freebsd-nq/sys/cddl/dev/dtrace/powerpc/dtrace_isa.c

623 lines
14 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*
* Portions Copyright 2012,2013 Justin Hibbits <jhibbits@freebsd.org>
*
* $FreeBSD$
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/stack.h>
#include <sys/sysent.h>
#include <sys/pcpu.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/reg.h>
#include <machine/stack.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include "regset.h"
/* Offset to the LR Save word (ppc32) */
#define RETURN_OFFSET 4
/* Offset to LR Save word (ppc64). CR Save area sits between back chain and LR */
#define RETURN_OFFSET64 16
#define INKERNEL(x) ((x) <= VM_MAX_KERNEL_ADDRESS && \
(x) >= VM_MIN_KERNEL_ADDRESS)
greg_t
dtrace_getfp(void)
{
return (greg_t)__builtin_frame_address(0);
}
void
dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes,
uint32_t *intrpc)
{
int depth = 0;
register_t sp;
vm_offset_t callpc;
pc_t caller = (pc_t) solaris_cpu[curcpu].cpu_dtrace_caller;
if (intrpc != 0)
pcstack[depth++] = (pc_t) intrpc;
aframes++;
sp = dtrace_getfp();
while (depth < pcstack_limit) {
if (!INKERNEL((long) sp))
break;
#ifdef __powerpc64__
callpc = *(uintptr_t *)(sp + RETURN_OFFSET64);
#else
callpc = *(uintptr_t *)(sp + RETURN_OFFSET);
#endif
if (!INKERNEL(callpc))
break;
if (aframes > 0) {
aframes--;
if ((aframes == 0) && (caller != 0)) {
pcstack[depth++] = caller;
}
}
else {
pcstack[depth++] = callpc;
}
sp = *(uintptr_t*)sp;
}
for (; depth < pcstack_limit; depth++) {
pcstack[depth] = 0;
}
}
static int
dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, uintptr_t pc,
uintptr_t sp)
{
proc_t *p = curproc;
int ret = 0;
ASSERT(pcstack == NULL || pcstack_limit > 0);
while (pc != 0) {
ret++;
if (pcstack != NULL) {
*pcstack++ = (uint64_t)pc;
pcstack_limit--;
if (pcstack_limit <= 0)
break;
}
if (sp == 0)
break;
if (SV_PROC_FLAG(p, SV_ILP32)) {
pc = dtrace_fuword32((void *)(sp + RETURN_OFFSET));
sp = dtrace_fuword32((void *)sp);
}
else {
pc = dtrace_fuword64((void *)(sp + RETURN_OFFSET64));
sp = dtrace_fuword64((void *)sp);
}
}
return (ret);
}
void
dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit)
{
proc_t *p = curproc;
struct trapframe *tf;
uintptr_t pc, sp;
volatile uint16_t *flags =
(volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
int n;
if (*flags & CPU_DTRACE_FAULT)
return;
if (pcstack_limit <= 0)
return;
/*
* If there's no user context we still need to zero the stack.
*/
if (p == NULL || (tf = curthread->td_frame) == NULL)
goto zero;
*pcstack++ = (uint64_t)p->p_pid;
pcstack_limit--;
if (pcstack_limit <= 0)
return;
pc = tf->srr0;
sp = tf->fixreg[1];
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
/*
* In an entry probe. The frame pointer has not yet been
* pushed (that happens in the function prologue). The
* best approach is to add the current pc as a missing top
* of stack and back the pc up to the caller, which is stored
* at the current stack pointer address since the call
* instruction puts it there right before the branch.
*/
*pcstack++ = (uint64_t)pc;
pcstack_limit--;
if (pcstack_limit <= 0)
return;
pc = tf->lr;
}
n = dtrace_getustack_common(pcstack, pcstack_limit, pc, sp);
ASSERT(n >= 0);
ASSERT(n <= pcstack_limit);
pcstack += n;
pcstack_limit -= n;
zero:
while (pcstack_limit-- > 0)
*pcstack++ = 0;
}
int
dtrace_getustackdepth(void)
{
proc_t *p = curproc;
struct trapframe *tf;
uintptr_t pc, sp;
int n = 0;
if (p == NULL || (tf = curthread->td_frame) == NULL)
return (0);
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
return (-1);
pc = tf->srr0;
sp = tf->fixreg[1];
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
/*
* In an entry probe. The frame pointer has not yet been
* pushed (that happens in the function prologue). The
* best approach is to add the current pc as a missing top
* of stack and back the pc up to the caller, which is stored
* at the current stack pointer address since the call
* instruction puts it there right before the branch.
