8a5fc74880
6659 nvlist_free(NULL) is a no-op Reviewed by: Toomas Soome <tsoome@me.com> Reviewed by: Marcel Telka <marcel@telka.sk> Approved by: Robert Mustacchi <rm@joyent.com> References: https://www.illumos.org/issues/6659 https://github.com/illumos/illumos-gate/commit/aab83bb Ported-by: David Quigley <dpquigl@davequigley.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4566
1747 lines
46 KiB
C
1747 lines
46 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2013 by Delphix. All rights reserved.
|
|
* Copyright (c) 2016 Intel Corporation.
|
|
*/
|
|
|
|
/*
|
|
* Functions to convert between a list of vdevs and an nvlist representing the
|
|
* configuration. Each entry in the list can be one of:
|
|
*
|
|
* Device vdevs
|
|
* disk=(path=..., devid=...)
|
|
* file=(path=...)
|
|
*
|
|
* Group vdevs
|
|
* raidz[1|2]=(...)
|
|
* mirror=(...)
|
|
*
|
|
* Hot spares
|
|
*
|
|
* While the underlying implementation supports it, group vdevs cannot contain
|
|
* other group vdevs. All userland verification of devices is contained within
|
|
* this file. If successful, the nvlist returned can be passed directly to the
|
|
* kernel; we've done as much verification as possible in userland.
|
|
*
|
|
* Hot spares are a special case, and passed down as an array of disk vdevs, at
|
|
* the same level as the root of the vdev tree.
|
|
*
|
|
* The only function exported by this file is 'make_root_vdev'. The
|
|
* function performs several passes:
|
|
*
|
|
* 1. Construct the vdev specification. Performs syntax validation and
|
|
* makes sure each device is valid.
|
|
* 2. Check for devices in use. Using libblkid to make sure that no
|
|
* devices are also in use. Some can be overridden using the 'force'
|
|
* flag, others cannot.
|
|
* 3. Check for replication errors if the 'force' flag is not specified.
|
|
* validates that the replication level is consistent across the
|
|
* entire pool.
|
|
* 4. Call libzfs to label any whole disks with an EFI label.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <devid.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <libintl.h>
|
|
#include <libnvpair.h>
|
|
#include <limits.h>
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/sg.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <sys/efi_partition.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/vtoc.h>
|
|
#include <sys/mntent.h>
|
|
#include <uuid/uuid.h>
|
|
#include <blkid/blkid.h>
|
|
#include "zpool_util.h"
|
|
#include <sys/zfs_context.h>
|
|
|
|
/*
|
|
* For any given vdev specification, we can have multiple errors. The
|
|
* vdev_error() function keeps track of whether we have seen an error yet, and
|
|
* prints out a header if its the first error we've seen.
|
|
*/
|
|
boolean_t error_seen;
|
|
boolean_t is_force;
|
|
|
|
typedef struct vdev_disk_db_entry
|
|
{
|
|
char id[24];
|
|
int sector_size;
|
|
} vdev_disk_db_entry_t;
|
|
|
|
/*
|
|
* Database of block devices that lie about physical sector sizes. The
|
|
* identification string must be precisely 24 characters to avoid false
|
|
* negatives
|
|
*/
|
|
static vdev_disk_db_entry_t vdev_disk_database[] = {
|
|
{"ATA ADATA SSD S396 3", 8192},
|
|
{"ATA APPLE SSD SM128E", 8192},
|
|
{"ATA APPLE SSD SM256E", 8192},
|
|
{"ATA APPLE SSD SM512E", 8192},
|
|
{"ATA APPLE SSD SM768E", 8192},
|
|
{"ATA C400-MTFDDAC064M", 8192},
|
|
{"ATA C400-MTFDDAC128M", 8192},
|
|
{"ATA C400-MTFDDAC256M", 8192},
|
|
{"ATA C400-MTFDDAC512M", 8192},
|
|
{"ATA Corsair Force 3 ", 8192},
|
|
{"ATA Corsair Force GS", 8192},
|
|
{"ATA INTEL SSDSA2CT04", 8192},
|
|
{"ATA INTEL SSDSA2BZ10", 8192},
|
|
{"ATA INTEL SSDSA2BZ20", 8192},
|
|
{"ATA INTEL SSDSA2BZ30", 8192},
|
|
{"ATA INTEL SSDSA2CW04", 8192},
|
|
{"ATA INTEL SSDSA2CW08", 8192},
|
|
{"ATA INTEL SSDSA2CW12", 8192},
|
|
{"ATA INTEL SSDSA2CW16", 8192},
|
|
{"ATA INTEL SSDSA2CW30", 8192},
|
|
{"ATA INTEL SSDSA2CW60", 8192},
|
|
{"ATA INTEL SSDSC2CT06", 8192},
|
|
{"ATA INTEL SSDSC2CT12", 8192},
|
|
{"ATA INTEL SSDSC2CT18", 8192},
|
|
{"ATA INTEL SSDSC2CT24", 8192},
|
|
{"ATA INTEL SSDSC2CW06", 8192},
|
|
{"ATA INTEL SSDSC2CW12", 8192},
|
|
{"ATA INTEL SSDSC2CW18", 8192},
|
|
{"ATA INTEL SSDSC2CW24", 8192},
|
|
{"ATA INTEL SSDSC2CW48", 8192},
|
|
{"ATA KINGSTON SH100S3", 8192},
|
|
{"ATA KINGSTON SH103S3", 8192},
|
|
{"ATA M4-CT064M4SSD2 ", 8192},
|
|
{"ATA M4-CT128M4SSD2 ", 8192},
|
|
{"ATA M4-CT256M4SSD2 ", 8192},
|
|
{"ATA M4-CT512M4SSD2 ", 8192},
|
|
{"ATA OCZ-AGILITY2 ", 8192},
|
|
{"ATA OCZ-AGILITY3 ", 8192},
|
|
{"ATA OCZ-VERTEX2 3.5 ", 8192},
|
|
{"ATA OCZ-VERTEX3 ", 8192},
|
|
{"ATA OCZ-VERTEX3 LT ", 8192},
|
|
{"ATA OCZ-VERTEX3 MI ", 8192},
|
|
{"ATA OCZ-VERTEX4 ", 8192},
|
|
{"ATA SAMSUNG MZ7WD120", 8192},
|
|
{"ATA SAMSUNG MZ7WD240", 8192},
|
|
{"ATA SAMSUNG MZ7WD480", 8192},
|
|
{"ATA SAMSUNG MZ7WD960", 8192},
|
|
{"ATA SAMSUNG SSD 830 ", 8192},
|
|
{"ATA Samsung SSD 840 ", 8192},
|
|
{"ATA SanDisk SSD U100", 8192},
|
|
{"ATA TOSHIBA THNSNH06", 8192},
|
|
{"ATA TOSHIBA THNSNH12", 8192},
|
|
{"ATA TOSHIBA THNSNH25", 8192},
|
|
{"ATA TOSHIBA THNSNH51", 8192},
