from the kenv rather than using hints.
*
* Hints would be nice but the transition to dynamic
* hints/kenv doesn't happen early enough for this
* to work reliably (eg on anything embedded.)
*/
snprintf(devid_str, 32, "hint.%s.%d.macaddr",
device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev));
if ((local_macstr = kern_getenv(devid_str)) != NULL) {
uint32_t tmpmac[ETHER_ADDR_LEN];
int count;
int i;
/* Have a MAC address; should use it */
device_printf(sc->sc_dev,
"Overriding MAC address from environment: '%s'\n",
local_macstr);
/* Extract out the MAC address */
count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
&tmpmac[0], &tmpmac[1],
&tmpmac[2], &tmpmac[3],
&tmpmac[4], &tmpmac[5]);
if (count == 6) {
/* Valid! */
local_mac = 1;
for (i = 0; i < ETHER_ADDR_LEN; i++)
macaddr[i] = tmpmac[i];
}
/* Done! */
freeenv(local_macstr);
local_macstr = NULL;
}
if (local_mac)
return (0);
return (-1);
}
#define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
#define HAL_MODE_HT40 \
(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
int
ath_attach(u_int16_t devid, struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = NULL;
HAL_STATUS status;
int error = 0, i;
u_int wmodes;
int rx_chainmask, tx_chainmask;
HAL_OPS_CONFIG ah_config;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(sc->sc_dev);
/*
* Configure the initial configuration data.
*
* This is stuff that may be needed early during attach
* rather than done via configuration calls later.
*/
bzero(&ah_config, sizeof(ah_config));
ath_setup_hal_config(sc, &ah_config);
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
sc->sc_eepromdata, &ah_config, &status);
if (ah == NULL) {
device_printf(sc->sc_dev,
"unable to attach hardware; HAL status %u\n", status);
error = ENXIO;
goto bad;
}
sc->sc_ah = ah;
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
#ifdef ATH_DEBUG
sc->sc_debug = ath_debug;
#endif
/*
* Force the chip awake during setup, just to keep
* the HAL/driver power tracking happy.
*
* There are some methods (eg ath_hal_setmac())
* that poke the hardware.
*/
ATH_LOCK(sc);
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
ATH_UNLOCK(sc);
/*
* Setup the DMA/EDMA functions based on the current
* hardware support.
*
* This is required before the descriptors are allocated.
*/
if (ath_hal_hasedma(sc->sc_ah)) {
sc->sc_isedma = 1;
ath_recv_setup_edma(sc);
ath_xmit_setup_edma(sc);
} else {
ath_recv_setup_legacy(sc);
ath_xmit_setup_legacy(sc);
}
if (ath_hal_hasmybeacon(sc->sc_ah)) {
sc->sc_do_mybeacon = 1;
}
/*
* Check if the MAC has multi-rate retry support.
* We do this by trying to setup a fake extended
* descriptor. MAC's that don't have support will
* return false w/o doing anything. MAC's that do
* support it will return true w/o doing anything.
*/
sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
/*
* Check if the device has hardware counters for PHY
* errors. If so we need to enable the MIB interrupt
* so we can act on stat triggers.
*/
if (ath_hal_hwphycounters(ah))
sc->sc_needmib = 1;
/*
* Get the hardware key cache size.
*/
sc->sc_keymax = ath_hal_keycachesize(ah);
if (sc->sc_keymax > ATH_KEYMAX) {
device_printf(sc->sc_dev,
"Warning, using only %u of %u key cache slots\n",
ATH_KEYMAX, sc->sc_keymax);
sc->sc_keymax = ATH_KEYMAX;
}
/*
* Reset the key cache since some parts do not
* reset the contents on initial power up.
*/
for (i = 0; i < sc->sc_keymax; i++)
ath_hal_keyreset(ah, i);
/*
* Collect the default channel list.
*/
error = ath_getchannels(sc);
if (error != 0)
goto bad;
/*
* Setup rate tables for all potential media types.
*/
ath_rate_setup(sc, IEEE80211_MODE_11A);
ath_rate_setup(sc, IEEE80211_MODE_11B);
ath_rate_setup(sc, IEEE80211_MODE_11G);
ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
ath_rate_setup(sc, IEEE80211_MODE_11NA);
ath_rate_setup(sc, IEEE80211_MODE_11NG);
ath_rate_setup(sc, IEEE80211_MODE_HALF);
ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
/* NB: setup here so ath_rate_update is happy */
ath_setcurmode(sc, IEEE80211_MODE_11A);
/*
* Allocate TX descriptors and populate the lists.
*/
error = ath_desc_alloc(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"failed to allocate TX descriptors: %d\n", error);
goto bad;
}
error = ath_txdma_setup(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"failed to allocate TX descriptors: %d\n", error);
goto bad;
}
/*
* Allocate RX descriptors and populate the lists.
*/
error = ath_rxdma_setup(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"failed to allocate RX descriptors: %d\n", error);
goto bad;
}
callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
ATH_TXBUF_LOCK_INIT(sc);
sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->sc_tq);
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->sc_dev));
TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that the hal handles resetting
* these queues at the needed time.
*
* XXX PS-Poll
*/
sc->sc_bhalq = ath_beaconq_setup(sc);
if (sc->sc_bhalq == (u_int) -1) {
device_printf(sc->sc_dev,
"unable to setup a beacon xmit queue!\n");
error = EIO;
goto bad2;
}
sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
if (sc->sc_cabq == NULL) {
device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n");
error = EIO;
goto bad2;
}
/* NB: insure BK queue is the lowest priority h/w queue */
if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
device_printf(sc->sc_dev,
"unable to setup xmit queue for %s traffic!\n",
ieee80211_wme_acnames[WME_AC_BK]);
error = EIO;
goto bad2;
}
if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
!ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
!ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
/*
* Not enough hardware tx queues to properly do WME;
* just punt and assign them all to the same h/w queue.
* We could do a better job of this if, for example,
* we allocate queues when we switch from station to
* AP mode.
*/
if (sc->sc_ac2q[WME_AC_VI] != NULL)
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
if (sc->sc_ac2q[WME_AC_BE] != NULL)
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
}
/*
* Attach the TX completion function.
*
* The non-EDMA chips may have some special case optimisations;
* this method gives everyone a chance to attach cleanly.
*/
sc->sc_tx.xmit_attach_comp_func(sc);
/*
* Setup rate control. Some rate control modules
* call back to change the anntena state so expose
* the necessary entry points.
* XXX maybe belongs in struct ath_ratectrl?
*/
sc->sc_setdefantenna = ath_setdefantenna;
sc->sc_rc = ath_rate_attach(sc);
if (sc->sc_rc == NULL) {
error = EIO;
goto bad2;
}
/* Attach DFS module */
if (! ath_dfs_attach(sc)) {
device_printf(sc->sc_dev,
"%s: unable to attach DFS\n", __func__);
error = EIO;
goto bad2;
}
/* Attach spectral module */
if (ath_spectral_attach(sc) < 0) {
device_printf(sc->sc_dev,
"%s: unable to attach spectral\n", __func__);
error = EIO;
goto bad2;
}
/* Attach bluetooth coexistence module */
if (ath_btcoex_attach(sc) < 0) {
device_printf(sc->sc_dev,
"%s: unable to attach bluetooth coexistence\n", __func__);
error = EIO;
goto bad2;
}
/* Attach LNA diversity module */
if (ath_lna_div_attach(sc) < 0) {
device_printf(sc->sc_dev,
"%s: unable to attach LNA diversity\n", __func__);
error = EIO;
goto bad2;
}
/* Start DFS processing tasklet */
TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
/* Configure LED state */
sc->sc_blinking = 0;
sc->sc_ledstate = 1;
sc->sc_ledon = 0; /* low true */
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
callout_init(&sc->sc_ledtimer, 1);
/*
* Don't setup hardware-based blinking.
*
* Although some NICs may have this configured in the
* default reset register values, the user may wish
* to alter which pins have which function.
*
* The reference driver attaches the MAC network LED to GPIO1 and
* the MAC power LED to GPIO2. However, the DWA-552 cardbus
* NIC has these reversed.
*/
sc->sc_hardled = (1 == 0);
sc->sc_led_net_pin = -1;
sc->sc_led_pwr_pin = -1;
/*
* Auto-enable soft led processing for IBM cards and for
* 5211 minipci cards. Users can also manually enable/disable
* support with a sysctl.
*/
sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
ath_led_config(sc);
ath_hal_setledstate(ah, HAL_LED_INIT);
/* XXX not right but it's not used anywhere important */
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
| IEEE80211_C_HOSTAP /* hostap mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_AHDEMO /* adhoc demo mode */
| IEEE80211_C_WDS /* 4-address traffic works */
| IEEE80211_C_MBSS /* mesh point link mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
#ifndef ATH_ENABLE_11N
| IEEE80211_C_BGSCAN /* capable of bg scanning */
#endif
| IEEE80211_C_TXFRAG /* handle tx frags */
#ifdef ATH_ENABLE_DFS
| IEEE80211_C_DFS /* Enable radar detection */
#endif
| IEEE80211_C_PMGT /* Station side power mgmt */
| IEEE80211_C_SWSLEEP
;
/*
* Query the hal to figure out h/w crypto support.
*/
if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
/*
* Check if h/w does the MIC and/or whether the
* separate key cache entries are required to
* handle both tx+rx MIC keys.
*/
if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
/*
* If the h/w supports storing tx+rx MIC keys
* in one cache slot automatically enable use.
*/
if (ath_hal_hastkipsplit(ah) ||
!ath_hal_settkipsplit(ah, AH_FALSE))
sc->sc_splitmic = 1;
/*
* If the h/w can do TKIP MIC together with WME then
* we use it; otherwise we force the MIC to be done
* in software by the net80211 layer.
*/
if (ath_hal_haswmetkipmic(ah))
sc->sc_wmetkipmic = 1;
}
sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
/*
* Check for multicast key search support.
*/
if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
!ath_hal_getmcastkeysearch(sc->sc_ah)) {
ath_hal_setmcastkeysearch(sc->sc_ah, 1);
}
sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
/*
* Mark key cache slots associated with global keys
* as in use. If we knew TKIP was not to be used we
* could leave the +32, +64, and +32+64 slots free.
*/
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
setbit(sc->sc_keymap, i);
setbit(sc->sc_keymap, i+64);
if (sc->sc_splitmic) {
setbit(sc->sc_keymap, i+32);
setbit(sc->sc_keymap, i+32+64);
}
}
/*
* TPC support can be done either with a global cap or
* per-packet support. The latter is not available on
* all parts. We're a bit pedantic here as all parts
* support a global cap.
*/
if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
ic->ic_caps |= IEEE80211_C_TXPMGT;
/*
* Mark WME capability only if we have sufficient
* hardware queues to do proper priority scheduling.
*/
if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
ic->ic_caps |= IEEE80211_C_WME;
/*
* Check for misc other capabilities.
*/
if (ath_hal_hasbursting(ah))
ic->ic_caps |= IEEE80211_C_BURST;
sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
/* XXX TODO: just make this a "store tx/rx timestamp length" operation */
if (ath_hal_get_rx_tsf_prec(ah, &i)) {
if (i == 32) {
sc->sc_rxtsf32 = 1;
}
if (bootverbose)
device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i);
}
if (ath_hal_get_tx_tsf_prec(ah, &i)) {
if (bootverbose)
device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i);
}
sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
/*
* Some WB335 cards do not support antenna diversity. Since
* we use a hardcoded value for AR9565 instead of using the
* EEPROM/OTP data, remove the combining feature from
* the HW capabilities bitmap.
*/
/*
* XXX TODO: check reference driver and ath9k for what to do
* here for WB335. I think we have to actually disable the
* LNA div processing in the HAL and instead use the hard
* coded values; and then use BT diversity.
*
* .. but also need to setup MCI too for WB335..
*/
#if 0
if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n",
__func__);
sc->sc_dolnadiv = 0;
}
#endif
if (ath_hal_hasfastframes(ah))
ic->ic_caps |= IEEE80211_C_FF;
wmodes = ath_hal_getwirelessmodes(ah);
if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
ic->ic_caps |= IEEE80211_C_TURBOP;
#ifdef IEEE80211_SUPPORT_TDMA
if (ath_hal_macversion(ah) > 0x78) {
ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
ic->ic_tdma_update = ath_tdma_update;
}
#endif
/*
* TODO: enforce that at least this many frames are available
* in the txbuf list before allowing data frames (raw or
* otherwise) to be transmitted.
*/
sc->sc_txq_data_minfree = 10;
/*
* Shorten this to 64 packets, or 1/4 ath_txbuf, whichever
* is smaller.
*
* Anything bigger can potentially see the cabq consume
* almost all buffers, starving everything else, only to
* see most fail to transmit in the given beacon interval.
*/
sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4);
/*
* How deep can the node software TX queue get whilst it's asleep.
*/
sc->sc_txq_node_psq_maxdepth = 16;
/*
* Default the maximum queue to 1/4'th the TX buffers, or
* 64, whichever is smaller.
*/
sc->sc_txq_node_maxdepth = MIN(64, ath_txbuf / 4);
/* Enable CABQ by default */
sc->sc_cabq_enable = 1;
/*
* Allow the TX and RX chainmasks to be overridden by
* environment variables and/or device.hints.
*
* This must be done early - before the hardware is
* calibrated or before the 802.11n stream calculation
* is done.
*/
if (resource_int_value(device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev), "rx_chainmask",
&rx_chainmask) == 0) {
device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
rx_chainmask);
(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
}
if (resource_int_value(device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev), "tx_chainmask",
&tx_chainmask) == 0) {
device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
tx_chainmask);
(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
}
/*
* Query the TX/RX chainmask configuration.
*
* This is only relevant for 11n devices.
*/
ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
/*
* Disable MRR with protected frames by default.
* Only 802.11n series NICs can handle this.
*/
sc->sc_mrrprot = 0; /* XXX should be a capability */
/*
* Query the enterprise mode information the HAL.
*/
if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
&sc->sc_ent_cfg) == HAL_OK)
sc->sc_use_ent = 1;
#ifdef ATH_ENABLE_11N
/*
* Query HT capabilities
*/
if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
(wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
uint32_t rxs, txs;
uint32_t ldpc;
device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
sc->sc_mrrprot = 1; /* XXX should be a capability */
ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */
| IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */
| IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */
| IEEE80211_HTCAP_MAXAMSDU_3839
/* max A-MSDU length */
| IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */
/*
* Enable short-GI for HT20 only if the hardware
* advertises support.
* Notably, anything earlier than the AR9287 doesn't.
*/
if ((ath_hal_getcapability(ah,
HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
(wmodes & HAL_MODE_HT20)) {
device_printf(sc->sc_dev,
"[HT] enabling short-GI in 20MHz mode\n");
ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
}
if (wmodes & HAL_MODE_HT40)
ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
| IEEE80211_HTCAP_SHORTGI40;
/*
* TX/RX streams need to be taken into account when
* negotiating which MCS rates it'll receive and
* what MCS rates are available for TX.
*/
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
ic->ic_txstream = txs;
ic->ic_rxstream = rxs;
/*
* Setup TX and RX STBC based on what the HAL allows and
* the currently configured chainmask set.
* Ie - don't enable STBC TX if only one chain is enabled.
* STBC RX is fine on a single RX chain; it just won't
* provide any real benefit.
*/
if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
NULL) == HAL_OK) {
sc->sc_rx_stbc = 1;
device_printf(sc->sc_dev,
"[HT] 1 stream STBC receive enabled\n");
ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
}
if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
NULL) == HAL_OK) {
sc->sc_tx_stbc = 1;
device_printf(sc->sc_dev,
"[HT] 1 stream STBC transmit enabled\n");
ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
}
(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
&sc->sc_rts_aggr_limit);
if (sc->sc_rts_aggr_limit != (64 * 1024))
device_printf(sc->sc_dev,
"[HT] RTS aggregates limited to %d KiB\n",
sc->sc_rts_aggr_limit / 1024);
/*
* LDPC
*/
if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc))
== HAL_OK && (ldpc == 1)) {
sc->sc_has_ldpc = 1;
device_printf(sc->sc_dev,
"[HT] LDPC transmit/receive enabled\n");
ic->ic_htcaps |= IEEE80211_HTCAP_LDPC |
IEEE80211_HTC_TXLDPC;
}
device_printf(sc->sc_dev,
"[HT] %d RX streams; %d TX streams\n", rxs, txs);
}
#endif
/*
* Initial aggregation settings.
*/
sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
sc->sc_delim_min_pad = 0;
/*
* Check if the hardware requires PCI register serialisation.
* Some of the Owl based MACs require this.
*/
if (mp_ncpus > 1 &&
ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
0, NULL) == HAL_OK) {
sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
device_printf(sc->sc_dev,
"Enabling register serialisation\n");
}
/*
* Initialise the deferred completed RX buffer list.
*/
TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
/*
* Indicate we need the 802.11 header padded to a
* 32-bit boundary for 4-address and QoS frames.
*/
ic->ic_flags |= IEEE80211_F_DATAPAD;
/*
* Query the hal about antenna support.
*/
sc->sc_defant = ath_hal_getdefantenna(ah);
/*
* Not all chips have the VEOL support we want to
* use with IBSS beacons; check here for it.
*/
sc->sc_hasveol = ath_hal_hasveol(ah);
/* get mac address from kenv first, then hardware */
if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) {
/* Tell the HAL now about the new MAC */
ath_hal_setmac(ah, ic->ic_macaddr);
} else {
ath_hal_getmac(ah, ic->ic_macaddr);
}
if (sc->sc_hasbmask)
ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
/* NB: used to size node table key mapping array */
ic->ic_max_keyix = sc->sc_keymax;
/* call MI attach routine. */
ieee80211_ifattach(ic);
ic->ic_setregdomain = ath_setregdomain;
ic->ic_getradiocaps = ath_getradiocaps;
sc->sc_opmode = HAL_M_STA;
/* override default methods */
ic->ic_ioctl = ath_ioctl;
ic->ic_parent = ath_parent;
ic->ic_transmit = ath_transmit;
ic->ic_newassoc = ath_newassoc;
ic->ic_updateslot = ath_updateslot;
ic->ic_wme.wme_update = ath_wme_update;
ic->ic_vap_create = ath_vap_create;
ic->ic_vap_delete = ath_vap_delete;
ic->ic_raw_xmit = ath_raw_xmit;
ic->ic_update_mcast = ath_update_mcast;
ic->ic_update_promisc = ath_update_promisc;
ic->ic_node_alloc = ath_node_alloc;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = ath_node_free;
sc->sc_node_cleanup = ic->ic_node_cleanup;
ic->ic_node_cleanup = ath_node_cleanup;
ic->ic_node_getsignal = ath_node_getsignal;
ic->ic_scan_start = ath_scan_start;
ic->ic_scan_end = ath_scan_end;
ic->ic_set_channel = ath_set_channel;
#ifdef ATH_ENABLE_11N
/* 802.11n specific - but just override anyway */
sc->sc_addba_request = ic->ic_addba_request;
sc->sc_addba_response = ic->ic_addba_response;
sc->sc_addba_stop = ic->ic_addba_stop;
sc->sc_bar_response = ic->ic_bar_response;
sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
ic->ic_addba_request = ath_addba_request;
ic->ic_addba_response = ath_addba_response;
ic->ic_addba_response_timeout = ath_addba_response_timeout;
ic->ic_addba_stop = ath_addba_stop;
ic->ic_bar_response = ath_bar_response;
ic->ic_update_chw = ath_update_chw;
#endif /* ATH_ENABLE_11N */
ic->ic_set_quiet = ath_set_quiet_ie;
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
/*
* There's one vendor bitmap entry in the RX radiotap
* header; make sure that's taken into account.
