Andrew Rybchenko e9c123a567 sfxge(4): add support for firmware-verified NVRAM updates to the common code
Submitted by:   Andy Moreton <amoreton at solarflare.com>
Reviewed by:    gnn
Sponsored by:   Solarflare Communications, Inc.
MFC after:      1 week
Differential Revision:  https://reviews.freebsd.org/D8942
2016-12-29 08:28:42 +00:00

1826 lines
42 KiB
C

/*-
* Copyright (c) 2012-2016 Solarflare Communications Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "efx.h"
#include "efx_impl.h"
#if EFSYS_OPT_MON_MCDI
#include "mcdi_mon.h"
#endif
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
#include "ef10_tlv_layout.h"
__checkReturn efx_rc_t
efx_mcdi_get_port_assignment(
__in efx_nic_t *enp,
__out uint32_t *portp)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN)];
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_port_modes(
__in efx_nic_t *enp,
__out uint32_t *modesp,
__out_opt uint32_t *current_modep)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_GET_PORT_MODES_IN_LEN,
MC_CMD_GET_PORT_MODES_OUT_LEN)];
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_GET_PORT_MODES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
/*
* Require only Modes and DefaultMode fields, unless the current mode
* was requested (CurrentMode field was added for Medford).
*/
if (req.emr_out_length_used <
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
rc = EMSGSIZE;
goto fail2;
}
if ((current_modep != NULL) && (req.emr_out_length_used <
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
rc = EMSGSIZE;
goto fail3;
}
*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
if (current_modep != NULL) {
*current_modep = MCDI_OUT_DWORD(req,
GET_PORT_MODES_OUT_CURRENT_MODE);
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_get_port_mode_bandwidth(
__in uint32_t port_mode,
__out uint32_t *bandwidth_mbpsp)
{
uint32_t bandwidth;
efx_rc_t rc;
switch (port_mode) {
case TLV_PORT_MODE_10G:
bandwidth = 10000;
break;
case TLV_PORT_MODE_10G_10G:
bandwidth = 10000 * 2;
break;
case TLV_PORT_MODE_10G_10G_10G_10G:
case TLV_PORT_MODE_10G_10G_10G_10G_Q:
case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:
case TLV_PORT_MODE_10G_10G_10G_10G_Q2:
bandwidth = 10000 * 4;
break;
case TLV_PORT_MODE_40G:
bandwidth = 40000;
break;
case TLV_PORT_MODE_40G_40G:
bandwidth = 40000 * 2;
break;
case TLV_PORT_MODE_40G_10G_10G:
case TLV_PORT_MODE_10G_10G_40G:
bandwidth = 40000 + (10000 * 2);
break;
default:
rc = EINVAL;
goto fail1;
}
*bandwidth_mbpsp = bandwidth;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_vadaptor_alloc(
__in efx_nic_t *enp,
__in uint32_t port_id)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_VADAPTOR_ALLOC_IN_LEN,
MC_CMD_VADAPTOR_ALLOC_OUT_LEN)];
efx_rc_t rc;
EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL);
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_vadaptor_free(
__in efx_nic_t *enp,
__in uint32_t port_id)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_VADAPTOR_FREE_IN_LEN,
MC_CMD_VADAPTOR_FREE_OUT_LEN)];
efx_rc_t rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_VADAPTOR_FREE;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_mac_address_pf(
__in efx_nic_t *enp,
__out_ecount_opt(6) uint8_t mac_addrp[6])
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)];
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
rc = ENOENT;
goto fail3;
}
if (mac_addrp != NULL) {
uint8_t *addrp;
addrp = MCDI_OUT2(req, uint8_t,
GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_mac_address_vf(
__in efx_nic_t *enp,
__out_ecount_opt(6) uint8_t mac_addrp[6])
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX)];
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
EVB_PORT_ID_ASSIGNED);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used <
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
rc = EMSGSIZE;
goto fail2;
}
if (MCDI_OUT_DWORD(req,
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
rc = ENOENT;
goto fail3;
}
if (mac_addrp != NULL) {
uint8_t *addrp;
addrp = MCDI_OUT2(req, uint8_t,
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_clock(