|
|
{"ATA APPLE SSD TS064C", 4096},
|
|
{"ATA APPLE SSD TS128C", 4096},
|
|
{"ATA APPLE SSD TS256C", 4096},
|
|
{"ATA APPLE SSD TS512C", 4096},
|
|
{"ATA INTEL SSDSA2M040", 4096},
|
|
{"ATA INTEL SSDSA2M080", 4096},
|
|
{"ATA INTEL SSDSA2M160", 4096},
|
|
{"ATA INTEL SSDSC2MH12", 4096},
|
|
{"ATA INTEL SSDSC2MH25", 4096},
|
|
{"ATA OCZ CORE_SSD ", 4096},
|
|
{"ATA OCZ-VERTEX ", 4096},
|
|
{"ATA SAMSUNG MCCOE32G", 4096},
|
|
{"ATA SAMSUNG MCCOE64G", 4096},
|
|
{"ATA SAMSUNG SSD PM80", 4096},
|
|
/* Flash drives optimized for 4KB IOs on larger pages */
|
|
{"ATA INTEL SSDSC2BA10", 4096},
|
|
{"ATA INTEL SSDSC2BA20", 4096},
|
|
{"ATA INTEL SSDSC2BA40", 4096},
|
|
{"ATA INTEL SSDSC2BA80", 4096},
|
|
{"ATA INTEL SSDSC2BB08", 4096},
|
|
{"ATA INTEL SSDSC2BB12", 4096},
|
|
{"ATA INTEL SSDSC2BB16", 4096},
|
|
{"ATA INTEL SSDSC2BB24", 4096},
|
|
{"ATA INTEL SSDSC2BB30", 4096},
|
|
{"ATA INTEL SSDSC2BB40", 4096},
|
|
{"ATA INTEL SSDSC2BB48", 4096},
|
|
{"ATA INTEL SSDSC2BB60", 4096},
|
|
{"ATA INTEL SSDSC2BB80", 4096},
|
|
{"ATA INTEL SSDSC2BW24", 4096},
|
|
{"ATA INTEL SSDSC2BP24", 4096},
|
|
{"ATA INTEL SSDSC2BP48", 4096},
|
|
{"NA SmrtStorSDLKAE9W", 4096},
|
|
/* Imported from Open Solaris */
|
|
{"ATA MARVELL SD88SA02", 4096},
|
|
/* Advanced format Hard drives */
|
|
{"ATA Hitachi HDS5C303", 4096},
|
|
{"ATA SAMSUNG HD204UI ", 4096},
|
|
{"ATA ST2000DL004 HD20", 4096},
|
|
{"ATA WDC WD10EARS-00M", 4096},
|
|
{"ATA WDC WD10EARS-00S", 4096},
|
|
{"ATA WDC WD10EARS-00Z", 4096},
|
|
{"ATA WDC WD15EARS-00M", 4096},
|
|
{"ATA WDC WD15EARS-00S", 4096},
|
|
{"ATA WDC WD15EARS-00Z", 4096},
|
|
{"ATA WDC WD20EARS-00M", 4096},
|
|
{"ATA WDC WD20EARS-00S", 4096},
|
|
{"ATA WDC WD20EARS-00Z", 4096},
|
|
{"ATA WDC WD1600BEVT-0", 4096},
|
|
{"ATA WDC WD2500BEVT-0", 4096},
|
|
{"ATA WDC WD3200BEVT-0", 4096},
|
|
{"ATA WDC WD5000BEVT-0", 4096},
|
|
/* Virtual disks: Assume zvols with default volblocksize */
|
|
#if 0
|
|
{"ATA QEMU HARDDISK ", 8192},
|
|
{"IET VIRTUAL-DISK ", 8192},
|
|
{"OI COMSTAR ", 8192},
|
|
{"SUN COMSTAR ", 8192},
|
|
{"NETAPP LUN ", 8192},
|
|
#endif
|
|
};
|
|
|
|
static const int vdev_disk_database_size =
|
|
sizeof (vdev_disk_database) / sizeof (vdev_disk_database[0]);
|
|
|
|
#define INQ_REPLY_LEN 96
|
|
#define INQ_CMD_LEN 6
|
|
|
|
static boolean_t
|
|
check_sector_size_database(char *path, int *sector_size)
|
|
{
|
|
unsigned char inq_buff[INQ_REPLY_LEN];
|
|
unsigned char sense_buffer[32];
|
|
unsigned char inq_cmd_blk[INQ_CMD_LEN] =
|
|
{INQUIRY, 0, 0, 0, INQ_REPLY_LEN, 0};
|
|
sg_io_hdr_t io_hdr;
|
|
int error;
|
|
int fd;
|
|
int i;
|
|
|
|
/* Prepare INQUIRY command */
|
|
memset(&io_hdr, 0, sizeof (sg_io_hdr_t));
|
|
io_hdr.interface_id = 'S';
|
|
io_hdr.cmd_len = sizeof (inq_cmd_blk);
|
|
io_hdr.mx_sb_len = sizeof (sense_buffer);
|
|
io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
|
|
io_hdr.dxfer_len = INQ_REPLY_LEN;
|
|
io_hdr.dxferp = inq_buff;
|
|
io_hdr.cmdp = inq_cmd_blk;
|
|
io_hdr.sbp = sense_buffer;
|
|
io_hdr.timeout = 10; /* 10 milliseconds is ample time */
|
|
|
|
if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
|
|
return (B_FALSE);
|
|
|
|
error = ioctl(fd, SG_IO, (unsigned long) &io_hdr);
|
|
|
|
(void) close(fd);
|
|
|
|
if (error < 0)
|
|
return (B_FALSE);
|
|
|
|
if ((io_hdr.info & SG_INFO_OK_MASK) != SG_INFO_OK)
|
|
return (B_FALSE);
|
|
|
|
for (i = 0; i < vdev_disk_database_size; i++) {
|
|
if (memcmp(inq_buff + 8, vdev_disk_database[i].id, 24))
|
|
continue;
|
|
|
|
*sector_size = vdev_disk_database[i].sector_size;
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*PRINTFLIKE1*/
|
|
static void
|
|
vdev_error(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
if (!error_seen) {
|
|
(void) fprintf(stderr, gettext("invalid vdev specification\n"));
|
|
if (!is_force)
|
|
(void) fprintf(stderr, gettext("use '-f' to override "
|
|
"the following errors:\n"));
|
|
else
|
|
(void) fprintf(stderr, gettext("the following errors "
|
|
"must be manually repaired:\n"));
|
|
error_seen = B_TRUE;
|
|
}
|
|
|
|
va_start(ap, fmt);
|
|
(void) vfprintf(stderr, fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
/*
|
|
* Check that a file is valid. All we can do in this case is check that it's
|
|
* not in use by another pool, and not in use by swap.
|
|
*/
|
|
static int
|
|
check_file(const char *file, boolean_t force, boolean_t isspare)
|
|
{
|
|
char *name;
|
|
int fd;
|
|
int ret = 0;
|
|
pool_state_t state;
|
|
boolean_t inuse;
|
|
|
|
if ((fd = open(file, O_RDONLY)) < 0)
|
|
return (0);
|
|
|
|
if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
|
|
const char *desc;
|
|
|
|
switch (state) {
|
|
case POOL_STATE_ACTIVE:
|
|
desc = gettext("active");
|
|
break;
|
|
|
|
case POOL_STATE_EXPORTED:
|
|
desc = gettext("exported");
|
|
break;
|
|
|
|
case POOL_STATE_POTENTIALLY_ACTIVE:
|
|
desc = gettext("potentially active");
|
|
break;
|
|
|
|
default:
|
|
desc = gettext("unknown");
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Allow hot spares to be shared between pools.