*/
ieee80211_radiotap_attachv(ic,
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
ATH_TX_RADIOTAP_PRESENT,
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
ATH_RX_RADIOTAP_PRESENT);
#else
/*
* No vendor bitmap/extensions are present.
*/
ieee80211_radiotap_attach(ic,
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
ATH_TX_RADIOTAP_PRESENT,
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
ATH_RX_RADIOTAP_PRESENT);
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
/*
* Setup the ALQ logging if required
*/
#ifdef ATH_DEBUG_ALQ
if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
if_ath_alq_setcfg(&sc->sc_alq,
sc->sc_ah->ah_macVersion,
sc->sc_ah->ah_macRev,
sc->sc_ah->ah_phyRev,
sc->sc_ah->ah_magic);
#endif
/*
* Setup dynamic sysctl's now that country code and
* regdomain are available from the hal.
*/
ath_sysctlattach(sc);
ath_sysctl_stats_attach(sc);
ath_sysctl_hal_attach(sc);
if (bootverbose)
ieee80211_announce(ic);
ath_announce(sc);
/*
* Put it to sleep for now.
*/
ATH_LOCK(sc);
ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1);
ATH_UNLOCK(sc);
return 0;
bad2:
ath_tx_cleanup(sc);
ath_desc_free(sc);
ath_txdma_teardown(sc);
ath_rxdma_teardown(sc);
bad:
if (ah)
ath_hal_detach(ah);
sc->sc_invalid = 1;
return error;
}
int
ath_detach(struct ath_softc *sc)
{
/*
* NB: the order of these is important:
* o stop the chip so no more interrupts will fire
* o call the 802.11 layer before detaching the hal to
* insure callbacks into the driver to delete global
* key cache entries can be handled
* o free the taskqueue which drains any pending tasks
* o reclaim the tx queue data structures after calling
* the 802.11 layer as we'll get called back to reclaim
* node state and potentially want to use them
* o to cleanup the tx queues the hal is called, so detach
* it last
* Other than that, it's straightforward...
*/
/*
* XXX Wake the hardware up first. ath_stop() will still
* wake it up first, but I'd rather do it here just to
* ensure it's awake.
*/
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
/*
* Stop things cleanly.
*/
ath_stop(sc);
ATH_UNLOCK(sc);
ieee80211_ifdetach(&sc->sc_ic);
taskqueue_free(sc->sc_tq);
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->detach(sc->sc_tx99);
#endif
ath_rate_detach(sc->sc_rc);
#ifdef ATH_DEBUG_ALQ
if_ath_alq_tidyup(&sc->sc_alq);
#endif
ath_lna_div_detach(sc);
ath_btcoex_detach(sc);
ath_spectral_detach(sc);
ath_dfs_detach(sc);
ath_desc_free(sc);
ath_txdma_teardown(sc);
ath_rxdma_teardown(sc);
ath_tx_cleanup(sc);
ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */
return 0;
}
/*
* MAC address handling for multiple BSS on the same radio.
* The first vap uses the MAC address from the EEPROM. For
* subsequent vap's we set the U/L bit (bit 1) in the MAC
* address and use the next six bits as an index.
*/
static void
assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
{
int i;
if (clone && sc->sc_hasbmask) {
/* NB: we only do this if h/w supports multiple bssid */
for (i = 0; i < 8; i++)
if ((sc->sc_bssidmask & (1<<i)) == 0)
break;
if (i != 0)
mac[0] |= (i << 2)|0x2;
} else
i = 0;
sc->sc_bssidmask |= 1<<i;
sc->sc_hwbssidmask[0] &= ~mac[0];
if (i == 0)
sc->sc_nbssid0++;
}
static void
reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
{
int i = mac[0] >> 2;
uint8_t mask;
if (i != 0 || --sc->sc_nbssid0 == 0) {
sc->sc_bssidmask &= ~(1<<i);
/* recalculate bssid mask from remaining addresses */
mask = 0xff;
for (i = 1; i < 8; i++)
if (sc->sc_bssidmask & (1<<i))
mask &= ~((i<<2)|0x2);
sc->sc_hwbssidmask[0] |= mask;
}
}
/*
* Assign a beacon xmit slot. We try to space out
* assignments so when beacons are staggered the
* traffic coming out of the cab q has maximal time
* to go out before the next beacon is scheduled.
*/
static int
assign_bslot(struct ath_softc *sc)
{
u_int slot, free;
free = 0;
for (slot = 0; slot < ATH_BCBUF; slot++)
if (sc->sc_bslot[slot] == NULL) {
if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
return slot;
free = slot;
/* NB: keep looking for a double slot */
}
return free;
}
static struct ieee80211vap *
ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac0[IEEE80211_ADDR_LEN])
{
struct ath_softc *sc = ic->ic_softc;
struct ath_vap *avp;
struct ieee80211vap *vap;
uint8_t mac[IEEE80211_ADDR_LEN];
int needbeacon, error;
enum ieee80211_opmode ic_opmode;
avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
needbeacon = 0;
IEEE80211_ADDR_COPY(mac, mac0);
ATH_LOCK(sc);
ic_opmode = opmode; /* default to opmode of new vap */
switch (opmode) {
case IEEE80211_M_STA:
if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */
device_printf(sc->sc_dev, "only 1 sta vap supported\n");
goto bad;
}
if (sc->sc_nvaps) {
/*
* With multiple vaps we must fall back
* to s/w beacon miss handling.
*/
flags |= IEEE80211_CLONE_NOBEACONS;
}
if (flags & IEEE80211_CLONE_NOBEACONS) {
/*
* Station mode w/o beacons are implemented w/ AP mode.
*/
ic_opmode = IEEE80211_M_HOSTAP;
}
break;
case IEEE80211_M_IBSS:
if (sc->sc_nvaps != 0) { /* XXX only 1 for now */
device_printf(sc->sc_dev,
"only 1 ibss vap supported\n");
goto bad;
}
needbeacon = 1;
break;
case IEEE80211_M_AHDEMO:
#ifdef IEEE80211_SUPPORT_TDMA
if (flags & IEEE80211_CLONE_TDMA) {
if (sc->sc_nvaps != 0) {
device_printf(sc->sc_dev,
"only 1 tdma vap supported\n");
goto bad;
}
needbeacon = 1;
flags |= IEEE80211_CLONE_NOBEACONS;
}
/* fall thru... */
#endif
case IEEE80211_M_MONITOR:
if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
/*
* Adopt existing mode. Adding a monitor or ahdemo
* vap to an existing configuration is of dubious
* value but should be ok.
*/
/* XXX not right for monitor mode */
ic_opmode = ic->ic_opmode;
}
break;
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
needbeacon = 1;
break;
case IEEE80211_M_WDS:
if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
device_printf(sc->sc_dev,
"wds not supported in sta mode\n");
goto bad;
}
/*
* Silently remove any request for a unique
* bssid; WDS vap's always share the local
* mac address.
*/
flags &= ~IEEE80211_CLONE_BSSID;
if (sc->sc_nvaps == 0)
ic_opmode = IEEE80211_M_HOSTAP;
else
ic_opmode = ic->ic_opmode;
break;
default:
device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
goto bad;
}
/*
* Check that a beacon buffer is available; the code below assumes it.
*/
if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
device_printf(sc->sc_dev, "no beacon buffer available\n");
goto bad;
}
/* STA, AHDEMO? */
if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) {
assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
}
vap = &avp->av_vap;
/* XXX can't hold mutex across if_alloc */
ATH_UNLOCK(sc);
error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
ATH_LOCK(sc);
if (error != 0) {
device_printf(sc->sc_dev, "%s: error %d creating vap\n",
__func__, error);
goto bad2;
}
/* h/w crypto support */
vap->iv_key_alloc = ath_key_alloc;
vap->iv_key_delete = ath_key_delete;
vap->iv_key_set = ath_key_set;
vap->iv_key_update_begin = ath_key_update_begin;
vap->iv_key_update_end = ath_key_update_end;
/* override various methods */
avp->av_recv_mgmt = vap->iv_recv_mgmt;
vap->iv_recv_mgmt = ath_recv_mgmt;
vap->iv_reset = ath_reset_vap;
vap->iv_update_beacon = ath_beacon_update;
avp->av_newstate = vap->iv_newstate;
vap->iv_newstate = ath_newstate;
avp->av_bmiss = vap->iv_bmiss;
vap->iv_bmiss = ath_bmiss_vap;
avp->av_node_ps = vap->iv_node_ps;
vap->iv_node_ps = ath_node_powersave;
avp->av_set_tim = vap->iv_set_tim;
vap->iv_set_tim = ath_node_set_tim;
avp->av_recv_pspoll = vap->iv_recv_pspoll;
vap->iv_recv_pspoll = ath_node_recv_pspoll;
/* Set default parameters */
/*
* Anything earlier than some AR9300 series MACs don't
* support a smaller MPDU density.
*/
vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
/*
* All NICs can handle the maximum size, however
* AR5416 based MACs can only TX aggregates w/ RTS
* protection when the total aggregate size is <= 8k.
* However, for now that's enforced by the TX path.
*/
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K;
avp->av_bslot = -1;
if (needbeacon) {
/*
* Allocate beacon state and setup the q for buffered
* multicast frames. We know a beacon buffer is
* available because we checked above.
*/
avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
/*
* Assign the vap to a beacon xmit slot. As above
* this cannot fail to find a free one.
*/
avp->av_bslot = assign_bslot(sc);
KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
("beacon slot %u not empty", avp->av_bslot));
sc->sc_bslot[avp->av_bslot] = vap;
sc->sc_nbcnvaps++;
}
if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
/*
* Multple vaps are to transmit beacons and we
* have h/w support for TSF adjusting; enable
* use of staggered beacons.
*/
sc->sc_stagbeacons = 1;
}
ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
}
ic->ic_opmode = ic_opmode;
if (opmode != IEEE80211_M_WDS) {
sc->sc_nvaps++;
if (opmode == IEEE80211_M_STA)
sc->sc_nstavaps++;
if (opmode == IEEE80211_M_MBSS)
sc->sc_nmeshvaps++;
}
switch (ic_opmode) {
case IEEE80211_M_IBSS:
sc->sc_opmode = HAL_M_IBSS;
break;
case IEEE80211_M_STA:
sc->sc_opmode = HAL_M_STA;
break;
case IEEE80211_M_AHDEMO:
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA) {
sc->sc_tdma = 1;
/* NB: disable tsf adjust */
sc->sc_stagbeacons = 0;
}
/*
* NB: adhoc demo mode is a pseudo mode; to the hal it's
* just ap mode.
*/
/* fall thru... */
#endif
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
sc->sc_opmode = HAL_M_HOSTAP;
break;
case IEEE80211_M_MONITOR:
sc->sc_opmode = HAL_M_MONITOR;
break;
default:
/* XXX should not happen */
break;
}
if (sc->sc_hastsfadd) {
/*
* Configure whether or not TSF adjust should be done.
*/
ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
}
if (flags & IEEE80211_CLONE_NOBEACONS) {
/*
* Enable s/w beacon miss handling.
*/
sc->sc_swbmiss = 1;
}
ATH_UNLOCK(sc);
/* complete setup */
ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status,
mac);
return vap;
bad2:
reclaim_address(sc, mac);
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
bad:
free(avp, M_80211_VAP);
ATH_UNLOCK(sc);
return NULL;
}
static void
ath_vap_delete(struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_softc;
struct ath_hal *ah = sc->sc_ah;
struct ath_vap *avp = ATH_VAP(vap);
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
if (sc->sc_running) {
/*
* Quiesce the hardware while we remove the vap. In
* particular we need to reclaim all references to
* the vap state by any frames pending on the tx queues.
*/
ath_hal_intrset(ah, 0); /* disable interrupts */
/* XXX Do all frames from all vaps/nodes need draining here? */
ath_stoprecv(sc, 1); /* stop recv side */
ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */
}
/* .. leave the hardware awake for now. */
ieee80211_vap_detach(vap);
/*
* XXX Danger Will Robinson! Danger!
*
* Because ieee80211_vap_detach() can queue a frame (the station
* diassociate message?) after we've drained the TXQ and
* flushed the software TXQ, we will end up with a frame queued
* to a node whose vap is about to be freed.
*
* To work around this, flush the hardware/software again.
* This may be racy - the ath task may be running and the packet
* may be being scheduled between sw->hw txq. Tsk.
*
* TODO: figure out why a new node gets allocated somewhere around
* here (after the ath_tx_swq() call; and after an ath_stop()
* call!)
*/
ath_draintxq(sc, ATH_RESET_DEFAULT);
ATH_LOCK(sc);
/*
* Reclaim beacon state. Note this must be done before
* the vap instance is reclaimed as we may have a reference
* to it in the buffer for the beacon frame.
*/
if (avp->av_bcbuf != NULL) {
if (avp->av_bslot != -1) {
sc->sc_bslot[avp->av_bslot] = NULL;
sc->sc_nbcnvaps--;
}
ath_beacon_return(sc, avp->av_bcbuf);
avp->av_bcbuf = NULL;
if (sc->sc_nbcnvaps == 0) {
sc->sc_stagbeacons = 0;
if (sc->sc_hastsfadd)
ath_hal_settsfadjust(sc->sc_ah, 0);
}
/*
* Reclaim any pending mcast frames for the vap.
*/
ath_tx_draintxq(sc, &avp->av_mcastq);
}
/*
* Update bookkeeping.
*/
if (vap->iv_opmode == IEEE80211_M_STA) {
sc->sc_nstavaps--;
if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
sc->sc_swbmiss = 0;
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_STA ||
vap->iv_opmode == IEEE80211_M_MBSS) {
reclaim_address(sc, vap->iv_myaddr);
ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
if (vap->iv_opmode == IEEE80211_M_MBSS)
sc->sc_nmeshvaps--;
}
if (vap->iv_opmode != IEEE80211_M_WDS)
sc->sc_nvaps--;
#ifdef IEEE80211_SUPPORT_TDMA
/* TDMA operation ceases when the last vap is destroyed */
if (sc->sc_tdma && sc->sc_nvaps == 0) {
sc->sc_tdma = 0;
sc->sc_swbmiss = 0;
}
#endif
free(avp, M_80211_VAP);
if (sc->sc_running) {
/*
* Restart rx+tx machines if still running (RUNNING will
* be reset if we just destroyed the last vap).
*/
if (ath_startrecv(sc) != 0)
device_printf(sc->sc_dev,
"%s: unable to restart recv logic\n", __func__);
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
ath_hal_intrset(ah, sc->sc_imask);
}
/* Ok, let the hardware asleep. */
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
}
void
ath_suspend(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
sc->sc_resume_up = ic->ic_nrunning != 0;
ieee80211_suspend_all(ic);
/*
* NB: don't worry about putting the chip in low power
* mode; pci will power off our socket on suspend and
* CardBus detaches the device.
*
* XXX TODO: well, that's great, except for non-cardbus
* devices!
*/
/*
* XXX This doesn't wait until all pending taskqueue
* items and parallel transmit/receive/other threads
* are running!
*/
ath_hal_intrset(sc->sc_ah, 0);
taskqueue_block(sc->sc_tq);
ATH_LOCK(sc);
callout_stop(&sc->sc_cal_ch);
ATH_UNLOCK(sc);
/*
* XXX ensure sc_invalid is 1
*/
/* Disable the PCIe PHY, complete with workarounds */
ath_hal_enablepcie(sc->sc_ah, 1, 1);
}
/*
* Reset the key cache since some parts do not reset the
* contents on resume. First we clear all entries, then
* re-load keys that the 802.11 layer assumes are setup
* in h/w.
*/
static void
ath_reset_keycache(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
int i;
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
for (i = 0; i < sc->sc_keymax; i++)
ath_hal_keyreset(ah, i);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
ieee80211_crypto_reload_keys(ic);
}
/*
* Fetch the current chainmask configuration based on the current
* operating channel and options.
*/
static void
ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
{
/*
* Set TX chainmask to the currently configured chainmask;
* the TX chainmask depends upon the current operating mode.
*/
sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
if (IEEE80211_IS_CHAN_HT(chan)) {
sc->sc_cur_txchainmask = sc->sc_txchainmask;
} else {
sc->sc_cur_txchainmask = 1;
}
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
__func__,
sc->sc_cur_txchainmask,
sc->sc_cur_rxchainmask);
}
void
ath_resume(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
ath_hal_enablepcie(ah, 0, 0);
/*
* Must reset the chip before we reload the
* keycache as we were powered down on suspend.
*/
ath_update_chainmasks(sc,
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
sc->sc_cur_rxchainmask);
/* Ensure we set the current power state to on */
ATH_LOCK(sc);
ath_power_setselfgen(sc, HAL_PM_AWAKE);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
ATH_UNLOCK(sc);
ath_hal_reset(ah, sc->sc_opmode,
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
AH_FALSE, HAL_RESET_NORMAL, &status);
ath_reset_keycache(sc);
ATH_RX_LOCK(sc);
sc->sc_rx_stopped = 1;
sc->sc_rx_resetted = 1;
ATH_RX_UNLOCK(sc);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
/* Let spectral at in case spectral is enabled */
ath_spectral_enable(sc, ic->ic_curchan);
/*
* Let bluetooth coexistence at in case it's needed for this channel
*/
ath_btcoex_enable(sc, ic->ic_curchan);
/*
* If we're doing TDMA, enforce the TXOP limitation for chips that
* support it.
*/
if (sc->sc_hasenforcetxop && sc->sc_tdma)
ath_hal_setenforcetxop(sc->sc_ah, 1);
else
ath_hal_setenforcetxop(sc->sc_ah, 0);
/* Restore the LED configuration */
ath_led_config(sc);
ath_hal_setledstate(ah, HAL_LED_INIT);
if (sc->sc_resume_up)
ieee80211_resume_all(ic);
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
/* XXX beacons ? */
}
void
ath_shutdown(struct ath_softc *sc)
{
ATH_LOCK(sc);
ath_stop(sc);
ATH_UNLOCK(sc);
/* NB: no point powering down chip as we're about to reboot */
}
/*
* Interrupt handler. Most of the actual processing is deferred.
*/
void
ath_intr(void *arg)
{
struct ath_softc *sc = arg;
struct ath_hal *ah = sc->sc_ah;
HAL_INT status = 0;
uint32_t txqs;
/*
* If we're inside a reset path, just print a warning and
* clear the ISR. The reset routine will finish it for us.
