Sam Leffler fd1700dc03 handle potential null ptr
Noticed by:	Coverity Prevent analysis tool
2005-03-31 04:58:10 +00:00

2001 lines
57 KiB
C

/*-
* Copyright (c) 1999,2000 Michael Smith
* Copyright (c) 2000 BSDi
* Copyright (c) 2005 Scott Long
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 2002 Eric Moore
* Copyright (c) 2002, 2004 LSI Logic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The party using or redistributing the source code and binary forms
* agrees to the disclaimer below and the terms and conditions set forth
* herein.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for the AMI MegaRaid family of controllers.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <dev/amr/amr_compat.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/amr/amrio.h>
#include <dev/amr/amrreg.h>
#include <dev/amr/amrvar.h>
#define AMR_DEFINE_TABLES
#include <dev/amr/amr_tables.h>
static d_open_t amr_open;
static d_close_t amr_close;
static d_ioctl_t amr_ioctl;
static struct cdevsw amr_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_NEEDGIANT,
.d_open = amr_open,
.d_close = amr_close,
.d_ioctl = amr_ioctl,
.d_name = "amr",
};
/*
* Initialisation, bus interface.
*/
static void amr_startup(void *arg);
/*
* Command wrappers
*/
static int amr_query_controller(struct amr_softc *sc);
static void *amr_enquiry(struct amr_softc *sc, size_t bufsize,
u_int8_t cmd, u_int8_t cmdsub, u_int8_t cmdqual);
static void amr_completeio(struct amr_command *ac);
static int amr_support_ext_cdb(struct amr_softc *sc);
/*
* Command buffer allocation.
*/
static void amr_alloccmd_cluster(struct amr_softc *sc);
static void amr_freecmd_cluster(struct amr_command_cluster *acc);
/*
* Command processing.
*/
static int amr_bio_command(struct amr_softc *sc, struct amr_command **acp);
static int amr_wait_command(struct amr_command *ac) __unused;
static int amr_getslot(struct amr_command *ac);
static int amr_mapcmd(struct amr_command *ac);
static void amr_unmapcmd(struct amr_command *ac);
static int amr_start(struct amr_command *ac);
static int amr_start1(struct amr_softc *sc, struct amr_command *ac);
static void amr_complete(void *context, int pending);
static void amr_setup_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
static void amr_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
/*
* Status monitoring
*/
static void amr_periodic(void *data);
/*
* Interface-specific shims
*/
static int amr_quartz_submit_command(struct amr_softc *sc);
static int amr_quartz_get_work(struct amr_softc *sc, struct amr_mailbox *mbsave);
static int amr_quartz_poll_command(struct amr_command *ac);
static int amr_quartz_poll_command1(struct amr_softc *sc, struct amr_command *ac);
static int amr_std_submit_command(struct amr_softc *sc);
static int amr_std_get_work(struct amr_softc *sc, struct amr_mailbox *mbsave);
static int amr_std_poll_command(struct amr_command *ac);
static void amr_std_attach_mailbox(struct amr_softc *sc);
#ifdef AMR_BOARD_INIT
static int amr_quartz_init(struct amr_softc *sc);
static int amr_std_init(struct amr_softc *sc);
#endif
/*
* Debugging
*/
static void amr_describe_controller(struct amr_softc *sc);
#ifdef AMR_DEBUG
#if 0
static void amr_printcommand(struct amr_command *ac);
#endif
#endif
/********************************************************************************
********************************************************************************
Inline Glue
********************************************************************************
********************************************************************************/
/********************************************************************************
********************************************************************************
Public Interfaces
********************************************************************************
********************************************************************************/
/********************************************************************************
* Initialise the controller and softc.
*/
int
amr_attach(struct amr_softc *sc)
{
debug_called(1);
/*
* Initialise per-controller queues.
*/
TAILQ_INIT(&sc->amr_completed);
TAILQ_INIT(&sc->amr_freecmds);
TAILQ_INIT(&sc->amr_cmd_clusters);
TAILQ_INIT(&sc->amr_ready);
bioq_init(&sc->amr_bioq);
debug(2, "queue init done");
/*
* Configure for this controller type.
*/
if (AMR_IS_QUARTZ(sc)) {
sc->amr_submit_command = amr_quartz_submit_command;
sc->amr_get_work = amr_quartz_get_work;
sc->amr_poll_command = amr_quartz_poll_command;
sc->amr_poll_command1 = amr_quartz_poll_command1;
} else {
sc->amr_submit_command = amr_std_submit_command;
sc->amr_get_work = amr_std_get_work;
sc->amr_poll_command = amr_std_poll_command;
amr_std_attach_mailbox(sc);;
}
#ifdef AMR_BOARD_INIT
if ((AMR_IS_QUARTZ(sc) ? amr_quartz_init(sc) : amr_std_init(sc))))
return(ENXIO);
#endif
/*
* Quiz controller for features and limits.
*/
if (amr_query_controller(sc))
return(ENXIO);
debug(2, "controller query complete");
/*
* Attach our 'real' SCSI channels to CAM.
*/
if (amr_cam_attach(sc))
return(ENXIO);
debug(2, "CAM attach done");
/*
* Create the control device.
*/
sc->amr_dev_t = make_dev(&amr_cdevsw, device_get_unit(sc->amr_dev), UID_ROOT, GID_OPERATOR,
S_IRUSR | S_IWUSR, "amr%d", device_get_unit(sc->amr_dev));
sc->amr_dev_t->si_drv1 = sc;
/*
* Schedule ourselves to bring the controller up once interrupts are
* available.
*/
bzero(&sc->amr_ich, sizeof(struct intr_config_hook));
sc->amr_ich.ich_func = amr_startup;
sc->amr_ich.ich_arg = sc;
if (config_intrhook_establish(&sc->amr_ich) != 0) {
device_printf(sc->amr_dev, "can't establish configuration hook\n");
return(ENOMEM);
}
/*
* Print a little information about the controller.
*/
amr_describe_controller(sc);
debug(2, "attach complete");
return(0);
}
/********************************************************************************
* Locate disk resources and attach children to them.
*/
static void
amr_startup(void *arg)
{
struct amr_softc *sc = (struct amr_softc *)arg;
struct amr_logdrive *dr;
int i, error;
debug_called(1);
/* pull ourselves off the intrhook chain */
config_intrhook_disestablish(&sc->amr_ich);
/* get up-to-date drive information */
if (amr_query_controller(sc)) {
device_printf(sc->amr_dev, "can't scan controller for drives\n");
return;
}
/* iterate over available drives */
for (i = 0, dr = &sc->amr_drive[0]; (i < AMR_MAXLD) && (dr->al_size != 0xffffffff); i++, dr++) {
/* are we already attached to this drive? */
if (dr->al_disk == 0) {
/* generate geometry information */
if (dr->al_size > 0x200000) { /* extended translation? */
dr->al_heads = 255;
dr->al_sectors = 63;
} else {
dr->al_heads = 64;
dr->al_sectors = 32;
}
dr->al_cylinders = dr->al_size / (dr->al_heads * dr->al_sectors);
dr->al_disk = device_add_child(sc->amr_dev, NULL, -1);
if (dr->al_disk == 0)
device_printf(sc->amr_dev, "device_add_child failed\n");
device_set_ivars(dr->al_disk, dr);
}
}
if ((error = bus_generic_attach(sc->amr_dev)) != 0)
device_printf(sc->amr_dev, "bus_generic_attach returned %d\n", error);
/* mark controller back up */
sc->amr_state &= ~AMR_STATE_SHUTDOWN;
/* interrupts will be enabled before we do anything more */
sc->amr_state |= AMR_STATE_INTEN;
/*
* Start the timeout routine.