|
|
*/
|
|
if (state == POOL_STATE_SPARE && isspare)
|
|
return (0);
|
|
|
|
if (state == POOL_STATE_ACTIVE ||
|
|
state == POOL_STATE_SPARE || !force) {
|
|
switch (state) {
|
|
case POOL_STATE_SPARE:
|
|
vdev_error(gettext("%s is reserved as a hot "
|
|
"spare for pool %s\n"), file, name);
|
|
break;
|
|
default:
|
|
vdev_error(gettext("%s is part of %s pool "
|
|
"'%s'\n"), file, desc, name);
|
|
break;
|
|
}
|
|
ret = -1;
|
|
}
|
|
|
|
free(name);
|
|
}
|
|
|
|
(void) close(fd);
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
check_error(int err)
|
|
{
|
|
(void) fprintf(stderr, gettext("warning: device in use checking "
|
|
"failed: %s\n"), strerror(err));
|
|
}
|
|
|
|
static int
|
|
check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
|
|
{
|
|
int err;
|
|
char *value;
|
|
|
|
/* No valid type detected device is safe to use */
|
|
value = blkid_get_tag_value(cache, "TYPE", path);
|
|
if (value == NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* If libblkid detects a ZFS device, we check the device
|
|
* using check_file() to see if it's safe. The one safe
|
|
* case is a spare device shared between multiple pools.
|
|
*/
|
|
if (strcmp(value, "zfs_member") == 0) {
|
|
err = check_file(path, force, isspare);
|
|
} else {
|
|
if (force) {
|
|
err = 0;
|
|
} else {
|
|
err = -1;
|
|
vdev_error(gettext("%s contains a filesystem of "
|
|
"type '%s'\n"), path, value);
|
|
}
|
|
}
|
|
|
|
free(value);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Validate that a disk including all partitions are safe to use.
|
|
*
|
|
* For EFI labeled disks this can done relatively easily with the libefi
|
|
* library. The partition numbers are extracted from the label and used
|
|
* to generate the expected /dev/ paths. Each partition can then be
|
|
* checked for conflicts.
|
|
*
|
|
* For non-EFI labeled disks (MBR/EBR/etc) the same process is possible
|
|
* but due to the lack of a readily available libraries this scanning is
|
|
* not implemented. Instead only the device path as given is checked.
|
|
*/
|
|
static int
|
|
check_disk(const char *path, blkid_cache cache, int force,
|
|
boolean_t isspare, boolean_t iswholedisk)
|
|
{
|
|
struct dk_gpt *vtoc;
|
|
char slice_path[MAXPATHLEN];
|
|
int err = 0;
|
|
int fd, i;
|
|
|
|
if (!iswholedisk)
|
|
return (check_slice(path, cache, force, isspare));
|
|
|
|
if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0) {
|
|
check_error(errno);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Expected to fail for non-EFI labled disks. Just check the device
|
|
* as given and do not attempt to detect and scan partitions.
|
|
*/
|
|
err = efi_alloc_and_read(fd, &vtoc);
|
|
if (err) {
|
|
(void) close(fd);
|
|
return (check_slice(path, cache, force, isspare));
|
|
}
|
|
|
|
/*
|
|
* The primary efi partition label is damaged however the secondary
|
|
* label at the end of the device is intact. Rather than use this
|
|
* label we should play it safe and treat this as a non efi device.
|
|
*/
|
|
if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
|
|
efi_free(vtoc);
|
|
(void) close(fd);
|
|
|
|
if (force) {
|
|
/* Partitions will now be created using the backup */
|
|
return (0);
|
|
} else {
|
|
vdev_error(gettext("%s contains a corrupt primary "
|
|
"EFI label.\n"), path);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < vtoc->efi_nparts; i++) {
|
|
|
|
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
|
|
uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
|
|
continue;
|
|
|
|
if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
|
|
(void) snprintf(slice_path, sizeof (slice_path),
|
|
"%s%s%d", path, "-part", i+1);
|
|
else
|
|
(void) snprintf(slice_path, sizeof (slice_path),
|
|
"%s%s%d", path, isdigit(path[strlen(path)-1]) ?
|
|
"p" : "", i+1);
|
|
|
|
err = check_slice(slice_path, cache, force, isspare);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
efi_free(vtoc);
|
|
(void) close(fd);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
check_device(const char *path, boolean_t force,
|
|
boolean_t isspare, boolean_t iswholedisk)
|
|
{
|
|
static blkid_cache cache = NULL;
|
|
|
|
/*
|
|
* There is no easy way to add a correct blkid_put_cache() call,
|
|
* memory will be reclaimed when the command exits.
|
|
*/
|
|
if (cache == NULL) {
|
|
int err;
|
|
|
|
if ((err = blkid_get_cache(&cache, NULL)) != 0) {
|
|
check_error(err);
|
|
return (-1);
|
|
}
|
|
|
|
if ((err = blkid_probe_all(cache)) != 0) {
|
|
blkid_put_cache(cache);
|
|
check_error(err);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
return (check_disk(path, cache, force, isspare, iswholedisk));
|
|
}
|
|
|
|
/*
|
|
* By "whole disk" we mean an entire physical disk (something we can
|
|
* label, toggle the write cache on, etc.) as opposed to the full
|
|
* capacity of a pseudo-device such as lofi or did. We act as if we
|
|
* are labeling the disk, which should be a pretty good test of whether
|
|
* it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
|
|
* it isn't.
|
|
*/
|
|
static boolean_t
|
|
is_whole_disk(const char *path)
|
|
{
|
|
struct dk_gpt *label;
|
|
int fd;
|
|
|
|
if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
|
|
return (B_FALSE);
|
|
if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
|
|
(void) close(fd);
|
|
return (B_FALSE);
|
|
}
|
|
efi_free(label);
|
|
(void) close(fd);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* This may be a shorthand device path or it could be total gibberish.
|
|
* Check to see if it is a known device available in zfs_vdev_paths.
|
|
* As part of this check, see if we've been given an entire disk
|
|
* (minus the slice number).
|
|
*/
|
|
static int
|
|
is_shorthand_path(const char *arg, char *path,
|
|
struct stat64 *statbuf, boolean_t *wholedisk)
|
|
{
|
|
int error;
|
|
|
|
error = zfs_resolve_shortname(arg, path, MAXPATHLEN);
|
|
if (error == 0) {
|
|
*wholedisk = is_whole_disk(path);
|
|
if (*wholedisk || (stat64(path, statbuf) == 0))
|
|
return (0);
|
|
}
|
|
|
|
strlcpy(path, arg, sizeof (path));
|
|
memset(statbuf, 0, sizeof (*statbuf));
|
|
*wholedisk = B_FALSE;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Determine if the given path is a hot spare within the given configuration.
|
|
* If no configuration is given we rely solely on the label.