*/
if (SV_PROC_FLAG(p, SV_ILP32)) {
pc = dtrace_fuword32((void *) sp);
}
else
pc = dtrace_fuword64((void *) sp);
n++;
}
n += dtrace_getustack_common(NULL, 0, pc, sp);
return (n);
}
void
dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit)
{
proc_t *p = curproc;
struct trapframe *tf;
uintptr_t pc, sp;
volatile uint16_t *flags =
(volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
#ifdef notyet /* XXX signal stack */
uintptr_t oldcontext;
size_t s1, s2;
#endif
if (*flags & CPU_DTRACE_FAULT)
return;
if (pcstack_limit <= 0)
return;
/*
* If there's no user context we still need to zero the stack.
*/
if (p == NULL || (tf = curthread->td_frame) == NULL)
goto zero;
*pcstack++ = (uint64_t)p->p_pid;
pcstack_limit--;
if (pcstack_limit <= 0)
return;
pc = tf->srr0;
sp = tf->fixreg[1];
#ifdef notyet /* XXX signal stack */
oldcontext = lwp->lwp_oldcontext;
s1 = sizeof (struct xframe) + 2 * sizeof (long);
s2 = s1 + sizeof (siginfo_t);
#endif
if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
*pcstack++ = (uint64_t)pc;
*fpstack++ = 0;
pcstack_limit--;
if (pcstack_limit <= 0)
return;
if (SV_PROC_FLAG(p, SV_ILP32)) {
pc = dtrace_fuword32((void *)sp);
}
else {
pc = dtrace_fuword64((void *)sp);
}
}
while (pc != 0) {
*pcstack++ = (uint64_t)pc;
*fpstack++ = sp;
pcstack_limit--;
if (pcstack_limit <= 0)
break;
if (sp == 0)
break;
#ifdef notyet /* XXX signal stack */
if (oldcontext == sp + s1 || oldcontext == sp + s2) {
ucontext_t *ucp = (ucontext_t *)oldcontext;
greg_t *gregs = ucp->uc_mcontext.gregs;
sp = dtrace_fulword(&gregs[REG_FP]);
pc = dtrace_fulword(&gregs[REG_PC]);
oldcontext = dtrace_fulword(&ucp->uc_link);
} else
#endif /* XXX */
{
if (SV_PROC_FLAG(p, SV_ILP32)) {
pc = dtrace_fuword32((void *)(sp + RETURN_OFFSET));
sp = dtrace_fuword32((void *)sp);
}
else {
pc = dtrace_fuword64((void *)(sp + RETURN_OFFSET64));
sp = dtrace_fuword64((void *)sp);
}
}
/*
* This is totally bogus: if we faulted, we're going to clear
* the fault and break. This is to deal with the apparently
* broken Java stacks on x86.
*/
if (*flags & CPU_DTRACE_FAULT) {
*flags &= ~CPU_DTRACE_FAULT;
break;
}
}
zero:
while (pcstack_limit-- > 0)
*pcstack++ = 0;
}
/*ARGSUSED*/
uint64_t
dtrace_getarg(int arg, int aframes)
{
uintptr_t val;
uintptr_t *fp = (uintptr_t *)dtrace_getfp();
uintptr_t *stack;
int i;
/*
* A total of 8 arguments are passed via registers; any argument with
* index of 7 or lower is therefore in a register.
*/
int inreg = 7;
for (i = 1; i <= aframes; i++) {
fp = (uintptr_t *)*fp;
/*
* On ppc32 AIM, and booke, trapexit() is the immediately following
* label. On ppc64 AIM trapexit() follows a nop.
*/
if (((long)(fp[1]) == (long)trapexit) ||
(((long)(fp[1]) + 4 == (long)trapexit))) {
/*
* In the case of powerpc, we will use the pointer to the regs
* structure that was pushed when we took the trap. To get this
* structure, we must increment beyond the frame structure. If the
* argument that we're seeking is passed on the stack, we'll pull
* the true stack pointer out of the saved registers and decrement
* our argument by the number of arguments passed in registers; if
* the argument we're seeking is passed in regsiters, we can just
* load it directly.
*/
#ifdef __powerpc64__
struct reg *rp = (struct reg *)((uintptr_t)fp[0] + 48);
#else
struct reg *rp = (struct reg *)((uintptr_t)fp[0] + 8);
#endif
if (arg <= inreg) {
stack = &rp->fixreg[3];
} else {
stack = (uintptr_t *)(rp->fixreg[1]);
arg -= inreg;
}
goto load;
}
}
/*
* We know that we did not come through a trap to get into
* dtrace_probe() -- the provider simply called dtrace_probe()
* directly. As this is the case, we need to shift the argument
* that we're looking for: the probe ID is the first argument to
* dtrace_probe(), so the argument n will actually be found where
* one would expect to find argument (n + 1).
