8e11a9b425
Quite a lot of churn on style, but lots of good work refactoring complicated functions and lots more unit-tests. Thanks mostly to rillig at NetBSD Some interesting entries from ChangeLog o .MAKE.{UID,GID} represent uid and gid running make. o allow env var MAKE_OBJDIR_CHECK_WRITABLE=no to skip writable checks in InitObjdir. Explicit .OBJDIR target always allows read-only directory. o add more unit tests for META MODE Change-Id: I4d3bcf08b4c864d98b343f602efe5a75dbfa7a94
1349 lines
34 KiB
C
1349 lines
34 KiB
C
/* $NetBSD: cond.c,v 1.235 2021/01/10 21:20:46 rillig Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1988, 1989, 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Adam de Boor.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1988, 1989 by Adam de Boor
|
|
* Copyright (c) 1989 by Berkeley Softworks
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Adam de Boor.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Handling of conditionals in a makefile.
|
|
*
|
|
* Interface:
|
|
* Cond_EvalLine Evaluate the conditional directive, such as
|
|
* '.if <cond>', '.elifnmake <cond>', '.else', '.endif'.
|
|
*
|
|
* Cond_EvalCondition
|
|
* Evaluate the conditional, which is either the argument
|
|
* of one of the .if directives or the condition in a
|
|
* ':?then:else' variable modifier.
|
|
*
|
|
* Cond_save_depth
|
|
* Cond_restore_depth
|
|
* Save and restore the nesting of the conditions, at
|
|
* the start and end of including another makefile, to
|
|
* ensure that in each makefile the conditional
|
|
* directives are well-balanced.
|
|
*/
|
|
|
|
#include <errno.h>
|
|
|
|
#include "make.h"
|
|
#include "dir.h"
|
|
|
|
/* "@(#)cond.c 8.2 (Berkeley) 1/2/94" */
|
|
MAKE_RCSID("$NetBSD: cond.c,v 1.235 2021/01/10 21:20:46 rillig Exp $");
|
|
|
|
/*
|
|
* The parsing of conditional expressions is based on this grammar:
|
|
* E -> F || E
|
|
* E -> F
|
|
* F -> T && F
|
|
* F -> T
|
|
* T -> defined(variable)
|
|
* T -> make(target)
|
|
* T -> exists(file)
|
|
* T -> empty(varspec)
|
|
* T -> target(name)
|
|
* T -> commands(name)
|
|
* T -> symbol
|
|
* T -> $(varspec) op value
|
|
* T -> $(varspec) == "string"
|
|
* T -> $(varspec) != "string"
|
|
* T -> "string"
|
|
* T -> ( E )
|
|
* T -> ! T
|
|
* op -> == | != | > | < | >= | <=
|
|
*
|
|
* 'symbol' is some other symbol to which the default function is applied.
|
|
*
|
|
* The tokens are scanned by CondToken, which returns:
|
|
* TOK_AND for '&' or '&&'
|
|
* TOK_OR for '|' or '||'
|
|
* TOK_NOT for '!'
|
|
* TOK_LPAREN for '('
|
|
* TOK_RPAREN for ')'
|
|
* Other terminal symbols are evaluated using either the default function or
|
|
* the function given in the terminal, they return either TOK_TRUE or
|
|
* TOK_FALSE.
|
|
*
|
|
* TOK_FALSE is 0 and TOK_TRUE 1 so we can directly assign C comparisons.
|
|
*
|
|
* All non-terminal functions (CondParser_Expr, CondParser_Factor and
|
|
* CondParser_Term) return either TOK_FALSE, TOK_TRUE, or TOK_ERROR on error.
|
|
*/
|
|
typedef enum Token {
|
|
TOK_FALSE = 0, TOK_TRUE = 1, TOK_AND, TOK_OR, TOK_NOT,
|
|
TOK_LPAREN, TOK_RPAREN, TOK_EOF, TOK_NONE, TOK_ERROR
|
|
} Token;
|
|
|
|
typedef struct CondParser {
|
|
const struct If *if_info; /* Info for current statement */
|
|
const char *p; /* The remaining condition to parse */
|
|
Token curr; /* Single push-back token used in parsing */
|
|
|
|
/*
|
|
* Whether an error message has already been printed for this
|
|
* condition. The first available error message is usually the most
|
|
* specific one, therefore it makes sense to suppress the standard
|
|
* "Malformed conditional" message.
|
|
*/
|
|
Boolean printedError;
|
|
} CondParser;
|
|
|
|
static Token CondParser_Expr(CondParser *par, Boolean);
|
|
|
|
static unsigned int cond_depth = 0; /* current .if nesting level */
|
|
static unsigned int cond_min_depth = 0; /* depth at makefile open */
|
|
|
|
/*
|
|
* Indicate when we should be strict about lhs of comparisons.
|
|
* In strict mode, the lhs must be a variable expression or a string literal
|
|
* in quotes. In non-strict mode it may also be an unquoted string literal.
|
|
*
|
|
* TRUE when CondEvalExpression is called from Cond_EvalLine (.if etc)
|
|
* FALSE when CondEvalExpression is called from ApplyModifier_IfElse
|
|
* since lhs is already expanded, and at that point we cannot tell if
|
|
* it was a variable reference or not.
|
|
*/
|
|
static Boolean lhsStrict;
|
|
|
|
static Boolean
|
|
is_token(const char *str, const char *tok, size_t len)
|
|
{
|
|
return strncmp(str, tok, len) == 0 && !ch_isalpha(str[len]);
|
|
}
|
|
|
|
static Token
|
|
ToToken(Boolean cond)
|
|
{
|
|
return cond ? TOK_TRUE : TOK_FALSE;
|
|
}
|
|
|
|
/* Push back the most recent token read. We only need one level of this. */
|
|
static void
|
|
CondParser_PushBack(CondParser *par, Token t)
|
|
{
|
|
assert(par->curr == TOK_NONE);
|
|
assert(t != TOK_NONE);
|
|
|
|
par->curr = t;
|
|
}
|
|
|
|
static void
|
|
CondParser_SkipWhitespace(CondParser *par)
|
|
{
|
|
cpp_skip_whitespace(&par->p);
|
|
}
|
|
|
|
/*
|
|
* Parse the argument of a built-in function.