*/
/* sc->amr_timeout = timeout(amr_periodic, sc, hz);*/
return;
}
/*******************************************************************************
* Free resources associated with a controller instance
*/
void
amr_free(struct amr_softc *sc)
{
struct amr_command_cluster *acc;
/* detach from CAM */
amr_cam_detach(sc);
/* cancel status timeout */
untimeout(amr_periodic, sc, sc->amr_timeout);
/* throw away any command buffers */
while ((acc = TAILQ_FIRST(&sc->amr_cmd_clusters)) != NULL) {
TAILQ_REMOVE(&sc->amr_cmd_clusters, acc, acc_link);
amr_freecmd_cluster(acc);
}
/* destroy control device */
if( sc->amr_dev_t != (struct cdev *)NULL)
destroy_dev(sc->amr_dev_t);
if (mtx_initialized(&sc->amr_io_lock))
mtx_destroy(&sc->amr_io_lock);
}
/*******************************************************************************
* Receive a bio structure from a child device and queue it on a particular
* disk resource, then poke the disk resource to start as much work as it can.
*/
int
amr_submit_bio(struct amr_softc *sc, struct bio *bio)
{
debug_called(2);
mtx_lock(&sc->amr_io_lock);
amr_enqueue_bio(sc, bio);
amr_startio(sc);
mtx_unlock(&sc->amr_io_lock);
return(0);
}
/********************************************************************************
* Accept an open operation on the control device.
*/
static int
amr_open(struct cdev *dev, int flags, int fmt, d_thread_t *td)
{
int unit = minor(dev);
struct amr_softc *sc = devclass_get_softc(devclass_find("amr"), unit);
debug_called(1);
sc->amr_state |= AMR_STATE_OPEN;
return(0);
}
/********************************************************************************
* Accept the last close on the control device.
*/
static int
amr_close(struct cdev *dev, int flags, int fmt, d_thread_t *td)
{
int unit = minor(dev);
struct amr_softc *sc = devclass_get_softc(devclass_find("amr"), unit);
debug_called(1);
sc->amr_state &= ~AMR_STATE_OPEN;
return (0);
}
/********************************************************************************
* Handle controller-specific control operations.
*/
static int
amr_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int32_t flag, d_thread_t *td)
{
struct amr_softc *sc = (struct amr_softc *)dev->si_drv1;
union {
void *_p;
struct amr_user_ioctl *au;
#ifdef AMR_IO_COMMAND32
struct amr_user_ioctl32 *au32;
#endif
int *result;
} arg;
struct amr_command *ac;
struct amr_mailbox_ioctl *mbi;
void *dp, *au_buffer;
unsigned long au_length;
unsigned char *au_cmd;
int *au_statusp, au_direction;
int error;
struct amr_passthrough *ap; /* 60 bytes */
debug_called(1);
arg._p = (void *)addr;
switch(cmd) {
case AMR_IO_VERSION:
debug(1, "AMR_IO_VERSION");
*arg.result = AMR_IO_VERSION_NUMBER;
return(0);
#ifdef AMR_IO_COMMAND32
/*
* Accept ioctl-s from 32-bit binaries on non-32-bit
* platforms, such as AMD. LSI's MEGAMGR utility is
* the only example known today... -mi
*/
case AMR_IO_COMMAND32:
debug(1, "AMR_IO_COMMAND32 0x%x", arg.au32->au_cmd[0]);
au_cmd = arg.au32->au_cmd;
au_buffer = (void *)(u_int64_t)arg.au32->au_buffer;
au_length = arg.au32->au_length;
au_direction = arg.au32->au_direction;
au_statusp = &arg.au32->au_status;
break;
#endif
case AMR_IO_COMMAND:
debug(1, "AMR_IO_COMMAND 0x%x", arg.au->au_cmd[0]);
au_cmd = arg.au->au_cmd;
au_buffer = (void *)arg.au->au_buffer;
au_length = arg.au->au_length;
au_direction = arg.au->au_direction;
au_statusp = &arg.au->au_status;
break;
default:
debug(1, "unknown ioctl 0x%lx", cmd);
return(ENOIOCTL);
}
error = 0;
dp = NULL;
ac = NULL;
ap = NULL;
/* Logical Drive not supported by the driver */
if (au_cmd[0] == 0xa4 && au_cmd[1] == 0x1c)
return (ENOIOCTL);
/* handle inbound data buffer */
if (au_length != 0 && au_cmd[0] != 0x06) {
dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
if ((error = copyin(au_buffer, dp, au_length)) != 0) {
free(dp, M_DEVBUF);
return (error);
}
debug(2, "copyin %ld bytes from %p -> %p", au_length, au_buffer, dp);
}
/* Allocate this now before the mutex gets held */
if (au_cmd[0] == AMR_CMD_PASS)
ap = malloc(sizeof(struct amr_passthrough), M_DEVBUF, M_WAITOK|M_ZERO);
mtx_lock(&sc->amr_io_lock);
if ((ac = amr_alloccmd(sc)) == NULL) {
error = ENOMEM;
goto out;
}
/* handle SCSI passthrough command */
if (au_cmd[0] == AMR_CMD_PASS) {
int len;
/* copy cdb */
len = au_cmd[2];
ap->ap_cdb_length = len;
bcopy(au_cmd + 3, ap->ap_cdb, len);
/* build passthrough */
ap->ap_timeout = au_cmd[len + 3] & 0x07;
ap->ap_ars = (au_cmd[len + 3] & 0x08) ? 1 : 0;
ap->ap_islogical = (au_cmd[len + 3] & 0x80) ? 1 : 0;
ap->ap_logical_drive_no = au_cmd[len + 4];
ap->ap_channel = au_cmd[len + 5];
ap->ap_scsi_id = au_cmd[len + 6];
ap->ap_request_sense_length = 14;
ap->ap_data_transfer_length = au_length;
/* XXX what about the request-sense area? does the caller want it? */
/* build command */
ac->ac_data = ap;
ac->ac_length = sizeof(struct amr_passthrough);
ac->ac_flags |= AMR_CMD_DATAOUT;
ac->ac_ccb_data = dp;
ac->ac_ccb_length = au_length;
if (au_direction & AMR_IO_READ)
ac->ac_flags |= AMR_CMD_CCB_DATAIN;
if (au_direction & AMR_IO_WRITE)
ac->ac_flags |= AMR_CMD_CCB_DATAOUT;
ac->ac_mailbox.mb_command = AMR_CMD_PASS;
} else {
/* direct command to controller */
mbi = (struct amr_mailbox_ioctl *)&ac->ac_mailbox;
/* copy pertinent mailbox items */
mbi->mb_command = au_cmd[0];
mbi->mb_channel = au_cmd[1];
mbi->mb_param = au_cmd[2];
mbi->mb_pad[0] = au_cmd[3];
mbi->mb_drive = au_cmd[4];
/* build the command */
ac->ac_data = dp;
ac->ac_length = au_length;
if (au_direction & AMR_IO_READ)
ac->ac_flags |= AMR_CMD_DATAIN;
if (au_direction & AMR_IO_WRITE)
ac->ac_flags |= AMR_CMD_DATAOUT;
}
/* run the command */
if ((error = amr_wait_command(ac)) != 0)
goto out;
/* copy out data and set status */
if (au_length != 0) {
mtx_unlock(&sc->amr_io_lock);
error = copyout(dp, au_buffer, au_length);
mtx_lock(&sc->amr_io_lock);
}
debug(2, "copyout %ld bytes from %p -> %p", au_length, dp, au_buffer);
if (dp != NULL)
debug(2, "%16d", (int)dp);
*au_statusp = ac->ac_status;
out:
/*
* At this point, we know that there is a lock held and that these
* objects have been allocated.