__in efx_nic_t *enp,
__out uint32_t *sys_freqp,
__out uint32_t *dpcpu_freqp)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_GET_CLOCK_IN_LEN,
MC_CMD_GET_CLOCK_OUT_LEN)];
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_GET_CLOCK;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
if (*sys_freqp == 0) {
rc = EINVAL;
goto fail3;
}
*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
if (*dpcpu_freqp == 0) {
rc = EINVAL;
goto fail4;
}
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_vector_cfg(
__in efx_nic_t *enp,
__out_opt uint32_t *vec_basep,
__out_opt uint32_t *pf_nvecp,
__out_opt uint32_t *vf_nvecp)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_GET_VECTOR_CFG_IN_LEN,
MC_CMD_GET_VECTOR_CFG_OUT_LEN)];
efx_rc_t rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
if (vec_basep != NULL)
*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
if (pf_nvecp != NULL)
*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
if (vf_nvecp != NULL)
*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_get_capabilities(
__in efx_nic_t *enp,
__out uint32_t *flagsp,
__out uint32_t *flags2p,
__out uint32_t *tso2ncp)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_GET_CAPABILITIES_IN_LEN,
MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)];
efx_rc_t rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_GET_CAPABILITIES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1);
if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
*flags2p = 0;
*tso2ncp = 0;
} else {
*flags2p = MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2);
*tso2ncp = MCDI_OUT_WORD(req,
GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
}
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_alloc_vis(
__in efx_nic_t *enp,
__in uint32_t min_vi_count,
__in uint32_t max_vi_count,
__out uint32_t *vi_basep,
__out uint32_t *vi_countp,
__out uint32_t *vi_shiftp)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_ALLOC_VIS_IN_LEN,
MC_CMD_ALLOC_VIS_OUT_LEN)];
efx_rc_t rc;
if (vi_countp == NULL) {
rc = EINVAL;
goto fail1;
}
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_ALLOC_VIS;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_ALLOC_VIS_OUT_LEN;
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail2;
}
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
rc = EMSGSIZE;
goto fail3;
}
*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
/* Report VI_SHIFT if available (always zero for Huntington) */
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
*vi_shiftp = 0;
else
*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_free_vis(
__in efx_nic_t *enp)
{
efx_mcdi_req_t req;
efx_rc_t rc;
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
req.emr_cmd = MC_CMD_FREE_VIS;
req.emr_in_buf = NULL;
req.emr_in_length = 0;
req.emr_out_buf = NULL;
req.emr_out_length = 0;
efx_mcdi_execute_quiet(enp, &req);
/* Ignore ELREADY (no allocated VIs, so nothing to free) */
if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_alloc_piobuf(
__in efx_nic_t *enp,
__out efx_piobuf_handle_t *handlep)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_ALLOC_PIOBUF_IN_LEN,
MC_CMD_ALLOC_PIOBUF_OUT_LEN)];
efx_rc_t rc;
if (handlep == NULL) {
rc = EINVAL;
goto fail1;
}
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail2;
}
if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
rc = EMSGSIZE;
goto fail3;
}
*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_free_piobuf(
__in efx_nic_t *enp,
__in efx_piobuf_handle_t handle)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_FREE_PIOBUF_IN_LEN,
MC_CMD_FREE_PIOBUF_OUT_LEN)];
efx_rc_t rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_FREE_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_link_piobuf(
__in efx_nic_t *enp,
__in uint32_t vi_index,
__in efx_piobuf_handle_t handle)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_LINK_PIOBUF_IN_LEN,
MC_CMD_LINK_PIOBUF_OUT_LEN)];
efx_rc_t rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_LINK_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_unlink_piobuf(
__in efx_nic_t *enp,
__in uint32_t vi_index)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_UNLINK_PIOBUF_IN_LEN,
MC_CMD_UNLINK_PIOBUF_OUT_LEN)];