|
|
*
|
|
* Arguments:
|
|
* *pp initially points at the '(',
|
|
* upon successful return it points right after the ')'.
|
|
*
|
|
* *out_arg receives the argument as string.
|
|
*
|
|
* func says whether the argument belongs to an actual function, or
|
|
* whether the parsed argument is passed to the default function.
|
|
*
|
|
* Return the length of the argument, or 0 on error.
|
|
*/
|
|
static size_t
|
|
ParseFuncArg(const char **pp, Boolean doEval, const char *func,
|
|
char **out_arg)
|
|
{
|
|
const char *p = *pp;
|
|
Buffer argBuf;
|
|
int paren_depth;
|
|
size_t argLen;
|
|
|
|
if (func != NULL)
|
|
p++; /* Skip opening '(' - verified by caller */
|
|
|
|
if (*p == '\0') {
|
|
*out_arg = NULL; /* Missing closing parenthesis: */
|
|
return 0; /* .if defined( */
|
|
}
|
|
|
|
cpp_skip_hspace(&p);
|
|
|
|
Buf_InitSize(&argBuf, 16);
|
|
|
|
paren_depth = 0;
|
|
for (;;) {
|
|
char ch = *p;
|
|
if (ch == '\0' || ch == ' ' || ch == '\t')
|
|
break;
|
|
if ((ch == '&' || ch == '|') && paren_depth == 0)
|
|
break;
|
|
if (*p == '$') {
|
|
/*
|
|
* Parse the variable expression and install it as
|
|
* part of the argument if it's valid. We tell
|
|
* Var_Parse to complain on an undefined variable,
|
|
* (XXX: but Var_Parse ignores that request)
|
|
* so we don't need to do it. Nor do we return an
|
|
* error, though perhaps we should.
|
|
*/
|
|
VarEvalFlags eflags = doEval
|
|
? VARE_WANTRES | VARE_UNDEFERR
|
|
: VARE_NONE;
|
|
FStr nestedVal;
|
|
(void)Var_Parse(&p, VAR_CMDLINE, eflags, &nestedVal);
|
|
/* TODO: handle errors */
|
|
Buf_AddStr(&argBuf, nestedVal.str);
|
|
FStr_Done(&nestedVal);
|
|
continue;
|
|
}
|
|
if (ch == '(')
|
|
paren_depth++;
|
|
else if (ch == ')' && --paren_depth < 0)
|
|
break;
|
|
Buf_AddByte(&argBuf, *p);
|
|
p++;
|
|
}
|
|
|
|
*out_arg = Buf_GetAll(&argBuf, &argLen);
|
|
Buf_Destroy(&argBuf, FALSE);
|
|
|
|
cpp_skip_hspace(&p);
|
|
|
|
if (func != NULL && *p++ != ')') {
|
|
Parse_Error(PARSE_WARNING,
|
|
"Missing closing parenthesis for %s()",
|
|
func);
|
|
/* The PARSE_FATAL follows in CondEvalExpression. */
|
|
return 0;
|
|
}
|
|
|
|
*pp = p;
|
|
return argLen;
|
|
}
|
|
|
|
/* Test whether the given variable is defined. */
|
|
/*ARGSUSED*/
|
|
static Boolean
|
|
FuncDefined(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
|
|
{
|
|
FStr value = Var_Value(arg, VAR_CMDLINE);
|
|
Boolean result = value.str != NULL;
|
|
FStr_Done(&value);
|
|
return result;
|
|
}
|
|
|
|
/* See if the given target is being made. */
|
|
/*ARGSUSED*/
|
|
static Boolean
|
|
FuncMake(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
|
|
{
|
|
StringListNode *ln;
|
|
|
|
for (ln = opts.create.first; ln != NULL; ln = ln->next)
|
|
if (Str_Match(ln->datum, arg))
|
|
return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
/* See if the given file exists. */
|
|
/*ARGSUSED*/
|
|
static Boolean
|
|
FuncExists(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
|
|
{
|
|
Boolean result;
|
|
char *path;
|
|
|
|
path = Dir_FindFile(arg, &dirSearchPath);
|
|
DEBUG2(COND, "exists(%s) result is \"%s\"\n",
|
|
arg, path != NULL ? path : "");
|
|
result = path != NULL;
|
|
free(path);
|
|
return result;
|
|
}
|
|
|
|
/* See if the given node exists and is an actual target. */
|
|
/*ARGSUSED*/
|
|
static Boolean
|
|
FuncTarget(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
|
|
{
|
|
GNode *gn = Targ_FindNode(arg);
|
|
return gn != NULL && GNode_IsTarget(gn);
|
|
}
|
|
|
|
/*
|
|
* See if the given node exists and is an actual target with commands
|
|
* associated with it.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static Boolean
|
|
FuncCommands(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
|
|
{
|
|
GNode *gn = Targ_FindNode(arg);
|
|
return gn != NULL && GNode_IsTarget(gn) && !Lst_IsEmpty(&gn->commands);
|
|
}
|
|
|
|
/*
|
|
* Convert the given number into a double.
|
|
* We try a base 10 or 16 integer conversion first, if that fails
|
|
* then we try a floating point conversion instead.
|
|
*
|
|
* Results:
|
|
* Returns TRUE if the conversion succeeded.
|
|
* Sets 'out_value' to the converted number.