*/
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt) {
HAL_INT status;
ath_hal_getisr(ah, &status); /* clear ISR */
ath_hal_intrset(ah, 0); /* disable further intr's */
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: in reset, ignoring: status=0x%x\n",
__func__, status);
ATH_PCU_UNLOCK(sc);
return;
}
if (sc->sc_invalid) {
/*
* The hardware is not ready/present, don't touch anything.
* Note this can happen early on if the IRQ is shared.
*/
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
ATH_PCU_UNLOCK(sc);
return;
}
if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */
ATH_PCU_UNLOCK(sc);
return;
}
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) {
HAL_INT status;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n",
__func__, sc->sc_ic.ic_nrunning, sc->sc_running);
ath_hal_getisr(ah, &status); /* clear ISR */
ath_hal_intrset(ah, 0); /* disable further intr's */
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
return;
}
/*
* Figure out the reason(s) for the interrupt. Note
* that the hal returns a pseudo-ISR that may include
* bits we haven't explicitly enabled so we mask the
* value to insure we only process bits we requested.
*/
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
#ifdef ATH_DEBUG_ALQ
if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
ah->ah_syncstate);
#endif /* ATH_DEBUG_ALQ */
#ifdef ATH_KTR_INTR_DEBUG
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
"ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
ah->ah_intrstate[0],
ah->ah_intrstate[1],
ah->ah_intrstate[2],
ah->ah_intrstate[3],
ah->ah_intrstate[6]);
#endif
/* Squirrel away SYNC interrupt debugging */
if (ah->ah_syncstate != 0) {
int i;
for (i = 0; i < 32; i++)
if (ah->ah_syncstate & (i << i))
sc->sc_intr_stats.sync_intr[i]++;
}
status &= sc->sc_imask; /* discard unasked for bits */
/* Short-circuit un-handled interrupts */
if (status == 0x0) {
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
return;
}
/*
* Take a note that we're inside the interrupt handler, so
* the reset routines know to wait.
*/
sc->sc_intr_cnt++;
ATH_PCU_UNLOCK(sc);
/*
* Handle the interrupt. We won't run concurrent with the reset
* or channel change routines as they'll wait for sc_intr_cnt
* to be 0 before continuing.
*/
if (status & HAL_INT_FATAL) {
sc->sc_stats.ast_hardware++;
ath_hal_intrset(ah, 0); /* disable intr's until reset */
taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
} else {
if (status & HAL_INT_SWBA) {
/*
* Software beacon alert--time to send a beacon.
* Handle beacon transmission directly; deferring
* this is too slow to meet timing constraints
* under load.
*/
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma) {
if (sc->sc_tdmaswba == 0) {
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap =
TAILQ_FIRST(&ic->ic_vaps);
ath_tdma_beacon_send(sc, vap);
sc->sc_tdmaswba =
vap->iv_tdma->tdma_bintval;
} else
sc->sc_tdmaswba--;
} else
#endif
{
ath_beacon_proc(sc, 0);
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Schedule the rx taskq in case there's no
* traffic so any frames held on the staging
* queue are aged and potentially flushed.
*/
sc->sc_rx.recv_sched(sc, 1);
#endif
}
}
if (status & HAL_INT_RXEOL) {
int imask;
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
if (! sc->sc_isedma) {
ATH_PCU_LOCK(sc);
/*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work at
* least on older hardware revs.
*/
sc->sc_stats.ast_rxeol++;
/*
* Disable RXEOL/RXORN - prevent an interrupt
* storm until the PCU logic can be reset.
* In case the interface is reset some other
* way before "sc_kickpcu" is called, don't
* modify sc_imask - that way if it is reset
* by a call to ath_reset() somehow, the
* interrupt mask will be correctly reprogrammed.
*/
imask = sc->sc_imask;
imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
ath_hal_intrset(ah, imask);
/*
* Only blank sc_rxlink if we've not yet kicked
* the PCU.
*
* This isn't entirely correct - the correct solution
* would be to have a PCU lock and engage that for
* the duration of the PCU fiddling; which would include
* running the RX process. Otherwise we could end up
* messing up the RX descriptor chain and making the
* RX desc list much shorter.
*/
if (! sc->sc_kickpcu)
sc->sc_rxlink = NULL;
sc->sc_kickpcu = 1;
ATH_PCU_UNLOCK(sc);
}
/*
* Enqueue an RX proc to handle whatever
* is in the RX queue.
* This will then kick the PCU if required.
*/
sc->sc_rx.recv_sched(sc, 1);
}
if (status & HAL_INT_TXURN) {
sc->sc_stats.ast_txurn++;
/* bump tx trigger level */
ath_hal_updatetxtriglevel(ah, AH_TRUE);
}
/*
* Handle both the legacy and RX EDMA interrupt bits.
* Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
*/
if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
sc->sc_stats.ast_rx_intr++;
sc->sc_rx.recv_sched(sc, 1);
}
if (status & HAL_INT_TX) {
sc->sc_stats.ast_tx_intr++;
/*
* Grab all the currently set bits in the HAL txq bitmap
* and blank them. This is the only place we should be
* doing this.
*/
if (! sc->sc_isedma) {
ATH_PCU_LOCK(sc);
txqs = 0xffffffff;
ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
"ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
txqs,
sc->sc_txq_active,
sc->sc_txq_active | txqs);
sc->sc_txq_active |= txqs;
ATH_PCU_UNLOCK(sc);
}
taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
}
if (status & HAL_INT_BMISS) {
sc->sc_stats.ast_bmiss++;
taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
}
if (status & HAL_INT_GTT)
sc->sc_stats.ast_tx_timeout++;
if (status & HAL_INT_CST)
sc->sc_stats.ast_tx_cst++;
if (status & HAL_INT_MIB) {
sc->sc_stats.ast_mib++;
ATH_PCU_LOCK(sc);
/*
* Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to fire.
*/
ath_hal_intrset(ah, 0);
/*
* Let the hal handle the event. We assume it will
* clear whatever condition caused the interrupt.
*/
ath_hal_mibevent(ah, &sc->sc_halstats);
/*
* Don't reset the interrupt if we've just
* kicked the PCU, or we may get a nested
* RXEOL before the rxproc has had a chance
* to run.
*/
if (sc->sc_kickpcu == 0)
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
}
if (status & HAL_INT_RXORN) {
/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
sc->sc_stats.ast_rxorn++;
}
if (status & HAL_INT_TSFOOR) {
/* out of range beacon - wake the chip up,
* but don't modify self-gen frame config */
device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
sc->sc_syncbeacon = 1;
ATH_LOCK(sc);
ath_power_setpower(sc, HAL_PM_AWAKE, 0);
ATH_UNLOCK(sc);
}
if (status & HAL_INT_MCI) {
ath_btcoex_mci_intr(sc);
}
}
ATH_PCU_LOCK(sc);
sc->sc_intr_cnt--;
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
}
static void
ath_fatal_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
u_int32_t *state;
u_int32_t len;
void *sp;
if (sc->sc_invalid)
return;
device_printf(sc->sc_dev, "hardware error; resetting\n");
/*
* Fatal errors are unrecoverable. Typically these
* are caused by DMA errors. Collect h/w state from
* the hal so we can diagnose what's going on.
*/
if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
state = sp;
device_printf(sc->sc_dev,
"0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0],
state[1] , state[2], state[3], state[4], state[5]);
}
ath_reset(sc, ATH_RESET_NOLOSS);
}
static void
ath_bmiss_vap(struct ieee80211vap *vap)
{
struct ath_softc *sc = vap->iv_ic->ic_softc;
/*
* Workaround phantom bmiss interrupts by sanity-checking
* the time of our last rx'd frame. If it is within the
* beacon miss interval then ignore the interrupt. If it's
* truly a bmiss we'll get another interrupt soon and that'll
* be dispatched up for processing. Note this applies only
* for h/w beacon miss events.
*/
/*
* XXX TODO: Just read the TSF during the interrupt path;
* that way we don't have to wake up again just to read it
* again.
*/
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
u_int64_t lastrx = sc->sc_lastrx;
u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
/* XXX should take a locked ref to iv_bss */
u_int bmisstimeout =
vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
__func__, (unsigned long long) tsf,
(unsigned long long)(tsf - lastrx),
(unsigned long long) lastrx, bmisstimeout);
if (tsf - lastrx <= bmisstimeout) {
sc->sc_stats.ast_bmiss_phantom++;
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
return;
}
}
/*
* Keep the hardware awake if it's asleep (and leave self-gen
* frame config alone) until the next beacon, so we can resync
* against the next beacon.
*
* This handles three common beacon miss cases in STA powersave mode -
* (a) the beacon TBTT isnt a multiple of bintval;
* (b) the beacon was missed; and
* (c) the beacons are being delayed because the AP is busy and
* isn't reliably able to meet its TBTT.
*/
ATH_LOCK(sc);
ath_power_setpower(sc, HAL_PM_AWAKE, 0);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: forced awake; force syncbeacon=1\n", __func__);
/*
* Attempt to force a beacon resync.
*/
sc->sc_syncbeacon = 1;
ATH_VAP(vap)->av_bmiss(vap);
}
/* XXX this needs a force wakeup! */
int
ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
{
uint32_t rsize;
void *sp;
if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
return 0;
KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
*hangs = *(uint32_t *)sp;
return 1;
}
static void
ath_bmiss_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
uint32_t hangs;
DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
ath_beacon_miss(sc);
/*
* Do a reset upon any becaon miss event.
*
* It may be a non-recognised RX clear hang which needs a reset
* to clear.
*/
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
ath_reset(sc, ATH_RESET_NOLOSS);
device_printf(sc->sc_dev,
"bb hang detected (0x%x), resetting\n", hangs);
} else {
ath_reset(sc, ATH_RESET_NOLOSS);
ieee80211_beacon_miss(&sc->sc_ic);
}
/* Force a beacon resync, in case they've drifted */
sc->sc_syncbeacon = 1;
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
}
/*
* Handle TKIP MIC setup to deal hardware that doesn't do MIC
* calcs together with WME. If necessary disable the crypto
* hardware and mark the 802.11 state so keys will be setup
* with the MIC work done in software.
*/
static void
ath_settkipmic(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
if (ic->ic_flags & IEEE80211_F_WME) {
ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
} else {
ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
}
}
}
static void
ath_vap_clear_quiet_ie(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211vap *vap;
struct ath_vap *avp;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
avp = ATH_VAP(vap);
/* Quiet time handling - ensure we resync */
memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
}
}
static int
ath_init(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
ATH_LOCK_ASSERT(sc);
/*
* Force the sleep state awake.
*/
ath_power_setselfgen(sc, HAL_PM_AWAKE);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
/*
* Stop anything previously setup. This is safe
* whether this is the first time through or not.
*/
ath_stop(sc);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
ath_settkipmic(sc);
ath_update_chainmasks(sc, ic->ic_curchan);
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
sc->sc_cur_rxchainmask);
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE,
HAL_RESET_NORMAL, &status)) {
device_printf(sc->sc_dev,
"unable to reset hardware; hal status %u\n", status);
return (ENODEV);
}
ATH_RX_LOCK(sc);
sc->sc_rx_stopped = 1;
sc->sc_rx_resetted = 1;
ATH_RX_UNLOCK(sc);
/* Clear quiet IE state for each VAP */
ath_vap_clear_quiet_ie(sc);
ath_chan_change(sc, ic->ic_curchan);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
/* Let spectral at in case spectral is enabled */
ath_spectral_enable(sc, ic->ic_curchan);
/*
* Let bluetooth coexistence at in case it's needed for this channel
*/
ath_btcoex_enable(sc, ic->ic_curchan);
/*
* If we're doing TDMA, enforce the TXOP limitation for chips that
* support it.
*/
if (sc->sc_hasenforcetxop && sc->sc_tdma)
ath_hal_setenforcetxop(sc->sc_ah, 1);
else
ath_hal_setenforcetxop(sc->sc_ah, 0);
/*
* Likewise this is set during reset so update
* state cached in the driver.
*/
sc->sc_diversity = ath_hal_getdiversity(ah);
sc->sc_lastlongcal = ticks;
sc->sc_resetcal = 1;
sc->sc_lastcalreset = 0;
sc->sc_lastani = ticks;
sc->sc_lastshortcal = ticks;
sc->sc_doresetcal = AH_FALSE;
/*
* Beacon timers were cleared here; give ath_newstate()
* a hint that the beacon timers should be poked when
* things transition to the RUN state.
*/
sc->sc_beacons = 0;
/*
* Setup the hardware after reset: the key cache
* is filled as needed and the receive engine is
* set going. Frame transmit is handled entirely
* in the frame output path; there's nothing to do
* here except setup the interrupt mask.
*/
if (ath_startrecv(sc) != 0) {
device_printf(sc->sc_dev, "unable to start recv logic\n");
ath_power_restore_power_state(sc);
return (ENODEV);
}
/*
* Enable interrupts.
*/
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
| HAL_INT_RXORN | HAL_INT_TXURN
| HAL_INT_FATAL | HAL_INT_GLOBAL;
/*
* Enable RX EDMA bits. Note these overlap with
* HAL_INT_RX and HAL_INT_RXDESC respectively.
*/
if (sc->sc_isedma)
sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
/*
* If we're an EDMA NIC, we don't care about RXEOL.
* Writing a new descriptor in will simply restart
* RX DMA.
*/
if (! sc->sc_isedma)
sc->sc_imask |= HAL_INT_RXEOL;
/*
* Enable MCI interrupt for MCI devices.
*/
if (sc->sc_btcoex_mci)
sc->sc_imask |= HAL_INT_MCI;
/*
* Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode.
*/
if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
sc->sc_imask |= HAL_INT_MIB;
/*
* XXX add capability for this.
*
* If we're in STA mode (and maybe IBSS?) then register for
* TSFOOR interrupts.
*/
if (ic->ic_opmode == IEEE80211_M_STA)
sc->sc_imask |= HAL_INT_TSFOOR;
/* Enable global TX timeout and carrier sense timeout if available */
if (ath_hal_gtxto_supported(ah))
sc->sc_imask |= HAL_INT_GTT;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
__func__, sc->sc_imask);
sc->sc_running = 1;
callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
ath_hal_intrset(ah, sc->sc_imask);
ath_power_restore_power_state(sc);
return (0);
}
static void
ath_stop(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
ATH_LOCK_ASSERT(sc);
/*
* Wake the hardware up before fiddling with it.
*/
ath_power_set_power_state(sc, HAL_PM_AWAKE);
if (sc->sc_running) {
/*
* Shutdown the hardware and driver:
* reset 802.11 state machine
* turn off timers
* disable interrupts
* turn off the radio
* clear transmit machinery
* clear receive machinery
* drain and release tx queues
* reclaim beacon resources
* power down hardware
*
* Note that some of this work is not possible if the
* hardware is gone (invalid).
*/
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->stop(sc->sc_tx99);
#endif
callout_stop(&sc->sc_wd_ch);
sc->sc_wd_timer = 0;
sc->sc_running = 0;
if (!sc->sc_invalid) {
if (sc->sc_softled) {
callout_stop(&sc->sc_ledtimer);
ath_hal_gpioset(ah, sc->sc_ledpin,
!sc->sc_ledon);
sc->sc_blinking = 0;
}
ath_hal_intrset(ah, 0);
}
/* XXX we should stop RX regardless of whether it's valid */
if (!sc->sc_invalid) {
ath_stoprecv(sc, 1);
ath_hal_phydisable(ah);
} else
sc->sc_rxlink = NULL;
ath_draintxq(sc, ATH_RESET_DEFAULT);
ath_beacon_free(sc); /* XXX not needed */
}
/* And now, restore the current power state */
ath_power_restore_power_state(sc);
}
/*
* Wait until all pending TX/RX has completed.
*
* This waits until all existing transmit, receive and interrupts
* have completed. It's assumed that the caller has first
* grabbed the reset lock so it doesn't try to do overlapping
* chip resets.
*/
#define MAX_TXRX_ITERATIONS 100
static void
ath_txrx_stop_locked(struct ath_softc *sc)
{
int i = MAX_TXRX_ITERATIONS;
ATH_UNLOCK_ASSERT(sc);
ATH_PCU_LOCK_ASSERT(sc);
/*
* Sleep until all the pending operations have completed.
*
* The caller must ensure that reset has been incremented
* or the pending operations may continue being queued.
*/
while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
sc->sc_txstart_cnt || sc->sc_intr_cnt) {
if (i <= 0)
break;
msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
msecs_to_ticks(10));
i--;
}
if (i <= 0)
device_printf(sc->sc_dev,
"%s: didn't finish after %d iterations\n",
__func__, MAX_TXRX_ITERATIONS);
}
#undef MAX_TXRX_ITERATIONS
#if 0
static void
ath_txrx_stop(struct ath_softc *sc)
{
ATH_UNLOCK_ASSERT(sc);
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_PCU_LOCK(sc);
ath_txrx_stop_locked(sc);
ATH_PCU_UNLOCK(sc);
}
#endif
static void
ath_txrx_start(struct ath_softc *sc)
{
taskqueue_unblock(sc->sc_tq);
}
/*
* Grab the reset lock, and wait around until no one else
* is trying to do anything with it.
*
* This is totally horrible but we can't hold this lock for
* long enough to do TX/RX or we end up with net80211/ip stack
* LORs and eventual deadlock.
*
* "dowait" signals whether to spin, waiting for the reset
* lock count to reach 0. This should (for now) only be used
* during the reset path, as the rest of the code may not
* be locking-reentrant enough to behave correctly.
*
* Another, cleaner way should be found to serialise all of
* these operations.
*/
#define MAX_RESET_ITERATIONS 25
static int
ath_reset_grablock(struct ath_softc *sc, int dowait)
{
int w = 0;
int i = MAX_RESET_ITERATIONS;
ATH_PCU_LOCK_ASSERT(sc);
do {
if (sc->sc_inreset_cnt == 0) {
w = 1;
break;
}
if (dowait == 0) {
w = 0;
break;
}
ATH_PCU_UNLOCK(sc);
/*
* 1 tick is likely not enough time for long calibrations
* to complete. So we should wait quite a while.
*/
pause("ath_reset_grablock", msecs_to_ticks(100));
i--;
ATH_PCU_LOCK(sc);
} while (i > 0);
/*
* We always increment the refcounter, regardless
* of whether we succeeded to get it in an exclusive
* way.
*/
sc->sc_inreset_cnt++;
if (i <= 0)
device_printf(sc->sc_dev,
"%s: didn't finish after %d iterations\n",
__func__, MAX_RESET_ITERATIONS);
if (w == 0)
device_printf(sc->sc_dev,
"%s: warning, recursive reset path!\n",
__func__);
return w;
}
#undef MAX_RESET_ITERATIONS
/*
* Reset the hardware w/o losing operational state. This is
* basically a more efficient way of doing ath_stop, ath_init,
* followed by state transitions to the current 802.11
* operational state. Used to recover from various errors and
* to reset or reload hardware state.
*/
int
ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
int i;
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_UNLOCK_ASSERT(sc);
/* Try to (stop any further TX/RX from occurring */
taskqueue_block(sc->sc_tq);
/*
* Wake the hardware up.