efx_rc_t rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static void
ef10_nic_alloc_piobufs(
__in efx_nic_t *enp,
__in uint32_t max_piobuf_count)
{
efx_piobuf_handle_t *handlep;
unsigned int i;
EFSYS_ASSERT3U(max_piobuf_count, <=,
EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
enp->en_arch.ef10.ena_piobuf_count = 0;
for (i = 0; i < max_piobuf_count; i++) {
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
goto fail1;
enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
enp->en_arch.ef10.ena_piobuf_count++;
}
return;
fail1:
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
efx_mcdi_free_piobuf(enp, *handlep);
*handlep = EFX_PIOBUF_HANDLE_INVALID;
}
enp->en_arch.ef10.ena_piobuf_count = 0;
}
static void
ef10_nic_free_piobufs(
__in efx_nic_t *enp)
{
efx_piobuf_handle_t *handlep;
unsigned int i;
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
efx_mcdi_free_piobuf(enp, *handlep);
*handlep = EFX_PIOBUF_HANDLE_INVALID;
}
enp->en_arch.ef10.ena_piobuf_count = 0;
}
/* Sub-allocate a block from a piobuf */
__checkReturn efx_rc_t
ef10_nic_pio_alloc(
__inout efx_nic_t *enp,
__out uint32_t *bufnump,
__out efx_piobuf_handle_t *handlep,
__out uint32_t *blknump,
__out uint32_t *offsetp,
__out size_t *sizep)
{
efx_nic_cfg_t *encp = &enp->en_nic_cfg;
efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
uint32_t blk_per_buf;
uint32_t buf, blk;
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
EFSYS_ASSERT(bufnump);
EFSYS_ASSERT(handlep);
EFSYS_ASSERT(blknump);
EFSYS_ASSERT(offsetp);
EFSYS_ASSERT(sizep);
if ((edcp->edc_pio_alloc_size == 0) ||
(enp->en_arch.ef10.ena_piobuf_count == 0)) {
rc = ENOMEM;
goto fail1;
}
blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
if (~(*map) == 0)
continue;
EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
for (blk = 0; blk < blk_per_buf; blk++) {
if ((*map & (1u << blk)) == 0) {
*map |= (1u << blk);
goto done;
}
}
}
rc = ENOMEM;
goto fail2;
done:
*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
*bufnump = buf;
*blknump = blk;
*sizep = edcp->edc_pio_alloc_size;
*offsetp = blk * (*sizep);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/* Free a piobuf sub-allocated block */
__checkReturn efx_rc_t
ef10_nic_pio_free(
__inout efx_nic_t *enp,
__in uint32_t bufnum,
__in uint32_t blknum)
{
uint32_t *map;
efx_rc_t rc;
if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
(blknum >= (8 * sizeof (*map)))) {
rc = EINVAL;
goto fail1;
}
map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
if ((*map & (1u << blknum)) == 0) {
rc = ENOENT;
goto fail2;
}
*map &= ~(1u << blknum);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_pio_link(
__inout efx_nic_t *enp,
__in uint32_t vi_index,
__in efx_piobuf_handle_t handle)
{
return (efx_mcdi_link_piobuf(enp, vi_index, handle));
}
__checkReturn efx_rc_t
ef10_nic_pio_unlink(
__inout efx_nic_t *enp,
__in uint32_t vi_index)
{
return (efx_mcdi_unlink_piobuf(enp, vi_index));
}
static __checkReturn efx_rc_t
ef10_mcdi_get_pf_count(
__in efx_nic_t *enp,
__out uint32_t *pf_countp)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_GET_PF_COUNT_IN_LEN,
MC_CMD_GET_PF_COUNT_OUT_LEN)];
efx_rc_t rc;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_GET_PF_COUNT;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*pf_countp = *MCDI_OUT(req, uint8_t,
MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
EFSYS_ASSERT(*pf_countp != 0);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_get_datapath_caps(
__in efx_nic_t *enp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint32_t flags;
uint32_t flags2;
uint32_t tso2nc;
efx_rc_t rc;
if ((rc = efx_mcdi_get_capabilities(enp, &flags, &flags2,
&tso2nc)) != 0)
goto fail1;
if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
goto fail1;
#define CAP_FLAG(flags1, field) \
((flags1) & (1 << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## field ## _LBN)))
#define CAP_FLAG2(flags2, field) \
((flags2) & (1 << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## field ## _LBN)))
/*
* Huntington RXDP firmware inserts a 0 or 14 byte prefix.
* We only support the 14 byte prefix here.