|
|
*/
|
|
static Boolean
|
|
TryParseNumber(const char *str, double *out_value)
|
|
{
|
|
char *end;
|
|
unsigned long ul_val;
|
|
double dbl_val;
|
|
|
|
errno = 0;
|
|
if (str[0] == '\0') { /* XXX: why is an empty string a number? */
|
|
*out_value = 0.0;
|
|
return TRUE;
|
|
}
|
|
|
|
ul_val = strtoul(str, &end, str[1] == 'x' ? 16 : 10);
|
|
if (*end == '\0' && errno != ERANGE) {
|
|
*out_value = str[0] == '-' ? -(double)-ul_val : (double)ul_val;
|
|
return TRUE;
|
|
}
|
|
|
|
if (*end != '\0' && *end != '.' && *end != 'e' && *end != 'E')
|
|
return FALSE; /* skip the expensive strtod call */
|
|
dbl_val = strtod(str, &end);
|
|
if (*end != '\0')
|
|
return FALSE;
|
|
|
|
*out_value = dbl_val;
|
|
return TRUE;
|
|
}
|
|
|
|
static Boolean
|
|
is_separator(char ch)
|
|
{
|
|
return ch == '\0' || ch_isspace(ch) || strchr("!=><)", ch) != NULL;
|
|
}
|
|
|
|
/*-
|
|
* Parse a string from a variable reference or an optionally quoted
|
|
* string. This is called for the lhs and rhs of string comparisons.
|
|
*
|
|
* Results:
|
|
* Returns the string, absent any quotes, or NULL on error.
|
|
* Sets out_quoted if the string was quoted.
|
|
* Sets out_freeIt.
|
|
*/
|
|
/* coverity:[+alloc : arg-*4] */
|
|
static void
|
|
CondParser_String(CondParser *par, Boolean doEval, Boolean strictLHS,
|
|
FStr *out_str, Boolean *out_quoted)
|
|
{
|
|
Buffer buf;
|
|
FStr str;
|
|
Boolean atStart;
|
|
const char *nested_p;
|
|
Boolean quoted;
|
|
const char *start;
|
|
VarEvalFlags eflags;
|
|
VarParseResult parseResult;
|
|
|
|
Buf_Init(&buf);
|
|
str = FStr_InitRefer(NULL);
|
|
*out_quoted = quoted = par->p[0] == '"';
|
|
start = par->p;
|
|
if (quoted)
|
|
par->p++;
|
|
|
|
while (par->p[0] != '\0' && str.str == NULL) {
|
|
switch (par->p[0]) {
|
|
case '\\':
|
|
par->p++;
|
|
if (par->p[0] != '\0') {
|
|
Buf_AddByte(&buf, par->p[0]);
|
|
par->p++;
|
|
}
|
|
continue;
|
|
case '"':
|
|
if (quoted) {
|
|
par->p++; /* skip the closing quote */
|
|
goto got_str;
|
|
}
|
|
Buf_AddByte(&buf, par->p[0]); /* likely? */
|
|
par->p++;
|
|
continue;
|
|
case ')': /* see is_separator */
|
|
case '!':
|
|
case '=':
|
|
case '>':
|
|
case '<':
|
|
case ' ':
|
|
case '\t':
|
|
if (!quoted)
|
|
goto got_str;
|
|
Buf_AddByte(&buf, par->p[0]);
|
|
par->p++;
|
|
continue;
|
|
case '$':
|
|
/* if we are in quotes, an undefined variable is ok */
|
|
eflags =
|
|
doEval && !quoted ? VARE_WANTRES | VARE_UNDEFERR :
|
|
doEval ? VARE_WANTRES :
|
|
VARE_NONE;
|
|
|
|
nested_p = par->p;
|
|
atStart = nested_p == start;
|
|
parseResult = Var_Parse(&nested_p, VAR_CMDLINE, eflags,
|
|
&str);
|
|
/* TODO: handle errors */
|
|
if (str.str == var_Error) {
|
|
if (parseResult == VPR_ERR)
|
|
par->printedError = TRUE;
|
|
/*
|
|
* XXX: Can there be any situation in which
|
|
* a returned var_Error requires freeIt?
|
|
*/
|
|
FStr_Done(&str);
|
|
/*
|
|
* Even if !doEval, we still report syntax
|
|
* errors, which is what getting var_Error
|
|
* back with !doEval means.
|
|
*/
|
|
str = FStr_InitRefer(NULL);
|
|
goto cleanup;
|
|
}
|
|
par->p = nested_p;
|
|
|
|
/*
|
|
* If the '$' started the string literal (which means
|
|
* no quotes), and the variable expression is followed
|
|
* by a space, looks like a comparison operator or is
|
|
* the end of the expression, we are done.
|
|
*/
|
|
if (atStart && is_separator(par->p[0]))
|
|
goto cleanup;
|
|
|
|
Buf_AddStr(&buf, str.str);
|
|
FStr_Done(&str);
|
|
str = FStr_InitRefer(NULL); /* not finished yet */
|
|
continue;
|
|
default:
|
|
if (strictLHS && !quoted && *start != '$' &&
|
|
!ch_isdigit(*start)) {
|
|
/*
|
|
* The left-hand side must be quoted,
|
|
* a variable reference or a number.
|
|
*/
|
|
str = FStr_InitRefer(NULL);
|
|
goto cleanup;
|
|
}
|
|
Buf_AddByte(&buf, par->p[0]);
|
|
par->p++;
|
|
continue;
|
|
}
|
|
}
|
|
got_str:
|
|
str = FStr_InitOwn(Buf_GetAll(&buf, NULL));
|
|
cleanup:
|
|
Buf_Destroy(&buf, FALSE);
|
|
*out_str = str;
|
|
}
|
|
|
|
struct If {
|
|
const char *form; /* Form of if */
|
|
size_t formlen; /* Length of form */
|
|
Boolean doNot; /* TRUE if default function should be negated */
|
|
/* The default function to apply on unquoted bare words. */
|
|
Boolean (*defProc)(size_t, const char *);
|
|
};
|
|
|
|
/* The different forms of .if directives. */
|
|
static const struct If ifs[] = {
|
|
{ "def", 3, FALSE, FuncDefined },
|
|
{ "ndef", 4, TRUE, FuncDefined },
|
|
{ "make", 4, FALSE, FuncMake },
|
|
{ "nmake", 5, TRUE, FuncMake },
|
|
{ "", 0, FALSE, FuncDefined },
|
|
{ NULL, 0, FALSE, NULL }
|
|
};
|
|
enum {
|
|
PLAIN_IF_INDEX = 4
|
|
};
|
|
|
|
static Boolean
|
|
If_Eval(const struct If *if_info, const char *arg, size_t arglen)
|
|
{
|
|
Boolean res = if_info->defProc(arglen, arg);
|
|
return if_info->doNot ? !res : res;
|
|
}
|
|
|
|
/*
|
|
* Evaluate a "comparison without operator", such as in ".if ${VAR}" or
|
|
* ".if 0".