*/
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
/*
* Grab the reset lock before TX/RX is stopped.
*
* This is needed to ensure that when the TX/RX actually does finish,
* no further TX/RX/reset runs in parallel with this.
*/
if (ath_reset_grablock(sc, 1) == 0) {
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
__func__);
}
/* disable interrupts */
ath_hal_intrset(ah, 0);
/*
* Now, ensure that any in progress TX/RX completes before we
* continue.
*/
ath_txrx_stop_locked(sc);
ATH_PCU_UNLOCK(sc);
/*
* Regardless of whether we're doing a no-loss flush or
* not, stop the PCU and handle what's in the RX queue.
* That way frames aren't dropped which shouldn't be.
*/
ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
ath_rx_flush(sc);
/*
* Should now wait for pending TX/RX to complete
* and block future ones from occurring. This needs to be
* done before the TX queue is drained.
*/
ath_draintxq(sc, reset_type); /* stop xmit side */
ath_settkipmic(sc); /* configure TKIP MIC handling */
/* NB: indicate channel change so we do a full reset */
ath_update_chainmasks(sc, ic->ic_curchan);
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
sc->sc_cur_rxchainmask);
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE,
HAL_RESET_NORMAL, &status))
device_printf(sc->sc_dev,
"%s: unable to reset hardware; hal status %u\n",
__func__, status);
sc->sc_diversity = ath_hal_getdiversity(ah);
ATH_RX_LOCK(sc);
sc->sc_rx_stopped = 1;
sc->sc_rx_resetted = 1;
ATH_RX_UNLOCK(sc);
/* Quiet time handling - ensure we resync */
ath_vap_clear_quiet_ie(sc);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, ic->ic_curchan);
/* Let spectral at in case spectral is enabled */
ath_spectral_enable(sc, ic->ic_curchan);
/*
* Let bluetooth coexistence at in case it's needed for this channel
*/
ath_btcoex_enable(sc, ic->ic_curchan);
/*
* If we're doing TDMA, enforce the TXOP limitation for chips that
* support it.
*/
if (sc->sc_hasenforcetxop && sc->sc_tdma)
ath_hal_setenforcetxop(sc->sc_ah, 1);
else
ath_hal_setenforcetxop(sc->sc_ah, 0);
if (ath_startrecv(sc) != 0) /* restart recv */
device_printf(sc->sc_dev,
"%s: unable to start recv logic\n", __func__);
/*
* We may be doing a reset in response to an ioctl
* that changes the channel so update any state that
* might change as a result.
*/
ath_chan_change(sc, ic->ic_curchan);
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
/*
* Release the reset lock and re-enable interrupts here.
* If an interrupt was being processed in ath_intr(),
* it would disable interrupts at this point. So we have
* to atomically enable interrupts and decrement the
* reset counter - this way ath_intr() doesn't end up
* disabling interrupts without a corresponding enable
* in the rest or channel change path.
*
* Grab the TX reference in case we need to transmit.
* That way a parallel transmit doesn't.
*/
ATH_PCU_LOCK(sc);
sc->sc_inreset_cnt--;
sc->sc_txstart_cnt++;
/* XXX only do this if sc_inreset_cnt == 0? */
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
/*
* TX and RX can be started here. If it were started with
* sc_inreset_cnt > 0, the TX and RX path would abort.
* Thus if this is a nested call through the reset or
* channel change code, TX completion will occur but
* RX completion and ath_start / ath_tx_start will not
* run.
*/
/* Restart TX/RX as needed */
ath_txrx_start(sc);
/* XXX TODO: we need to hold the tx refcount here! */
/* Restart TX completion and pending TX */
if (reset_type == ATH_RESET_NOLOSS) {
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ATH_TXQ_LOCK(&sc->sc_txq[i]);
ath_txq_restart_dma(sc, &sc->sc_txq[i]);
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
ATH_TX_LOCK(sc);
ath_txq_sched(sc, &sc->sc_txq[i]);
ATH_TX_UNLOCK(sc);
}
}
}
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
sc->sc_txstart_cnt--;
ATH_PCU_UNLOCK(sc);
/* Handle any frames in the TX queue */
/*
* XXX should this be done by the caller, rather than
* ath_reset() ?
*/
ath_tx_kick(sc); /* restart xmit */
return 0;
}
static int
ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
{
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_softc;
struct ath_hal *ah = sc->sc_ah;
switch (cmd) {
case IEEE80211_IOC_TXPOWER:
/*
* If per-packet TPC is enabled, then we have nothing
* to do; otherwise we need to force the global limit.
* All this can happen directly; no need to reset.
*/
if (!ath_hal_gettpc(ah))
ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
return 0;
}
/* XXX? Full or NOLOSS? */
return ath_reset(sc, ATH_RESET_FULL);
}
struct ath_buf *
_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
{
struct ath_buf *bf;
ATH_TXBUF_LOCK_ASSERT(sc);
if (btype == ATH_BUFTYPE_MGMT)
bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
else
bf = TAILQ_FIRST(&sc->sc_txbuf);
if (bf == NULL) {
sc->sc_stats.ast_tx_getnobuf++;
} else {
if (bf->bf_flags & ATH_BUF_BUSY) {
sc->sc_stats.ast_tx_getbusybuf++;
bf = NULL;
}
}
if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
if (btype == ATH_BUFTYPE_MGMT)
TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
else {
TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
sc->sc_txbuf_cnt--;
/*
* This shuldn't happen; however just to be
* safe print a warning and fudge the txbuf
* count.
*/
if (sc->sc_txbuf_cnt < 0) {
device_printf(sc->sc_dev,
"%s: sc_txbuf_cnt < 0?\n",
__func__);
sc->sc_txbuf_cnt = 0;
}
}
} else
bf = NULL;
if (bf == NULL) {
/* XXX should check which list, mgmt or otherwise */
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
"out of xmit buffers" : "xmit buffer busy");
return NULL;
}
/* XXX TODO: should do this at buffer list initialisation */
/* XXX (then, ensure the buffer has the right flag set) */
bf->bf_flags = 0;
if (btype == ATH_BUFTYPE_MGMT)
bf->bf_flags |= ATH_BUF_MGMT;
else
bf->bf_flags &= (~ATH_BUF_MGMT);
/* Valid bf here; clear some basic fields */
bf->bf_next = NULL; /* XXX just to be sure */
bf->bf_last = NULL; /* XXX again, just to be sure */
bf->bf_comp = NULL; /* XXX again, just to be sure */
bzero(&bf->bf_state, sizeof(bf->bf_state));
/*
* Track the descriptor ID only if doing EDMA
*/
if (sc->sc_isedma) {
bf->bf_descid = sc->sc_txbuf_descid;
sc->sc_txbuf_descid++;
}
return bf;
}
/*
* When retrying a software frame, buffers marked ATH_BUF_BUSY
* can't be thrown back on the queue as they could still be
* in use by the hardware.
*
* This duplicates the buffer, or returns NULL.
*
* The descriptor is also copied but the link pointers and
* the DMA segments aren't copied; this frame should thus
* be again passed through the descriptor setup/chain routines
* so the link is correct.
*
* The caller must free the buffer using ath_freebuf().
*/
struct ath_buf *
ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_buf *tbf;
tbf = ath_getbuf(sc,
(bf->bf_flags & ATH_BUF_MGMT) ?
ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
if (tbf == NULL)
return NULL; /* XXX failure? Why? */
/* Copy basics */
tbf->bf_next = NULL;
tbf->bf_nseg = bf->bf_nseg;
tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
tbf->bf_status = bf->bf_status;
tbf->bf_m = bf->bf_m;
tbf->bf_node = bf->bf_node;
KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
/* will be setup by the chain/setup function */
tbf->bf_lastds = NULL;
/* for now, last == self */
tbf->bf_last = tbf;
tbf->bf_comp = bf->bf_comp;
/* NOTE: DMA segments will be setup by the setup/chain functions */
/* The caller has to re-init the descriptor + links */
/*
* Free the DMA mapping here, before we NULL the mbuf.
* We must only call bus_dmamap_unload() once per mbuf chain
* or behaviour is undefined.
*/
if (bf->bf_m != NULL) {
/*
* XXX is this POSTWRITE call required?
*/
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
}
bf->bf_m = NULL;
bf->bf_node = NULL;
/* Copy state */
memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
return tbf;
}
struct ath_buf *
ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
{
struct ath_buf *bf;
ATH_TXBUF_LOCK(sc);
bf = _ath_getbuf_locked(sc, btype);
/*
* If a mgmt buffer was requested but we're out of those,
* try requesting a normal one.
*/
if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
ATH_TXBUF_UNLOCK(sc);
if (bf == NULL) {
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
sc->sc_stats.ast_tx_qstop++;
}
return bf;
}
/*
* Transmit a single frame.
*
* net80211 will free the node reference if the transmit
* fails, so don't free the node reference here.
*/
static int
ath_transmit(struct ieee80211com *ic, struct mbuf *m)
{
struct ath_softc *sc = ic->ic_softc;
struct ieee80211_node *ni;
struct mbuf *next;
struct ath_buf *bf;
ath_bufhead frags;
int retval = 0;
/*
* Tell the reset path that we're currently transmitting.
*/
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt > 0) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: sc_inreset_cnt > 0; bailing\n", __func__);
ATH_PCU_UNLOCK(sc);
sc->sc_stats.ast_tx_qstop++;
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
return (ENOBUFS); /* XXX should be EINVAL or? */
}
sc->sc_txstart_cnt++;
ATH_PCU_UNLOCK(sc);
/* Wake the hardware up already */
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
/*
* Grab the TX lock - it's ok to do this here; we haven't
* yet started transmitting.
*/
ATH_TX_LOCK(sc);
/*
* Node reference, if there's one.
*/
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
/*
* Enforce how deep a node queue can get.
*
* XXX it would be nicer if we kept an mbuf queue per
* node and only whacked them into ath_bufs when we
* are ready to schedule some traffic from them.
* .. that may come later.
*
* XXX we should also track the per-node hardware queue
* depth so it is easy to limit the _SUM_ of the swq and
* hwq frames. Since we only schedule two HWQ frames
* at a time, this should be OK for now.
*/
if ((!(m->m_flags & M_EAPOL)) &&
(ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
sc->sc_stats.ast_tx_nodeq_overflow++;
retval = ENOBUFS;
goto finish;
}
/*
* Check how many TX buffers are available.
*
* If this is for non-EAPOL traffic, just leave some
* space free in order for buffer cloning and raw
* frame transmission to occur.
*
* If it's for EAPOL traffic, ignore this for now.
* Management traffic will be sent via the raw transmit
* method which bypasses this check.
*
* This is needed to ensure that EAPOL frames during
* (re) keying have a chance to go out.
*
* See kern/138379 for more information.
*/
if ((!(m->m_flags & M_EAPOL)) &&
(sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
sc->sc_stats.ast_tx_nobuf++;
retval = ENOBUFS;
goto finish;
}
/*
* Grab a TX buffer and associated resources.
*
* If it's an EAPOL frame, allocate a MGMT ath_buf.
* That way even with temporary buffer exhaustion due to
* the data path doesn't leave us without the ability
* to transmit management frames.
*
* Otherwise allocate a normal buffer.
*/
if (m->m_flags & M_EAPOL)
bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
else
bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
if (bf == NULL) {
/*
* If we failed to allocate a buffer, fail.
*
* We shouldn't fail normally, due to the check
* above.
*/
sc->sc_stats.ast_tx_nobuf++;
retval = ENOBUFS;
goto finish;
}
/*
* At this point we have a buffer; so we need to free it
* if we hit any error conditions.
*/
/*
* Check for fragmentation. If this frame
* has been broken up verify we have enough
* buffers to send all the fragments so all
* go out or none...
*/
TAILQ_INIT(&frags);
if ((m->m_flags & M_FRAG) &&
!ath_txfrag_setup(sc, &frags, m, ni)) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: out of txfrag buffers\n", __func__);
sc->sc_stats.ast_tx_nofrag++;
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
/*
* XXXGL: is mbuf valid after ath_txfrag_setup? If yes,
* we shouldn't free it but return back.
*/
ieee80211_free_mbuf(m);
m = NULL;
goto bad;
}
/*
* At this point if we have any TX fragments, then we will
* have bumped the node reference once for each of those.
*/
/*
* XXX Is there anything actually _enforcing_ that the
* fragments are being transmitted in one hit, rather than
* being interleaved with other transmissions on that
* hardware queue?
*
* The ATH TX output lock is the only thing serialising this
* right now.
*/
/*
* Calculate the "next fragment" length field in ath_buf
* in order to let the transmit path know enough about
* what to next write to the hardware.
*/
if (m->m_flags & M_FRAG) {
struct ath_buf *fbf = bf;
struct ath_buf *n_fbf = NULL;
struct mbuf *fm = m->m_nextpkt;
/*
* We need to walk the list of fragments and set
* the next size to the following buffer.
* However, the first buffer isn't in the frag
* list, so we have to do some gymnastics here.
*/
TAILQ_FOREACH(n_fbf, &frags, bf_list) {
fbf->bf_nextfraglen = fm->m_pkthdr.len;
fbf = n_fbf;
fm = fm->m_nextpkt;
}
}
nextfrag:
/*
* Pass the frame to the h/w for transmission.
* Fragmented frames have each frag chained together
* with m_nextpkt. We know there are sufficient ath_buf's
* to send all the frags because of work done by
* ath_txfrag_setup. We leave m_nextpkt set while
* calling ath_tx_start so it can use it to extend the
* the tx duration to cover the subsequent frag and
* so it can reclaim all the mbufs in case of an error;
* ath_tx_start clears m_nextpkt once it commits to
* handing the frame to the hardware.
*
* Note: if this fails, then the mbufs are freed but
* not the node reference.
*
* So, we now have to free the node reference ourselves here
* and return OK up to the stack.
*/
next = m->m_nextpkt;
if (ath_tx_start(sc, ni, bf, m)) {
bad:
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
reclaim:
bf->bf_m = NULL;
bf->bf_node = NULL;
ATH_TXBUF_LOCK(sc);
ath_returnbuf_head(sc, bf);
/*
* Free the rest of the node references and
* buffers for the fragment list.
*/
ath_txfrag_cleanup(sc, &frags, ni);
ATH_TXBUF_UNLOCK(sc);
/*
* XXX: And free the node/return OK; ath_tx_start() may have
* modified the buffer. We currently have no way to
* signify that the mbuf was freed but there was an error.
*/
ieee80211_free_node(ni);
retval = 0;
goto finish;
}
/*
* Check here if the node is in power save state.
*/
ath_tx_update_tim(sc, ni, 1);
if (next != NULL) {
/*
* Beware of state changing between frags.
* XXX check sta power-save state?
*/
if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
DPRINTF(sc, ATH_DEBUG_XMIT,
"%s: flush fragmented packet, state %s\n",
__func__,
ieee80211_state_name[ni->ni_vap->iv_state]);
/* XXX dmamap */
ieee80211_free_mbuf(next);
goto reclaim;
}
m = next;
bf = TAILQ_FIRST(&frags);
KASSERT(bf != NULL, ("no buf for txfrag"));
TAILQ_REMOVE(&frags, bf, bf_list);
goto nextfrag;
}
/*
* Bump watchdog timer.
*/
sc->sc_wd_timer = 5;
finish:
ATH_TX_UNLOCK(sc);
/*
* Finished transmitting!
*/
ATH_PCU_LOCK(sc);
sc->sc_txstart_cnt--;
ATH_PCU_UNLOCK(sc);
/* Sleep the hardware if required */
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
return (retval);
}
static int
ath_media_change(struct ifnet *ifp)
{
int error = ieee80211_media_change(ifp);
/* NB: only the fixed rate can change and that doesn't need a reset */
return (error == ENETRESET ? 0 : error);
}
/*
* Block/unblock tx+rx processing while a key change is done.
* We assume the caller serializes key management operations
* so we only need to worry about synchronization with other
* uses that originate in the driver.
*/
static void
ath_key_update_begin(struct ieee80211vap *vap)
{
struct ath_softc *sc = vap->iv_ic->ic_softc;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
taskqueue_block(sc->sc_tq);
}
static void
ath_key_update_end(struct ieee80211vap *vap)
{
struct ath_softc *sc = vap->iv_ic->ic_softc;
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
taskqueue_unblock(sc->sc_tq);
}
static void
ath_update_promisc(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_softc;
u_int32_t rfilt;
/* configure rx filter */
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
rfilt = ath_calcrxfilter(sc);
ath_hal_setrxfilter(sc->sc_ah, rfilt);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
}
/*
* Driver-internal mcast update call.
*
* Assumes the hardware is already awake.
*/
static void
ath_update_mcast_hw(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int32_t mfilt[2];
/* calculate and install multicast filter */
if (ic->ic_allmulti == 0) {
struct ieee80211vap *vap;
struct ifnet *ifp;
struct ifmultiaddr *ifma;
/*
* Merge multicast addresses to form the hardware filter.
*/
mfilt[0] = mfilt[1] = 0;
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
ifp = vap->iv_ifp;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
caddr_t dl;
uint32_t val;
uint8_t pos;
/* calculate XOR of eight 6bit values */
dl = LLADDR((struct sockaddr_dl *)
ifma->ifma_addr);
val = le32dec(dl + 0);
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^
val;
val = le32dec(dl + 3);
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^
val;
pos &= 0x3f;
mfilt[pos / 32] |= (1 << (pos % 32));
}
if_maddr_runlock(ifp);
}
} else
mfilt[0] = mfilt[1] = ~0;
ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
__func__, mfilt[0], mfilt[1]);
}
/*
* Called from the net80211 layer - force the hardware
* awake before operating.
*/
static void
ath_update_mcast(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_softc;
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
ath_update_mcast_hw(sc);
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
}
void
ath_mode_init(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
/* XXX power state? */
/* configure rx filter */
rfilt = ath_calcrxfilter(sc);
ath_hal_setrxfilter(ah, rfilt);
/* configure operational mode */
ath_hal_setopmode(ah);
/* handle any link-level address change */
ath_hal_setmac(ah, ic->ic_macaddr);
/* calculate and install multicast filter */
ath_update_mcast_hw(sc);
}
/*
* Set the slot time based on the current setting.
*/
void
ath_setslottime(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
u_int usec;
if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
usec = 13;
else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
usec = 21;
else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
/* honor short/long slot time only in 11g */
/* XXX shouldn't honor on pure g or turbo g channel */
if (ic->ic_flags & IEEE80211_F_SHSLOT)
usec = HAL_SLOT_TIME_9;
else
usec = HAL_SLOT_TIME_20;
} else
usec = HAL_SLOT_TIME_9;
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
__func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
/* Wake up the hardware first before updating the slot time */
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ath_hal_setslottime(ah, usec);
ath_power_restore_power_state(sc);
sc->sc_updateslot = OK;
ATH_UNLOCK(sc);
}
/*
* Callback from the 802.11 layer to update the
* slot time based on the current setting.
*/
static void
ath_updateslot(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_softc;
/*
* When not coordinating the BSS, change the hardware
* immediately. For other operation we defer the change
* until beacon updates have propagated to the stations.