*/
if (CAP_FLAG(flags, RX_PREFIX_LEN_14) == 0) {
rc = ENOTSUP;
goto fail2;
}
encp->enc_rx_prefix_size = 14;
/* Check if the firmware supports TSO */
encp->enc_fw_assisted_tso_enabled =
CAP_FLAG(flags, TX_TSO) ? B_TRUE : B_FALSE;
/* Check if the firmware supports FATSOv2 */
encp->enc_fw_assisted_tso_v2_enabled =
CAP_FLAG2(flags2, TX_TSO_V2) ? B_TRUE : B_FALSE;
/* Get the number of TSO contexts (FATSOv2) */
encp->enc_fw_assisted_tso_v2_n_contexts =
CAP_FLAG2(flags2, TX_TSO_V2) ? tso2nc : 0;
/* Check if the firmware has vadapter/vport/vswitch support */
encp->enc_datapath_cap_evb =
CAP_FLAG(flags, EVB) ? B_TRUE : B_FALSE;
/* Check if the firmware supports VLAN insertion */
encp->enc_hw_tx_insert_vlan_enabled =
CAP_FLAG(flags, TX_VLAN_INSERTION) ? B_TRUE : B_FALSE;
/* Check if the firmware supports RX event batching */
encp->enc_rx_batching_enabled =
CAP_FLAG(flags, RX_BATCHING) ? B_TRUE : B_FALSE;
/*
* Even if batching isn't reported as supported, we may still get
* batched events.
*/
encp->enc_rx_batch_max = 16;
/* Check if the firmware supports disabling scatter on RXQs */
encp->enc_rx_disable_scatter_supported =
CAP_FLAG(flags, RX_DISABLE_SCATTER) ? B_TRUE : B_FALSE;
/* Check if the firmware supports set mac with running filters */
encp->enc_allow_set_mac_with_installed_filters =
CAP_FLAG(flags, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED) ?
B_TRUE : B_FALSE;
/*
* Check if firmware supports the extended MC_CMD_SET_MAC, which allows
* specifying which parameters to configure.
*/
encp->enc_enhanced_set_mac_supported =
CAP_FLAG(flags, SET_MAC_ENHANCED) ? B_TRUE : B_FALSE;
/*
* Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
* us to let the firmware choose the settings to use on an EVQ.
*/
encp->enc_init_evq_v2_supported =
CAP_FLAG2(flags2, INIT_EVQ_V2) ? B_TRUE : B_FALSE;
/*
* Check if firmware provides packet memory and Rx datapath
* counters.
*/
encp->enc_pm_and_rxdp_counters =
CAP_FLAG(flags, PM_AND_RXDP_COUNTERS) ? B_TRUE : B_FALSE;
/*
* Check if the 40G MAC hardware is capable of reporting
* statistics for Tx size bins.
*/
encp->enc_mac_stats_40g_tx_size_bins =
CAP_FLAG2(flags2, MAC_STATS_40G_TX_SIZE_BINS) ? B_TRUE : B_FALSE;
/*
* Check if firmware-verified NVRAM updates must be used.
*
* The firmware trusted installer requires all NVRAM updates to use
* version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
* and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
* partition and report the result).
*/
encp->enc_fw_verified_nvram_update_required =
CAP_FLAG2(flags2, NVRAM_UPDATE_REPORT_VERIFY_RESULT) ?
B_TRUE : B_FALSE;
#undef CAP_FLAG
#undef CAP_FLAG2
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#define EF10_LEGACY_PF_PRIVILEGE_MASK \
(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
#define EF10_LEGACY_VF_PRIVILEGE_MASK 0
__checkReturn efx_rc_t
ef10_get_privilege_mask(
__in efx_nic_t *enp,
__out uint32_t *maskp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint32_t mask;
efx_rc_t rc;
if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
&mask)) != 0) {
if (rc != ENOTSUP)
goto fail1;
/* Fallback for old firmware without privilege mask support */
if (EFX_PCI_FUNCTION_IS_PF(encp)) {
/* Assume PF has admin privilege */
mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
} else {
/* VF is always unprivileged by default */
mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
}
}
*maskp = mask;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/*
* Table of mapping schemes from port number to the number of the external
* connector on the board. The external numbering does not distinguish
* off-board separated outputs such as from multi-headed cables.
*
* The count of adjacent port numbers that map to each external port
* and the offset in the numbering, is determined by the chip family and
* current port mode.
*
* For the Huntington family, the current port mode cannot be discovered,
* so the mapping used is instead the last match in the table to the full
* set of port modes to which the NIC can be configured. Therefore the
* ordering of entries in the the mapping table is significant.