|
|
*/
|
|
static Boolean
|
|
EvalNotEmpty(CondParser *par, const char *value, Boolean quoted)
|
|
{
|
|
double num;
|
|
|
|
/* For .ifxxx "...", check for non-empty string. */
|
|
if (quoted)
|
|
return value[0] != '\0';
|
|
|
|
/* For .ifxxx <number>, compare against zero */
|
|
if (TryParseNumber(value, &num))
|
|
return num != 0.0;
|
|
|
|
/* For .if ${...}, check for non-empty string. This is different from
|
|
* the evaluation function from that .if variant, which would test
|
|
* whether a variable of the given name were defined. */
|
|
/* XXX: Whitespace should count as empty, just as in ParseEmptyArg. */
|
|
if (par->if_info->form[0] == '\0')
|
|
return value[0] != '\0';
|
|
|
|
/* For the other variants of .ifxxx ${...}, use its default function. */
|
|
return If_Eval(par->if_info, value, strlen(value));
|
|
}
|
|
|
|
/* Evaluate a numerical comparison, such as in ".if ${VAR} >= 9". */
|
|
static Token
|
|
EvalCompareNum(double lhs, const char *op, double rhs)
|
|
{
|
|
DEBUG3(COND, "lhs = %f, rhs = %f, op = %.2s\n", lhs, rhs, op);
|
|
|
|
switch (op[0]) {
|
|
case '!':
|
|
if (op[1] != '=') {
|
|
Parse_Error(PARSE_WARNING, "Unknown operator");
|
|
/* The PARSE_FATAL follows in CondEvalExpression. */
|
|
return TOK_ERROR;
|
|
}
|
|
return ToToken(lhs != rhs);
|
|
case '=':
|
|
if (op[1] != '=') {
|
|
Parse_Error(PARSE_WARNING, "Unknown operator");
|
|
/* The PARSE_FATAL follows in CondEvalExpression. */
|
|
return TOK_ERROR;
|
|
}
|
|
return ToToken(lhs == rhs);
|
|
case '<':
|
|
return ToToken(op[1] == '=' ? lhs <= rhs : lhs < rhs);
|
|
case '>':
|
|
return ToToken(op[1] == '=' ? lhs >= rhs : lhs > rhs);
|
|
}
|
|
return TOK_ERROR;
|
|
}
|
|
|
|
static Token
|
|
EvalCompareStr(const char *lhs, const char *op, const char *rhs)
|
|
{
|
|
if (!((op[0] == '!' || op[0] == '=') && op[1] == '=')) {
|
|
Parse_Error(PARSE_WARNING,
|
|
"String comparison operator "
|
|
"must be either == or !=");
|
|
/* The PARSE_FATAL follows in CondEvalExpression. */
|
|
return TOK_ERROR;
|
|
}
|
|
|
|
DEBUG3(COND, "lhs = \"%s\", rhs = \"%s\", op = %.2s\n", lhs, rhs, op);
|
|
return ToToken((*op == '=') == (strcmp(lhs, rhs) == 0));
|
|
}
|
|
|
|
/* Evaluate a comparison, such as "${VAR} == 12345". */
|
|
static Token
|
|
EvalCompare(const char *lhs, Boolean lhsQuoted, const char *op,
|
|
const char *rhs, Boolean rhsQuoted)
|
|
{
|
|
double left, right;
|
|
|
|
if (!rhsQuoted && !lhsQuoted)
|
|
if (TryParseNumber(lhs, &left) && TryParseNumber(rhs, &right))
|
|
return EvalCompareNum(left, op, right);
|
|
|
|
return EvalCompareStr(lhs, op, rhs);
|
|
}
|
|
|
|
/*
|
|
* Parse a comparison condition such as:
|
|
*
|
|
* 0
|
|
* ${VAR:Mpattern}
|
|
* ${VAR} == value
|
|
* ${VAR:U0} < 12345
|
|
*/
|
|
static Token
|
|
CondParser_Comparison(CondParser *par, Boolean doEval)
|
|
{
|
|
Token t = TOK_ERROR;
|
|
FStr lhs, rhs;
|
|
const char *op;
|
|
Boolean lhsQuoted, rhsQuoted;
|
|
|
|
/*
|
|
* Parse the variable spec and skip over it, saving its
|
|
* value in lhs.
|
|
*/
|
|
CondParser_String(par, doEval, lhsStrict, &lhs, &lhsQuoted);
|
|
if (lhs.str == NULL)
|
|
goto done_lhs;
|
|
|
|
CondParser_SkipWhitespace(par);
|
|
|
|
op = par->p;
|
|
switch (par->p[0]) {
|
|
case '!':
|
|
case '=':
|
|
case '<':
|
|
case '>':
|
|
if (par->p[1] == '=')
|
|
par->p += 2;
|
|
else
|
|
par->p++;
|
|
break;
|
|
default:
|
|
/* Unknown operator, compare against an empty string or 0. */
|
|
t = ToToken(doEval && EvalNotEmpty(par, lhs.str, lhsQuoted));
|
|
goto done_lhs;
|
|
}
|
|
|
|
CondParser_SkipWhitespace(par);
|
|
|
|
if (par->p[0] == '\0') {
|
|
Parse_Error(PARSE_WARNING,
|
|
"Missing right-hand-side of operator");
|
|
/* The PARSE_FATAL follows in CondEvalExpression. */
|
|
goto done_lhs;
|
|
}
|
|
|
|
CondParser_String(par, doEval, FALSE, &rhs, &rhsQuoted);
|
|
if (rhs.str == NULL)
|
|
goto done_rhs;
|
|
|
|
if (!doEval) {
|
|
t = TOK_FALSE;
|
|
goto done_rhs;
|
|
}
|
|
|
|
t = EvalCompare(lhs.str, lhsQuoted, op, rhs.str, rhsQuoted);
|
|
|
|
done_rhs:
|
|
FStr_Done(&rhs);
|
|
done_lhs:
|
|
FStr_Done(&lhs);
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* The argument to empty() is a variable name, optionally followed by
|
|
* variable modifiers.