|
|
*/
|
|
static boolean_t
|
|
is_spare(nvlist_t *config, const char *path)
|
|
{
|
|
int fd;
|
|
pool_state_t state;
|
|
char *name = NULL;
|
|
nvlist_t *label;
|
|
uint64_t guid, spareguid;
|
|
nvlist_t *nvroot;
|
|
nvlist_t **spares;
|
|
uint_t i, nspares;
|
|
boolean_t inuse;
|
|
|
|
if ((fd = open(path, O_RDONLY)) < 0)
|
|
return (B_FALSE);
|
|
|
|
if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
|
|
!inuse ||
|
|
state != POOL_STATE_SPARE ||
|
|
zpool_read_label(fd, &label, NULL) != 0) {
|
|
free(name);
|
|
(void) close(fd);
|
|
return (B_FALSE);
|
|
}
|
|
free(name);
|
|
(void) close(fd);
|
|
|
|
if (config == NULL)
|
|
return (B_TRUE);
|
|
|
|
verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
|
|
nvlist_free(label);
|
|
|
|
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&nvroot) == 0);
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
|
&spares, &nspares) == 0) {
|
|
for (i = 0; i < nspares; i++) {
|
|
verify(nvlist_lookup_uint64(spares[i],
|
|
ZPOOL_CONFIG_GUID, &spareguid) == 0);
|
|
if (spareguid == guid)
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Create a leaf vdev. Determine if this is a file or a device. If it's a
|
|
* device, fill in the device id to make a complete nvlist. Valid forms for a
|
|
* leaf vdev are:
|
|
*
|
|
* /dev/xxx Complete disk path
|
|
* /xxx Full path to file
|
|
* xxx Shorthand for <zfs_vdev_paths>/xxx
|
|
*/
|
|
static nvlist_t *
|
|
make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
|
|
{
|
|
char path[MAXPATHLEN];
|
|
struct stat64 statbuf;
|
|
nvlist_t *vdev = NULL;
|
|
char *type = NULL;
|
|
boolean_t wholedisk = B_FALSE;
|
|
uint64_t ashift = 0;
|
|
int err;
|
|
|
|
/*
|
|
* Determine what type of vdev this is, and put the full path into
|
|
* 'path'. We detect whether this is a device of file afterwards by
|
|
* checking the st_mode of the file.
|
|
*/
|
|
if (arg[0] == '/') {
|
|
/*
|
|
* Complete device or file path. Exact type is determined by
|
|
* examining the file descriptor afterwards. Symbolic links
|
|
* are resolved to their real paths for the is_whole_disk()
|
|
* and S_ISBLK/S_ISREG type checks. However, we are careful
|
|
* to store the given path as ZPOOL_CONFIG_PATH to ensure we
|
|
* can leverage udev's persistent device labels.
|
|
*/
|
|
if (realpath(arg, path) == NULL) {
|
|
(void) fprintf(stderr,
|
|
gettext("cannot resolve path '%s'\n"), arg);
|
|
return (NULL);
|
|
}
|
|
|
|
wholedisk = is_whole_disk(path);
|
|
if (!wholedisk && (stat64(path, &statbuf) != 0)) {
|
|
(void) fprintf(stderr,
|
|
gettext("cannot open '%s': %s\n"),
|
|
path, strerror(errno));
|
|
return (NULL);
|
|
}
|
|
|
|
/* After is_whole_disk() check restore original passed path */
|
|
strlcpy(path, arg, MAXPATHLEN);
|
|
} else {
|
|
err = is_shorthand_path(arg, path, &statbuf, &wholedisk);
|
|
if (err != 0) {
|
|
/*
|
|
* If we got ENOENT, then the user gave us
|
|
* gibberish, so try to direct them with a
|
|
* reasonable error message. Otherwise,
|
|
* regurgitate strerror() since it's the best we
|
|
* can do.
|
|
*/
|
|
if (err == ENOENT) {
|
|
(void) fprintf(stderr,
|
|
gettext("cannot open '%s': no such "
|
|
"device in %s\n"), arg, DISK_ROOT);
|
|
(void) fprintf(stderr,
|
|
gettext("must be a full path or "
|
|
"shorthand device name\n"));
|
|
return (NULL);
|
|
} else {
|
|
(void) fprintf(stderr,
|
|
gettext("cannot open '%s': %s\n"),
|
|
path, strerror(errno));
|
|
return (NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine whether this is a device or a file.
|
|
*/
|
|
if (wholedisk || S_ISBLK(statbuf.st_mode)) {
|
|
type = VDEV_TYPE_DISK;
|
|
} else if (S_ISREG(statbuf.st_mode)) {
|
|
type = VDEV_TYPE_FILE;
|
|
} else {
|
|
(void) fprintf(stderr, gettext("cannot use '%s': must be a "
|
|
"block device or regular file\n"), path);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Finally, we have the complete device or file, and we know that it is
|
|
* acceptable to use. Construct the nvlist to describe this vdev. All
|
|
* vdevs have a 'path' element, and devices also have a 'devid' element.
|
|
*/
|
|
verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
|
|
verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
|
|
verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
|
|
verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
|
|
if (strcmp(type, VDEV_TYPE_DISK) == 0)
|
|
verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
|
|
(uint64_t)wholedisk) == 0);
|
|
|
|
/*
|
|
* Override defaults if custom properties are provided.
|
|
*/
|
|
if (props != NULL) {
|
|
char *value = NULL;
|
|
|
|
if (nvlist_lookup_string(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0)
|
|
zfs_nicestrtonum(NULL, value, &ashift);
|
|
}
|
|
|
|
/*
|
|
* If the device is known to incorrectly report its physical sector
|
|
* size explicitly provide the known correct value.
|
|
*/
|
|
if (ashift == 0) {
|
|
int sector_size;
|
|
|
|
if (check_sector_size_database(path, §or_size) == B_TRUE)
|
|
ashift = highbit64(sector_size) - 1;
|
|
}
|
|
|
|
if (ashift > 0)
|
|
nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
|
|
|
|
return (vdev);
|
|
}
|
|
|
|
/*
|
|
* Go through and verify the replication level of the pool is consistent.
|
|
* Performs the following checks:
|
|
*
|
|
* For the new spec, verifies that devices in mirrors and raidz are the
|
|
* same size.
|
|
*
|
|
* If the current configuration already has inconsistent replication
|
|
* levels, ignore any other potential problems in the new spec.
|
|
*
|
|
* Otherwise, make sure that the current spec (if there is one) and the new
|
|
* spec have consistent replication levels.
|
|
*/
|
|
typedef struct replication_level {
|
|
char *zprl_type;
|
|
uint64_t zprl_children;
|
|
uint64_t zprl_parity;
|
|
} replication_level_t;
|
|
|
|
#define ZPOOL_FUZZ (16 * 1024 * 1024)
|
|
|
|
/*
|
|
* Given a list of toplevel vdevs, return the current replication level. If
|
|
* the config is inconsistent, then NULL is returned. If 'fatal' is set, then
|
|
* an error message will be displayed for each self-inconsistent vdev.
|
|
*/
|
|
static replication_level_t *
|
|
get_replication(nvlist_t *nvroot, boolean_t fatal)
|
|
{
|
|
nvlist_t **top;
|
|
uint_t t, toplevels;
|
|
nvlist_t **child;
|
|
uint_t c, children;
|
|
nvlist_t *nv;
|
|
char *type;
|
|
replication_level_t lastrep = { 0 }, rep, *ret;
|
|
boolean_t dontreport;
|
|
|
|
ret = safe_malloc(sizeof (replication_level_t));
|
|
|
|
verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
|
|
&top, &toplevels) == 0);
|
|
|
|
lastrep.zprl_type = NULL;
|
|
for (t = 0; t < toplevels; t++) {
|
|
uint64_t is_log = B_FALSE;
|
|
|
|
nv = top[t];
|
|
|
|
/*
|
|
* For separate logs we ignore the top level vdev replication
|
|
* constraints.
|
|
*/
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
|
|
if (is_log)
|
|
continue;
|
|
|
|
verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
|
|
&type) == 0);
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) != 0) {
|
|
/*
|
|
* This is a 'file' or 'disk' vdev.
