Brian Behlendorf a584ef2605
Direct IO support
Direct IO via the O_DIRECT flag was originally introduced in XFS by
IRIX for database workloads. Its purpose was to allow the database
to bypass the page and buffer caches to prevent unnecessary IO
operations (e.g.  readahead) while preventing contention for system
memory between the database and kernel caches.

On Illumos, there is a library function called directio(3C) that
allows user space to provide a hint to the file system that Direct IO
is useful, but the file system is free to ignore it. The semantics
are also entirely a file system decision. Those that do not
implement it return ENOTTY.

Since the semantics were never defined in any standard, O_DIRECT is
implemented such that it conforms to the behavior described in the
Linux open(2) man page as follows.

    1.  Minimize cache effects of the I/O.

    By design the ARC is already scan-resistant which helps mitigate
    the need for special O_DIRECT handling.  Data which is only
    accessed once will be the first to be evicted from the cache.
    This behavior is in consistent with Illumos and FreeBSD.

    Future performance work may wish to investigate the benefits of
    immediately evicting data from the cache which has been read or
    written with the O_DIRECT flag.  Functionally this behavior is
    very similar to applying the 'primarycache=metadata' property
    per open file.

    2. O_DIRECT _MAY_ impose restrictions on IO alignment and length.

    No additional alignment or length restrictions are imposed.

    3. O_DIRECT _MAY_ perform unbuffered IO operations directly
       between user memory and block device.

    No unbuffered IO operations are currently supported.  In order
    to support features such as transparent compression, encryption,
    and checksumming a copy must be made to transform the data.

    4. O_DIRECT _MAY_ imply O_DSYNC (XFS).

    O_DIRECT does not imply O_DSYNC for ZFS.  Callers must provide
    O_DSYNC to request synchronous semantics.

    5. O_DIRECT _MAY_ disable file locking that serializes IO
       operations.  Applications should avoid mixing O_DIRECT
       and normal IO or mmap(2) IO to the same file.  This is
       particularly true for overlapping regions.

    All I/O in ZFS is locked for correctness and this locking is not
    disabled by O_DIRECT.  However, concurrently mixing O_DIRECT,
    mmap(2), and normal I/O on the same file is not recommended.

This change is implemented by layering the aops->direct_IO operations
on the existing AIO operations.  Code already existed in ZFS on Linux
for bypassing the page cache when O_DIRECT is specified.

References:
  * http://xfs.org/docs/xfsdocs-xml-dev/XFS_User_Guide/tmp/en-US/html/ch02s09.html
  * https://blogs.oracle.com/roch/entry/zfs_and_directio
  * https://ext4.wiki.kernel.org/index.php/Clarifying_Direct_IO's_Semantics
  * https://illumos.org/man/3c/directio

Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #224 
Closes #7823
2018-08-27 10:04:21 -07:00
..
2018-08-27 10:04:21 -07:00
2018-08-27 10:04:21 -07:00
2018-08-27 10:04:21 -07:00
2016-03-16 13:46:16 -07:00

ZFS Test Suite README

  1. Building and installing the ZFS Test Suite

The ZFS Test Suite runs under the test-runner framework. This framework is built along side the standard ZFS utilities and is included as part of zfs-test package. The zfs-test package can be built from source as follows:

$ ./configure
$ make pkg-utils

The resulting packages can be installed using the rpm or dpkg command as appropriate for your distributions. Alternately, if you have installed ZFS from a distributions repository (not from source) the zfs-test package may be provided for your distribution.

- Installed from source
$ rpm -ivh ./zfs-test*.rpm, or
$ dpkg -i ./zfs-test*.deb,

- Installed from package repository
$ yum install zfs-test
$ apt-get install zfs-test
  1. Running the ZFS Test Suite

The pre-requisites for running the ZFS Test Suite are:

  • Three scratch disks
    • Specify the disks you wish to use in the $DISKS variable, as a space delimited list like this: DISKS='vdb vdc vdd'. By default the zfs-tests.sh sciprt will construct three loopback devices to be used for testing: DISKS='loop0 loop1 loop2'.
  • A non-root user with a full set of basic privileges and the ability to sudo(8) to root without a password to run the test.
  • Specify any pools you wish to preserve as a space delimited list in the $KEEP variable. All pools detected at the start of testing are added automatically.
  • The ZFS Test Suite will add users and groups to test machine to verify functionality. Therefore it is strongly advised that a dedicated test machine, which can be a VM, be used for testing.