*/
arg++;
if (arg <= inreg) {
/*
* This shouldn't happen. If the argument is passed in a
* register then it should have been, well, passed in a
* register...
*/
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
return (0);
}
arg -= (inreg + 1);
stack = fp + 2;
load:
DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
val = stack[arg];
DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
return (val);
return (0);
}
int
dtrace_getstackdepth(int aframes)
{
int depth = 0;
register_t sp;
aframes++;
sp = dtrace_getfp();
depth++;
for(;;) {
if (!INKERNEL((long) sp))
break;
if (!INKERNEL((long) *(void **)sp))
break;
depth++;
sp = *(uintptr_t *)sp;
}
if (depth < aframes)
return 0;
else
return depth - aframes;
}
ulong_t
dtrace_getreg(struct trapframe *rp, uint_t reg)
{
if (reg < 32)
return (rp->fixreg[reg]);
switch (reg) {
case 33:
return (rp->lr);
case 34:
return (rp->cr);
case 35:
return (rp->xer);
case 36:
return (rp->ctr);
case 37:
return (rp->srr0);
case 38:
return (rp->srr1);
case 39:
return (rp->exc);
default:
DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
return (0);
}
}
static int
dtrace_copycheck(uintptr_t uaddr, uintptr_t kaddr, size_t size)
{
ASSERT(INKERNEL(kaddr) && kaddr + size >= kaddr);
if (uaddr + size > VM_MAXUSER_ADDRESS || uaddr + size < uaddr) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[curcpu].cpuc_dtrace_illval = uaddr;
return (0);
}
return (1);
}
void
dtrace_copyin(uintptr_t uaddr, uintptr_t kaddr, size_t size,
volatile uint16_t *flags)
{
if (dtrace_copycheck(uaddr, kaddr, size))
if (copyin((const void *)uaddr, (void *)kaddr, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr;
}
}
void
dtrace_copyout(uintptr_t kaddr, uintptr_t uaddr, size_t size,
volatile uint16_t *flags)
{
if (dtrace_copycheck(uaddr, kaddr, size)) {
if (copyout((const void *)kaddr, (void *)uaddr, size)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr;
}
}
}
void
dtrace_copyinstr(uintptr_t uaddr, uintptr_t kaddr, size_t size,
volatile uint16_t *flags)
{
size_t actual;
int error;
if (dtrace_copycheck(uaddr, kaddr, size)) {
error = copyinstr((const void *)uaddr, (void *)kaddr,
size, &actual);
/* ENAMETOOLONG is not a fault condition. */
if (error && error != ENAMETOOLONG) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr;
}
}
}
/*
* The bulk of this function could be replaced to match dtrace_copyinstr()
* if we ever implement a copyoutstr().
*/
void
dtrace_copyoutstr(uintptr_t kaddr, uintptr_t uaddr, size_t size,
volatile uint16_t *flags)
{
size_t len;
if (dtrace_copycheck(uaddr, kaddr, size)) {
len = strlen((const char *)kaddr);
if (len > size)
len = size;
if (copyout((const void *)kaddr, (void *)uaddr, len)) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr;
}
}
}
uint8_t
dtrace_fuword8(void *uaddr)
{
if ((uintptr_t)uaddr > VM_MAXUSER_ADDRESS) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr;
return (0);
}
return (fubyte(uaddr));
}
uint16_t
dtrace_fuword16(void *uaddr)
{
uint16_t ret = 0;
if (dtrace_copycheck((uintptr_t)uaddr, (uintptr_t)&ret, sizeof(ret))) {
if (copyin((const void *)uaddr, (void *)&ret, sizeof(ret))) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr;
}
}
return ret;
}
uint32_t
dtrace_fuword32(void *uaddr)
{
if ((uintptr_t)uaddr > VM_MAXUSER_ADDRESS) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr;
return (0);
}
return (fuword32(uaddr));
}
uint64_t
dtrace_fuword64(void *uaddr)
{
uint64_t ret = 0;
if (dtrace_copycheck((uintptr_t)uaddr, (uintptr_t)&ret, sizeof(ret))) {
if (copyin((const void *)uaddr, (void *)&ret, sizeof(ret))) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr;
}
}
return ret;
}
uintptr_t
dtrace_fulword(void *uaddr)
{
uintptr_t ret = 0;
if (dtrace_copycheck((uintptr_t)uaddr, (uintptr_t)&ret, sizeof(ret))) {
if (copyin((const void *)uaddr, (void *)&ret, sizeof(ret))) {
DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
cpu_core[curcpu].cpuc_dtrace_illval = (uintptr_t)uaddr;
}
}
return ret;
}