|
|
*/
|
|
rep.zprl_type = type;
|
|
rep.zprl_children = 1;
|
|
rep.zprl_parity = 0;
|
|
} else {
|
|
uint64_t vdev_size;
|
|
|
|
/*
|
|
* This is a mirror or RAID-Z vdev. Go through and make
|
|
* sure the contents are all the same (files vs. disks),
|
|
* keeping track of the number of elements in the
|
|
* process.
|
|
*
|
|
* We also check that the size of each vdev (if it can
|
|
* be determined) is the same.
|
|
*/
|
|
rep.zprl_type = type;
|
|
rep.zprl_children = 0;
|
|
|
|
if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
|
|
verify(nvlist_lookup_uint64(nv,
|
|
ZPOOL_CONFIG_NPARITY,
|
|
&rep.zprl_parity) == 0);
|
|
assert(rep.zprl_parity != 0);
|
|
} else {
|
|
rep.zprl_parity = 0;
|
|
}
|
|
|
|
/*
|
|
* The 'dontreport' variable indicates that we've
|
|
* already reported an error for this spec, so don't
|
|
* bother doing it again.
|
|
*/
|
|
type = NULL;
|
|
dontreport = 0;
|
|
vdev_size = -1ULL;
|
|
for (c = 0; c < children; c++) {
|
|
nvlist_t *cnv = child[c];
|
|
char *path;
|
|
struct stat64 statbuf;
|
|
uint64_t size = -1ULL;
|
|
char *childtype;
|
|
int fd, err;
|
|
|
|
rep.zprl_children++;
|
|
|
|
verify(nvlist_lookup_string(cnv,
|
|
ZPOOL_CONFIG_TYPE, &childtype) == 0);
|
|
|
|
/*
|
|
* If this is a replacing or spare vdev, then
|
|
* get the real first child of the vdev.
|
|
*/
|
|
if (strcmp(childtype,
|
|
VDEV_TYPE_REPLACING) == 0 ||
|
|
strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
|
|
nvlist_t **rchild;
|
|
uint_t rchildren;
|
|
|
|
verify(nvlist_lookup_nvlist_array(cnv,
|
|
ZPOOL_CONFIG_CHILDREN, &rchild,
|
|
&rchildren) == 0);
|
|
assert(rchildren == 2);
|
|
cnv = rchild[0];
|
|
|
|
verify(nvlist_lookup_string(cnv,
|
|
ZPOOL_CONFIG_TYPE,
|
|
&childtype) == 0);
|
|
}
|
|
|
|
verify(nvlist_lookup_string(cnv,
|
|
ZPOOL_CONFIG_PATH, &path) == 0);
|
|
|
|
/*
|
|
* If we have a raidz/mirror that combines disks
|
|
* with files, report it as an error.
|
|
*/
|
|
if (!dontreport && type != NULL &&
|
|
strcmp(type, childtype) != 0) {
|
|
if (ret != NULL)
|
|
free(ret);
|
|
ret = NULL;
|
|
if (fatal)
|
|
vdev_error(gettext(
|
|
"mismatched replication "
|
|
"level: %s contains both "
|
|
"files and devices\n"),
|
|
rep.zprl_type);
|
|
else
|
|
return (NULL);
|
|
dontreport = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* According to stat(2), the value of 'st_size'
|
|
* is undefined for block devices and character
|
|
* devices. But there is no effective way to
|
|
* determine the real size in userland.
|
|
*
|
|
* Instead, we'll take advantage of an
|
|
* implementation detail of spec_size(). If the
|
|
* device is currently open, then we (should)
|
|
* return a valid size.
|
|
*
|
|
* If we still don't get a valid size (indicated
|
|
* by a size of 0 or MAXOFFSET_T), then ignore
|
|
* this device altogether.
|
|
*/
|
|
if ((fd = open(path, O_RDONLY)) >= 0) {
|
|
err = fstat64(fd, &statbuf);
|
|
(void) close(fd);
|
|
} else {
|
|
err = stat64(path, &statbuf);
|
|
}
|
|
|
|
if (err != 0 ||
|
|
statbuf.st_size == 0 ||
|
|
statbuf.st_size == MAXOFFSET_T)
|
|
continue;
|
|
|
|
size = statbuf.st_size;
|
|
|
|
/*
|
|
* Also make sure that devices and
|
|
* slices have a consistent size. If
|
|
* they differ by a significant amount
|
|
* (~16MB) then report an error.
|
|
*/
|
|
if (!dontreport &&
|
|
(vdev_size != -1ULL &&
|
|
(labs(size - vdev_size) >
|
|
ZPOOL_FUZZ))) {
|
|
if (ret != NULL)
|
|
free(ret);
|
|
ret = NULL;
|
|
if (fatal)
|
|
vdev_error(gettext(
|
|
"%s contains devices of "
|
|
"different sizes\n"),
|
|
rep.zprl_type);
|
|
else
|
|
return (NULL);
|
|
dontreport = B_TRUE;
|
|
}
|
|
|
|
type = childtype;
|
|
vdev_size = size;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point, we have the replication of the last toplevel
|
|
* vdev in 'rep'. Compare it to 'lastrep' to see if its
|
|
* different.
|
|
*/
|
|
if (lastrep.zprl_type != NULL) {
|
|
if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
|
|
if (ret != NULL)
|
|
free(ret);
|
|
ret = NULL;
|
|
if (fatal)
|
|
vdev_error(gettext(
|
|
"mismatched replication level: "
|
|
"both %s and %s vdevs are "
|
|
"present\n"),
|
|
lastrep.zprl_type, rep.zprl_type);
|
|
else
|
|
return (NULL);
|
|
} else if (lastrep.zprl_parity != rep.zprl_parity) {
|
|
if (ret)
|
|
free(ret);
|
|
ret = NULL;
|
|
if (fatal)
|
|
vdev_error(gettext(
|
|
"mismatched replication level: "
|
|
"both %llu and %llu device parity "
|
|
"%s vdevs are present\n"),
|
|
lastrep.zprl_parity,
|
|
rep.zprl_parity,
|
|
rep.zprl_type);
|
|
else
|
|
return (NULL);
|
|
} else if (lastrep.zprl_children != rep.zprl_children) {
|
|
if (ret)
|
|
free(ret);
|
|
ret = NULL;
|
|
if (fatal)
|
|
vdev_error(gettext(
|
|
"mismatched replication level: "
|
|
"both %llu-way and %llu-way %s "
|
|
"vdevs are present\n"),
|
|
lastrep.zprl_children,
|
|
rep.zprl_children,
|
|
rep.zprl_type);
|
|
else
|
|
return (NULL);
|
|
}
|
|
}
|
|
lastrep = rep;
|
|
}
|
|
|
|
if (ret != NULL)
|
|
*ret = rep;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Check the replication level of the vdev spec against the current pool. Calls
|
|
* get_replication() to make sure the new spec is self-consistent. If the pool
|
|
* has a consistent replication level, then we ignore any errors. Otherwise,
|
|
* report any difference between the two.
|
|
*/
|
|
static int
|
|
check_replication(nvlist_t *config, nvlist_t *newroot)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t children;
|
|
replication_level_t *current = NULL, *new;
|
|
int ret;
|
|
|
|
/*
|
|
* If we have a current pool configuration, check to see if it's
|
|
* self-consistent. If not, simply return success.