*/
static struct {
efx_family_t family;
uint32_t modes_mask;
int32_t count;
int32_t offset;
} __ef10_external_port_mappings[] = {
/* Supported modes with 1 output per external port */
{
EFX_FAMILY_HUNTINGTON,
(1 << TLV_PORT_MODE_10G) |
(1 << TLV_PORT_MODE_10G_10G) |
(1 << TLV_PORT_MODE_10G_10G_10G_10G),
1,
1
},
{
EFX_FAMILY_MEDFORD,
(1 << TLV_PORT_MODE_10G) |
(1 << TLV_PORT_MODE_10G_10G),
1,
1
},
/* Supported modes with 2 outputs per external port */
{
EFX_FAMILY_HUNTINGTON,
(1 << TLV_PORT_MODE_40G) |
(1 << TLV_PORT_MODE_40G_40G) |
(1 << TLV_PORT_MODE_40G_10G_10G) |
(1 << TLV_PORT_MODE_10G_10G_40G),
2,
1
},
{
EFX_FAMILY_MEDFORD,
(1 << TLV_PORT_MODE_40G) |
(1 << TLV_PORT_MODE_40G_40G) |
(1 << TLV_PORT_MODE_40G_10G_10G) |
(1 << TLV_PORT_MODE_10G_10G_40G) |
(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),
2,
1
},
/* Supported modes with 4 outputs per external port */
{
EFX_FAMILY_MEDFORD,
(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q) |
(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q1),
4,
1,
},
{
EFX_FAMILY_MEDFORD,
(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q2),
4,
2
},
};
__checkReturn efx_rc_t
ef10_external_port_mapping(
__in efx_nic_t *enp,
__in uint32_t port,
__out uint8_t *external_portp)
{
efx_rc_t rc;
int i;
uint32_t port_modes;
uint32_t matches;
uint32_t current;
int32_t count = 1; /* Default 1-1 mapping */
int32_t offset = 1; /* Default starting external port number */
if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current)) != 0) {
/*
* No current port mode information
* - infer mapping from available modes
*/
if ((rc = efx_mcdi_get_port_modes(enp,
&port_modes, NULL)) != 0) {
/*
* No port mode information available
* - use default mapping
*/
goto out;
}
} else {
/* Only need to scan the current mode */
port_modes = 1 << current;
}
/*
* Infer the internal port -> external port mapping from
* the possible port modes for this NIC.
*/
for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
if (__ef10_external_port_mappings[i].family !=
enp->en_family)
continue;
matches = (__ef10_external_port_mappings[i].modes_mask &
port_modes);
if (matches != 0) {
count = __ef10_external_port_mappings[i].count;
offset = __ef10_external_port_mappings[i].offset;
port_modes &= ~matches;
}
}
if (port_modes != 0) {
/* Some advertised modes are not supported */
rc = ENOTSUP;
goto fail1;
}
out:
/*
* Scale as required by last matched mode and then convert to
* correctly offset numbering
*/
*external_portp = (uint8_t)((port / count) + offset);
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_probe(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
/* Read and clear any assertion state */
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
goto fail1;
/* Exit the assertion handler */
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
if (rc != EACCES)
goto fail2;
if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
goto fail3;
if ((rc = enop->eno_board_cfg(enp)) != 0)
if (rc != EACCES)
goto fail4;
/*
* Set default driver config limits (based on board config).
*
* FIXME: For now allocate a fixed number of VIs which is likely to be
* sufficient and small enough to allow multiple functions on the same
* port.