|
|
*/
|
|
/*ARGSUSED*/
|
|
static size_t
|
|
ParseEmptyArg(const char **pp, Boolean doEval,
|
|
const char *func MAKE_ATTR_UNUSED, char **out_arg)
|
|
{
|
|
FStr val;
|
|
size_t magic_res;
|
|
|
|
/* We do all the work here and return the result as the length */
|
|
*out_arg = NULL;
|
|
|
|
(*pp)--; /* Make (*pp)[1] point to the '('. */
|
|
(void)Var_Parse(pp, VAR_CMDLINE, doEval ? VARE_WANTRES : VARE_NONE,
|
|
&val);
|
|
/* TODO: handle errors */
|
|
/* If successful, *pp points beyond the closing ')' now. */
|
|
|
|
if (val.str == var_Error) {
|
|
FStr_Done(&val);
|
|
return (size_t)-1;
|
|
}
|
|
|
|
/*
|
|
* A variable is empty when it just contains spaces...
|
|
* 4/15/92, christos
|
|
*/
|
|
cpp_skip_whitespace(&val.str);
|
|
|
|
/*
|
|
* For consistency with the other functions we can't generate the
|
|
* true/false here.
|
|
*/
|
|
magic_res = val.str[0] != '\0' ? 2 : 1;
|
|
FStr_Done(&val);
|
|
return magic_res;
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static Boolean
|
|
FuncEmpty(size_t arglen, const char *arg MAKE_ATTR_UNUSED)
|
|
{
|
|
/* Magic values ahead, see ParseEmptyArg. */
|
|
return arglen == 1;
|
|
}
|
|
|
|
static Boolean
|
|
CondParser_Func(CondParser *par, Boolean doEval, Token *out_token)
|
|
{
|
|
static const struct fn_def {
|
|
const char *fn_name;
|
|
size_t fn_name_len;
|
|
size_t (*fn_parse)(const char **, Boolean, const char *,
|
|
char **);
|
|
Boolean (*fn_eval)(size_t, const char *);
|
|
} fns[] = {
|
|
{ "defined", 7, ParseFuncArg, FuncDefined },
|
|
{ "make", 4, ParseFuncArg, FuncMake },
|
|
{ "exists", 6, ParseFuncArg, FuncExists },
|
|
{ "empty", 5, ParseEmptyArg, FuncEmpty },
|
|
{ "target", 6, ParseFuncArg, FuncTarget },
|
|
{ "commands", 8, ParseFuncArg, FuncCommands }
|
|
};
|
|
const struct fn_def *fn;
|
|
char *arg = NULL;
|
|
size_t arglen;
|
|
const char *cp = par->p;
|
|
const struct fn_def *fns_end = fns + sizeof fns / sizeof fns[0];
|
|
|
|
for (fn = fns; fn != fns_end; fn++) {
|
|
if (!is_token(cp, fn->fn_name, fn->fn_name_len))
|
|
continue;
|
|
|
|
cp += fn->fn_name_len;
|
|
cpp_skip_whitespace(&cp);
|
|
if (*cp != '(')
|
|
break;
|
|
|
|
arglen = fn->fn_parse(&cp, doEval, fn->fn_name, &arg);
|
|
if (arglen == 0 || arglen == (size_t)-1) {
|
|
par->p = cp;
|
|
*out_token = arglen == 0 ? TOK_FALSE : TOK_ERROR;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Evaluate the argument using the required function. */
|
|
*out_token = ToToken(!doEval || fn->fn_eval(arglen, arg));
|
|
free(arg);
|
|
par->p = cp;
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* Parse a function call, a number, a variable expression or a string
|
|
* literal.
|
|
*/
|
|
static Token
|
|
CondParser_LeafToken(CondParser *par, Boolean doEval)
|
|
{
|
|
Token t;
|
|
char *arg = NULL;
|
|
size_t arglen;
|
|
const char *cp;
|
|
const char *cp1;
|
|
|
|
if (CondParser_Func(par, doEval, &t))
|
|
return t;
|
|
|
|
/* Push anything numeric through the compare expression */
|
|
cp = par->p;
|
|
if (ch_isdigit(cp[0]) || cp[0] == '-' || cp[0] == '+')
|
|
return CondParser_Comparison(par, doEval);
|
|
|
|
/*
|
|
* Most likely we have a naked token to apply the default function to.
|
|
* However ".if a == b" gets here when the "a" is unquoted and doesn't
|
|
* start with a '$'. This surprises people.
|
|
* If what follows the function argument is a '=' or '!' then the
|
|
* syntax would be invalid if we did "defined(a)" - so instead treat
|
|
* as an expression.
|
|
*/
|
|
arglen = ParseFuncArg(&cp, doEval, NULL, &arg);
|
|
cp1 = cp;
|
|
cpp_skip_whitespace(&cp1);
|
|
if (*cp1 == '=' || *cp1 == '!')
|
|
return CondParser_Comparison(par, doEval);
|
|
par->p = cp;
|
|
|
|
/*
|
|
* Evaluate the argument using the default function.
|
|
* This path always treats .if as .ifdef. To get here, the character
|
|
* after .if must have been taken literally, so the argument cannot
|
|
* be empty - even if it contained a variable expansion.