|
|
*/
|
|
if (config != NULL) {
|
|
nvlist_t *nvroot;
|
|
|
|
verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&nvroot) == 0);
|
|
if ((current = get_replication(nvroot, B_FALSE)) == NULL)
|
|
return (0);
|
|
}
|
|
/*
|
|
* for spares there may be no children, and therefore no
|
|
* replication level to check
|
|
*/
|
|
if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) != 0) || (children == 0)) {
|
|
free(current);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If all we have is logs then there's no replication level to check.
|
|
*/
|
|
if (num_logs(newroot) == children) {
|
|
free(current);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get the replication level of the new vdev spec, reporting any
|
|
* inconsistencies found.
|
|
*/
|
|
if ((new = get_replication(newroot, B_TRUE)) == NULL) {
|
|
free(current);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Check to see if the new vdev spec matches the replication level of
|
|
* the current pool.
|
|
*/
|
|
ret = 0;
|
|
if (current != NULL) {
|
|
if (strcmp(current->zprl_type, new->zprl_type) != 0) {
|
|
vdev_error(gettext(
|
|
"mismatched replication level: pool uses %s "
|
|
"and new vdev is %s\n"),
|
|
current->zprl_type, new->zprl_type);
|
|
ret = -1;
|
|
} else if (current->zprl_parity != new->zprl_parity) {
|
|
vdev_error(gettext(
|
|
"mismatched replication level: pool uses %llu "
|
|
"device parity and new vdev uses %llu\n"),
|
|
current->zprl_parity, new->zprl_parity);
|
|
ret = -1;
|
|
} else if (current->zprl_children != new->zprl_children) {
|
|
vdev_error(gettext(
|
|
"mismatched replication level: pool uses %llu-way "
|
|
"%s and new vdev uses %llu-way %s\n"),
|
|
current->zprl_children, current->zprl_type,
|
|
new->zprl_children, new->zprl_type);
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
free(new);
|
|
if (current != NULL)
|
|
free(current);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
zero_label(char *path)
|
|
{
|
|
const int size = 4096;
|
|
char buf[size];
|
|
int err, fd;
|
|
|
|
if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
|
|
(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
|
|
path, strerror(errno));
|
|
return (-1);
|
|
}
|
|
|
|
memset(buf, 0, size);
|
|
err = write(fd, buf, size);
|
|
(void) fdatasync(fd);
|
|
(void) close(fd);
|
|
|
|
if (err == -1) {
|
|
(void) fprintf(stderr, gettext("cannot zero first %d bytes "
|
|
"of '%s': %s\n"), size, path, strerror(errno));
|
|
return (-1);
|
|
}
|
|
|
|
if (err != size) {
|
|
(void) fprintf(stderr, gettext("could only zero %d/%d bytes "
|
|
"of '%s'\n"), err, size, path);
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Go through and find any whole disks in the vdev specification, labelling them
|
|
* as appropriate. When constructing the vdev spec, we were unable to open this
|
|
* device in order to provide a devid. Now that we have labelled the disk and
|
|
* know that slice 0 is valid, we can construct the devid now.
|
|
*
|
|
* If the disk was already labeled with an EFI label, we will have gotten the
|
|
* devid already (because we were able to open the whole disk). Otherwise, we
|
|
* need to get the devid after we label the disk.
|
|
*/
|
|
static int
|
|
make_disks(zpool_handle_t *zhp, nvlist_t *nv)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t c, children;
|
|
char *type, *path;
|
|
char devpath[MAXPATHLEN];
|
|
char udevpath[MAXPATHLEN];
|
|
uint64_t wholedisk;
|
|
struct stat64 statbuf;
|
|
int is_exclusive = 0;
|
|
int fd;
|
|
int ret;
|
|
|
|
verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) != 0) {
|
|
|
|
if (strcmp(type, VDEV_TYPE_DISK) != 0)
|
|
return (0);
|
|
|
|
/*
|
|
* We have a disk device. If this is a whole disk write
|
|
* out the efi partition table, otherwise write zero's to
|
|
* the first 4k of the partition. This is to ensure that
|
|
* libblkid will not misidentify the partition due to a
|
|
* magic value left by the previous filesystem.
|
|
*/
|
|
verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
|
|
verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
|
|
&wholedisk));
|
|
|
|
if (!wholedisk) {
|
|
/*
|
|
* Update device id string for mpath nodes (Linux only)
|
|
*/
|
|
if (is_mpath_whole_disk(path))
|
|
update_vdev_config_dev_strs(nv);
|
|
|
|
(void) zero_label(path);
|
|
return (0);
|
|
}
|
|
|
|
if (realpath(path, devpath) == NULL) {
|
|
ret = errno;
|
|
(void) fprintf(stderr,
|
|
gettext("cannot resolve path '%s'\n"), path);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Remove any previously existing symlink from a udev path to
|
|
* the device before labeling the disk. This ensures that
|
|
* only newly created links are used. Otherwise there is a
|
|
* window between when udev deletes and recreates the link
|
|
* during which access attempts will fail with ENOENT.
|
|
*/
|
|
strncpy(udevpath, path, MAXPATHLEN);
|
|
(void) zfs_append_partition(udevpath, MAXPATHLEN);
|
|
|
|
fd = open(devpath, O_RDWR|O_EXCL);
|
|
if (fd == -1) {
|
|
if (errno == EBUSY)
|
|
is_exclusive = 1;
|
|
} else {
|
|
(void) close(fd);
|
|
}
|
|
|
|
/*
|
|
* If the partition exists, contains a valid spare label,
|
|
* and is opened exclusively there is no need to partition
|
|
* it. Hot spares have already been partitioned and are
|
|
* held open exclusively by the kernel as a safety measure.
|
|
*
|
|
* If the provided path is for a /dev/disk/ device its
|
|
* symbolic link will be removed, partition table created,
|
|
* and then block until udev creates the new link.
|
|
*/
|
|
if (!is_exclusive || !is_spare(NULL, udevpath)) {
|
|
char *devnode = strrchr(devpath, '/') + 1;
|
|
|
|
ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
|
|
if (ret == 0) {
|
|
ret = lstat64(udevpath, &statbuf);
|
|
if (ret == 0 && S_ISLNK(statbuf.st_mode))
|
|
(void) unlink(udevpath);
|
|
}
|
|
|
|
/*
|
|
* When labeling a pool the raw device node name
|
|
* is provided as it appears under /dev/.
|
|
*/
|
|
if (zpool_label_disk(g_zfs, zhp, devnode) == -1)
|
|
return (-1);
|
|
|
|
/*
|
|
* Wait for udev to signal the device is available
|
|
* by the provided path.
|
|
*/
|
|
ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
|
|
if (ret) {
|
|
(void) fprintf(stderr,
|
|
gettext("missing link: %s was "
|
|
"partitioned but %s is missing\n"),
|
|
devnode, udevpath);
|
|
return (ret);
|
|
}
|
|
|
|
ret = zero_label(udevpath);
|
|
if (ret)
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Update the path to refer to the partition. The presence of
|
|
* the 'whole_disk' field indicates to the CLI that we should
|
|
* chop off the partition number when displaying the device in
|
|
* future output.