*
* XXX sc_updateslot isn't changed behind a lock?
*/
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_MBSS)
sc->sc_updateslot = UPDATE;
else
ath_setslottime(sc);
}
/*
* Append the contents of src to dst; both queues
* are assumed to be locked.
*/
void
ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
{
ATH_TXQ_LOCK_ASSERT(src);
ATH_TXQ_LOCK_ASSERT(dst);
TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
dst->axq_link = src->axq_link;
src->axq_link = NULL;
dst->axq_depth += src->axq_depth;
dst->axq_aggr_depth += src->axq_aggr_depth;
src->axq_depth = 0;
src->axq_aggr_depth = 0;
}
/*
* Reset the hardware, with no loss.
*
* This can't be used for a general case reset.
*/
static void
ath_reset_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
#if 0
device_printf(sc->sc_dev, "%s: resetting\n", __func__);
#endif
ath_reset(sc, ATH_RESET_NOLOSS);
}
/*
* Reset the hardware after detecting beacons have stopped.
*/
static void
ath_bstuck_proc(void *arg, int pending)
{
struct ath_softc *sc = arg;
uint32_t hangs = 0;
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs);
#ifdef ATH_DEBUG_ALQ
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
#endif
device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n",
sc->sc_bmisscount);
sc->sc_stats.ast_bstuck++;
/*
* This assumes that there's no simultaneous channel mode change
* occurring.
*/
ath_reset(sc, ATH_RESET_NOLOSS);
}
static int
ath_desc_alloc(struct ath_softc *sc)
{
int error;
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
"tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
if (error != 0) {
return error;
}
sc->sc_txbuf_cnt = ath_txbuf;
error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
"tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
ATH_TXDESC);
if (error != 0) {
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
return error;
}
/*
* XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
* flag doesn't have to be set in ath_getbuf_locked().
*/
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
if (error != 0) {
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
&sc->sc_txbuf_mgmt);
return error;
}
return 0;
}
static void
ath_desc_free(struct ath_softc *sc)
{
if (sc->sc_bdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
if (sc->sc_txdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
if (sc->sc_txdma_mgmt.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
&sc->sc_txbuf_mgmt);
}
static struct ieee80211_node *
ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_softc;
const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
struct ath_node *an;
an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
if (an == NULL) {
/* XXX stat+msg */
return NULL;
}
ath_rate_node_init(sc, an);
/* Setup the mutex - there's no associd yet so set the name to NULL */
snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
device_get_nameunit(sc->sc_dev), an);
mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
/* XXX setup ath_tid */
ath_tx_tid_init(sc, an);
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
return &an->an_node;
}
static void
ath_node_cleanup(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_softc;
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
ni->ni_macaddr, ":", ATH_NODE(ni));
/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
ath_tx_node_flush(sc, ATH_NODE(ni));
ath_rate_node_cleanup(sc, ATH_NODE(ni));
sc->sc_node_cleanup(ni);
}
static void
ath_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_softc;
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
ni->ni_macaddr, ":", ATH_NODE(ni));
mtx_destroy(&ATH_NODE(ni)->an_mtx);
sc->sc_node_free(ni);
}
static void
ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
{
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_softc;
struct ath_hal *ah = sc->sc_ah;
*rssi = ic->ic_node_getrssi(ni);
if (ni->ni_chan != IEEE80211_CHAN_ANYC)
*noise = ath_hal_getchannoise(ah, ni->ni_chan);
else
*noise = -95; /* nominally correct */
}
/*
* Set the default antenna.
*/
void
ath_setdefantenna(struct ath_softc *sc, u_int antenna)
{
struct ath_hal *ah = sc->sc_ah;
/* XXX block beacon interrupts */
ath_hal_setdefantenna(ah, antenna);
if (sc->sc_defant != antenna)
sc->sc_stats.ast_ant_defswitch++;
sc->sc_defant = antenna;
sc->sc_rxotherant = 0;
}
static void
ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
{
txq->axq_qnum = qnum;
txq->axq_ac = 0;
txq->axq_depth = 0;
txq->axq_aggr_depth = 0;
txq->axq_intrcnt = 0;
txq->axq_link = NULL;
txq->axq_softc = sc;
TAILQ_INIT(&txq->axq_q);
TAILQ_INIT(&txq->axq_tidq);
TAILQ_INIT(&txq->fifo.axq_q);
ATH_TXQ_LOCK_INIT(sc, txq);
}
/*
* Setup a h/w transmit queue.
*/
static struct ath_txq *
ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
{
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
int qnum;
memset(&qi, 0, sizeof(qi));
qi.tqi_subtype = subtype;
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
* when a tx queue gets deep; otherwise waiting for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
* reducing interrupts this also permits more concurrency.
* The only potential downside is if the tx queue backs
* up in which case the top half of the kernel may backup
* due to a lack of tx descriptors.
*/
if (sc->sc_isedma)
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
HAL_TXQ_TXOKINT_ENABLE;
else
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
HAL_TXQ_TXDESCINT_ENABLE;
qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
if (qnum == -1) {
/*
* NB: don't print a message, this happens
* normally on parts with too few tx queues
*/
return NULL;
}
if (qnum >= nitems(sc->sc_txq)) {
device_printf(sc->sc_dev,
"hal qnum %u out of range, max %zu!\n",
qnum, nitems(sc->sc_txq));
ath_hal_releasetxqueue(ah, qnum);
return NULL;
}
if (!ATH_TXQ_SETUP(sc, qnum)) {
ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
sc->sc_txqsetup |= 1<<qnum;
}
return &sc->sc_txq[qnum];
}
/*
* Setup a hardware data transmit queue for the specified
* access control. The hal may not support all requested
* queues in which case it will return a reference to a
* previously setup queue. We record the mapping from ac's
* to h/w queues for use by ath_tx_start and also track
* the set of h/w queues being used to optimize work in the
* transmit interrupt handler and related routines.
*/
static int
ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
{
struct ath_txq *txq;
if (ac >= nitems(sc->sc_ac2q)) {
device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
ac, nitems(sc->sc_ac2q));
return 0;
}
txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
if (txq != NULL) {
txq->axq_ac = ac;
sc->sc_ac2q[ac] = txq;
return 1;
} else
return 0;
}
/*
* Update WME parameters for a transmit queue.
*/
static int
ath_txq_update(struct ath_softc *sc, int ac)
{
#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
struct ieee80211com *ic = &sc->sc_ic;
struct ath_txq *txq = sc->sc_ac2q[ac];
struct chanAccParams chp;
struct wmeParams *wmep;
struct ath_hal *ah = sc->sc_ah;
HAL_TXQ_INFO qi;
ieee80211_wme_ic_getparams(ic, &chp);
wmep = &chp.cap_wmeParams[ac];
ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma) {
/*
* AIFS is zero so there's no pre-transmit wait. The
* burst time defines the slot duration and is configured
* through net80211. The QCU is setup to not do post-xmit
* back off, lockout all lower-priority QCU's, and fire
* off the DMA beacon alert timer which is setup based
* on the slot configuration.
*/
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE
| HAL_TXQ_TXEOLINT_ENABLE
| HAL_TXQ_DBA_GATED
| HAL_TXQ_BACKOFF_DISABLE
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
;
qi.tqi_aifs = 0;
/* XXX +dbaprep? */
qi.tqi_readyTime = sc->sc_tdmaslotlen;
qi.tqi_burstTime = qi.tqi_readyTime;
} else {
#endif
/*
* XXX shouldn't this just use the default flags
* used in the previous queue setup?
*/
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXDESCINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE
| HAL_TXQ_TXEOLINT_ENABLE
;
qi.tqi_aifs = wmep->wmep_aifsn;
qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
qi.tqi_readyTime = 0;
qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit);
#ifdef IEEE80211_SUPPORT_TDMA
}
#endif
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
__func__, txq->axq_qnum, qi.tqi_qflags,
qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
device_printf(sc->sc_dev, "unable to update hardware queue "
"parameters for %s traffic!\n", ieee80211_wme_acnames[ac]);
return 0;
} else {
ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
return 1;
}
#undef ATH_EXPONENT_TO_VALUE
}
/*
* Callback from the 802.11 layer to update WME parameters.
*/
int
ath_wme_update(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_softc;
return !ath_txq_update(sc, WME_AC_BE) ||
!ath_txq_update(sc, WME_AC_BK) ||
!ath_txq_update(sc, WME_AC_VI) ||
!ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
}
/*
* Reclaim resources for a setup queue.
*/
static void
ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
{
ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
ATH_TXQ_LOCK_DESTROY(txq);
}
/*
* Reclaim all tx queue resources.
*/
static void
ath_tx_cleanup(struct ath_softc *sc)
{
int i;
ATH_TXBUF_LOCK_DESTROY(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
}
/*
* Return h/w rate index for an IEEE rate (w/o basic rate bit)
* using the current rates in sc_rixmap.
*/
int
ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
{
int rix = sc->sc_rixmap[rate];
/* NB: return lowest rix for invalid rate */
return (rix == 0xff ? 0 : rix);
}
static void
ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
struct ieee80211com *ic = &sc->sc_ic;
int sr, lr, pri;
if (ts->ts_status == 0) {
u_int8_t txant = ts->ts_antenna;
sc->sc_stats.ast_ant_tx[txant]++;
sc->sc_ant_tx[txant]++;
if (ts->ts_finaltsi != 0)
sc->sc_stats.ast_tx_altrate++;
/* XXX TODO: should do per-pri conuters */
pri = M_WME_GETAC(bf->bf_m);
if (pri >= WME_AC_VO)
ic->ic_wme.wme_hipri_traffic++;
if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
ni->ni_inact = ni->ni_inact_reload;
} else {
if (ts->ts_status & HAL_TXERR_XRETRY)
sc->sc_stats.ast_tx_xretries++;
if (ts->ts_status & HAL_TXERR_FIFO)
sc->sc_stats.ast_tx_fifoerr++;
if (ts->ts_status & HAL_TXERR_FILT)
sc->sc_stats.ast_tx_filtered++;
if (ts->ts_status & HAL_TXERR_XTXOP)
sc->sc_stats.ast_tx_xtxop++;
if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
sc->sc_stats.ast_tx_timerexpired++;
if (bf->bf_m->m_flags & M_FF)
sc->sc_stats.ast_ff_txerr++;
}
/* XXX when is this valid? */
if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
sc->sc_stats.ast_tx_desccfgerr++;
/*
* This can be valid for successful frame transmission!
* If there's a TX FIFO underrun during aggregate transmission,
* the MAC will pad the rest of the aggregate with delimiters.
* If a BA is returned, the frame is marked as "OK" and it's up
* to the TX completion code to notice which frames weren't
* successfully transmitted.
*/
if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
sc->sc_stats.ast_tx_data_underrun++;
if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
sc->sc_stats.ast_tx_delim_underrun++;
sr = ts->ts_shortretry;
lr = ts->ts_longretry;
sc->sc_stats.ast_tx_shortretry += sr;
sc->sc_stats.ast_tx_longretry += lr;
}
/*
* The default completion. If fail is 1, this means
* "please don't retry the frame, and just return -1 status
* to the net80211 stack.
*/
void
ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
{
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
int st;
if (fail == 1)
st = -1;
else
st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
ts->ts_status : HAL_TXERR_XRETRY;
#if 0
if (bf->bf_state.bfs_dobaw)
device_printf(sc->sc_dev,
"%s: bf %p: seqno %d: dobaw should've been cleared!\n",
__func__,
bf,
SEQNO(bf->bf_state.bfs_seqno));
#endif
if (bf->bf_next != NULL)
device_printf(sc->sc_dev,
"%s: bf %p: seqno %d: bf_next not NULL!\n",
__func__,
bf,
SEQNO(bf->bf_state.bfs_seqno));
/*
* Check if the node software queue is empty; if so
* then clear the TIM.
*
* This needs to be done before the buffer is freed as
* otherwise the node reference will have been released
* and the node may not actually exist any longer.
*
* XXX I don't like this belonging here, but it's cleaner
* to do it here right now then all the other places
* where ath_tx_default_comp() is called.
*
* XXX TODO: during drain, ensure that the callback is
* being called so we get a chance to update the TIM.
*/
if (bf->bf_node) {
ATH_TX_LOCK(sc);
ath_tx_update_tim(sc, bf->bf_node, 0);
ATH_TX_UNLOCK(sc);
}
/*
* Do any tx complete callback. Note this must
* be done before releasing the node reference.
* This will free the mbuf, release the net80211
* node and recycle the ath_buf.
*/
ath_tx_freebuf(sc, bf, st);
}
/*
* Update rate control with the given completion status.
*/
void
ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
int nframes, int nbad)
{
struct ath_node *an;
/* Only for unicast frames */
if (ni == NULL)
return;
an = ATH_NODE(ni);
ATH_NODE_UNLOCK_ASSERT(an);
if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
ATH_NODE_LOCK(an);
ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
ATH_NODE_UNLOCK(an);
}
}
/*
* Process the completion of the given buffer.
*
* This calls the rate control update and then the buffer completion.
* This will either free the buffer or requeue it. In any case, the
* bf pointer should be treated as invalid after this function is called.
*/
void
ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
struct ath_tx_status *ts, struct ath_buf *bf)
{
struct ieee80211_node *ni = bf->bf_node;
ATH_TX_UNLOCK_ASSERT(sc);
ATH_TXQ_UNLOCK_ASSERT(txq);
/* If unicast frame, update general statistics */
if (ni != NULL) {
/* update statistics */
ath_tx_update_stats(sc, ts, bf);
}
/*
* Call the completion handler.
* The completion handler is responsible for
* calling the rate control code.
*
* Frames with no completion handler get the
* rate control code called here.
*/
if (bf->bf_comp == NULL) {
if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
(bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
/*
* XXX assume this isn't an aggregate
* frame.
*/
ath_tx_update_ratectrl(sc, ni,
bf->bf_state.bfs_rc, ts,
bf->bf_state.bfs_pktlen, 1,
(ts->ts_status == 0 ? 0 : 1));
}
ath_tx_default_comp(sc, bf, 0);
} else
bf->bf_comp(sc, bf, 0);
}
/*
* Process completed xmit descriptors from the specified queue.
* Kick the packet scheduler if needed. This can occur from this
* particular task.
*/
static int
ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
struct ath_desc *ds;
struct ath_tx_status *ts;
struct ieee80211_node *ni;
#ifdef IEEE80211_SUPPORT_SUPERG
struct ieee80211com *ic = &sc->sc_ic;
#endif /* IEEE80211_SUPPORT_SUPERG */
int nacked;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
__func__, txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link);
ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
"ath_tx_processq: txq=%u head %p link %p depth %p",
txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link,
txq->axq_depth);
nacked = 0;
for (;;) {
ATH_TXQ_LOCK(txq);
txq->axq_intrcnt = 0; /* reset periodic desc intr count */
bf = TAILQ_FIRST(&txq->axq_q);
if (bf == NULL) {
ATH_TXQ_UNLOCK(txq);
break;
}
ds = bf->bf_lastds; /* XXX must be setup correctly! */
ts = &bf->bf_status.ds_txstat;
status = ath_hal_txprocdesc(ah, ds, ts);
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
status == HAL_OK);
else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
status == HAL_OK);
#endif
#ifdef ATH_DEBUG_ALQ
if (if_ath_alq_checkdebug(&sc->sc_alq,
ATH_ALQ_EDMA_TXSTATUS)) {
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
sc->sc_tx_statuslen,
(char *) ds);
}
#endif
if (status == HAL_EINPROGRESS) {
ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
"ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
txq->axq_qnum, bf, ds);
ATH_TXQ_UNLOCK(txq);
break;
}
ATH_TXQ_REMOVE(txq, bf, bf_list);
/*
* Sanity check.
*/
if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
device_printf(sc->sc_dev,
"%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
__func__,
txq->axq_qnum,
bf,
bf->bf_state.bfs_tx_queue);
}
if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
device_printf(sc->sc_dev,
"%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
__func__,
txq->axq_qnum,
bf->bf_last,
bf->bf_last->bf_state.bfs_tx_queue);
}
#if 0
if (txq->axq_depth > 0) {
/*
* More frames follow. Mark the buffer busy
* so it's not re-used while the hardware may
* still re-read the link field in the descriptor.
*
* Use the last buffer in an aggregate as that
* is where the hardware may be - intermediate
* descriptors won't be "busy".
*/
bf->bf_last->bf_flags |= ATH_BUF_BUSY;
} else
txq->axq_link = NULL;
#else
bf->bf_last->bf_flags |= ATH_BUF_BUSY;
#endif
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth--;
ni = bf->bf_node;
ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
"ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
txq->axq_qnum, bf, ds, ni, ts->ts_status);
/*
* If unicast frame was ack'd update RSSI,
* including the last rx time used to
* workaround phantom bmiss interrupts.
*/
if (ni != NULL && ts->ts_status == 0 &&
((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
nacked++;
sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
ts->ts_rssi);
}
ATH_TXQ_UNLOCK(txq);
/*
* Update statistics and call completion
*/
ath_tx_process_buf_completion(sc, txq, ts, bf);
/* XXX at this point, bf and ni may be totally invalid */
}
#ifdef IEEE80211_SUPPORT_SUPERG
/*
* Flush fast-frame staging queue when traffic slows.
*/
if (txq->axq_depth <= 1)
ieee80211_ff_flush(ic, txq->axq_ac);
#endif
/* Kick the software TXQ scheduler */
if (dosched) {
ATH_TX_LOCK(sc);
ath_txq_sched(sc, txq);
ATH_TX_UNLOCK(sc);
}
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
"ath_tx_processq: txq=%u: done",
txq->axq_qnum);
return nacked;
}
#define TXQACTIVE(t, q) ( (t) & (1 << (q)))
/*
* Deferred processing of transmit interrupt; special-cased
* for a single hardware transmit queue (e.g. 5210 and 5211).
*/
static void
ath_tx_proc_q0(void *arg, int npending)
{
struct ath_softc *sc = arg;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
"ath_tx_proc_q0: txqs=0x%08x", txqs);
if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
/* XXX why is lastrx updated in tx code? */
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
ath_tx_processq(sc, sc->sc_cabq, 1);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
ath_tx_kick(sc);
}
/*
* Deferred processing of transmit interrupt; special-cased
* for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
*/
static void
ath_tx_proc_q0123(void *arg, int npending)
{
struct ath_softc *sc = arg;
int nacked;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
"ath_tx_proc_q0123: txqs=0x%08x", txqs);
/*
* Process each active queue.
*/
nacked = 0;
if (TXQACTIVE(txqs, 0))
nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
if (TXQACTIVE(txqs, 1))
nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
if (TXQACTIVE(txqs, 2))
nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
if (TXQACTIVE(txqs, 3))
nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
ath_tx_processq(sc, sc->sc_cabq, 1);
if (nacked)
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
ath_tx_kick(sc);
}
/*
* Deferred processing of transmit interrupt.
*/
static void
ath_tx_proc(void *arg, int npending)
{
struct ath_softc *sc = arg;
int i, nacked;
uint32_t txqs;
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt++;
txqs = sc->sc_txq_active;
sc->sc_txq_active &= ~txqs;
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
/*
* Process each active queue.