*/
if (ac != NULL)
amr_releasecmd(ac);
mtx_unlock(&sc->amr_io_lock);
if (dp != NULL)
free(dp, M_DEVBUF);
if (ap != NULL)
free(ap, M_DEVBUF);
return(error);
}
/********************************************************************************
********************************************************************************
Status Monitoring
********************************************************************************
********************************************************************************/
/********************************************************************************
* Perform a periodic check of the controller status
*/
static void
amr_periodic(void *data)
{
struct amr_softc *sc = (struct amr_softc *)data;
debug_called(2);
/* XXX perform periodic status checks here */
/* compensate for missed interrupts */
amr_done(sc);
/* reschedule */
sc->amr_timeout = timeout(amr_periodic, sc, hz);
}
/********************************************************************************
********************************************************************************
Command Wrappers
********************************************************************************
********************************************************************************/
/********************************************************************************
* Interrogate the controller for the operational parameters we require.
*/
static int
amr_query_controller(struct amr_softc *sc)
{
struct amr_enquiry3 *aex;
struct amr_prodinfo *ap;
struct amr_enquiry *ae;
int ldrv;
mtx_lock(&sc->amr_io_lock);
/*
* If we haven't found the real limit yet, let us have a couple of commands in
* order to be able to probe.
*/
if (sc->amr_maxio == 0)
sc->amr_maxio = 2;
/*
* Greater than 10 byte cdb support
*/
sc->support_ext_cdb = amr_support_ext_cdb(sc);
if(sc->support_ext_cdb) {
debug(2,"supports extended CDBs.");
}
/*
* Try to issue an ENQUIRY3 command
*/
if ((aex = amr_enquiry(sc, 2048, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
AMR_CONFIG_ENQ3_SOLICITED_FULL)) != NULL) {
/*
* Fetch current state of logical drives.
*/
for (ldrv = 0; ldrv < aex->ae_numldrives; ldrv++) {
sc->amr_drive[ldrv].al_size = aex->ae_drivesize[ldrv];
sc->amr_drive[ldrv].al_state = aex->ae_drivestate[ldrv];
sc->amr_drive[ldrv].al_properties = aex->ae_driveprop[ldrv];
debug(2, " drive %d: %d state %x properties %x\n", ldrv, sc->amr_drive[ldrv].al_size,
sc->amr_drive[ldrv].al_state, sc->amr_drive[ldrv].al_properties);
}
free(aex, M_DEVBUF);
/*
* Get product info for channel count.
*/
if ((ap = amr_enquiry(sc, 2048, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0)) == NULL) {
device_printf(sc->amr_dev, "can't obtain product data from controller\n");
mtx_unlock(&sc->amr_io_lock);
return(1);
}
sc->amr_maxdrives = 40;
sc->amr_maxchan = ap->ap_nschan;
sc->amr_maxio = ap->ap_maxio;
sc->amr_type |= AMR_TYPE_40LD;
free(ap, M_DEVBUF);
} else {
/* failed, try the 8LD ENQUIRY commands */
if ((ae = (struct amr_enquiry *)amr_enquiry(sc, 2048, AMR_CMD_EXT_ENQUIRY2, 0, 0)) == NULL) {
if ((ae = (struct amr_enquiry *)amr_enquiry(sc, 2048, AMR_CMD_ENQUIRY, 0, 0)) == NULL) {
device_printf(sc->amr_dev, "can't obtain configuration data from controller\n");
mtx_unlock(&sc->amr_io_lock);
return(1);
}
ae->ae_signature = 0;
}
/*
* Fetch current state of logical drives.
*/
for (ldrv = 0; ldrv < ae->ae_ldrv.al_numdrives; ldrv++) {
sc->amr_drive[ldrv].al_size = ae->ae_ldrv.al_size[ldrv];
sc->amr_drive[ldrv].al_state = ae->ae_ldrv.al_state[ldrv];
sc->amr_drive[ldrv].al_properties = ae->ae_ldrv.al_properties[ldrv];
debug(2, " drive %d: %d state %x properties %x\n", ldrv, sc->amr_drive[ldrv].al_size,
sc->amr_drive[ldrv].al_state, sc->amr_drive[ldrv].al_properties);
}
sc->amr_maxdrives = 8;
sc->amr_maxchan = ae->ae_adapter.aa_channels;
sc->amr_maxio = ae->ae_adapter.aa_maxio;
free(ae, M_DEVBUF);
}
/*
* Mark remaining drives as unused.
*/
for (; ldrv < AMR_MAXLD; ldrv++)
sc->amr_drive[ldrv].al_size = 0xffffffff;
/*
* Cap the maximum number of outstanding I/Os. AMI's Linux driver doesn't trust
* the controller's reported value, and lockups have been seen when we do.
*/
sc->amr_maxio = imin(sc->amr_maxio, AMR_LIMITCMD);
mtx_unlock(&sc->amr_io_lock);
return(0);
}
/********************************************************************************
* Run a generic enquiry-style command.
*/
static void *
amr_enquiry(struct amr_softc *sc, size_t bufsize, u_int8_t cmd, u_int8_t cmdsub, u_int8_t cmdqual)
{
struct amr_command *ac;
void *result;
u_int8_t *mbox;
int error;
debug_called(1);
error = 1;
result = NULL;
/* get ourselves a command buffer */
if ((ac = amr_alloccmd(sc)) == NULL)
goto out;
/* allocate the response structure */
if ((result = malloc(bufsize, M_DEVBUF, M_ZERO|M_NOWAIT)) == NULL)
goto out;
/* set command flags */
ac->ac_flags |= AMR_CMD_PRIORITY | AMR_CMD_DATAIN;
/* point the command at our data */
ac->ac_data = result;
ac->ac_length = bufsize;
/* build the command proper */
mbox = (u_int8_t *)&ac->ac_mailbox; /* XXX want a real structure for this? */
mbox[0] = cmd;
mbox[2] = cmdsub;
mbox[3] = cmdqual;
/* can't assume that interrupts are going to work here, so play it safe */
if (sc->amr_poll_command(ac))
goto out;
error = ac->ac_status;
out:
if (ac != NULL)
amr_releasecmd(ac);
if ((error != 0) && (result != NULL)) {
free(result, M_DEVBUF);
result = NULL;
}
return(result);
}
/********************************************************************************
* Flush the controller's internal cache, return status.
*/
int
amr_flush(struct amr_softc *sc)
{
struct amr_command *ac;
int error;
/* get ourselves a command buffer */
error = 1;
mtx_lock(&sc->amr_io_lock);
if ((ac = amr_alloccmd(sc)) == NULL)
goto out;
/* set command flags */
ac->ac_flags |= AMR_CMD_PRIORITY | AMR_CMD_DATAOUT;
/* build the command proper */
ac->ac_mailbox.mb_command = AMR_CMD_FLUSH;
/* we have to poll, as the system may be going down or otherwise damaged */
if (sc->amr_poll_command(ac))
goto out;
error = ac->ac_status;
out:
if (ac != NULL)
amr_releasecmd(ac);
mtx_unlock(&sc->amr_io_lock);
return(error);
}
/********************************************************************************
* Detect extented cdb >> greater than 10 byte cdb support
* returns '1' means this support exist
* returns '0' means this support doesn't exist
*/
static int
amr_support_ext_cdb(struct amr_softc *sc)
{
struct amr_command *ac;
u_int8_t *mbox;
int error;
/* get ourselves a command buffer */
error = 0;
if ((ac = amr_alloccmd(sc)) == NULL)
goto out;
/* set command flags */
ac->ac_flags |= AMR_CMD_PRIORITY | AMR_CMD_DATAOUT;
/* build the command proper */
mbox = (u_int8_t *)&ac->ac_mailbox; /* XXX want a real structure for this? */
mbox[0] = 0xA4;
mbox[2] = 0x16;
/* we have to poll, as the system may be going down or otherwise damaged */
if (sc->amr_poll_command(ac))
goto out;
if( ac->ac_status == AMR_STATUS_SUCCESS ) {
error = 1;
}
out:
if (ac != NULL)
amr_releasecmd(ac);
return(error);
}
/********************************************************************************
* Try to find I/O work for the controller from one or more of the work queues.