Once the pre-requisites are satisfied simply run the zfs-tests.sh script:

$ /usr/share/zfs/zfs-tests.sh

Alternately, the zfs-tests.sh script can be run from the source tree to allow developers to rapidly validate their work. In this mode the ZFS utilities and modules from the source tree will be used (rather than those installed on the system). In order to avoid certain types of failures you will need to ensure the ZFS udev rules are installed. This can be done manually or by ensuring some version of ZFS is installed on the system.

$ ./scripts/zfs-tests.sh

The following zfs-tests.sh options are supported:

-v          Verbose zfs-tests.sh output When specified additional
            information describing the test environment will be logged
            prior to invoking test-runner.  This includes the runfile
            being used, the DISKS targeted, pools to keep, etc.

-q          Quiet test-runner output.  When specified it is passed to
            test-runner(1) which causes output to be written to the
            console only for tests that do not pass and the results
            summary.

-x          Remove all testpools, dm, lo, and files (unsafe).  When
            specified the script will attempt to remove any leftover
            configuration from a previous test run.  This includes
            destroying any pools named testpool, unused DM devices,
            and loopback devices backed by file-vdevs.  This operation
            can be DANGEROUS because it is possible that the script
            will mistakenly remove a resource not related to the testing.

-k          Disable cleanup after test failure.  When specified the
            zfs-tests.sh script will not perform any additional cleanup
            when test-runner exists.  This is useful when the results of
            a specific test need to be preserved for further analysis.

-f          Use sparse files directly instread of loopback devices for
            the testing.  When running in this mode certain tests will
            be skipped which depend on real block devices.

-c          Only create and populate constrained path

-I NUM      Number of iterations

-d DIR      Create sparse files for vdevs in the DIR directory.  By
            default these files are created under /var/tmp/.

-s SIZE     Use vdevs of SIZE (default: 4G)

-r RUNFILE  Run tests in RUNFILE (default: linux.run)

-t PATH     Run single test at PATH relative to test suite

-T TAGS     Comma separated list of tags (default: 'functional')

-u USER     Run single test as USER (default: root)

The ZFS Test Suite allows the user to specify a subset of the tests via a runfile or list of tags.

The format of the runfile is explained in test-runner(1), and the files that zfs-tests.sh uses are available for reference under /usr/share/zfs/runfiles. To specify a custom runfile, use the -r option:

$ /usr/share/zfs/zfs-tests.sh -r my_tests.run

Otherwise user can set needed tags to run only specific tests.

  1. Test results

While the ZFS Test Suite is running, one informational line is printed at the end of each test, and a results summary is printed at the end of the run. The results summary includes the location of the complete logs, which is logged in the form /var/tmp/test_results/[ISO 8601 date]. A normal test run launched with the zfs-tests.sh wrapper script will look something like this:

$ /usr/share/zfs/zfs-tests.sh -v -d /tmp/test

--- Configuration ---
Runfile:         /usr/share/zfs/runfiles/linux.run
STF_TOOLS:       /usr/share/zfs/test-runner
STF_SUITE:       /usr/share/zfs/zfs-tests
STF_PATH:        /var/tmp/constrained_path.G0Sf
FILEDIR:         /tmp/test
FILES:           /tmp/test/file-vdev0 /tmp/test/file-vdev1 /tmp/test/file-vdev2
LOOPBACKS:       /dev/loop0 /dev/loop1 /dev/loop2 
DISKS:           loop0 loop1 loop2
NUM_DISKS:       3
FILESIZE:        4G
ITERATIONS:      1
TAGS:            functional
Keep pool(s):    rpool


/usr/share/zfs/test-runner/bin/test-runner.py  -c /usr/share/zfs/runfiles/linux.run \
    -T functional -i /usr/share/zfs/zfs-tests -I 1
Test: /usr/share/zfs/zfs-tests/tests/functional/arc/setup (run as root) [00:00] [PASS]
...more than 1100 additional tests...
Test: /usr/share/zfs/zfs-tests/tests/functional/zvol/zvol_swap/cleanup (run as root) [00:00] [PASS]

Results Summary
SKIP	  52
PASS	 1129

Running Time:	02:35:33
Percent passed:	95.6%
Log directory:	/var/tmp/test_results/20180515T054509