|
|
*/
|
|
t = ToToken(!doEval || If_Eval(par->if_info, arg, arglen));
|
|
free(arg);
|
|
return t;
|
|
}
|
|
|
|
/* Return the next token or comparison result from the parser. */
|
|
static Token
|
|
CondParser_Token(CondParser *par, Boolean doEval)
|
|
{
|
|
Token t;
|
|
|
|
t = par->curr;
|
|
if (t != TOK_NONE) {
|
|
par->curr = TOK_NONE;
|
|
return t;
|
|
}
|
|
|
|
cpp_skip_hspace(&par->p);
|
|
|
|
switch (par->p[0]) {
|
|
|
|
case '(':
|
|
par->p++;
|
|
return TOK_LPAREN;
|
|
|
|
case ')':
|
|
par->p++;
|
|
return TOK_RPAREN;
|
|
|
|
case '|':
|
|
par->p++;
|
|
if (par->p[0] == '|')
|
|
par->p++;
|
|
else if (opts.strict) {
|
|
Parse_Error(PARSE_FATAL, "Unknown operator '|'");
|
|
par->printedError = TRUE;
|
|
return TOK_ERROR;
|
|
}
|
|
return TOK_OR;
|
|
|
|
case '&':
|
|
par->p++;
|
|
if (par->p[0] == '&')
|
|
par->p++;
|
|
else if (opts.strict) {
|
|
Parse_Error(PARSE_FATAL, "Unknown operator '&'");
|
|
par->printedError = TRUE;
|
|
return TOK_ERROR;
|
|
}
|
|
return TOK_AND;
|
|
|
|
case '!':
|
|
par->p++;
|
|
return TOK_NOT;
|
|
|
|
case '#': /* XXX: see unit-tests/cond-token-plain.mk */
|
|
case '\n': /* XXX: why should this end the condition? */
|
|
/* Probably obsolete now, from 1993-03-21. */
|
|
case '\0':
|
|
return TOK_EOF;
|
|
|
|
case '"':
|
|
case '$':
|
|
return CondParser_Comparison(par, doEval);
|
|
|
|
default:
|
|
return CondParser_LeafToken(par, doEval);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Parse a single term in the expression. This consists of a terminal symbol
|
|
* or TOK_NOT and a term (not including the binary operators):
|
|
*
|
|
* T -> defined(variable) | make(target) | exists(file) | symbol
|
|
* T -> ! T | ( E )
|
|
*
|
|
* Results:
|
|
* TOK_TRUE, TOK_FALSE or TOK_ERROR.
|
|
*/
|
|
static Token
|
|
CondParser_Term(CondParser *par, Boolean doEval)
|
|
{
|
|
Token t;
|
|
|
|
t = CondParser_Token(par, doEval);
|
|
|
|
if (t == TOK_EOF) {
|
|
/*
|
|
* If we reached the end of the expression, the expression
|
|
* is malformed...
|
|
*/
|
|
t = TOK_ERROR;
|
|
} else if (t == TOK_LPAREN) {
|
|
/*
|
|
* T -> ( E )
|
|
*/
|
|
t = CondParser_Expr(par, doEval);
|
|
if (t != TOK_ERROR) {
|
|
if (CondParser_Token(par, doEval) != TOK_RPAREN) {
|
|
t = TOK_ERROR;
|
|
}
|
|
}
|
|
} else if (t == TOK_NOT) {
|
|
t = CondParser_Term(par, doEval);
|
|
if (t == TOK_TRUE) {
|
|
t = TOK_FALSE;
|
|
} else if (t == TOK_FALSE) {
|
|
t = TOK_TRUE;
|
|
}
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* Parse a conjunctive factor (nice name, wot?)
|
|
*
|
|
* F -> T && F | T
|
|
*
|
|
* Results:
|
|
* TOK_TRUE, TOK_FALSE or TOK_ERROR
|
|
*/
|
|
static Token
|
|
CondParser_Factor(CondParser *par, Boolean doEval)
|
|
{
|
|
Token l, o;
|
|
|
|
l = CondParser_Term(par, doEval);
|
|
if (l != TOK_ERROR) {
|
|
o = CondParser_Token(par, doEval);
|
|
|
|
if (o == TOK_AND) {
|
|
/*
|
|
* F -> T && F
|
|
*
|
|
* If T is TOK_FALSE, the whole thing will be
|
|
* TOK_FALSE, but we have to parse the r.h.s. anyway
|
|
* (to throw it away). If T is TOK_TRUE, the result
|
|
* is the r.h.s., be it a TOK_ERROR or not.
|
|
*/
|
|
if (l == TOK_TRUE) {
|
|
l = CondParser_Factor(par, doEval);
|
|
} else {
|
|
(void)CondParser_Factor(par, FALSE);
|
|
}
|
|
} else {
|
|
/*
|
|
* F -> T
|
|
*/
|
|
CondParser_PushBack(par, o);
|
|
}
|
|
}
|
|
return l;
|
|
}
|
|
|
|
/*
|
|
* Main expression production.
|
|
*
|
|
* E -> F || E | F
|
|
*
|
|
* Results:
|
|
* TOK_TRUE, TOK_FALSE or TOK_ERROR.
|
|
*/
|
|
static Token
|
|
CondParser_Expr(CondParser *par, Boolean doEval)
|
|
{
|
|
Token l, o;
|
|
|
|
l = CondParser_Factor(par, doEval);
|
|
if (l != TOK_ERROR) {
|
|
o = CondParser_Token(par, doEval);
|
|
|
|
if (o == TOK_OR) {
|
|
/*
|
|
* E -> F || E
|
|
*
|
|
* A similar thing occurs for ||, except that here
|
|
* we make sure the l.h.s. is TOK_FALSE before we
|
|
* bother to evaluate the r.h.s. Once again, if l
|
|
* is TOK_FALSE, the result is the r.h.s. and once
|
|
* again if l is TOK_TRUE, we parse the r.h.s. to
|
|
* throw it away.