*
* We make the assumption that if the controller is not ready to take a command
* at some given time, it will generate an interrupt at some later time when
* it is.
*/
void
amr_startio(struct amr_softc *sc)
{
struct amr_command *ac;
/* spin until something prevents us from doing any work */
for (;;) {
/* Don't bother to queue commands no bounce buffers are available. */
if (sc->amr_state & AMR_STATE_QUEUE_FRZN)
break;
/* try to get a ready command */
ac = amr_dequeue_ready(sc);
/* if that failed, build a command from a bio */
if (ac == NULL)
(void)amr_bio_command(sc, &ac);
/* if that failed, build a command from a ccb */
if (ac == NULL)
(void)amr_cam_command(sc, &ac);
/* if we don't have anything to do, give up */
if (ac == NULL)
break;
/* try to give the command to the controller; if this fails save it for later and give up */
if (amr_start(ac)) {
debug(2, "controller busy, command deferred");
amr_requeue_ready(ac); /* XXX schedule retry very soon? */
break;
}
}
}
/********************************************************************************
* Handle completion of an I/O command.
*/
static void
amr_completeio(struct amr_command *ac)
{
struct amr_softc *sc = ac->ac_sc;
if (ac->ac_status != AMR_STATUS_SUCCESS) { /* could be more verbose here? */
ac->ac_bio->bio_error = EIO;
ac->ac_bio->bio_flags |= BIO_ERROR;
device_printf(sc->amr_dev, "I/O error - 0x%x\n", ac->ac_status);
/* amr_printcommand(ac);*/
}
amrd_intr(ac->ac_bio);
amr_releasecmd(ac);
}
/********************************************************************************
********************************************************************************
Command Processing
********************************************************************************
********************************************************************************/
/********************************************************************************
* Convert a bio off the top of the bio queue into a command.
*/
static int
amr_bio_command(struct amr_softc *sc, struct amr_command **acp)
{
struct amr_command *ac;
struct amrd_softc *amrd;
struct bio *bio;
int error;
int blkcount;
int driveno;
int cmd;
ac = NULL;
error = 0;
/* get a command */
if ((ac = amr_alloccmd(sc)) == NULL)
return (ENOMEM);
/* get a bio to work on */
if ((bio = amr_dequeue_bio(sc)) == NULL) {
amr_releasecmd(ac);
return (0);
}
/* connect the bio to the command */
ac->ac_complete = amr_completeio;
ac->ac_bio = bio;
ac->ac_data = bio->bio_data;
ac->ac_length = bio->bio_bcount;
if (BIO_IS_READ(bio)) {
ac->ac_flags |= AMR_CMD_DATAIN;
cmd = AMR_CMD_LREAD;
} else {
ac->ac_flags |= AMR_CMD_DATAOUT;
cmd = AMR_CMD_LWRITE;
}
amrd = (struct amrd_softc *)bio->bio_disk->d_drv1;
driveno = amrd->amrd_drive - sc->amr_drive;
blkcount = (bio->bio_bcount + AMR_BLKSIZE - 1) / AMR_BLKSIZE;
ac->ac_mailbox.mb_command = cmd;
ac->ac_mailbox.mb_blkcount = blkcount;
ac->ac_mailbox.mb_lba = bio->bio_pblkno;
ac->ac_mailbox.mb_drive = driveno;
/* we fill in the s/g related data when the command is mapped */
if ((bio->bio_pblkno + blkcount) > sc->amr_drive[driveno].al_size)
device_printf(sc->amr_dev, "I/O beyond end of unit (%lld,%d > %lu)\n",
(long long)bio->bio_pblkno, blkcount,
(u_long)sc->amr_drive[driveno].al_size);
*acp = ac;
return(error);
}
/********************************************************************************
* Take a command, submit it to the controller and sleep until it completes
* or fails. Interrupts must be enabled, returns nonzero on error.
*/
static int
amr_wait_command(struct amr_command *ac)
{
int error, count;
debug_called(1);
ac->ac_complete = NULL;
ac->ac_flags |= AMR_CMD_SLEEP;
if ((error = amr_start(ac)) != 0)
return(error);
count = 0;
/* XXX better timeout? */
while ((ac->ac_flags & AMR_CMD_BUSY) && (count < 30)) {
msleep(ac, &ac->ac_sc->amr_io_lock, PRIBIO | PCATCH, "amrwcmd", hz);
}
return(0);
}
/********************************************************************************
* Take a command, submit it to the controller and busy-wait for it to return.
* Returns nonzero on error. Can be safely called with interrupts enabled.
*/
static int
amr_std_poll_command(struct amr_command *ac)
{
struct amr_softc *sc = ac->ac_sc;
int error, count;
debug_called(2);
ac->ac_complete = NULL;
if ((error = amr_start(ac)) != 0)
return(error);
count = 0;
do {
/*
* Poll for completion, although the interrupt handler may beat us to it.
* Note that the timeout here is somewhat arbitrary.
*/
amr_done(sc);
DELAY(1000);
} while ((ac->ac_flags & AMR_CMD_BUSY) && (count++ < 1000));
if (!(ac->ac_flags & AMR_CMD_BUSY)) {
error = 0;
} else {
/* XXX the slot is now marked permanently busy */
error = EIO;
device_printf(sc->amr_dev, "polled command timeout\n");
}
return(error);
}
static void
amr_setup_polled_dmamap(void *arg, bus_dma_segment_t *segs, int nsegs, int err)
{
struct amr_command *ac = arg;
struct amr_softc *sc = ac->ac_sc;
amr_setup_dmamap(arg, segs, nsegs, err);
bus_dmamap_sync(sc->amr_buffer_dmat,ac->ac_dmamap,BUS_DMASYNC_PREREAD);
sc->amr_poll_command1(sc, ac);
}
/********************************************************************************
* Take a command, submit it to the controller and busy-wait for it to return.
* Returns nonzero on error. Can be safely called with interrupts enabled.