|
|
*/
|
|
verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
|
|
|
|
/*
|
|
* Update device id strings for whole disks (Linux only)
|
|
*/
|
|
update_vdev_config_dev_strs(nv);
|
|
|
|
return (0);
|
|
}
|
|
|
|
for (c = 0; c < children; c++)
|
|
if ((ret = make_disks(zhp, child[c])) != 0)
|
|
return (ret);
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
|
|
&child, &children) == 0)
|
|
for (c = 0; c < children; c++)
|
|
if ((ret = make_disks(zhp, child[c])) != 0)
|
|
return (ret);
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
|
|
&child, &children) == 0)
|
|
for (c = 0; c < children; c++)
|
|
if ((ret = make_disks(zhp, child[c])) != 0)
|
|
return (ret);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Go through and find any devices that are in use. We rely on libdiskmgt for
|
|
* the majority of this task.
|
|
*/
|
|
static boolean_t
|
|
is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
|
|
boolean_t replacing, boolean_t isspare)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t c, children;
|
|
char *type, *path;
|
|
int ret = 0;
|
|
char buf[MAXPATHLEN];
|
|
uint64_t wholedisk = B_FALSE;
|
|
boolean_t anyinuse = B_FALSE;
|
|
|
|
verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) != 0) {
|
|
|
|
verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
|
|
if (strcmp(type, VDEV_TYPE_DISK) == 0)
|
|
verify(!nvlist_lookup_uint64(nv,
|
|
ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
|
|
|
|
/*
|
|
* As a generic check, we look to see if this is a replace of a
|
|
* hot spare within the same pool. If so, we allow it
|
|
* regardless of what libblkid or zpool_in_use() says.
|
|
*/
|
|
if (replacing) {
|
|
(void) strlcpy(buf, path, sizeof (buf));
|
|
if (wholedisk) {
|
|
ret = zfs_append_partition(buf, sizeof (buf));
|
|
if (ret == -1)
|
|
return (-1);
|
|
}
|
|
|
|
if (is_spare(config, buf))
|
|
return (B_FALSE);
|
|
}
|
|
|
|
if (strcmp(type, VDEV_TYPE_DISK) == 0)
|
|
ret = check_device(path, force, isspare, wholedisk);
|
|
|
|
else if (strcmp(type, VDEV_TYPE_FILE) == 0)
|
|
ret = check_file(path, force, isspare);
|
|
|
|
return (ret != 0);
|
|
}
|
|
|
|
for (c = 0; c < children; c++)
|
|
if (is_device_in_use(config, child[c], force, replacing,
|
|
B_FALSE))
|
|
anyinuse = B_TRUE;
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
|
|
&child, &children) == 0)
|
|
for (c = 0; c < children; c++)
|
|
if (is_device_in_use(config, child[c], force, replacing,
|
|
B_TRUE))
|
|
anyinuse = B_TRUE;
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
|
|
&child, &children) == 0)
|
|
for (c = 0; c < children; c++)
|
|
if (is_device_in_use(config, child[c], force, replacing,
|
|
B_FALSE))
|
|
anyinuse = B_TRUE;
|
|
|
|
return (anyinuse);
|
|
}
|
|
|
|
static const char *
|
|
is_grouping(const char *type, int *mindev, int *maxdev)
|
|
{
|
|
if (strncmp(type, "raidz", 5) == 0) {
|
|
const char *p = type + 5;
|
|
char *end;
|
|
long nparity;
|
|
|
|
if (*p == '\0') {
|
|
nparity = 1;
|
|
} else if (*p == '0') {
|
|
return (NULL); /* no zero prefixes allowed */
|
|
} else {
|
|
errno = 0;
|
|
nparity = strtol(p, &end, 10);
|
|
if (errno != 0 || nparity < 1 || nparity >= 255 ||
|
|
*end != '\0')
|
|
return (NULL);
|
|
}
|
|
|
|
if (mindev != NULL)
|
|
*mindev = nparity + 1;
|
|
if (maxdev != NULL)
|
|
*maxdev = 255;
|
|
return (VDEV_TYPE_RAIDZ);
|
|
}
|
|
|
|
if (maxdev != NULL)
|
|
*maxdev = INT_MAX;
|
|
|
|
if (strcmp(type, "mirror") == 0) {
|
|
if (mindev != NULL)
|
|
*mindev = 2;
|
|
return (VDEV_TYPE_MIRROR);
|
|
}
|
|
|
|
if (strcmp(type, "spare") == 0) {
|
|
if (mindev != NULL)
|
|
*mindev = 1;
|
|
return (VDEV_TYPE_SPARE);
|
|
}
|
|
|
|
if (strcmp(type, "log") == 0) {
|
|
if (mindev != NULL)
|
|
*mindev = 1;
|
|
return (VDEV_TYPE_LOG);
|
|
}
|
|
|
|
if (strcmp(type, "cache") == 0) {
|
|
if (mindev != NULL)
|
|
*mindev = 1;
|
|
return (VDEV_TYPE_L2CACHE);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Construct a syntactically valid vdev specification,
|
|
* and ensure that all devices and files exist and can be opened.
|
|
* Note: we don't bother freeing anything in the error paths
|
|
* because the program is just going to exit anyway.
|
|
*/
|
|
nvlist_t *
|
|
construct_spec(nvlist_t *props, int argc, char **argv)
|
|
{
|
|
nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
|
|
int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
|
|
const char *type;
|
|
uint64_t is_log;
|
|
boolean_t seen_logs;
|
|
|
|
top = NULL;
|
|
toplevels = 0;
|
|
spares = NULL;
|
|
l2cache = NULL;
|
|
nspares = 0;
|
|
nlogs = 0;
|
|
nl2cache = 0;
|
|
is_log = B_FALSE;
|
|
seen_logs = B_FALSE;
|
|
|
|
while (argc > 0) {
|
|
nv = NULL;
|
|
|
|
/*
|
|
* If it's a mirror or raidz, the subsequent arguments are
|
|
* its leaves -- until we encounter the next mirror or raidz.
|
|
*/
|
|
if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
|
|
nvlist_t **child = NULL;
|
|
int c, children = 0;
|
|
|
|
if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
|
|
if (spares != NULL) {
|
|
(void) fprintf(stderr,
|
|
gettext("invalid vdev "
|
|
"specification: 'spare' can be "
|
|
"specified only once\n"));
|
|
return (NULL);
|
|
}
|
|
is_log = B_FALSE;
|
|
}
|
|
|
|
if (strcmp(type, VDEV_TYPE_LOG) == 0) {
|
|
if (seen_logs) {
|
|
(void) fprintf(stderr,
|
|
gettext("invalid vdev "
|
|
"specification: 'log' can be "
|
|
"specified only once\n"));
|
|
return (NULL);
|
|
}
|
|
seen_logs = B_TRUE;
|
|
is_log = B_TRUE;
|
|
argc--;
|
|
argv++;
|
|
/*
|
|
* A log is not a real grouping device.
|
|
* We just set is_log and continue.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
|
|
if (l2cache != NULL) {
|
|
(void) fprintf(stderr,
|
|
gettext("invalid vdev "
|
|
"specification: 'cache' can be "
|
|
"specified only once\n"));
|
|
return (NULL);
|
|
}
|
|
is_log = B_FALSE;
|
|
}
|
|
|
|
if (is_log) {
|
|
if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
|
|
(void) fprintf(stderr,
|
|
gettext("invalid vdev "
|
|
"specification: unsupported 'log' "
|
|
"device: %s\n"), type);
|
|
return (NULL);
|
|
}
|
|
nlogs++;
|
|
}
|
|
|
|
for (c = 1; c < argc; c++) {
|
|
if (is_grouping(argv[c], NULL, NULL) != NULL)
|
|
break;
|
|
children++;
|
|
child = realloc(child,
|
|
children * sizeof (nvlist_t *));
|
|
if (child == NULL)
|
|
zpool_no_memory();
|
|
if ((nv = make_leaf_vdev(props, argv[c],
|
|
B_FALSE)) == NULL)
|
|
return (NULL);
|
|
child[children - 1] = nv;
|
|
}
|
|
|
|
if (children < mindev) {
|
|
(void) fprintf(stderr, gettext("invalid vdev "
|
|
"specification: %s requires at least %d "
|
|
"devices\n"), argv[0], mindev);
|
|
return (NULL);
|
|
}
|
|
|
|
if (children > maxdev) {
|
|
(void) fprintf(stderr, gettext("invalid vdev "
|
|
"specification: %s supports no more than "
|
|
"%d devices\n"), argv[0], maxdev);
|
|
return (NULL);
|
|
}
|
|
|
|
argc -= c;
|
|
argv += c;
|
|
|
|
if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
|
|
spares = child;
|
|
nspares = children;
|
|
continue;
|
|
} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
|
|
l2cache = child;
|
|
nl2cache = children;
|
|
continue;
|
|
} else {
|
|
verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
|
|
0) == 0);
|
|
verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
|
|
type) == 0);
|
|
verify(nvlist_add_uint64(nv,
|
|
ZPOOL_CONFIG_IS_LOG, is_log) == 0);
|
|
if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
|
|
verify(nvlist_add_uint64(nv,
|
|
ZPOOL_CONFIG_NPARITY,
|
|
mindev - 1) == 0);
|
|
}
|
|
verify(nvlist_add_nvlist_array(nv,
|
|
ZPOOL_CONFIG_CHILDREN, child,
|
|
children) == 0);
|
|
|
|
for (c = 0; c < children; c++)
|
|
nvlist_free(child[c]);
|
|
free(child);
|
|
}
|
|
} else {
|
|
/*
|
|
* We have a device. Pass off to make_leaf_vdev() to
|
|
* construct the appropriate nvlist describing the vdev.
|
|
*/
|
|
if ((nv = make_leaf_vdev(props, argv[0],
|
|
is_log)) == NULL)
|
|
return (NULL);
|
|
if (is_log)
|
|
nlogs++;
|
|
argc--;
|
|
argv++;
|
|
}
|
|
|
|
toplevels++;
|
|
top = realloc(top, toplevels * sizeof (nvlist_t *));
|
|
if (top == NULL)
|
|
zpool_no_memory();
|
|
top[toplevels - 1] = nv;
|
|
}
|
|
|
|
if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
|
|
(void) fprintf(stderr, gettext("invalid vdev "
|
|
"specification: at least one toplevel vdev must be "
|
|
"specified\n"));
|
|
return (NULL);
|
|
}
|
|
|
|
if (seen_logs && nlogs == 0) {
|
|
(void) fprintf(stderr, gettext("invalid vdev specification: "
|
|
"log requires at least 1 device\n"));
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Finally, create nvroot and add all top-level vdevs to it.
|
|
*/
|
|
verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
|
|
verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_ROOT) == 0);
|
|
verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
|
|
top, toplevels) == 0);
|
|
if (nspares != 0)
|
|
verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
|
spares, nspares) == 0);
|
|
if (nl2cache != 0)
|
|
verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
|
|
l2cache, nl2cache) == 0);
|
|
|
|
for (t = 0; t < toplevels; t++)
|
|
nvlist_free(top[t]);
|
|
for (t = 0; t < nspares; t++)
|
|
nvlist_free(spares[t]);
|
|
for (t = 0; t < nl2cache; t++)
|
|
nvlist_free(l2cache[t]);
|
|
if (spares)
|
|
free(spares);
|
|
if (l2cache)
|
|
free(l2cache);
|
|
free(top);
|
|
|
|
return (nvroot);
|
|
}
|
|
|
|
nvlist_t *
|
|
split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
|
|
splitflags_t flags, int argc, char **argv)
|
|
{
|
|
nvlist_t *newroot = NULL, **child;
|
|
uint_t c, children;
|
|
|
|
if (argc > 0) {
|
|
if ((newroot = construct_spec(props, argc, argv)) == NULL) {
|
|
(void) fprintf(stderr, gettext("Unable to build a "
|
|
"pool from the specified devices\n"));
|
|
return (NULL);
|
|
}
|
|
|
|
if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
|
|
nvlist_free(newroot);
|
|
return (NULL);
|
|
}
|
|
|
|
/* avoid any tricks in the spec */
|
|
verify(nvlist_lookup_nvlist_array(newroot,
|
|
ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
|
|
for (c = 0; c < children; c++) {
|
|
char *path;
|
|
const char *type;
|
|
int min, max;
|
|
|
|
verify(nvlist_lookup_string(child[c],
|
|
ZPOOL_CONFIG_PATH, &path) == 0);
|
|
if ((type = is_grouping(path, &min, &max)) != NULL) {
|
|
(void) fprintf(stderr, gettext("Cannot use "
|
|
"'%s' as a device for splitting\n"), type);
|
|
nvlist_free(newroot);
|
|
return (NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
|
|
nvlist_free(newroot);
|
|
return (NULL);
|
|
}
|
|
|
|
return (newroot);
|
|
}
|
|
|
|
/*
|
|
* Get and validate the contents of the given vdev specification. This ensures
|
|
* that the nvlist returned is well-formed, that all the devices exist, and that
|
|
* they are not currently in use by any other known consumer. The 'poolconfig'
|
|
* parameter is the current configuration of the pool when adding devices
|
|
* existing pool, and is used to perform additional checks, such as changing the
|
|
* replication level of the pool. It can be 'NULL' to indicate that this is a
|
|
* new pool. The 'force' flag controls whether devices should be forcefully
|
|
* added, even if they appear in use.
|
|
*/
|
|
nvlist_t *
|
|
make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
|
|
boolean_t replacing, boolean_t dryrun, int argc, char **argv)
|
|
{
|
|
nvlist_t *newroot;
|
|
nvlist_t *poolconfig = NULL;
|
|
is_force = force;
|
|
|
|
/*
|
|
* Construct the vdev specification. If this is successful, we know
|
|
* that we have a valid specification, and that all devices can be
|
|
* opened.
|
|
*/
|
|
if ((newroot = construct_spec(props, argc, argv)) == NULL)
|
|
return (NULL);
|
|
|
|
if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
|
|
nvlist_free(newroot);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Validate each device to make sure that its not shared with another
|
|
* subsystem. We do this even if 'force' is set, because there are some
|
|
* uses (such as a dedicated dump device) that even '-f' cannot
|
|
* override.
|
|
*/
|
|
if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
|
|
nvlist_free(newroot);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Check the replication level of the given vdevs and report any errors
|
|
* found. We include the existing pool spec, if any, as we need to
|
|
* catch changes against the existing replication level.
|
|
*/
|
|
if (check_rep && check_replication(poolconfig, newroot) != 0) {
|
|
nvlist_free(newroot);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Run through the vdev specification and label any whole disks found.
|
|
*/
|
|
if (!dryrun && make_disks(zhp, newroot) != 0) {
|
|
nvlist_free(newroot);
|
|
return (NULL);
|
|
}
|
|
|
|
return (newroot);
|
|
}
|