*/
edcp->edc_min_vi_count = edcp->edc_max_vi_count =
MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
/* The client driver must configure and enable PIO buffer support */
edcp->edc_max_piobuf_count = 0;
edcp->edc_pio_alloc_size = 0;
#if EFSYS_OPT_MAC_STATS
/* Wipe the MAC statistics */
if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
goto fail5;
#endif
#if EFSYS_OPT_LOOPBACK
if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
goto fail6;
#endif
#if EFSYS_OPT_MON_STATS
if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
/* Unprivileged functions do not have access to sensors */
if (rc != EACCES)
goto fail7;
}
#endif
encp->enc_features = enp->en_features;
return (0);
#if EFSYS_OPT_MON_STATS
fail7:
EFSYS_PROBE(fail7);
#endif
#if EFSYS_OPT_LOOPBACK
fail6:
EFSYS_PROBE(fail6);
#endif
#if EFSYS_OPT_MAC_STATS
fail5:
EFSYS_PROBE(fail5);
#endif
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_set_drv_limits(
__inout efx_nic_t *enp,
__in efx_drv_limits_t *edlp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
uint32_t min_evq_count, max_evq_count;
uint32_t min_rxq_count, max_rxq_count;
uint32_t min_txq_count, max_txq_count;
efx_rc_t rc;
if (edlp == NULL) {
rc = EINVAL;
goto fail1;
}
/* Get minimum required and maximum usable VI limits */
min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
edcp->edc_min_vi_count =
MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
edcp->edc_max_vi_count =
MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
/*
* Check limits for sub-allocated piobuf blocks.
* PIO is optional, so don't fail if the limits are incorrect.
*/
if ((encp->enc_piobuf_size == 0) ||
(encp->enc_piobuf_limit == 0) ||
(edlp->edl_min_pio_alloc_size == 0) ||
(edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
/* Disable PIO */
edcp->edc_max_piobuf_count = 0;
edcp->edc_pio_alloc_size = 0;
} else {
uint32_t blk_size, blk_count, blks_per_piobuf;
blk_size =
MAX(edlp->edl_min_pio_alloc_size,
encp->enc_piobuf_min_alloc_size);
blks_per_piobuf = encp->enc_piobuf_size / blk_size;
EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
/* A zero max pio alloc count means unlimited */
if ((edlp->edl_max_pio_alloc_count > 0) &&
(edlp->edl_max_pio_alloc_count < blk_count)) {
blk_count = edlp->edl_max_pio_alloc_count;
}
edcp->edc_pio_alloc_size = blk_size;
edcp->edc_max_piobuf_count =
(blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_reset(
__in efx_nic_t *enp)
{
efx_mcdi_req_t req;
uint8_t payload[MAX(MC_CMD_ENTITY_RESET_IN_LEN,
MC_CMD_ENTITY_RESET_OUT_LEN)];
efx_rc_t rc;
/* ef10_nic_reset() is called to recover from BADASSERT failures. */
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
goto fail1;
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
goto fail2;
(void) memset(payload, 0, sizeof (payload));
req.emr_cmd = MC_CMD_ENTITY_RESET;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail3;
}
/* Clear RX/TX DMA queue errors */
enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_init(
__in efx_nic_t *enp)
{
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
uint32_t min_vi_count, max_vi_count;
uint32_t vi_count, vi_base, vi_shift;
uint32_t i;
uint32_t retry;
uint32_t delay_us;
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
/* Enable reporting of some events (e.g. link change) */
if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
goto fail1;
/* Allocate (optional) on-chip PIO buffers */
ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
/*
* For best performance, PIO writes should use a write-combined
* (WC) memory mapping. Using a separate WC mapping for the PIO
* aperture of each VI would be a burden to drivers (and not
* possible if the host page size is >4Kbyte).
*
* To avoid this we use a single uncached (UC) mapping for VI
* register access, and a single WC mapping for extra VIs used
* for PIO writes.
*
* Each piobuf must be linked to a VI in the WC mapping, and to
* each VI that is using a sub-allocated block from the piobuf.
*/
min_vi_count = edcp->edc_min_vi_count;
max_vi_count =
edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
/* Ensure that the previously attached driver's VIs are freed */
if ((rc = efx_mcdi_free_vis(enp)) != 0)
goto fail2;
/*
* Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
* fails then retrying the request for fewer VI resources may succeed.