*/
nacked = 0;
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
if (nacked)
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
sc->sc_wd_timer = 0;
if (sc->sc_softled)
ath_led_event(sc, sc->sc_txrix);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
ath_tx_kick(sc);
}
#undef TXQACTIVE
/*
* Deferred processing of TXQ rescheduling.
*/
static void
ath_txq_sched_tasklet(void *arg, int npending)
{
struct ath_softc *sc = arg;
int i;
/* XXX is skipping ok? */
ATH_PCU_LOCK(sc);
#if 0
if (sc->sc_inreset_cnt > 0) {
device_printf(sc->sc_dev,
"%s: sc_inreset_cnt > 0; skipping\n", __func__);
ATH_PCU_UNLOCK(sc);
return;
}
#endif
sc->sc_txproc_cnt++;
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
ATH_TX_LOCK(sc);
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ath_txq_sched(sc, &sc->sc_txq[i]);
}
}
ATH_TX_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
sc->sc_txproc_cnt--;
ATH_PCU_UNLOCK(sc);
}
void
ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
{
ATH_TXBUF_LOCK_ASSERT(sc);
if (bf->bf_flags & ATH_BUF_MGMT)
TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
else {
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
sc->sc_txbuf_cnt++;
if (sc->sc_txbuf_cnt > ath_txbuf) {
device_printf(sc->sc_dev,
"%s: sc_txbuf_cnt > %d?\n",
__func__,
ath_txbuf);
sc->sc_txbuf_cnt = ath_txbuf;
}
}
}
void
ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
{
ATH_TXBUF_LOCK_ASSERT(sc);
if (bf->bf_flags & ATH_BUF_MGMT)
TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
else {
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
sc->sc_txbuf_cnt++;
if (sc->sc_txbuf_cnt > ATH_TXBUF) {
device_printf(sc->sc_dev,
"%s: sc_txbuf_cnt > %d?\n",
__func__,
ATH_TXBUF);
sc->sc_txbuf_cnt = ATH_TXBUF;
}
}
}
/*
* Free the holding buffer if it exists
*/
void
ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
{
ATH_TXBUF_UNLOCK_ASSERT(sc);
ATH_TXQ_LOCK_ASSERT(txq);
if (txq->axq_holdingbf == NULL)
return;
txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
ATH_TXBUF_LOCK(sc);
ath_returnbuf_tail(sc, txq->axq_holdingbf);
ATH_TXBUF_UNLOCK(sc);
txq->axq_holdingbf = NULL;
}
/*
* Add this buffer to the holding queue, freeing the previous
* one if it exists.
*/
static void
ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_txq *txq;
txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
ATH_TXBUF_UNLOCK_ASSERT(sc);
ATH_TXQ_LOCK_ASSERT(txq);
/* XXX assert ATH_BUF_BUSY is set */
/* XXX assert the tx queue is under the max number */
if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
__func__,
bf,
bf->bf_state.bfs_tx_queue);
bf->bf_flags &= ~ATH_BUF_BUSY;
ath_returnbuf_tail(sc, bf);
return;
}
ath_txq_freeholdingbuf(sc, txq);
txq->axq_holdingbf = bf;
}
/*
* Return a buffer to the pool and update the 'busy' flag on the
* previous 'tail' entry.
*
* This _must_ only be called when the buffer is involved in a completed
* TX. The logic is that if it was part of an active TX, the previous
* buffer on the list is now not involved in a halted TX DMA queue, waiting
* for restart (eg for TDMA.)
*
* The caller must free the mbuf and recycle the node reference.
*
* XXX This method of handling busy / holding buffers is insanely stupid.
* It requires bf_state.bfs_tx_queue to be correctly assigned. It would
* be much nicer if buffers in the processq() methods would instead be
* always completed there (pushed onto a txq or ath_bufhead) so we knew
* exactly what hardware queue they came from in the first place.
*/
void
ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_txq *txq;
txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
/*
* If this buffer is busy, push it onto the holding queue.
*/
if (bf->bf_flags & ATH_BUF_BUSY) {
ATH_TXQ_LOCK(txq);
ath_txq_addholdingbuf(sc, bf);
ATH_TXQ_UNLOCK(txq);
return;
}
/*
* Not a busy buffer, so free normally
*/
ATH_TXBUF_LOCK(sc);
ath_returnbuf_tail(sc, bf);
ATH_TXBUF_UNLOCK(sc);
}
/*
* This is currently used by ath_tx_draintxq() and
* ath_tx_tid_free_pkts().
*
* It recycles a single ath_buf.
*/
void
ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
{
struct ieee80211_node *ni = bf->bf_node;
struct mbuf *m0 = bf->bf_m;
/*
* Make sure that we only sync/unload if there's an mbuf.
* If not (eg we cloned a buffer), the unload will have already
* occurred.
*/
if (bf->bf_m != NULL) {
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
}
bf->bf_node = NULL;
bf->bf_m = NULL;
/* Free the buffer, it's not needed any longer */
ath_freebuf(sc, bf);
/* Pass the buffer back to net80211 - completing it */
ieee80211_tx_complete(ni, m0, status);
}
static struct ath_buf *
ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_buf *bf;
ATH_TXQ_LOCK_ASSERT(txq);
/*
* Drain the FIFO queue first, then if it's
* empty, move to the normal frame queue.
*/
bf = TAILQ_FIRST(&txq->fifo.axq_q);
if (bf != NULL) {
/*
* Is it the last buffer in this set?
* Decrement the FIFO counter.
*/
if (bf->bf_flags & ATH_BUF_FIFOEND) {
if (txq->axq_fifo_depth == 0) {
device_printf(sc->sc_dev,
"%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
__func__,
txq->axq_qnum,
txq->fifo.axq_depth);
} else
txq->axq_fifo_depth--;
}
ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
return (bf);
}
/*
* Debugging!
*/
if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
device_printf(sc->sc_dev,
"%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
__func__,
txq->axq_qnum,
txq->axq_fifo_depth,
txq->fifo.axq_depth);
}
/*
* Now drain the pending queue.
*/
bf = TAILQ_FIRST(&txq->axq_q);
if (bf == NULL) {
txq->axq_link = NULL;
return (NULL);
}
ATH_TXQ_REMOVE(txq, bf, bf_list);
return (bf);
}
void
ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
{
#ifdef ATH_DEBUG
struct ath_hal *ah = sc->sc_ah;
#endif
struct ath_buf *bf;
u_int ix;
/*
* NB: this assumes output has been stopped and
* we do not need to block ath_tx_proc
*/
for (ix = 0;; ix++) {
ATH_TXQ_LOCK(txq);
bf = ath_tx_draintxq_get_one(sc, txq);
if (bf == NULL) {
ATH_TXQ_UNLOCK(txq);
break;
}
if (bf->bf_state.bfs_aggr)
txq->axq_aggr_depth--;
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RESET) {
struct ieee80211com *ic = &sc->sc_ic;
int status = 0;
/*
* EDMA operation has a TX completion FIFO
* separate from the TX descriptor, so this
* method of checking the "completion" status
* is wrong.
*/
if (! sc->sc_isedma) {
status = (ath_hal_txprocdesc(ah,
bf->bf_lastds,
&bf->bf_status.ds_txstat) == HAL_OK);
}
ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
bf->bf_m->m_len, 0, -1);
}
#endif /* ATH_DEBUG */
/*
* Since we're now doing magic in the completion
* functions, we -must- call it for aggregation
* destinations or BAW tracking will get upset.
*/
/*
* Clear ATH_BUF_BUSY; the completion handler
* will free the buffer.
*/
ATH_TXQ_UNLOCK(txq);
bf->bf_flags &= ~ATH_BUF_BUSY;
if (bf->bf_comp)
bf->bf_comp(sc, bf, 1);
else
ath_tx_default_comp(sc, bf, 1);
}
/*
* Free the holding buffer if it exists
*/
ATH_TXQ_LOCK(txq);
ath_txq_freeholdingbuf(sc, txq);
ATH_TXQ_UNLOCK(txq);
/*
* Drain software queued frames which are on
* active TIDs.
*/
ath_tx_txq_drain(sc, txq);
}
static void
ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
ATH_TXQ_LOCK_ASSERT(txq);
DPRINTF(sc, ATH_DEBUG_RESET,
"%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
"link %p, holdingbf=%p\n",
__func__,
txq->axq_qnum,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
(int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
(int) ath_hal_numtxpending(ah, txq->axq_qnum),
txq->axq_flags,
txq->axq_link,
txq->axq_holdingbf);
(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
/* We've stopped TX DMA, so mark this as stopped. */
txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
#ifdef ATH_DEBUG
if ((sc->sc_debug & ATH_DEBUG_RESET)
&& (txq->axq_holdingbf != NULL)) {
ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
}
#endif
}
int
ath_stoptxdma(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
int i;
/* XXX return value */
if (sc->sc_invalid)
return 0;
if (!sc->sc_invalid) {
/* don't touch the hardware if marked invalid */
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
__func__, sc->sc_bhalq,
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
NULL);
/* stop the beacon queue */
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
/* Stop the data queues */
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ATH_TXQ_LOCK(&sc->sc_txq[i]);
ath_tx_stopdma(sc, &sc->sc_txq[i]);
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
}
}
}
return 1;
}
#ifdef ATH_DEBUG
void
ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
int i = 0;
if (! (sc->sc_debug & ATH_DEBUG_RESET))
return;
device_printf(sc->sc_dev, "%s: Q%d: begin\n",
__func__, txq->axq_qnum);
TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
ath_printtxbuf(sc, bf, txq->axq_qnum, i,
ath_hal_txprocdesc(ah, bf->bf_lastds,
&bf->bf_status.ds_txstat) == HAL_OK);
i++;
}
device_printf(sc->sc_dev, "%s: Q%d: end\n",
__func__, txq->axq_qnum);
}
#endif /* ATH_DEBUG */
/*
* Drain the transmit queues and reclaim resources.
*/
void
ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf_last;
int i;
(void) ath_stoptxdma(sc);
/*
* Dump the queue contents
*/
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
/*
* XXX TODO: should we just handle the completed TX frames
* here, whether or not the reset is a full one or not?
*/
if (ATH_TXQ_SETUP(sc, i)) {
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RESET)
ath_tx_dump(sc, &sc->sc_txq[i]);
#endif /* ATH_DEBUG */
if (reset_type == ATH_RESET_NOLOSS) {
ath_tx_processq(sc, &sc->sc_txq[i], 0);
ATH_TXQ_LOCK(&sc->sc_txq[i]);
/*
* Free the holding buffer; DMA is now
* stopped.
*/
ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
/*
* Setup the link pointer to be the
* _last_ buffer/descriptor in the list.
* If there's nothing in the list, set it
* to NULL.
*/
bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
axq_q_s);
if (bf_last != NULL) {
ath_hal_gettxdesclinkptr(ah,
bf_last->bf_lastds,
&sc->sc_txq[i].axq_link);
} else {
sc->sc_txq[i].axq_link = NULL;
}
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
} else
ath_tx_draintxq(sc, &sc->sc_txq[i]);
}
}
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RESET) {
struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
if (bf != NULL && bf->bf_m != NULL) {
ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
ath_hal_txprocdesc(ah, bf->bf_lastds,
&bf->bf_status.ds_txstat) == HAL_OK);
ieee80211_dump_pkt(&sc->sc_ic,
mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
0, -1);
}
}
#endif /* ATH_DEBUG */
sc->sc_wd_timer = 0;
}
/*
* Update internal state after a channel change.
*/
static void
ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
{
enum ieee80211_phymode mode;
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
mode = ieee80211_chan2mode(chan);
if (mode != sc->sc_curmode)
ath_setcurmode(sc, mode);
sc->sc_curchan = chan;
}
/*
* Set/change channels. If the channel is really being changed,
* it's done by resetting the chip. To accomplish this we must
* first cleanup any pending DMA, then restart stuff after a la
* ath_init.
*/
static int
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
int ret = 0;
/* Treat this as an interface reset */
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_UNLOCK_ASSERT(sc);
/* (Try to) stop TX/RX from occurring */
taskqueue_block(sc->sc_tq);
ATH_PCU_LOCK(sc);
/* Disable interrupts */
ath_hal_intrset(ah, 0);
/* Stop new RX/TX/interrupt completion */
if (ath_reset_grablock(sc, 1) == 0) {
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
__func__);
}
/* Stop pending RX/TX completion */
ath_txrx_stop_locked(sc);
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
__func__, ieee80211_chan2ieee(ic, chan),
chan->ic_freq, chan->ic_flags);
if (chan != sc->sc_curchan) {
HAL_STATUS status;
/*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
#if 0
ath_hal_intrset(ah, 0); /* disable interrupts */
#endif
ath_stoprecv(sc, 1); /* turn off frame recv */
/*
* First, handle completed TX/RX frames.
*/
ath_rx_flush(sc);
ath_draintxq(sc, ATH_RESET_NOLOSS);
/*
* Next, flush the non-scheduled frames.
*/
ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */
ath_update_chainmasks(sc, chan);
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
sc->sc_cur_rxchainmask);
if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE,
HAL_RESET_NORMAL, &status)) {
device_printf(sc->sc_dev, "%s: unable to reset "
"channel %u (%u MHz, flags 0x%x), hal status %u\n",
__func__, ieee80211_chan2ieee(ic, chan),
chan->ic_freq, chan->ic_flags, status);
ret = EIO;
goto finish;
}
sc->sc_diversity = ath_hal_getdiversity(ah);
ATH_RX_LOCK(sc);
sc->sc_rx_stopped = 1;
sc->sc_rx_resetted = 1;
ATH_RX_UNLOCK(sc);
/* Quiet time handling - ensure we resync */
ath_vap_clear_quiet_ie(sc);
/* Let DFS at it in case it's a DFS channel */
ath_dfs_radar_enable(sc, chan);
/* Let spectral at in case spectral is enabled */
ath_spectral_enable(sc, chan);
/*
* Let bluetooth coexistence at in case it's needed for this
* channel
*/
ath_btcoex_enable(sc, ic->ic_curchan);
/*
* If we're doing TDMA, enforce the TXOP limitation for chips
* that support it.
*/
if (sc->sc_hasenforcetxop && sc->sc_tdma)
ath_hal_setenforcetxop(sc->sc_ah, 1);
else
ath_hal_setenforcetxop(sc->sc_ah, 0);
/*
* Re-enable rx framework.
*/
if (ath_startrecv(sc) != 0) {
device_printf(sc->sc_dev,
"%s: unable to restart recv logic\n", __func__);
ret = EIO;
goto finish;
}
/*
* Change channels and update the h/w rate map
* if we're switching; e.g. 11a to 11b/g.
*/
ath_chan_change(sc, chan);
/*
* Reset clears the beacon timers; reset them
* here if needed.
*/
if (sc->sc_beacons) { /* restart beacons */
#ifdef IEEE80211_SUPPORT_TDMA
if (sc->sc_tdma)
ath_tdma_config(sc, NULL);
else
#endif
ath_beacon_config(sc, NULL);
}
/*
* Re-enable interrupts.
*/
#if 0
ath_hal_intrset(ah, sc->sc_imask);
#endif
}
finish:
ATH_PCU_LOCK(sc);
sc->sc_inreset_cnt--;
/* XXX only do this if sc_inreset_cnt == 0? */
ath_hal_intrset(ah, sc->sc_imask);
ATH_PCU_UNLOCK(sc);
ath_txrx_start(sc);
/* XXX ath_start? */
return ret;
}
/*
* Periodically recalibrate the PHY to account
* for temperature/environment changes.
*/
static void
ath_calibrate(void *arg)
{
struct ath_softc *sc = arg;
struct ath_hal *ah = sc->sc_ah;
struct ieee80211com *ic = &sc->sc_ic;
HAL_BOOL longCal, isCalDone = AH_TRUE;
HAL_BOOL aniCal, shortCal = AH_FALSE;
int nextcal;
ATH_LOCK_ASSERT(sc);
/*
* Force the hardware awake for ANI work.
*/
ath_power_set_power_state(sc, HAL_PM_AWAKE);
/* Skip trying to do this if we're in reset */
if (sc->sc_inreset_cnt)
goto restart;
if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */
goto restart;
longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
if (sc->sc_doresetcal)
shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
if (aniCal) {
sc->sc_stats.ast_ani_cal++;
sc->sc_lastani = ticks;
ath_hal_ani_poll(ah, sc->sc_curchan);
}
if (longCal) {
sc->sc_stats.ast_per_cal++;
sc->sc_lastlongcal = ticks;
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
/*
* Rfgain is out of bounds, reset the chip
* to load new gain values.
*/
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
"%s: rfgain change\n", __func__);
sc->sc_stats.ast_per_rfgain++;
sc->sc_resetcal = 0;
sc->sc_doresetcal = AH_TRUE;
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
ath_power_restore_power_state(sc);
return;
}
/*
* If this long cal is after an idle period, then
* reset the data collection state so we start fresh.
*/
if (sc->sc_resetcal) {
(void) ath_hal_calreset(ah, sc->sc_curchan);
sc->sc_lastcalreset = ticks;
sc->sc_lastshortcal = ticks;
sc->sc_resetcal = 0;
sc->sc_doresetcal = AH_TRUE;
}
}
/* Only call if we're doing a short/long cal, not for ANI calibration */
if (shortCal || longCal) {
isCalDone = AH_FALSE;
if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
if (longCal) {
/*
* Calibrate noise floor data again in case of change.
*/
ath_hal_process_noisefloor(ah);
}
} else {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: calibration of channel %u failed\n",
__func__, sc->sc_curchan->ic_freq);
sc->sc_stats.ast_per_calfail++;
}
if (shortCal)
sc->sc_lastshortcal = ticks;
}
if (!isCalDone) {
restart:
/*
* Use a shorter interval to potentially collect multiple
* data samples required to complete calibration. Once
* we're told the work is done we drop back to a longer
* interval between requests. We're more aggressive doing
* work when operating as an AP to improve operation right
* after startup.
*/
sc->sc_lastshortcal = ticks;
nextcal = ath_shortcalinterval*hz/1000;
if (sc->sc_opmode != HAL_M_HOSTAP)
nextcal *= 10;
sc->sc_doresetcal = AH_TRUE;
} else {
/* nextcal should be the shortest time for next event */
nextcal = ath_longcalinterval*hz;
if (sc->sc_lastcalreset == 0)
sc->sc_lastcalreset = sc->sc_lastlongcal;
else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
sc->sc_resetcal = 1; /* setup reset next trip */
sc->sc_doresetcal = AH_FALSE;
}
/* ANI calibration may occur more often than short/long/resetcal */
if (ath_anicalinterval > 0)
nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
if (nextcal != 0) {
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
__func__, nextcal, isCalDone ? "" : "!");
callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
} else {
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
__func__);
/* NB: don't rearm timer */
}
/*
* Restore power state now that we're done.