*/
static int
amr_quartz_poll_command(struct amr_command *ac)
{
struct amr_softc *sc = ac->ac_sc;
int s, error;
debug_called(2);
s = splbio();
error = 0;
/* now we have a slot, we can map the command (unmapped in amr_complete) */
if (ac->ac_data != 0) {
if (bus_dmamap_load(sc->amr_buffer_dmat, ac->ac_dmamap, ac->ac_data,
ac->ac_length, amr_setup_polled_dmamap, ac, BUS_DMA_NOWAIT) != 0) {
error = 1;
}
} else {
error = amr_quartz_poll_command1(sc, ac);
}
splx(s);
return (error);
}
static int
amr_quartz_poll_command1(struct amr_softc *sc, struct amr_command *ac)
{
int count, error;
if ((sc->amr_state & AMR_STATE_INTEN) == 0) {
count=0;
while (sc->amr_busyslots) {
msleep(sc, &sc->amr_io_lock, PRIBIO | PCATCH, "amrpoll", hz);
if(count++>10) {
break;
}
}
if(sc->amr_busyslots) {
device_printf(sc->amr_dev, "adapter is busy\n");
if (ac->ac_data != NULL)
bus_dmamap_unload(sc->amr_buffer_dmat, ac->ac_dmamap);
ac->ac_status=0;
return(1);
}
}
bcopy(&ac->ac_mailbox, (void *)(uintptr_t)(volatile void *)sc->amr_mailbox, AMR_MBOX_CMDSIZE);
/* clear the poll/ack fields in the mailbox */
sc->amr_mailbox->mb_ident = 0xFE;
sc->amr_mailbox->mb_nstatus = 0xFF;
sc->amr_mailbox->mb_status = 0xFF;
sc->amr_mailbox->mb_poll = 0;
sc->amr_mailbox->mb_ack = 0;
sc->amr_mailbox->mb_busy = 1;
AMR_QPUT_IDB(sc, sc->amr_mailboxphys | AMR_QIDB_SUBMIT);
while(sc->amr_mailbox->mb_nstatus == 0xFF);
while(sc->amr_mailbox->mb_status == 0xFF);
ac->ac_status=sc->amr_mailbox->mb_status;
error = (ac->ac_status !=AMR_STATUS_SUCCESS) ? 1:0;
while(sc->amr_mailbox->mb_poll != 0x77);
sc->amr_mailbox->mb_poll = 0;
sc->amr_mailbox->mb_ack = 0x77;
/* acknowledge that we have the commands */
AMR_QPUT_IDB(sc, sc->amr_mailboxphys | AMR_QIDB_ACK);
while(AMR_QGET_IDB(sc) & AMR_QIDB_ACK);
/* unmap the command's data buffer */
bus_dmamap_sync(sc->amr_buffer_dmat, ac->ac_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->amr_buffer_dmat, ac->ac_dmamap);
return(error);
}
/********************************************************************************
* Get a free command slot for a command if it doesn't already have one.
*
* May be safely called multiple times for a given command.
*/
static int
amr_getslot(struct amr_command *ac)
{
struct amr_softc *sc = ac->ac_sc;
int slot;
debug_called(3);
slot = ac->ac_slot;
if (sc->amr_busycmd[slot] != NULL)
panic("amr: slot %d busy?\n", slot);
sc->amr_busycmd[slot] = ac;
sc->amr_busyslots++;
return (0);
}
/********************************************************************************
* Map/unmap (ac)'s data in the controller's addressable space as required.
*
* These functions may be safely called multiple times on a given command.
*/
static void
amr_setup_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
{
struct amr_command *ac = (struct amr_command *)arg;
struct amr_softc *sc = ac->ac_sc;
struct amr_sgentry *sg;
int i;
u_int8_t *sgc;
debug_called(3);
/* get base address of s/g table */
sg = sc->amr_sgtable + (ac->ac_slot * AMR_NSEG);
/* save data physical address */
ac->ac_dataphys = segs[0].ds_addr;
/* for AMR_CMD_CONFIG the s/g count goes elsewhere */
if (ac->ac_mailbox.mb_command == AMR_CMD_CONFIG) {
sgc = &(((struct amr_mailbox_ioctl *)&ac->ac_mailbox)->mb_param);
} else {
sgc = &ac->ac_mailbox.mb_nsgelem;
}
/* decide whether we need to populate the s/g table */
if (nsegments < 2) {
*sgc = 0;
ac->ac_mailbox.mb_nsgelem = 0;
ac->ac_mailbox.mb_physaddr = ac->ac_dataphys;
} else {
ac->ac_mailbox.mb_nsgelem = nsegments;
*sgc = nsegments;
ac->ac_mailbox.mb_physaddr = sc->amr_sgbusaddr +
(ac->ac_slot * AMR_NSEG * sizeof(struct amr_sgentry));
for (i = 0; i < nsegments; i++, sg++) {
sg->sg_addr = segs[i].ds_addr;
sg->sg_count = segs[i].ds_len;
}
}
}
static void
amr_setup_ccbmap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
{
struct amr_command *ac = (struct amr_command *)arg;
struct amr_softc *sc = ac->ac_sc;
struct amr_sgentry *sg;
struct amr_passthrough *ap = (struct amr_passthrough *)ac->ac_data;
struct amr_ext_passthrough *aep = (struct amr_ext_passthrough *)ac->ac_data;
int i;
/* get base address of s/g table */
sg = sc->amr_sgtable + (ac->ac_slot * AMR_NSEG);
/* decide whether we need to populate the s/g table */
if( ac->ac_mailbox.mb_command == AMR_CMD_EXTPASS ) {
if (nsegments < 2) {
aep->ap_no_sg_elements = 0;
aep->ap_data_transfer_address = segs[0].ds_addr;
} else {
/* save s/g table information in passthrough */
aep->ap_no_sg_elements = nsegments;
aep->ap_data_transfer_address = sc->amr_sgbusaddr +
(ac->ac_slot * AMR_NSEG * sizeof(struct amr_sgentry));
/*
* populate s/g table (overwrites previous call which mapped the
* passthrough)
*/
for (i = 0; i < nsegments; i++, sg++) {
sg->sg_addr = segs[i].ds_addr;
sg->sg_count = segs[i].ds_len;
debug(3, " %d: 0x%x/%d", i, sg->sg_addr, sg->sg_count);
}
}
debug(3, "slot %d %d segments at 0x%x, passthrough at 0x%x\n",
ac->ac_slot, aep->ap_no_sg_elements, aep->ap_data_transfer_address,
ac->ac_dataphys);
} else {
if (nsegments < 2) {
ap->ap_no_sg_elements = 0;
ap->ap_data_transfer_address = segs[0].ds_addr;
} else {
/* save s/g table information in passthrough */
ap->ap_no_sg_elements = nsegments;
ap->ap_data_transfer_address = sc->amr_sgbusaddr +
(ac->ac_slot * AMR_NSEG * sizeof(struct amr_sgentry));
/*
* populate s/g table (overwrites previous call which mapped the
* passthrough)
*/
for (i = 0; i < nsegments; i++, sg++) {
sg->sg_addr = segs[i].ds_addr;
sg->sg_count = segs[i].ds_len;
debug(3, " %d: 0x%x/%d", i, sg->sg_addr, sg->sg_count);
}
}
debug(3, "slot %d %d segments at 0x%x, passthrough at 0x%x",
ac->ac_slot, ap->ap_no_sg_elements, ap->ap_data_transfer_address,
ac->ac_dataphys);
}
if (ac->ac_flags & AMR_CMD_CCB_DATAIN)
bus_dmamap_sync(sc->amr_buffer_dmat, ac->ac_ccb_dmamap,
BUS_DMASYNC_PREREAD);
if (ac->ac_flags & AMR_CMD_CCB_DATAOUT)
bus_dmamap_sync(sc->amr_buffer_dmat, ac->ac_ccb_dmamap,
BUS_DMASYNC_PREWRITE);
if ((ac->ac_flags & (AMR_CMD_CCB_DATAIN | AMR_CMD_CCB_DATAOUT)) == 0)
panic("no direction for ccb?\n");
if (ac->ac_flags & AMR_CMD_DATAIN)
bus_dmamap_sync(sc->amr_buffer_dmat,ac->ac_dmamap,BUS_DMASYNC_PREREAD);
if (ac->ac_flags & AMR_CMD_DATAOUT)
bus_dmamap_sync(sc->amr_buffer_dmat,ac->ac_dmamap,BUS_DMASYNC_PREWRITE);
ac->ac_flags |= AMR_CMD_MAPPED;
amr_start1(sc, ac);
}
static int
amr_mapcmd(struct amr_command *ac)
{
struct amr_softc *sc = ac->ac_sc;