|
|
*/
|
|
if (l == TOK_FALSE) {
|
|
l = CondParser_Expr(par, doEval);
|
|
} else {
|
|
(void)CondParser_Expr(par, FALSE);
|
|
}
|
|
} else {
|
|
/*
|
|
* E -> F
|
|
*/
|
|
CondParser_PushBack(par, o);
|
|
}
|
|
}
|
|
return l;
|
|
}
|
|
|
|
static CondEvalResult
|
|
CondParser_Eval(CondParser *par, Boolean *value)
|
|
{
|
|
Token res;
|
|
|
|
DEBUG1(COND, "CondParser_Eval: %s\n", par->p);
|
|
|
|
res = CondParser_Expr(par, TRUE);
|
|
if (res != TOK_FALSE && res != TOK_TRUE)
|
|
return COND_INVALID;
|
|
|
|
if (CondParser_Token(par, FALSE) != TOK_EOF)
|
|
return COND_INVALID;
|
|
|
|
*value = res == TOK_TRUE;
|
|
return COND_PARSE;
|
|
}
|
|
|
|
/*
|
|
* Evaluate the condition, including any side effects from the variable
|
|
* expressions in the condition. The condition consists of &&, ||, !,
|
|
* function(arg), comparisons and parenthetical groupings thereof.
|
|
*
|
|
* Results:
|
|
* COND_PARSE if the condition was valid grammatically
|
|
* COND_INVALID if not a valid conditional.
|
|
*
|
|
* (*value) is set to the boolean value of the condition
|
|
*/
|
|
static CondEvalResult
|
|
CondEvalExpression(const struct If *info, const char *cond, Boolean *value,
|
|
Boolean eprint, Boolean strictLHS)
|
|
{
|
|
CondParser par;
|
|
CondEvalResult rval;
|
|
|
|
lhsStrict = strictLHS;
|
|
|
|
cpp_skip_hspace(&cond);
|
|
|
|
par.if_info = info != NULL ? info : ifs + PLAIN_IF_INDEX;
|
|
par.p = cond;
|
|
par.curr = TOK_NONE;
|
|
par.printedError = FALSE;
|
|
|
|
rval = CondParser_Eval(&par, value);
|
|
|
|
if (rval == COND_INVALID && eprint && !par.printedError)
|
|
Parse_Error(PARSE_FATAL, "Malformed conditional (%s)", cond);
|
|
|
|
return rval;
|
|
}
|
|
|
|
/*
|
|
* Evaluate a condition in a :? modifier, such as
|
|
* ${"${VAR}" == value:?yes:no}.
|
|
*/
|
|
CondEvalResult
|
|
Cond_EvalCondition(const char *cond, Boolean *out_value)
|
|
{
|
|
return CondEvalExpression(NULL, cond, out_value, FALSE, FALSE);
|
|
}
|
|
|
|
static Boolean
|
|
IsEndif(const char *p)
|
|
{
|
|
return p[0] == 'e' && p[1] == 'n' && p[2] == 'd' &&
|
|
p[3] == 'i' && p[4] == 'f' && !ch_isalpha(p[5]);
|
|
}
|
|
|
|
/*
|
|
* Evaluate the conditional directive in the line, which is one of:
|
|
*
|
|
* .if <cond>
|
|
* .ifmake <cond>
|
|
* .ifnmake <cond>
|
|
* .ifdef <cond>
|
|
* .ifndef <cond>
|
|
* .elif <cond>
|
|
* .elifmake <cond>
|
|
* .elifnmake <cond>
|
|
* .elifdef <cond>
|
|
* .elifndef <cond>
|
|
* .else
|
|
* .endif
|
|
*
|
|
* In these directives, <cond> consists of &&, ||, !, function(arg),
|
|
* comparisons, expressions, bare words, numbers and strings, and
|
|
* parenthetical groupings thereof.
|
|
*
|
|
* Results:
|
|
* COND_PARSE to continue parsing the lines that follow the
|
|
* conditional (when <cond> evaluates to TRUE)
|
|
* COND_SKIP to skip the lines after the conditional
|
|
* (when <cond> evaluates to FALSE, or when a previous
|
|
* branch has already been taken)
|
|
* COND_INVALID if the conditional was not valid, either because of
|
|
* a syntax error or because some variable was undefined
|
|
* or because the condition could not be evaluated
|
|
*/
|
|
CondEvalResult
|
|
Cond_EvalLine(const char *line)
|
|
{
|
|
typedef enum IfState {
|
|
|
|
/* None of the previous <cond> evaluated to TRUE. */
|
|
IFS_INITIAL = 0,
|
|
|
|
/* The previous <cond> evaluated to TRUE.
|
|
* The lines following this condition are interpreted. */
|
|
IFS_ACTIVE = 1 << 0,
|
|
|
|
/* The previous directive was an '.else'. */
|
|
IFS_SEEN_ELSE = 1 << 1,
|
|
|
|
/* One of the previous <cond> evaluated to TRUE. */
|
|
IFS_WAS_ACTIVE = 1 << 2
|
|
|
|
} IfState;
|
|
|
|
static enum IfState *cond_states = NULL;
|
|
static unsigned int cond_states_cap = 128;
|
|
|
|
const struct If *ifp;
|
|
Boolean isElif;
|
|
Boolean value;
|
|
IfState state;
|
|
const char *p = line;
|
|
|
|
if (cond_states == NULL) {
|
|
cond_states = bmake_malloc(
|
|
cond_states_cap * sizeof *cond_states);
|
|
cond_states[0] = IFS_ACTIVE;
|
|
}
|
|
|
|
p++; /* skip the leading '.' */
|
|
cpp_skip_hspace(&p);
|
|
|
|
if (IsEndif(p)) { /* It is an '.endif'. */
|
|
if (p[5] != '\0') {
|
|
Parse_Error(PARSE_FATAL,
|
|
"The .endif directive does not take arguments.");
|
|
}
|
|
|
|
if (cond_depth == cond_min_depth) {
|
|
Parse_Error(PARSE_FATAL, "if-less endif");
|
|
return COND_PARSE;
|
|
}
|
|
|
|
/* Return state for previous conditional */
|
|
cond_depth--;
|
|
return cond_states[cond_depth] & IFS_ACTIVE
|
|
? COND_PARSE : COND_SKIP;
|
|
}
|
|
|
|
/* Parse the name of the directive, such as 'if', 'elif', 'endif'. */
|
|
if (p[0] == 'e') {
|
|
if (p[1] != 'l') {
|
|
/*
|
|
* Unknown directive. It might still be a
|
|
* transformation rule like '.elisp.scm',
|
|
* therefore no error message here.
|
|
*/
|
|
return COND_INVALID;
|
|
}
|
|
|
|
/* Quite likely this is 'else' or 'elif' */
|
|
p += 2;
|
|
if (is_token(p, "se", 2)) { /* It is an 'else'. */
|
|
|
|
if (p[2] != '\0')
|
|
Parse_Error(PARSE_FATAL,
|
|
"The .else directive "
|
|
"does not take arguments.");
|
|
|
|
if (cond_depth == cond_min_depth) {
|
|
Parse_Error(PARSE_FATAL, "if-less else");
|
|
return COND_PARSE;
|
|
}
|
|
|
|
state = cond_states[cond_depth];
|
|
if (state == IFS_INITIAL) {
|
|
state = IFS_ACTIVE | IFS_SEEN_ELSE;
|
|
} else {
|
|
if (state & IFS_SEEN_ELSE)
|
|
Parse_Error(PARSE_WARNING,
|
|
"extra else");
|
|
state = IFS_WAS_ACTIVE | IFS_SEEN_ELSE;
|
|
}
|
|
cond_states[cond_depth] = state;
|
|
|
|
return state & IFS_ACTIVE ? COND_PARSE : COND_SKIP;
|
|
}
|
|
/* Assume for now it is an elif */
|
|
isElif = TRUE;
|
|
} else
|
|
isElif = FALSE;
|
|
|
|
if (p[0] != 'i' || p[1] != 'f') {
|
|
/*
|
|
* Unknown directive. It might still be a transformation rule
|
|
* like '.elisp.scm', therefore no error message here.
|
|
*/
|
|
return COND_INVALID; /* Not an ifxxx or elifxxx line */
|
|
}
|
|
|
|
/*
|
|
* Figure out what sort of conditional it is -- what its default
|
|
* function is, etc. -- by looking in the table of valid "ifs"
|
|
*/
|
|
p += 2;
|
|
for (ifp = ifs;; ifp++) {
|
|
if (ifp->form == NULL) {
|
|
/*
|
|
* TODO: Add error message about unknown directive,
|
|
* since there is no other known directive that starts
|
|
* with 'el' or 'if'.
|
|
*
|
|
* Example: .elifx 123
|
|
*/
|
|
return COND_INVALID;
|
|
}
|
|
if (is_token(p, ifp->form, ifp->formlen)) {
|
|
p += ifp->formlen;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Now we know what sort of 'if' it is... */
|
|
|
|
if (isElif) {
|
|
if (cond_depth == cond_min_depth) {
|
|
Parse_Error(PARSE_FATAL, "if-less elif");
|
|
return COND_PARSE;
|
|
}
|
|
state = cond_states[cond_depth];
|
|
if (state & IFS_SEEN_ELSE) {
|
|
Parse_Error(PARSE_WARNING, "extra elif");
|
|
cond_states[cond_depth] =
|
|
IFS_WAS_ACTIVE | IFS_SEEN_ELSE;
|
|
return COND_SKIP;
|
|
}
|
|
if (state != IFS_INITIAL) {
|
|
cond_states[cond_depth] = IFS_WAS_ACTIVE;
|
|
return COND_SKIP;
|
|
}
|
|
} else {
|
|
/* Normal .if */
|
|
if (cond_depth + 1 >= cond_states_cap) {
|
|
/*
|
|
* This is rare, but not impossible.
|
|
* In meta mode, dirdeps.mk (only runs at level 0)
|
|
* can need more than the default.
|
|
*/
|
|
cond_states_cap += 32;
|
|
cond_states = bmake_realloc(cond_states,
|
|
cond_states_cap *
|
|
sizeof *cond_states);
|
|
}
|
|
state = cond_states[cond_depth];
|
|
cond_depth++;
|
|
if (!(state & IFS_ACTIVE)) {
|
|
/*
|
|
* If we aren't parsing the data,
|
|
* treat as always false.
|
|
*/
|
|
cond_states[cond_depth] = IFS_WAS_ACTIVE;
|
|
return COND_SKIP;
|
|
}
|
|
}
|
|
|
|
/* And evaluate the conditional expression */
|
|
if (CondEvalExpression(ifp, p, &value, TRUE, TRUE) == COND_INVALID) {
|
|
/* Syntax error in conditional, error message already output. */
|
|
/* Skip everything to matching .endif */
|
|
/* XXX: An extra '.else' is not detected in this case. */
|
|
cond_states[cond_depth] = IFS_WAS_ACTIVE;
|
|
return COND_SKIP;
|
|
}
|
|
|
|
if (!value) {
|
|
cond_states[cond_depth] = IFS_INITIAL;
|
|
return COND_SKIP;
|
|
}
|
|
cond_states[cond_depth] = IFS_ACTIVE;
|
|
return COND_PARSE;
|
|
}
|
|
|
|
void
|
|
Cond_restore_depth(unsigned int saved_depth)
|
|
{
|
|
unsigned int open_conds = cond_depth - cond_min_depth;
|
|
|
|
if (open_conds != 0 || saved_depth > cond_depth) {
|
|
Parse_Error(PARSE_FATAL, "%u open conditional%s",
|
|
open_conds, open_conds == 1 ? "" : "s");
|
|
cond_depth = cond_min_depth;
|
|
}
|
|
|
|
cond_min_depth = saved_depth;
|
|
}
|
|
|
|
unsigned int
|
|
Cond_save_depth(void)
|
|
{
|
|
unsigned int depth = cond_min_depth;
|
|
|
|
cond_min_depth = cond_depth;
|
|
return depth;
|
|
}
|