*/
ath_power_restore_power_state(sc);
}
static void
ath_scan_start(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_softc;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
/* XXX calibration timer? */
/* XXXGL: is constant ieee80211broadcastaddr a correct choice? */
ATH_LOCK(sc);
sc->sc_scanning = 1;
sc->sc_syncbeacon = 0;
rfilt = ath_calcrxfilter(sc);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
ath_hal_setrxfilter(ah, rfilt);
ath_hal_setassocid(ah, ieee80211broadcastaddr, 0);
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
__func__, rfilt, ether_sprintf(ieee80211broadcastaddr));
}
static void
ath_scan_end(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_softc;
struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt;
ATH_LOCK(sc);
sc->sc_scanning = 0;
rfilt = ath_calcrxfilter(sc);
ATH_UNLOCK(sc);
ATH_PCU_LOCK(sc);
ath_hal_setrxfilter(ah, rfilt);
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
ath_hal_process_noisefloor(ah);
ATH_PCU_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt, ether_sprintf(sc->sc_curbssid),
sc->sc_curaid);
}
#ifdef ATH_ENABLE_11N
/*
* For now, just do a channel change.
*
* Later, we'll go through the hard slog of suspending tx/rx, changing rate
* control state and resetting the hardware without dropping frames out
* of the queue.
*
* The unfortunate trouble here is making absolutely sure that the
* channel width change has propagated enough so the hardware
* absolutely isn't handed bogus frames for it's current operating
* mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
* does occur in parallel, we need to make certain we've blocked
* any further ongoing TX (and RX, that can cause raw TX)
* before we do this.
*/
static void
ath_update_chw(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_softc;
//DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
device_printf(sc->sc_dev, "%s: called\n", __func__);
/*
* XXX TODO: schedule a tasklet that stops things without freeing,
* walks the now stopped TX queue(s) looking for frames to retry
* as if we TX filtered them (whch may mean dropping non-ampdu frames!)
* but okay) then place them back on the software queue so they
* can have the rate control lookup done again.
*/
ath_set_channel(ic);
}
#endif /* ATH_ENABLE_11N */
/*
* This is called by the beacon parsing routine in the receive
* path to update the current quiet time information provided by
* an AP.
*
* This is STA specific, it doesn't take the AP TBTT/beacon slot
* offset into account.
*
* The quiet IE doesn't control the /now/ beacon interval - it
* controls the upcoming beacon interval. So, when tbtt=1,
* the quiet element programming shall be for the next beacon
* interval. There's no tbtt=0 behaviour defined, so don't.
*
* Since we're programming the next quiet interval, we have
* to keep in mind what we will see when the next beacon
* is received with potentially a quiet IE. For example, if
* quiet_period is 1, then we are always getting a quiet interval
* each TBTT - so if we just program it in upon each beacon received,
* it will constantly reflect the "next" TBTT and we will never
* let the counter stay programmed correctly.
*
* So:
* + the first time we see the quiet IE, program it and store
* the details somewhere;
* + if the quiet parameters don't change (ie, period/duration/offset)
* then just leave the programming enabled;
* + (we can "skip" beacons, so don't try to enforce tbttcount unless
* you're willing to also do the skipped beacon math);
* + if the quiet IE is removed, then halt quiet time.
*/
static int
ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie)
{
struct ieee80211_quiet_ie *q;
struct ieee80211vap *vap = ni->ni_vap;
struct ath_vap *avp = ATH_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_softc;
if (vap->iv_opmode != IEEE80211_M_STA)
return (0);
/* Verify we have a quiet time IE */
if (ie == NULL) {
DPRINTF(sc, ATH_DEBUG_QUIETIE,
"%s: called; NULL IE, disabling\n", __func__);
ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE);
memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
return (0);
}
/* If we do, verify it's actually legit */
if (ie[0] != IEEE80211_ELEMID_QUIET)
return 0;
if (ie[1] != 6)
return 0;
/* Note: this belongs in net80211, parsed out and everything */
q = (void *) ie;
/*
* Compare what we have stored to what we last saw.
* If they're the same then don't program in anything.
*/
if ((q->period == avp->quiet_ie.period) &&
(le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) &&
(le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset)))
return (0);
DPRINTF(sc, ATH_DEBUG_QUIETIE,
"%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n",
__func__,
(int) q->tbttcount,
(int) q->period,
(int) le16dec(&q->duration),
(int) le16dec(&q->offset));
/*
* Don't program in garbage values.
*/
if ((le16dec(&q->duration) == 0) ||
(le16dec(&q->duration) >= ni->ni_intval)) {
DPRINTF(sc, ATH_DEBUG_QUIETIE,
"%s: invalid duration (%d)\n", __func__,
le16dec(&q->duration));
return (0);
}
/*
* Can have a 0 offset, but not a duration - so just check
* they don't exceed the intval.
*/
if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) {
DPRINTF(sc, ATH_DEBUG_QUIETIE,
"%s: invalid duration + offset (%d+%d)\n", __func__,
le16dec(&q->duration),
le16dec(&q->offset));
return (0);
}
if (q->tbttcount == 0) {
DPRINTF(sc, ATH_DEBUG_QUIETIE,
"%s: invalid tbttcount (0)\n", __func__);
return (0);
}
if (q->period == 0) {
DPRINTF(sc, ATH_DEBUG_QUIETIE,
"%s: invalid period (0)\n", __func__);
return (0);
}
/*
* This is a new quiet time IE config, so wait until tbttcount
* is equal to 1, and program it in.
*/
if (q->tbttcount == 1) {
DPRINTF(sc, ATH_DEBUG_QUIETIE,
"%s: programming\n", __func__);
ath_hal_set_quiet(sc->sc_ah,
q->period * ni->ni_intval, /* convert to TU */
le16dec(&q->duration), /* already in TU */
le16dec(&q->offset) + ni->ni_intval,
HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF);
/*
* Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for
* STA mode
*/
/* Update local state */
memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie));
}
return (0);
}
static void
ath_set_channel(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_softc;
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
(void) ath_chan_set(sc, ic->ic_curchan);
/*
* If we are returning to our bss channel then mark state
* so the next recv'd beacon's tsf will be used to sync the
* beacon timers. Note that since we only hear beacons in
* sta/ibss mode this has no effect in other operating modes.
*/
ATH_LOCK(sc);
if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
sc->sc_syncbeacon = 1;
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
}
/*
* Walk the vap list and check if there any vap's in RUN state.
*/
static int
ath_isanyrunningvaps(struct ieee80211vap *this)
{
struct ieee80211com *ic = this->iv_ic;
struct ieee80211vap *vap;
IEEE80211_LOCK_ASSERT(ic);
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
return 1;
}
return 0;
}
static int
ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct ieee80211com *ic = vap->iv_ic;
struct ath_softc *sc = ic->ic_softc;
struct ath_vap *avp = ATH_VAP(vap);
struct ath_hal *ah = sc->sc_ah;
struct ieee80211_node *ni = NULL;
int i, error, stamode;
u_int32_t rfilt;
int csa_run_transition = 0;
enum ieee80211_state ostate = vap->iv_state;
static const HAL_LED_STATE leds[] = {
HAL_LED_INIT, /* IEEE80211_S_INIT */
HAL_LED_SCAN, /* IEEE80211_S_SCAN */
HAL_LED_AUTH, /* IEEE80211_S_AUTH */
HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
HAL_LED_RUN, /* IEEE80211_S_CAC */
HAL_LED_RUN, /* IEEE80211_S_RUN */
HAL_LED_RUN, /* IEEE80211_S_CSA */
HAL_LED_RUN, /* IEEE80211_S_SLEEP */
};
DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
/*
* net80211 _should_ have the comlock asserted at this point.
* There are some comments around the calls to vap->iv_newstate
* which indicate that it (newstate) may end up dropping the
* lock. This and the subsequent lock assert check after newstate
* are an attempt to catch these and figure out how/why.
*/
IEEE80211_LOCK_ASSERT(ic);
/* Before we touch the hardware - wake it up */
ATH_LOCK(sc);
/*
* If the NIC is in anything other than SLEEP state,
* we need to ensure that self-generated frames are
* set for PWRMGT=0. Otherwise we may end up with
* strange situations.
*
* XXX TODO: is this actually the case? :-)
*/
if (nstate != IEEE80211_S_SLEEP)
ath_power_setselfgen(sc, HAL_PM_AWAKE);
/*
* Now, wake the thing up.
*/
ath_power_set_power_state(sc, HAL_PM_AWAKE);
/*
* And stop the calibration callout whilst we have
* ATH_LOCK held.
*/
callout_stop(&sc->sc_cal_ch);
ATH_UNLOCK(sc);
if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
csa_run_transition = 1;
ath_hal_setledstate(ah, leds[nstate]); /* set LED */
if (nstate == IEEE80211_S_SCAN) {
/*
* Scanning: turn off beacon miss and don't beacon.
* Mark beacon state so when we reach RUN state we'll
* [re]setup beacons. Unblock the task q thread so
* deferred interrupt processing is done.
*/
/* Ensure we stay awake during scan */
ATH_LOCK(sc);
ath_power_setselfgen(sc, HAL_PM_AWAKE);
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
ATH_UNLOCK(sc);
ath_hal_intrset(ah,
sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
sc->sc_beacons = 0;
taskqueue_unblock(sc->sc_tq);
}
ni = ieee80211_ref_node(vap->iv_bss);
rfilt = ath_calcrxfilter(sc);
stamode = (vap->iv_opmode == IEEE80211_M_STA ||
vap->iv_opmode == IEEE80211_M_AHDEMO ||
vap->iv_opmode == IEEE80211_M_IBSS);
/*
* XXX Dont need to do this (and others) if we've transitioned
* from SLEEP->RUN.
*/
if (stamode && nstate == IEEE80211_S_RUN) {
sc->sc_curaid = ni->ni_associd;
IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
}
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
__func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
ath_hal_setrxfilter(ah, rfilt);
/* XXX is this to restore keycache on resume? */
if (vap->iv_opmode != IEEE80211_M_STA &&
(vap->iv_flags & IEEE80211_F_PRIVACY)) {
for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath_hal_keyisvalid(ah, i))
ath_hal_keysetmac(ah, i, ni->ni_bssid);
}
/*
* Invoke the parent method to do net80211 work.
*/
error = avp->av_newstate(vap, nstate, arg);
if (error != 0)
goto bad;
/*
* See above: ensure av_newstate() doesn't drop the lock
* on us.
*/
IEEE80211_LOCK_ASSERT(ic);
/*
* XXX TODO: if nstate is _S_CAC, then we should disable
* ACK processing until CAC is completed.
*/
/*
* XXX TODO: if we're on a passive channel, then we should
* not allow any ACKs or self-generated frames until we hear
* a beacon. Unfortunately there isn't a notification from
* net80211 so perhaps we could slot that particular check
* into the mgmt receive path and just ensure that we clear
* it on RX of beacons in passive mode (and only clear it
* once, obviously.)
*/
/*
* XXX TODO: net80211 should be tracking whether channels
* have heard beacons and are thus considered "OK" for
* transmitting - and then inform the driver about this
* state change. That way if we hear an AP go quiet
* (and nothing else is beaconing on a channel) the
* channel can go back to being passive until another
* beacon is heard.
*/
/*
* XXX TODO: if nstate is _S_CAC, then we should disable
* ACK processing until CAC is completed.
*/
/*
* XXX TODO: if we're on a passive channel, then we should
* not allow any ACKs or self-generated frames until we hear
* a beacon. Unfortunately there isn't a notification from
* net80211 so perhaps we could slot that particular check
* into the mgmt receive path and just ensure that we clear
* it on RX of beacons in passive mode (and only clear it
* once, obviously.)
*/
/*
* XXX TODO: net80211 should be tracking whether channels
* have heard beacons and are thus considered "OK" for
* transmitting - and then inform the driver about this
* state change. That way if we hear an AP go quiet
* (and nothing else is beaconing on a channel) the
* channel can go back to being passive until another
* beacon is heard.
*/
if (nstate == IEEE80211_S_RUN) {
/* NB: collect bss node again, it may have changed */
ieee80211_free_node(ni);
ni = ieee80211_ref_node(vap->iv_bss);
DPRINTF(sc, ATH_DEBUG_STATE,
"%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
"capinfo 0x%04x chan %d\n", __func__,
vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
switch (vap->iv_opmode) {
#ifdef IEEE80211_SUPPORT_TDMA
case IEEE80211_M_AHDEMO:
if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
break;
/* fall thru... */
#endif
case IEEE80211_M_HOSTAP:
case IEEE80211_M_IBSS:
case IEEE80211_M_MBSS:
/*
* TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.)
* For channels that are in CAC, we may have disabled
* this during CAC to ensure we don't ACK frames
* sent to us.
*/
/*
* Allocate and setup the beacon frame.
*
* Stop any previous beacon DMA. This may be
* necessary, for example, when an ibss merge
* causes reconfiguration; there will be a state
* transition from RUN->RUN that means we may
* be called with beacon transmission active.
*/
ath_hal_stoptxdma(ah, sc->sc_bhalq);
error = ath_beacon_alloc(sc, ni);
if (error != 0)
goto bad;
/*
* If joining an adhoc network defer beacon timer
* configuration to the next beacon frame so we
* have a current TSF to use. Otherwise we're
* starting an ibss/bss so there's no need to delay;
* if this is the first vap moving to RUN state, then
* beacon state needs to be [re]configured.
*/
if (vap->iv_opmode == IEEE80211_M_IBSS &&
ni->ni_tstamp.tsf != 0) {
sc->sc_syncbeacon = 1;
} else if (!sc->sc_beacons) {
#ifdef IEEE80211_SUPPORT_TDMA
if (vap->iv_caps & IEEE80211_C_TDMA)
ath_tdma_config(sc, vap);
else
#endif
ath_beacon_config(sc, vap);
sc->sc_beacons = 1;
}
break;
case IEEE80211_M_STA:
/*
* Defer beacon timer configuration to the next
* beacon frame so we have a current TSF to use
* (any TSF collected when scanning is likely old).
* However if it's due to a CSA -> RUN transition,
* force a beacon update so we pick up a lack of
* beacons from an AP in CAC and thus force a
* scan.
*
* And, there's also corner cases here where
* after a scan, the AP may have disappeared.
* In that case, we may not receive an actual
* beacon to update the beacon timer and thus we
* won't get notified of the missing beacons.
*/
if (ostate != IEEE80211_S_RUN &&
ostate != IEEE80211_S_SLEEP) {
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: STA; syncbeacon=1\n", __func__);
sc->sc_syncbeacon = 1;
/* Quiet time handling - ensure we resync */
memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
if (csa_run_transition)
ath_beacon_config(sc, vap);
/*
* PR: kern/175227
*
* Reconfigure beacons during reset; as otherwise
* we won't get the beacon timers reprogrammed
* after a reset and thus we won't pick up a
* beacon miss interrupt.
*
* Hopefully we'll see a beacon before the BMISS
* timer fires (too often), leading to a STA
* disassociation.
*/
sc->sc_beacons = 1;
}
break;
case IEEE80211_M_MONITOR:
/*
* Monitor mode vaps have only INIT->RUN and RUN->RUN
* transitions so we must re-enable interrupts here to
* handle the case of a single monitor mode vap.
*/
ath_hal_intrset(ah, sc->sc_imask);
break;
case IEEE80211_M_WDS:
break;
default:
break;
}
/*
* Let the hal process statistics collected during a
* scan so it can provide calibrated noise floor data.
*/
ath_hal_process_noisefloor(ah);
/*
* Reset rssi stats; maybe not the best place...
*/
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
/*
* Force awake for RUN mode.
*/
ATH_LOCK(sc);
ath_power_setselfgen(sc, HAL_PM_AWAKE);
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
/*
* Finally, start any timers and the task q thread
* (in case we didn't go through SCAN state).
*/
if (ath_longcalinterval != 0) {
/* start periodic recalibration timer */
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
} else {
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
"%s: calibration disabled\n", __func__);
}
ATH_UNLOCK(sc);
taskqueue_unblock(sc->sc_tq);
} else if (nstate == IEEE80211_S_INIT) {
/* Quiet time handling - ensure we resync */
memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
/*
* If there are no vaps left in RUN state then
* shutdown host/driver operation:
* o disable interrupts
* o disable the task queue thread
* o mark beacon processing as stopped
*/
if (!ath_isanyrunningvaps(vap)) {
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
/* disable interrupts */
ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
taskqueue_block(sc->sc_tq);
sc->sc_beacons = 0;
}
#ifdef IEEE80211_SUPPORT_TDMA
ath_hal_setcca(ah, AH_TRUE);
#endif
} else if (nstate == IEEE80211_S_SLEEP) {
/* We're going to sleep, so transition appropriately */
/* For now, only do this if we're a single STA vap */
if (sc->sc_nvaps == 1 &&
vap->iv_opmode == IEEE80211_M_STA) {
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
ATH_LOCK(sc);
/*
* Always at least set the self-generated
* frame config to set PWRMGT=1.
*/
ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
/*
* If we're not syncing beacons, transition
* to NETWORK_SLEEP.
*
* We stay awake if syncbeacon > 0 in case
* we need to listen for some beacons otherwise
* our beacon timer config may be wrong.
*/
if (sc->sc_syncbeacon == 0) {
ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1);
}
ATH_UNLOCK(sc);
}
} else if (nstate == IEEE80211_S_SCAN) {
/* Quiet time handling - ensure we resync */
memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
}
bad:
ieee80211_free_node(ni);
/*
* Restore the power state - either to what it was, or
* to network_sleep if it's alright.
*/
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
return error;
}
/*
* Allocate a key cache slot to the station so we can
* setup a mapping from key index to node. The key cache
* slot is needed for managing antenna state and for
* compression when stations do not use crypto. We do
* it uniliaterally here; if crypto is employed this slot
* will be reassigned.
*/
static void
ath_setup_stationkey(struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ath_softc *sc = vap->iv_ic->ic_softc;
ieee80211_keyix keyix, rxkeyix;
/* XXX should take a locked ref to vap->iv_bss */
if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
/*
* Key cache is full; we'll fall back to doing
* the more expensive lookup in software. Note
* this also means no h/w compression.
*/
/* XXX msg+statistic */
} else {
/* XXX locking? */
ni->ni_ucastkey.wk_keyix = keyix;
ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
/* NB: must mark device key to get called back on delete */
ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
/* NB: this will create a pass-thru key entry */
ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
}
}
/*
* Setup driver-specific state for a newly associated node.
* Note that we're called also on a re-associate, the isnew
* param tells us if this is the first time or not.
*/
static void
ath_newassoc(struct ieee80211_node *ni, int isnew)
{
struct ath_node *an = ATH_NODE(ni);
struct ieee80211vap *vap = ni->ni_vap;
struct ath_softc *sc = vap->iv_ic->ic_softc;
const struct ieee80211_txparam *tp = ni->ni_txparms;
an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
__func__,
ni->ni_macaddr,
":",
isnew,
an->an_is_powersave);
ATH_NODE_LOCK(an);
ath_rate_newassoc(sc, an, isnew);
ATH_NODE_UNLOCK(an);
if (isnew &&
(vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
ath_setup_stationkey(ni);
/*
* If we're reassociating, make sure that any paused queues
* get unpaused.
*
* Now, we may have frames in the hardware queue for this node.
* So if we are reassociating and there are frames in the queue,
* we need to go through the cleanup path to ensure that they're
* marked as non-aggregate.
*/
if (! isnew) {
DPRINTF(sc, ATH_DEBUG_NODE,
"%s: %6D: reassoc; is_powersave=%d\n",
__func__,
ni->ni_macaddr,
":",
an->an_is_powersave);
/* XXX for now, we can't hold the lock across assoc */
ath_tx_node_reassoc(sc, an);
/* XXX for now, we can't hold the lock across wakeup */
if (an->an_is_powersave)
ath_tx_node_wakeup(sc, an);
}
}
static int
ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
int nchans, struct ieee80211_channel chans[])
{
struct ath_softc *sc = ic->ic_softc;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
"%s: rd %u cc %u location %c%s\n",
__func__, reg->regdomain, reg->country, reg->location,
reg->ecm ? " ecm" : "");
status = ath_hal_set_channels(ah, chans, nchans,
reg->country, reg->regdomain);
if (status != HAL_OK) {
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
__func__, status);
return EINVAL; /* XXX */
}
return 0;
}
static void
ath_getradiocaps(struct ieee80211com *ic,
int maxchans, int *nchans, struct ieee80211_channel chans[])
{
struct ath_softc *sc = ic->ic_softc;
struct ath_hal *ah = sc->sc_ah;
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
__func__, SKU_DEBUG, CTRY_DEFAULT);
/* XXX check return */
(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
}
static int
ath_getchannels(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ath_hal *ah = sc->sc_ah;
HAL_STATUS status;
/*
* Collect channel set based on EEPROM contents.
*/
status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
&ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
if (status != HAL_OK) {
device_printf(sc->sc_dev,
"%s: unable to collect channel list from hal, status %d\n",
__func__, status);
return EINVAL;
}
(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */
/* XXX map Atheros sku's to net80211 SKU's */
/* XXX net80211 types too small */
ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */
ic->ic_regdomain.isocc[1] = ' ';
ic->ic_regdomain.ecm = 1;
ic->ic_regdomain.location = 'I';
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
"%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
__func__, sc->sc_eerd, sc->sc_eecc,
ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
return 0;
}
static int
ath_rate_setup(struct ath_softc *sc, u_int mode)
{
struct ath_hal *ah = sc->sc_ah;
const HAL_RATE_TABLE *rt;
switch (mode) {
case IEEE80211_MODE_11A:
rt = ath_hal_getratetable(ah, HAL_MODE_11A);
break;
case IEEE80211_MODE_HALF:
rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
break;
case IEEE80211_MODE_QUARTER:
rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
break;
case IEEE80211_MODE_11B:
rt = ath_hal_getratetable(ah, HAL_MODE_11B);
break;
case IEEE80211_MODE_11G:
rt = ath_hal_getratetable(ah, HAL_MODE_11G);
break;
case IEEE80211_MODE_TURBO_A:
rt = ath_hal_getratetable(ah, HAL_MODE_108A);
break;
case IEEE80211_MODE_TURBO_G:
rt = ath_hal_getratetable(ah, HAL_MODE_108G);
break;
case IEEE80211_MODE_STURBO_A:
rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
break;
case IEEE80211_MODE_11NA:
rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
break;
case IEEE80211_MODE_11NG:
rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
break;
default:
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
__func__, mode);
return 0;
}
sc->sc_rates[mode] = rt;
return (rt != NULL);
}
static void
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
{
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
static const struct {
u_int rate; /* tx/rx 802.11 rate */
u_int16_t timeOn; /* LED on time (ms) */
u_int16_t timeOff; /* LED off time (ms) */
} blinkrates[] = {
{ 108, 40, 10 },
{ 96, 44, 11 },
{ 72, 50, 13 },
{ 48, 57, 14 },
{ 36, 67, 16 },
{ 24, 80, 20 },
{ 22, 100, 25 },
{ 18, 133, 34 },
{ 12, 160, 40 },
{ 10, 200, 50 },
{ 6, 240, 58 },
{ 4, 267, 66 },
{ 2, 400, 100 },
{ 0, 500, 130 },
/* XXX half/quarter rates */
};
const HAL_RATE_TABLE *rt;
int i, j;
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
rt = sc->sc_rates[mode];
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
for (i = 0; i < rt->rateCount; i++) {
uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
if (rt->info[i].phy != IEEE80211_T_HT)
sc->sc_rixmap[ieeerate] = i;
else
sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
}
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
for (i = 0; i < nitems(sc->sc_hwmap); i++) {
if (i >= rt->rateCount) {
sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
continue;
}
sc->sc_hwmap[i].ieeerate =
rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
if (rt->info[i].phy == IEEE80211_T_HT)
sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
if (rt->info[i].shortPreamble ||
rt->info[i].phy == IEEE80211_T_OFDM)
sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
for (j = 0; j < nitems(blinkrates)-1; j++)
if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
break;
/* NB: this uses the last entry if the rate isn't found */
/* XXX beware of overlow */
sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
}
sc->sc_currates = rt;
sc->sc_curmode = mode;
/*
* All protection frames are transmitted at 2Mb/s for
* 11g, otherwise at 1Mb/s.
*/
if (mode == IEEE80211_MODE_11G)
sc->sc_protrix = ath_tx_findrix(sc, 2*2);
else
sc->sc_protrix = ath_tx_findrix(sc, 2*1);
/* NB: caller is responsible for resetting rate control state */
}
static void
ath_watchdog(void *arg)
{
struct ath_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int do_reset = 0;
ATH_LOCK_ASSERT(sc);
if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
uint32_t hangs;
ath_power_set_power_state(sc, HAL_PM_AWAKE);
if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
hangs != 0) {
device_printf(sc->sc_dev, "%s hang detected (0x%x)\n",
hangs & 0xff ? "bb" : "mac", hangs);
} else
device_printf(sc->sc_dev, "device timeout\n");
do_reset = 1;
counter_u64_add(ic->ic_oerrors, 1);
sc->sc_stats.ast_watchdog++;
ath_power_restore_power_state(sc);
}
/*
* We can't hold the lock across the ath_reset() call.
*
* And since this routine can't hold a lock and sleep,
* do the reset deferred.
*/
if (do_reset) {
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
}
callout_schedule(&sc->sc_wd_ch, hz);
}
static void
ath_parent(struct ieee80211com *ic)
{
struct ath_softc *sc = ic->ic_softc;
int error = EDOOFUS;
ATH_LOCK(sc);
if (ic->ic_nrunning > 0) {
/*
* To avoid rescanning another access point,
* do not call ath_init() here. Instead,
* only reflect promisc mode settings.
*/
if (sc->sc_running) {
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ath_mode_init(sc);
ath_power_restore_power_state(sc);
} else if (!sc->sc_invalid) {
/*
* Beware of being called during attach/detach
* to reset promiscuous mode. In that case we
* will still be marked UP but not RUNNING.
* However trying to re-init the interface
* is the wrong thing to do as we've already
* torn down much of our state. There's
* probably a better way to deal with this.
*/
error = ath_init(sc);
}
} else {
ath_stop(sc);
if (!sc->sc_invalid)
ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1);
}
ATH_UNLOCK(sc);
if (error == 0) {
#ifdef ATH_TX99_DIAG
if (sc->sc_tx99 != NULL)
sc->sc_tx99->start(sc->sc_tx99);
else
#endif
ieee80211_start_all(ic);
}
}
/*
* Announce various information on device/driver attach.
*/
static void
ath_announce(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n",
ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
if (bootverbose) {
int i;
for (i = 0; i <= WME_AC_VO; i++) {
struct ath_txq *txq = sc->sc_ac2q[i];
device_printf(sc->sc_dev,
"Use hw queue %u for %s traffic\n",
txq->axq_qnum, ieee80211_wme_acnames[i]);
}
device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n",
sc->sc_cabq->axq_qnum);
device_printf(sc->sc_dev, "Use hw queue %u for beacons\n",
sc->sc_bhalq);
}
if (ath_rxbuf != ATH_RXBUF)
device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf);
if (ath_txbuf != ATH_TXBUF)
device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf);
if (sc->sc_mcastkey && bootverbose)
device_printf(sc->sc_dev, "using multicast key search\n");
}
static void
ath_dfs_tasklet(void *p, int npending)
{
struct ath_softc *sc = (struct ath_softc *) p;
struct ieee80211com *ic = &sc->sc_ic;
/*
* If previous processing has found a radar event,
* signal this to the net80211 layer to begin DFS
* processing.
*/
if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
/* DFS event found, initiate channel change */
/*
* XXX TODO: immediately disable ACK processing
* on the current channel. This would be done
* by setting AR_DIAG_ACK_DIS (AR5212; may be
* different for others) until we are out of
* CAC.
*/
/*
* XXX doesn't currently tell us whether the event
* XXX was found in the primary or extension
* XXX channel!
*/
IEEE80211_LOCK(ic);
ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
IEEE80211_UNLOCK(ic);
}
}
/*
* Enable/disable power save. This must be called with
* no TX driver locks currently held, so it should only
* be called from the RX path (which doesn't hold any
* TX driver locks.)
*/
static void
ath_node_powersave(struct ieee80211_node *ni, int enable)
{
#ifdef ATH_SW_PSQ
struct ath_node *an = ATH_NODE(ni);
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_softc;
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
/* XXX and no TXQ locks should be held here */
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
__func__,
ni->ni_macaddr,
":",
!! enable);
/* Suspend or resume software queue handling */
if (enable)
ath_tx_node_sleep(sc, an);
else
ath_tx_node_wakeup(sc, an);
/* Update net80211 state */
avp->av_node_ps(ni, enable);
#else
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
/* Update net80211 state */
avp->av_node_ps(ni, enable);
#endif/* ATH_SW_PSQ */
}
/*
* Notification from net80211 that the powersave queue state has
* changed.
*
* Since the software queue also may have some frames:
*
* + if the node software queue has frames and the TID state
* is 0, we set the TIM;
* + if the node and the stack are both empty, we clear the TIM bit.
* + If the stack tries to set the bit, always set it.
* + If the stack tries to clear the bit, only clear it if the
* software queue in question is also cleared.
*
* TODO: this is called during node teardown; so let's ensure this
* is all correctly handled and that the TIM bit is cleared.
* It may be that the node flush is called _AFTER_ the net80211
* stack clears the TIM.
*
* Here is the racy part. Since it's possible >1 concurrent,
* overlapping TXes will appear complete with a TX completion in
* another thread, it's possible that the concurrent TIM calls will
* clash. We can't hold the node lock here because setting the
* TIM grabs the net80211 comlock and this may cause a LOR.
* The solution is either to totally serialise _everything_ at
* this point (ie, all TX, completion and any reset/flush go into
* one taskqueue) or a new "ath TIM lock" needs to be created that
* just wraps the driver state change and this call to avp->av_set_tim().
*
* The same race exists in the net80211 power save queue handling
* as well. Since multiple transmitting threads may queue frames
* into the driver, as well as ps-poll and the driver transmitting
* frames (and thus clearing the psq), it's quite possible that
* a packet entering the PSQ and a ps-poll being handled will
* race, causing the TIM to be cleared and not re-set.
*/
static int
ath_node_set_tim(struct ieee80211_node *ni, int enable)
{
#ifdef ATH_SW_PSQ
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_softc;
struct ath_node *an = ATH_NODE(ni);
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
int changed = 0;
ATH_TX_LOCK(sc);
an->an_stack_psq = enable;
/*
* This will get called for all operating modes,
* even if avp->av_set_tim is unset.
* It's currently set for hostap/ibss modes; but
* the same infrastructure is used for both STA
* and AP/IBSS node power save.
*/
if (avp->av_set_tim == NULL) {
ATH_TX_UNLOCK(sc);
return (0);
}
/*
* If setting the bit, always set it here.
* If clearing the bit, only clear it if the
* software queue is also empty.
*
* If the node has left power save, just clear the TIM
* bit regardless of the state of the power save queue.
*
* XXX TODO: although atomics are used, it's quite possible
* that a race will occur between this and setting/clearing
* in another thread. TX completion will occur always in
* one thread, however setting/clearing the TIM bit can come
* from a variety of different process contexts!
*/
if (enable && an->an_tim_set == 1) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: enable=%d, tim_set=1, ignoring\n",
__func__,
ni->ni_macaddr,
":",
enable);
ATH_TX_UNLOCK(sc);
} else if (enable) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: enable=%d, enabling TIM\n",
__func__,
ni->ni_macaddr,
":",
enable);
an->an_tim_set = 1;
ATH_TX_UNLOCK(sc);
changed = avp->av_set_tim(ni, enable);
} else if (an->an_swq_depth == 0) {
/* disable */
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
__func__,
ni->ni_macaddr,
":",
enable);
an->an_tim_set = 0;
ATH_TX_UNLOCK(sc);
changed = avp->av_set_tim(ni, enable);
} else if (! an->an_is_powersave) {
/*
* disable regardless; the node isn't in powersave now
*/
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
__func__,
ni->ni_macaddr,
":",
enable);
an->an_tim_set = 0;
ATH_TX_UNLOCK(sc);
changed = avp->av_set_tim(ni, enable);
} else {
/*
* psq disable, node is currently in powersave, node
* software queue isn't empty, so don't clear the TIM bit
* for now.
*/
ATH_TX_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
__func__,
ni->ni_macaddr,
":",
enable);
changed = 0;
}
return (changed);
#else
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
/*
* Some operating modes don't set av_set_tim(), so don't
* update it here.
*/
if (avp->av_set_tim == NULL)
return (0);
return (avp->av_set_tim(ni, enable));
#endif /* ATH_SW_PSQ */
}
/*
* Set or update the TIM from the software queue.
*
* Check the software queue depth before attempting to do lock
* anything; that avoids trying to obtain the lock. Then,
* re-check afterwards to ensure nothing has changed in the
* meantime.
*
* set: This is designed to be called from the TX path, after
* a frame has been queued; to see if the swq > 0.
*
* clear: This is designed to be called from the buffer completion point
* (right now it's ath_tx_default_comp()) where the state of
* a software queue has changed.
*
* It makes sense to place it at buffer free / completion rather
* than after each software queue operation, as there's no real
* point in churning the TIM bit as the last frames in the software
* queue are transmitted. If they fail and we retry them, we'd
* just be setting the TIM bit again anyway.
*/
void
ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
int enable)
{
#ifdef ATH_SW_PSQ
struct ath_node *an;
struct ath_vap *avp;
/* Don't do this for broadcast/etc frames */
if (ni == NULL)
return;
an = ATH_NODE(ni);
avp = ATH_VAP(ni->ni_vap);
/*
* And for operating modes without the TIM handler set, let's
* just skip those.
*/
if (avp->av_set_tim == NULL)
return;
ATH_TX_LOCK_ASSERT(sc);
if (enable) {
if (an->an_is_powersave &&
an->an_tim_set == 0 &&
an->an_swq_depth != 0) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: swq_depth>0, tim_set=0, set!\n",
__func__,
ni->ni_macaddr,
":");
an->an_tim_set = 1;
(void) avp->av_set_tim(ni, 1);
}
} else {
/*
* Don't bother grabbing the lock unless the queue is empty.
*/
if (an->an_swq_depth != 0)
return;
if (an->an_is_powersave &&
an->an_stack_psq == 0 &&
an->an_tim_set == 1 &&
an->an_swq_depth == 0) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
" clear!\n",
__func__,
ni->ni_macaddr,
":");
an->an_tim_set = 0;
(void) avp->av_set_tim(ni, 0);
}
}
#else
return;
#endif /* ATH_SW_PSQ */
}
/*
* Received a ps-poll frame from net80211.
*
* Here we get a chance to serve out a software-queued frame ourselves
* before we punt it to net80211 to transmit us one itself - either
* because there's traffic in the net80211 psq, or a NULL frame to
* indicate there's nothing else.
*/
static void
ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
{
#ifdef ATH_SW_PSQ
struct ath_node *an;
struct ath_vap *avp;
struct ieee80211com *ic = ni->ni_ic;
struct ath_softc *sc = ic->ic_softc;
int tid;
/* Just paranoia */
if (ni == NULL)
return;
/*
* Unassociated (temporary node) station.
*/
if (ni->ni_associd == 0)
return;
/*
* We do have an active node, so let's begin looking into it.
*/
an = ATH_NODE(ni);
avp = ATH_VAP(ni->ni_vap);
/*
* For now, we just call the original ps-poll method.
* Once we're ready to flip this on:
*
* + Set leak to 1, as no matter what we're going to have
* to send a frame;
* + Check the software queue and if there's something in it,
* schedule the highest TID thas has traffic from this node.
* Then make sure we schedule the software scheduler to
* run so it picks up said frame.
*
* That way whatever happens, we'll at least send _a_ frame
* to the given node.
*
* Again, yes, it's crappy QoS if the node has multiple
* TIDs worth of traffic - but let's get it working first
* before we optimise it.
*
* Also yes, there's definitely latency here - we're not
* direct dispatching to the hardware in this path (and
* we're likely being called from the packet receive path,
* so going back into TX may be a little hairy!) but again
* I'd like to get this working first before optimising
* turn-around time.
*/
ATH_TX_LOCK(sc);
/*
* Legacy - we're called and the node isn't asleep.
* Immediately punt.
*/
if (! an->an_is_powersave) {
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: not in powersave?\n",
__func__,
ni->ni_macaddr,
":");
ATH_TX_UNLOCK(sc);
avp->av_recv_pspoll(ni, m);
return;
}
/*
* We're in powersave.
*
* Leak a frame.
*/
an->an_leak_count = 1;
/*
* Now, if there's no frames in the node, just punt to
* recv_pspoll.
*
* Don't bother checking if the TIM bit is set, we really
* only care if there are any frames here!
*/
if (an->an_swq_depth == 0) {
ATH_TX_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: SWQ empty; punting to net80211\n",
__func__,
ni->ni_macaddr,
":");
avp->av_recv_pspoll(ni, m);
return;
}
/*
* Ok, let's schedule the highest TID that has traffic
* and then schedule something.
*/
for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
struct ath_tid *atid = &an->an_tid[tid];
/*
* No frames? Skip.
*/
if (atid->axq_depth == 0)
continue;
ath_tx_tid_sched(sc, atid);
/*
* XXX we could do a direct call to the TXQ
* scheduler code here to optimise latency
* at the expense of a REALLY deep callstack.
*/
ATH_TX_UNLOCK(sc);
taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: leaking frame to TID %d\n",
__func__,
ni->ni_macaddr,
":",
tid);
return;
}
ATH_TX_UNLOCK(sc);
/*
* XXX nothing in the TIDs at this point? Eek.
*/
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
"%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
__func__,
ni->ni_macaddr,
":");
avp->av_recv_pspoll(ni, m);
#else
avp->av_recv_pspoll(ni, m);
#endif /* ATH_SW_PSQ */
}
MODULE_VERSION(ath_main, 1);
MODULE_DEPEND(ath_main, wlan, 1, 1, 1); /* 802.11 media layer */
MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1);
MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1);
MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1);
#if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
MODULE_DEPEND(ath_main, alq, 1, 1, 1);
#endif