*/
vi_count = 0;
if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
&vi_base, &vi_count, &vi_shift)) != 0)
goto fail3;
EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
if (vi_count < min_vi_count) {
rc = ENOMEM;
goto fail4;
}
enp->en_arch.ef10.ena_vi_base = vi_base;
enp->en_arch.ef10.ena_vi_count = vi_count;
enp->en_arch.ef10.ena_vi_shift = vi_shift;
if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
/* Not enough extra VIs to map piobufs */
ef10_nic_free_piobufs(enp);
}
enp->en_arch.ef10.ena_pio_write_vi_base =
vi_count - enp->en_arch.ef10.ena_piobuf_count;
/* Save UC memory mapping details */
enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
enp->en_arch.ef10.ena_uc_mem_map_size =
(ER_DZ_TX_PIOBUF_STEP *
enp->en_arch.ef10.ena_pio_write_vi_base);
} else {
enp->en_arch.ef10.ena_uc_mem_map_size =
(ER_DZ_TX_PIOBUF_STEP *
enp->en_arch.ef10.ena_vi_count);
}
/* Save WC memory mapping details */
enp->en_arch.ef10.ena_wc_mem_map_offset =
enp->en_arch.ef10.ena_uc_mem_map_offset +
enp->en_arch.ef10.ena_uc_mem_map_size;
enp->en_arch.ef10.ena_wc_mem_map_size =
(ER_DZ_TX_PIOBUF_STEP *
enp->en_arch.ef10.ena_piobuf_count);
/* Link piobufs to extra VIs in WC mapping */
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
rc = efx_mcdi_link_piobuf(enp,
enp->en_arch.ef10.ena_pio_write_vi_base + i,
enp->en_arch.ef10.ena_piobuf_handle[i]);
if (rc != 0)
break;
}
}
/*
* Allocate a vAdaptor attached to our upstream vPort/pPort.
*
* On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
* driver has yet to bring up the EVB port. See bug 56147. In this case,
* retry the request several times after waiting a while. The wait time
* between retries starts small (10ms) and exponentially increases.
* Total wait time is a little over two seconds. Retry logic in the
* client driver may mean this whole loop is repeated if it continues to
* fail.
*/
retry = 0;
delay_us = 10000;
while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
(rc != ENOENT)) {
/*
* Do not retry alloc for PF, or for other errors on
* a VF.
*/
goto fail5;
}
/* VF startup before PF is ready. Retry allocation. */
if (retry > 5) {
/* Too many attempts */
rc = EINVAL;
goto fail6;
}
EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
EFSYS_SLEEP(delay_us);
retry++;
if (delay_us < 500000)
delay_us <<= 2;
}
enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
return (0);
fail6:
EFSYS_PROBE(fail6);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
ef10_nic_free_piobufs(enp);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_get_vi_pool(
__in efx_nic_t *enp,
__out uint32_t *vi_countp)
{
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
/*
* Report VIs that the client driver can use.
* Do not include VIs used for PIO buffer writes.
*/
*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
return (0);
}
__checkReturn efx_rc_t
ef10_nic_get_bar_region(
__in efx_nic_t *enp,
__in efx_nic_region_t region,
__out uint32_t *offsetp,
__out size_t *sizep)
{
efx_rc_t rc;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD);
/*
* TODO: Specify host memory mapping alignment and granularity
* in efx_drv_limits_t so that they can be taken into account
* when allocating extra VIs for PIO writes.
*/
switch (region) {
case EFX_REGION_VI:
/* UC mapped memory BAR region for VI registers */
*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
break;
case EFX_REGION_PIO_WRITE_VI:
/* WC mapped memory BAR region for piobuf writes */
*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
break;
default:
rc = EINVAL;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
ef10_nic_fini(
__in efx_nic_t *enp)
{
uint32_t i;
efx_rc_t rc;
(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
enp->en_vport_id = 0;
/* Unlink piobufs from extra VIs in WC mapping */
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
rc = efx_mcdi_unlink_piobuf(enp,
enp->en_arch.ef10.ena_pio_write_vi_base + i);
if (rc != 0)
break;
}
}
ef10_nic_free_piobufs(enp);
(void) efx_mcdi_free_vis(enp);
enp->en_arch.ef10.ena_vi_count = 0;
}
void
ef10_nic_unprobe(
__in efx_nic_t *enp)
{
#if EFSYS_OPT_MON_STATS
mcdi_mon_cfg_free(enp);
#endif /* EFSYS_OPT_MON_STATS */
(void) efx_mcdi_drv_attach(enp, B_FALSE);
}
#if EFSYS_OPT_DIAG
__checkReturn efx_rc_t
ef10_nic_register_test(
__in efx_nic_t *enp)
{
efx_rc_t rc;
/* FIXME */
_NOTE(ARGUNUSED(enp))
_NOTE(CONSTANTCONDITION)
if (B_FALSE) {
rc = ENOTSUP;
goto fail1;
}
/* FIXME */
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_DIAG */
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */