freebsd-nq/sys/dev/nvme/nvme_sysctl.c
Jim Harris 50dea2da12 nvme: add hw.nvme.min_cpus_per_ioq tunable
Due to FreeBSD system-wide limits on number of MSI-X vectors
(https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=199321),
it may be desirable to allocate fewer than the maximum number
of vectors for an NVMe device, in order to save vectors for
other devices (usually Ethernet) that can take better
advantage of them and may be probed after NVMe.

This tunable is expressed in terms of minimum number of CPUs
per I/O queue instead of max number of queues per controller,
to allow for a more even distribution of CPUs per queue.  This
avoids cases where some number of CPUs have a dedicated queue,
but other CPUs need to share queues.  Ideally the PR referenced
above will eventually be fixed and the mechanism implemented
here becomes obsolete anyways.

While here, fix a bug in the CPUs per I/O queue calculation to
properly account for the admin queue's MSI-X vector.

Reviewed by:	gallatin
MFC after:	3 days
Sponsored by:	Intel
2016-01-07 20:32:04 +00:00

318 lines
9.4 KiB
C

/*-
* Copyright (C) 2012-2016 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/sysctl.h>
#include "nvme_private.h"
SYSCTL_NODE(_kern, OID_AUTO, nvme, CTLFLAG_RD, 0, "NVM Express");
/*
* Intel NVMe controllers have a slow path for I/Os that span a 128KB
* stripe boundary but ZFS limits ashift, which is derived from
* d_stripesize, to 13 (8KB) so we limit the stripesize reported to
* geom(8) to 4KB by default.
*
* This may result in a small number of additional I/Os to require
* splitting in nvme(4), however the NVMe I/O path is very efficient
* so these additional I/Os will cause very minimal (if any) difference
* in performance or CPU utilisation.
*/
int nvme_max_optimal_sectorsize = 1<<12;
SYSCTL_INT(_kern_nvme, OID_AUTO, max_optimal_sectorsize, CTLFLAG_RWTUN,
&nvme_max_optimal_sectorsize, 0, "The maximum optimal sectorsize reported");
/*
* CTLTYPE_S64 and sysctl_handle_64 were added in r217616. Define these
* explicitly here for older kernels that don't include the r217616
* changeset.
*/
#ifndef CTLTYPE_S64
#define CTLTYPE_S64 CTLTYPE_QUAD
#define sysctl_handle_64 sysctl_handle_quad
#endif
static void
nvme_dump_queue(struct nvme_qpair *qpair)
{
struct nvme_completion *cpl;
struct nvme_command *cmd;
int i;
printf("id:%04Xh phase:%d\n", qpair->id, qpair->phase);
printf("Completion queue:\n");
for (i = 0; i < qpair->num_entries; i++) {
cpl = &qpair->cpl[i];
printf("%05d: ", i);
nvme_dump_completion(cpl);
}
printf("Submission queue:\n");
for (i = 0; i < qpair->num_entries; i++) {
cmd = &qpair->cmd[i];
printf("%05d: ", i);
nvme_dump_command(cmd);
}
}
static int
nvme_sysctl_dump_debug(SYSCTL_HANDLER_ARGS)
{
struct nvme_qpair *qpair = arg1;
uint32_t val = 0;
int error = sysctl_handle_int(oidp, &val, 0, req);
if (error)
return (error);
if (val != 0)
nvme_dump_queue(qpair);
return (0);
}
static int
nvme_sysctl_int_coal_time(SYSCTL_HANDLER_ARGS)
{
struct nvme_controller *ctrlr = arg1;
uint32_t oldval = ctrlr->int_coal_time;
int error = sysctl_handle_int(oidp, &ctrlr->int_coal_time, 0,
req);
if (error)
return (error);
if (oldval != ctrlr->int_coal_time)
nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr,
ctrlr->int_coal_time, ctrlr->int_coal_threshold, NULL,
NULL);
return (0);
}
static int
nvme_sysctl_int_coal_threshold(SYSCTL_HANDLER_ARGS)
{
struct nvme_controller *ctrlr = arg1;
uint32_t oldval = ctrlr->int_coal_threshold;
int error = sysctl_handle_int(oidp, &ctrlr->int_coal_threshold, 0,
req);
if (error)
return (error);
if (oldval != ctrlr->int_coal_threshold)
nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr,
ctrlr->int_coal_time, ctrlr->int_coal_threshold, NULL,
NULL);
return (0);
}
static int
nvme_sysctl_timeout_period(SYSCTL_HANDLER_ARGS)
{
struct nvme_controller *ctrlr = arg1;
uint32_t oldval = ctrlr->timeout_period;
int error = sysctl_handle_int(oidp, &ctrlr->timeout_period, 0, req);
if (error)
return (error);
if (ctrlr->timeout_period > NVME_MAX_TIMEOUT_PERIOD ||
ctrlr->timeout_period < NVME_MIN_TIMEOUT_PERIOD) {
ctrlr->timeout_period = oldval;
return (EINVAL);
}
return (0);
}
static void
nvme_qpair_reset_stats(struct nvme_qpair *qpair)
{
qpair->num_cmds = 0;
qpair->num_intr_handler_calls = 0;
}
static int
nvme_sysctl_num_cmds(SYSCTL_HANDLER_ARGS)
{
struct nvme_controller *ctrlr = arg1;
int64_t num_cmds = 0;
int i;
num_cmds = ctrlr->adminq.num_cmds;
for (i = 0; i < ctrlr->num_io_queues; i++)
num_cmds += ctrlr->ioq[i].num_cmds;
return (sysctl_handle_64(oidp, &num_cmds, 0, req));
}
static int
nvme_sysctl_num_intr_handler_calls(SYSCTL_HANDLER_ARGS)
{
struct nvme_controller *ctrlr = arg1;
int64_t num_intr_handler_calls = 0;
int i;
num_intr_handler_calls = ctrlr->adminq.num_intr_handler_calls;
for (i = 0; i < ctrlr->num_io_queues; i++)
num_intr_handler_calls += ctrlr->ioq[i].num_intr_handler_calls;
return (sysctl_handle_64(oidp, &num_intr_handler_calls, 0, req));
}
static int
nvme_sysctl_reset_stats(SYSCTL_HANDLER_ARGS)
{
struct nvme_controller *ctrlr = arg1;
uint32_t i, val = 0;
int error = sysctl_handle_int(oidp, &val, 0, req);
if (error)
return (error);
if (val != 0) {
nvme_qpair_reset_stats(&ctrlr->adminq);
for (i = 0; i < ctrlr->num_io_queues; i++)
nvme_qpair_reset_stats(&ctrlr->ioq[i]);
}
return (0);
}
static void
nvme_sysctl_initialize_queue(struct nvme_qpair *qpair,
struct sysctl_ctx_list *ctrlr_ctx, struct sysctl_oid *que_tree)
{
struct sysctl_oid_list *que_list = SYSCTL_CHILDREN(que_tree);
SYSCTL_ADD_UINT(ctrlr_ctx, que_list, OID_AUTO, "num_entries",
CTLFLAG_RD, &qpair->num_entries, 0,
"Number of entries in hardware queue");
SYSCTL_ADD_UINT(ctrlr_ctx, que_list, OID_AUTO, "num_trackers",
CTLFLAG_RD, &qpair->num_trackers, 0,
"Number of trackers pre-allocated for this queue pair");
SYSCTL_ADD_UINT(ctrlr_ctx, que_list, OID_AUTO, "sq_head",
CTLFLAG_RD, &qpair->sq_head, 0,
"Current head of submission queue (as observed by driver)");
SYSCTL_ADD_UINT(ctrlr_ctx, que_list, OID_AUTO, "sq_tail",
CTLFLAG_RD, &qpair->sq_tail, 0,
"Current tail of submission queue (as observed by driver)");
SYSCTL_ADD_UINT(ctrlr_ctx, que_list, OID_AUTO, "cq_head",
CTLFLAG_RD, &qpair->cq_head, 0,
"Current head of completion queue (as observed by driver)");
SYSCTL_ADD_QUAD(ctrlr_ctx, que_list, OID_AUTO, "num_cmds",
CTLFLAG_RD, &qpair->num_cmds, "Number of commands submitted");
SYSCTL_ADD_QUAD(ctrlr_ctx, que_list, OID_AUTO, "num_intr_handler_calls",
CTLFLAG_RD, &qpair->num_intr_handler_calls,
"Number of times interrupt handler was invoked (will typically be "
"less than number of actual interrupts generated due to "
"coalescing)");
SYSCTL_ADD_PROC(ctrlr_ctx, que_list, OID_AUTO,
"dump_debug", CTLTYPE_UINT | CTLFLAG_RW, qpair, 0,
nvme_sysctl_dump_debug, "IU", "Dump debug data");
}
void
nvme_sysctl_initialize_ctrlr(struct nvme_controller *ctrlr)
{
struct sysctl_ctx_list *ctrlr_ctx;
struct sysctl_oid *ctrlr_tree, *que_tree;
struct sysctl_oid_list *ctrlr_list;
#define QUEUE_NAME_LENGTH 16
char queue_name[QUEUE_NAME_LENGTH];
int i;
ctrlr_ctx = device_get_sysctl_ctx(ctrlr->dev);
ctrlr_tree = device_get_sysctl_tree(ctrlr->dev);
ctrlr_list = SYSCTL_CHILDREN(ctrlr_tree);
SYSCTL_ADD_UINT(ctrlr_ctx, ctrlr_list, OID_AUTO, "num_cpus_per_ioq",
CTLFLAG_RD, &ctrlr->num_cpus_per_ioq, 0,
"Number of CPUs assigned per I/O queue pair");
SYSCTL_ADD_PROC(ctrlr_ctx, ctrlr_list, OID_AUTO,
"int_coal_time", CTLTYPE_UINT | CTLFLAG_RW, ctrlr, 0,
nvme_sysctl_int_coal_time, "IU",
"Interrupt coalescing timeout (in microseconds)");
SYSCTL_ADD_PROC(ctrlr_ctx, ctrlr_list, OID_AUTO,
"int_coal_threshold", CTLTYPE_UINT | CTLFLAG_RW, ctrlr, 0,
nvme_sysctl_int_coal_threshold, "IU",
"Interrupt coalescing threshold");
SYSCTL_ADD_PROC(ctrlr_ctx, ctrlr_list, OID_AUTO,
"timeout_period", CTLTYPE_UINT | CTLFLAG_RW, ctrlr, 0,
nvme_sysctl_timeout_period, "IU",
"Timeout period (in seconds)");
SYSCTL_ADD_PROC(ctrlr_ctx, ctrlr_list, OID_AUTO,
"num_cmds", CTLTYPE_S64 | CTLFLAG_RD,
ctrlr, 0, nvme_sysctl_num_cmds, "IU",
"Number of commands submitted");
SYSCTL_ADD_PROC(ctrlr_ctx, ctrlr_list, OID_AUTO,
"num_intr_handler_calls", CTLTYPE_S64 | CTLFLAG_RD,
ctrlr, 0, nvme_sysctl_num_intr_handler_calls, "IU",
"Number of times interrupt handler was invoked (will "
"typically be less than number of actual interrupts "
"generated due to coalescing)");
SYSCTL_ADD_PROC(ctrlr_ctx, ctrlr_list, OID_AUTO,
"reset_stats", CTLTYPE_UINT | CTLFLAG_RW, ctrlr, 0,
nvme_sysctl_reset_stats, "IU", "Reset statistics to zero");
que_tree = SYSCTL_ADD_NODE(ctrlr_ctx, ctrlr_list, OID_AUTO, "adminq",
CTLFLAG_RD, NULL, "Admin Queue");
nvme_sysctl_initialize_queue(&ctrlr->adminq, ctrlr_ctx, que_tree);
for (i = 0; i < ctrlr->num_io_queues; i++) {
snprintf(queue_name, QUEUE_NAME_LENGTH, "ioq%d", i);
que_tree = SYSCTL_ADD_NODE(ctrlr_ctx, ctrlr_list, OID_AUTO,
queue_name, CTLFLAG_RD, NULL, "IO Queue");
nvme_sysctl_initialize_queue(&ctrlr->ioq[i], ctrlr_ctx,
que_tree);
}
}