debug_called(3);
/* if the command involves data at all, and hasn't been mapped */
if ((ac->ac_flags & AMR_CMD_MAPPED) == 0 && (ac->ac_data != NULL)) {
if (ac->ac_ccb_data == NULL) {
/* map the data buffers into bus space and build the s/g list */
if (bus_dmamap_load(sc->amr_buffer_dmat, ac->ac_dmamap, ac->ac_data,
ac->ac_length, amr_setup_data_dmamap, ac, 0) == EINPROGRESS) {
sc->amr_state |= AMR_STATE_QUEUE_FRZN;
}
} else {
if (bus_dmamap_load(sc->amr_buffer_dmat, ac->ac_dmamap, ac->ac_data,
ac->ac_length, amr_setup_dmamap, ac, BUS_DMA_NOWAIT) != 0){
return (ENOMEM);
}
if (bus_dmamap_load(sc->amr_buffer_dmat, ac->ac_ccb_dmamap,
ac->ac_ccb_data, ac->ac_ccb_length, amr_setup_ccbmap, ac,
0) == EINPROGRESS) {
sc->amr_state |= AMR_STATE_QUEUE_FRZN;
}
}
} else if ((ac->ac_flags & AMR_CMD_MAPPED) == 0) {
amr_start1(sc, ac);
}
return (0);
}
static void
amr_unmapcmd(struct amr_command *ac)
{
struct amr_softc *sc = ac->ac_sc;
debug_called(3);
/* if the command involved data at all and was mapped */
if (ac->ac_flags & AMR_CMD_MAPPED) {
if (ac->ac_data != NULL) {
if (ac->ac_flags & AMR_CMD_DATAIN)
bus_dmamap_sync(sc->amr_buffer_dmat, ac->ac_dmamap,
BUS_DMASYNC_POSTREAD);
if (ac->ac_flags & AMR_CMD_DATAOUT)
bus_dmamap_sync(sc->amr_buffer_dmat, ac->ac_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->amr_buffer_dmat, ac->ac_dmamap);
}
if (ac->ac_ccb_data != NULL) {
if (ac->ac_flags & AMR_CMD_CCB_DATAIN)
bus_dmamap_sync(sc->amr_buffer_dmat, ac->ac_ccb_dmamap,
BUS_DMASYNC_POSTREAD);
if (ac->ac_flags & AMR_CMD_CCB_DATAOUT)
bus_dmamap_sync(sc->amr_buffer_dmat, ac->ac_ccb_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->amr_buffer_dmat, ac->ac_ccb_dmamap);
}
ac->ac_flags &= ~AMR_CMD_MAPPED;
}
}
static void
amr_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegs, int err)
{
struct amr_command *ac = arg;
struct amr_softc *sc = ac->ac_sc;
amr_setup_dmamap(arg, segs, nsegs, err);
if (ac->ac_flags & AMR_CMD_DATAIN)
bus_dmamap_sync(sc->amr_buffer_dmat,ac->ac_dmamap,BUS_DMASYNC_PREREAD);
if (ac->ac_flags & AMR_CMD_DATAOUT)
bus_dmamap_sync(sc->amr_buffer_dmat,ac->ac_dmamap,BUS_DMASYNC_PREWRITE);
ac->ac_flags |= AMR_CMD_MAPPED;
amr_start1(sc, ac);
}
/********************************************************************************
* Take a command and give it to the controller, returns 0 if successful, or
* EBUSY if the command should be retried later.
*/
static int
amr_start(struct amr_command *ac)
{
struct amr_softc *sc;
int error = 0;
debug_called(3);
/* mark command as busy so that polling consumer can tell */
sc = ac->ac_sc;
ac->ac_flags |= AMR_CMD_BUSY;
/* get a command slot (freed in amr_done) */
if (amr_getslot(ac)) {
return(EBUSY);
}
/* Now we have a slot, we can map the command (unmapped in amr_complete). */
if ((error = amr_mapcmd(ac)) == ENOMEM) {
/*
* Memroy resources are short, so free the slot and let this be tried
* later.
*/
sc->amr_busycmd[ac->ac_slot] = NULL;
sc->amr_busyslots--;
}
return (error);
}
static int
amr_start1(struct amr_softc *sc, struct amr_command *ac)
{
int done, s, i;
/* mark the new mailbox we are going to copy in as busy */
ac->ac_mailbox.mb_busy = 1;
/* clear the poll/ack fields in the mailbox */
sc->amr_mailbox->mb_poll = 0;
sc->amr_mailbox->mb_ack = 0;
/*
* Save the slot number so that we can locate this command when complete.
* Note that ident = 0 seems to be special, so we don't use it.
*/
ac->ac_mailbox.mb_ident = ac->ac_slot + 1;
/*
* Spin waiting for the mailbox, give up after ~1 second. We expect the
* controller to be able to handle our I/O.
*
* XXX perhaps we should wait for less time, and count on the deferred command
* handling to deal with retries?
*/
debug(4, "wait for mailbox");
for (i = 10000, done = 0; (i > 0) && !done; i--) {
s = splbio();
/* is the mailbox free? */
if (sc->amr_mailbox->mb_busy == 0) {
debug(4, "got mailbox");
sc->amr_mailbox64->mb64_segment = 0;
bcopy(&ac->ac_mailbox, (void *)(uintptr_t)(volatile void *)sc->amr_mailbox, AMR_MBOX_CMDSIZE);
done = 1;
/* not free, spin waiting */
} else {
debug(4, "busy flag %x\n", sc->amr_mailbox->mb_busy);
/* this is somewhat ugly */
DELAY(100);
}
splx(s); /* drop spl to allow completion interrupts */
}
/*
* Now give the command to the controller
*/
if (done) {
if (sc->amr_submit_command(sc)) {
/* the controller wasn't ready to take the command, forget that we tried to post it */
sc->amr_mailbox->mb_busy = 0;
return(EBUSY);
}
debug(3, "posted command");
return(0);
}
/*
* The controller wouldn't take the command. Return the command as busy
* so that it is retried later.
*/
return(EBUSY);
}
/********************************************************************************
* Extract one or more completed commands from the controller (sc)
*
* Returns nonzero if any commands on the work queue were marked as completed.
*/
int
amr_done(struct amr_softc *sc)
{
struct amr_command *ac;
struct amr_mailbox mbox;
int i, idx, result;
debug_called(3);
/* See if there's anything for us to do */
result = 0;
/* loop collecting completed commands */
for (;;) {
/* poll for a completed command's identifier and status */
if (sc->amr_get_work(sc, &mbox)) {
result = 1;
/* iterate over completed commands in this result */
for (i = 0; i < mbox.mb_nstatus; i++) {
/* get pointer to busy command */
idx = mbox.mb_completed[i] - 1;
ac = sc->amr_busycmd[idx];
/* really a busy command? */
if (ac != NULL) {
/* pull the command from the busy index */
sc->amr_busycmd[idx] = NULL;
sc->amr_busyslots--;
/* save status for later use */
ac->ac_status = mbox.mb_status;
amr_enqueue_completed(ac);
debug(3, "completed command with status %x", mbox.mb_status);
} else {
device_printf(sc->amr_dev, "bad slot %d completed\n", idx);
}
}
} else {
break; /* no work */
}
}
/* handle completion and timeouts */
amr_complete(sc, 0);
return(result);
}
/********************************************************************************
* Do completion processing on done commands on (sc)
*/
static void
amr_complete(void *context, int pending)
{
struct amr_softc *sc = (struct amr_softc *)context;
struct amr_command *ac;
debug_called(3);
/* pull completed commands off the queue */
for (;;) {
ac = amr_dequeue_completed(sc);
if (ac == NULL)
break;
/* unmap the command's data buffer */
amr_unmapcmd(ac);
/* unbusy the command */
ac->ac_flags &= ~AMR_CMD_BUSY;
/*
* Is there a completion handler?
*/
if (ac->ac_complete != NULL) {
ac->ac_complete(ac);
/*
* Is someone sleeping on this one?
*/
} else if (ac->ac_flags & AMR_CMD_SLEEP) {
wakeup(ac);
}
if(!sc->amr_busyslots) {
wakeup(sc);
}
}
sc->amr_state &= ~AMR_STATE_QUEUE_FRZN;
amr_startio(sc);
}
/********************************************************************************
********************************************************************************
Command Buffer Management
********************************************************************************
********************************************************************************/
/********************************************************************************
* Get a new command buffer.
*
* This may return NULL in low-memory cases.
*
* If possible, we recycle a command buffer that's been used before.
*/
struct amr_command *
amr_alloccmd(struct amr_softc *sc)
{
struct amr_command *ac;
debug_called(3);
ac = amr_dequeue_free(sc);
if (ac == NULL) {
amr_alloccmd_cluster(sc);
ac = amr_dequeue_free(sc);
}
if (ac == NULL) {
sc->amr_state |= AMR_STATE_QUEUE_FRZN;
return(NULL);
}
/* clear out significant fields */
ac->ac_status = 0;
bzero(&ac->ac_mailbox, sizeof(struct amr_mailbox));
ac->ac_flags = 0;
ac->ac_bio = NULL;
ac->ac_data = NULL;
ac->ac_ccb_data = NULL;
ac->ac_complete = NULL;
return(ac);
}
/********************************************************************************
* Release a command buffer for recycling.
*/
void
amr_releasecmd(struct amr_command *ac)
{
debug_called(3);
amr_enqueue_free(ac);
}
/********************************************************************************
* Allocate a new command cluster and initialise it.
*/
static void
amr_alloccmd_cluster(struct amr_softc *sc)
{
struct amr_command_cluster *acc;
struct amr_command *ac;
int s, i, nextslot;
if (sc->amr_nextslot > sc->amr_maxio)
return;
acc = malloc(AMR_CMD_CLUSTERSIZE, M_DEVBUF, M_NOWAIT | M_ZERO);
if (acc != NULL) {
s = splbio();
nextslot = sc->amr_nextslot;
TAILQ_INSERT_TAIL(&sc->amr_cmd_clusters, acc, acc_link);
splx(s);
for (i = 0; i < AMR_CMD_CLUSTERCOUNT; i++) {
ac = &acc->acc_command[i];
ac->ac_sc = sc;
ac->ac_slot = nextslot;
if (!bus_dmamap_create(sc->amr_buffer_dmat, 0, &ac->ac_dmamap) &&
!bus_dmamap_create(sc->amr_buffer_dmat, 0, &ac->ac_ccb_dmamap))
amr_releasecmd(ac);
if (++nextslot > sc->amr_maxio)
break;
}
sc->amr_nextslot = nextslot;
}
}
/********************************************************************************
* Free a command cluster
*/
static void
amr_freecmd_cluster(struct amr_command_cluster *acc)
{
struct amr_softc *sc = acc->acc_command[0].ac_sc;
int i;
for (i = 0; i < AMR_CMD_CLUSTERCOUNT; i++)
bus_dmamap_destroy(sc->amr_buffer_dmat, acc->acc_command[i].ac_dmamap);
free(acc, M_DEVBUF);
}
/********************************************************************************
********************************************************************************
Interface-specific Shims
********************************************************************************
********************************************************************************/
/********************************************************************************
* Tell the controller that the mailbox contains a valid command
*/
static int
amr_quartz_submit_command(struct amr_softc *sc)
{
debug_called(3);
if (AMR_QGET_IDB(sc) & AMR_QIDB_SUBMIT)
return(EBUSY);
AMR_QPUT_IDB(sc, sc->amr_mailboxphys | AMR_QIDB_SUBMIT);
return(0);
}
static int
amr_std_submit_command(struct amr_softc *sc)
{
debug_called(3);
if (AMR_SGET_MBSTAT(sc) & AMR_SMBOX_BUSYFLAG)
return(EBUSY);
AMR_SPOST_COMMAND(sc);
return(0);
}
/********************************************************************************
* Claim any work that the controller has completed; acknowledge completion,
* save details of the completion in (mbsave)
*/
static int
amr_quartz_get_work(struct amr_softc *sc, struct amr_mailbox *mbsave)
{
int s, worked;
u_int32_t outd;
u_int8_t nstatus;
debug_called(3);
worked = 0;
s = splbio();
/* work waiting for us? */
if ((outd = AMR_QGET_ODB(sc)) == AMR_QODB_READY) {
/* acknowledge interrupt */
AMR_QPUT_ODB(sc, AMR_QODB_READY);
while ((nstatus = sc->amr_mailbox->mb_nstatus) == 0xff)
;
sc->amr_mailbox->mb_nstatus = 0xff;
/* save mailbox, which contains a list of completed commands */
bcopy((void *)(uintptr_t)(volatile void *)sc->amr_mailbox, mbsave, sizeof(*mbsave));
mbsave->mb_nstatus = nstatus;
/* acknowledge that we have the commands */
AMR_QPUT_IDB(sc, AMR_QIDB_ACK);
#ifndef AMR_QUARTZ_GOFASTER
/*
* This waits for the controller to notice that we've taken the
* command from it. It's very inefficient, and we shouldn't do it,
* but if we remove this code, we stop completing commands under
* load.
*
* Peter J says we shouldn't do this. The documentation says we
* should. Who is right?
*/
while(AMR_QGET_IDB(sc) & AMR_QIDB_ACK)
; /* XXX aiee! what if it dies? */
#endif
worked = 1; /* got some work */
}
splx(s);
return(worked);
}
static int
amr_std_get_work(struct amr_softc *sc, struct amr_mailbox *mbsave)
{
int s, worked;
u_int8_t istat;
debug_called(3);
worked = 0;
s = splbio();
/* check for valid interrupt status */
istat = AMR_SGET_ISTAT(sc);
if ((istat & AMR_SINTR_VALID) != 0) {
AMR_SPUT_ISTAT(sc, istat); /* ack interrupt status */
/* save mailbox, which contains a list of completed commands */
bcopy((void *)(uintptr_t)(volatile void *)sc->amr_mailbox, mbsave, sizeof(*mbsave));
AMR_SACK_INTERRUPT(sc); /* acknowledge we have the mailbox */
worked = 1;
}
splx(s);
return(worked);
}
/********************************************************************************
* Notify the controller of the mailbox location.
*/
static void
amr_std_attach_mailbox(struct amr_softc *sc)
{
/* program the mailbox physical address */
AMR_SBYTE_SET(sc, AMR_SMBOX_0, sc->amr_mailboxphys & 0xff);
AMR_SBYTE_SET(sc, AMR_SMBOX_1, (sc->amr_mailboxphys >> 8) & 0xff);
AMR_SBYTE_SET(sc, AMR_SMBOX_2, (sc->amr_mailboxphys >> 16) & 0xff);
AMR_SBYTE_SET(sc, AMR_SMBOX_3, (sc->amr_mailboxphys >> 24) & 0xff);
AMR_SBYTE_SET(sc, AMR_SMBOX_ENABLE, AMR_SMBOX_ADDR);
/* clear any outstanding interrupt and enable interrupts proper */
AMR_SACK_INTERRUPT(sc);
AMR_SENABLE_INTR(sc);
}
#ifdef AMR_BOARD_INIT
/********************************************************************************
* Initialise the controller
*/
static int
amr_quartz_init(struct amr_softc *sc)
{
int status, ostatus;
device_printf(sc->amr_dev, "initial init status %x\n", AMR_QGET_INITSTATUS(sc));
AMR_QRESET(sc);
ostatus = 0xff;
while ((status = AMR_QGET_INITSTATUS(sc)) != AMR_QINIT_DONE) {
if (status != ostatus) {
device_printf(sc->amr_dev, "(%x) %s\n", status, amr_describe_code(amr_table_qinit, status));
ostatus = status;
}
switch (status) {
case AMR_QINIT_NOMEM:
return(ENOMEM);
case AMR_QINIT_SCAN:
/* XXX we could print channel/target here */
break;
}
}
return(0);
}
static int
amr_std_init(struct amr_softc *sc)
{
int status, ostatus;
device_printf(sc->amr_dev, "initial init status %x\n", AMR_SGET_INITSTATUS(sc));
AMR_SRESET(sc);
ostatus = 0xff;
while ((status = AMR_SGET_INITSTATUS(sc)) != AMR_SINIT_DONE) {
if (status != ostatus) {
device_printf(sc->amr_dev, "(%x) %s\n", status, amr_describe_code(amr_table_sinit, status));
ostatus = status;
}
switch (status) {
case AMR_SINIT_NOMEM:
return(ENOMEM);
case AMR_SINIT_INPROG:
/* XXX we could print channel/target here? */
break;
}
}
return(0);
}
#endif
/********************************************************************************
********************************************************************************
Debugging
********************************************************************************
********************************************************************************/
/********************************************************************************
* Identify the controller and print some information about it.
*/
static void
amr_describe_controller(struct amr_softc *sc)
{
struct amr_prodinfo *ap;
struct amr_enquiry *ae;
char *prod;
mtx_lock(&sc->amr_io_lock);
/*
* Try to get 40LD product info, which tells us what the card is labelled as.
*/
if ((ap = amr_enquiry(sc, 2048, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0)) != NULL) {
device_printf(sc->amr_dev, "<LSILogic %.80s> Firmware %.16s, BIOS %.16s, %dMB RAM\n",
ap->ap_product, ap->ap_firmware, ap->ap_bios,
ap->ap_memsize);
free(ap, M_DEVBUF);
mtx_unlock(&sc->amr_io_lock);
return;
}
/*
* Try 8LD extended ENQUIRY to get controller signature, and use lookup table.
*/
if ((ae = (struct amr_enquiry *)amr_enquiry(sc, 2048, AMR_CMD_EXT_ENQUIRY2, 0, 0)) != NULL) {
prod = amr_describe_code(amr_table_adaptertype, ae->ae_signature);
} else if ((ae = (struct amr_enquiry *)amr_enquiry(sc, 2048, AMR_CMD_ENQUIRY, 0, 0)) != NULL) {
/*
* Try to work it out based on the PCI signatures.
*/
switch (pci_get_device(sc->amr_dev)) {
case 0x9010:
prod = "Series 428";
break;
case 0x9060:
prod = "Series 434";
break;
default:
prod = "unknown controller";
break;
}
} else {
device_printf(sc->amr_dev, "<unsupported controller>\n");
mtx_unlock(&sc->amr_io_lock);
return;
}
/*
* HP NetRaid controllers have a special encoding of the firmware and
* BIOS versions. The AMI version seems to have it as strings whereas
* the HP version does it with a leading uppercase character and two
* binary numbers.
*/
if(ae->ae_adapter.aa_firmware[2] >= 'A' &&
ae->ae_adapter.aa_firmware[2] <= 'Z' &&
ae->ae_adapter.aa_firmware[1] < ' ' &&
ae->ae_adapter.aa_firmware[0] < ' ' &&
ae->ae_adapter.aa_bios[2] >= 'A' &&
ae->ae_adapter.aa_bios[2] <= 'Z' &&
ae->ae_adapter.aa_bios[1] < ' ' &&
ae->ae_adapter.aa_bios[0] < ' ') {
/* this looks like we have an HP NetRaid version of the MegaRaid */
if(ae->ae_signature == AMR_SIG_438) {
/* the AMI 438 is a NetRaid 3si in HP-land */
prod = "HP NetRaid 3si";
}
device_printf(sc->amr_dev, "<%s> Firmware %c.%02d.%02d, BIOS %c.%02d.%02d, %dMB RAM\n",
prod, ae->ae_adapter.aa_firmware[2],
ae->ae_adapter.aa_firmware[1],
ae->ae_adapter.aa_firmware[0],
ae->ae_adapter.aa_bios[2],
ae->ae_adapter.aa_bios[1],
ae->ae_adapter.aa_bios[0],
ae->ae_adapter.aa_memorysize);
} else {
device_printf(sc->amr_dev, "<%s> Firmware %.4s, BIOS %.4s, %dMB RAM\n",
prod, ae->ae_adapter.aa_firmware, ae->ae_adapter.aa_bios,
ae->ae_adapter.aa_memorysize);
}
free(ae, M_DEVBUF);
mtx_unlock(&sc->amr_io_lock);
}
int
amr_dump_blocks(struct amr_softc *sc, int unit, u_int32_t lba, void *data, int blks)
{
struct amr_command *ac;
int error = EIO;
debug_called(1);
sc->amr_state |= AMR_STATE_INTEN;
/* get ourselves a command buffer */
if ((ac = amr_alloccmd(sc)) == NULL)
goto out;
/* set command flags */
ac->ac_flags |= AMR_CMD_PRIORITY | AMR_CMD_DATAOUT;
/* point the command at our data */
ac->ac_data = data;
ac->ac_length = blks * AMR_BLKSIZE;
/* build the command proper */
ac->ac_mailbox.mb_command = AMR_CMD_LWRITE;
ac->ac_mailbox.mb_blkcount = blks;
ac->ac_mailbox.mb_lba = lba;
ac->ac_mailbox.mb_drive = unit;
/* can't assume that interrupts are going to work here, so play it safe */
if (sc->amr_poll_command(ac))
goto out;
error = ac->ac_status;
out:
if (ac != NULL)
amr_releasecmd(ac);
sc->amr_state &= ~AMR_STATE_INTEN;
return (error);
}
#ifdef AMR_DEBUG
/********************************************************************************
* Print the command (ac) in human-readable format
*/
#if 0
static void
amr_printcommand(struct amr_command *ac)
{
struct amr_softc *sc = ac->ac_sc;
struct amr_sgentry *sg;
int i;
device_printf(sc->amr_dev, "cmd %x ident %d drive %d\n",
ac->ac_mailbox.mb_command, ac->ac_mailbox.mb_ident, ac->ac_mailbox.mb_drive);
device_printf(sc->amr_dev, "blkcount %d lba %d\n",
ac->ac_mailbox.mb_blkcount, ac->ac_mailbox.mb_lba);
device_printf(sc->amr_dev, "virtaddr %p length %lu\n", ac->ac_data, (unsigned long)ac->ac_length);
device_printf(sc->amr_dev, "sg physaddr %08x nsg %d\n",
ac->ac_mailbox.mb_physaddr, ac->ac_mailbox.mb_nsgelem);
device_printf(sc->amr_dev, "ccb %p bio %p\n", ac->ac_ccb_data, ac->ac_bio);
/* get base address of s/g table */
sg = sc->amr_sgtable + (ac->ac_slot * AMR_NSEG);
for (i = 0; i < ac->ac_mailbox.mb_nsgelem; i++, sg++)
device_printf(sc->amr_dev, " %x/%d\n", sg->sg_addr, sg->sg_count);
}
#endif
#endif