freebsd-nq/sys/pci/if_dc.c
Peter Wemm 95a1645553 Depend on miibus.
Note that if_aue doesn't strictly depend on usb because it uses the
method interface for calls rather than using internal symbols, and
because it's a child driver of usb and therefore will not try and do
anything unless the parent usb code is loaded at some point.  if_aue does
strictly depend on miibus as it will fail to link if it is missing.
2000-04-29 13:41:57 +00:00

2940 lines
72 KiB
C

/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
* series chips and several workalikes including the following:
*
* Macronix 98713/98715/98725 PMAC (www.macronix.com)
* Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
* Lite-On 82c168/82c169 PNIC (www.litecom.com)
* ASIX Electronics AX88140A (www.asix.com.tw)
* ASIX Electronics AX88141 (www.asix.com.tw)
* ADMtek AL981 (www.admtek.com.tw)
* ADMtek AN985 (www.admtek.com.tw)
* Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
*
* Datasheets for the 21143 are available at developer.intel.com.
* Datasheets for the clone parts can be found at their respective sites.
* (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
* The PNIC II is essentially a Macronix 98715A chip; the only difference
* worth noting is that its multicast hash table is only 128 bits wide
* instead of 512.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Intel 21143 is the successor to the DEC 21140. It is basically
* the same as the 21140 but with a few new features. The 21143 supports
* three kinds of media attachments:
*
* o MII port, for 10Mbps and 100Mbps support and NWAY
* autonegotiation provided by an external PHY.
* o SYM port, for symbol mode 100Mbps support.
* o 10baseT port.
* o AUI/BNC port.
*
* The 100Mbps SYM port and 10baseT port can be used together in
* combination with the internal NWAY support to create a 10/100
* autosensing configuration.
*
* Knowing which media is available on a given card is tough: you're
* supposed to go slogging through the EEPROM looking for media
* description structures. Unfortunately, some card vendors that use
* the 21143 don't obey the DEC SROM spec correctly, which means that
* what you find in the EEPROM may not agree with reality. Fortunately,
* the 21143 provides us a way to get around this issue: lurking in
* PCI configuration space is the Configuration Wake-Up Command Register.
* This register is loaded with a value from the EEPROM when wake on LAN
* mode is enabled; this value tells us quite clearly what kind of media
* is attached to the NIC. The main purpose of this register is to tell
* the NIC what media to scan when in wake on LAN mode, however by
* forcibly enabling wake on LAN mode, we can use to learn what kind of
* media a given NIC has available and adapt ourselves accordingly.
*
* Of course, if the media description blocks in the EEPROM are bogus.
* what are the odds that the CWUC aren't bogus as well, right? Well,
* the CWUC value is more likely to be correct since wake on LAN mode
* won't work correctly without it, and wake on LAN is a big selling
* point these days. It's also harder to screw up a single byte than
* a whole media descriptor block.
*
* Note that not all tulip workalikes are handled in this driver: we only
* deal with those which are relatively well behaved. The Winbond is
* handled separately due to its different register offsets and the
* special handling needed for its various bugs. The PNIC is handled
* here, but I'm not thrilled about it.
*
* All of the workalike chips use some form of MII transceiver support
* with the exception of the Macronix chips, which also have a SYM port.
* The ASIX AX88140A is also documented to have a SYM port, but all
* the cards I've seen use an MII transceiver, probably because the
* AX88140A doesn't support internal NWAY.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include "opt_bdg.h"
#ifdef BRIDGE
#include <net/bridge.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#define DC_USEIOSPACE
#include <pci/if_dcreg.h>
MODULE_DEPEND(dc, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct dc_type dc_devs[] = {
{ DC_VENDORID_DEC, DC_DEVICEID_21143,
"Intel 21143 10/100BaseTX" },
{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
"Davicom DM9100 10/100BaseTX" },
{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
"Davicom DM9102 10/100BaseTX" },
{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
"Davicom DM9102A 10/100BaseTX" },
{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
"ADMtek AL981 10/100BaseTX" },
{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
"ADMtek AN985 10/100BaseTX" },
{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
"ASIX AX88140A 10/100BaseTX" },
{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
"ASIX AX88141 10/100BaseTX" },
{ DC_VENDORID_MX, DC_DEVICEID_98713,
"Macronix 98713 10/100BaseTX" },
{ DC_VENDORID_MX, DC_DEVICEID_98713,
"Macronix 98713A 10/100BaseTX" },
{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
"Compex RL100-TX 10/100BaseTX" },
{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
"Compex RL100-TX 10/100BaseTX" },
{ DC_VENDORID_MX, DC_DEVICEID_987x5,
"Macronix 98715/98715A 10/100BaseTX" },
{ DC_VENDORID_MX, DC_DEVICEID_987x5,
"Macronix 98725 10/100BaseTX" },
{ DC_VENDORID_LO, DC_DEVICEID_82C115,
"LC82C115 PNIC II 10/100BaseTX" },
{ DC_VENDORID_LO, DC_DEVICEID_82C168,
"82c168 PNIC 10/100BaseTX" },
{ DC_VENDORID_LO, DC_DEVICEID_82C168,
"82c169 PNIC 10/100BaseTX" },
{ 0, 0, NULL }
};
static int dc_probe __P((device_t));
static int dc_attach __P((device_t));
static int dc_detach __P((device_t));
static void dc_acpi __P((device_t));
static struct dc_type *dc_devtype __P((device_t));
static int dc_newbuf __P((struct dc_softc *, int, struct mbuf *));
static int dc_encap __P((struct dc_softc *, struct mbuf *,
u_int32_t *));
static int dc_coal __P((struct dc_softc *, struct mbuf **));
static void dc_pnic_rx_bug_war __P((struct dc_softc *, int));
static int dc_rx_resync __P((struct dc_softc *));
static void dc_rxeof __P((struct dc_softc *));
static void dc_txeof __P((struct dc_softc *));
static void dc_tick __P((void *));
static void dc_intr __P((void *));
static void dc_start __P((struct ifnet *));
static int dc_ioctl __P((struct ifnet *, u_long, caddr_t));
static void dc_init __P((void *));
static void dc_stop __P((struct dc_softc *));
static void dc_watchdog __P((struct ifnet *));
static void dc_shutdown __P((device_t));
static int dc_ifmedia_upd __P((struct ifnet *));
static void dc_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static void dc_delay __P((struct dc_softc *));
static void dc_eeprom_idle __P((struct dc_softc *));
static void dc_eeprom_putbyte __P((struct dc_softc *, int));
static void dc_eeprom_getword __P((struct dc_softc *, int, u_int16_t *));
static void dc_eeprom_getword_pnic
__P((struct dc_softc *, int, u_int16_t *));
static void dc_read_eeprom __P((struct dc_softc *, caddr_t, int,
int, int));
static void dc_mii_writebit __P((struct dc_softc *, int));
static int dc_mii_readbit __P((struct dc_softc *));
static void dc_mii_sync __P((struct dc_softc *));
static void dc_mii_send __P((struct dc_softc *, u_int32_t, int));
static int dc_mii_readreg __P((struct dc_softc *, struct dc_mii_frame *));
static int dc_mii_writereg __P((struct dc_softc *, struct dc_mii_frame *));
static int dc_miibus_readreg __P((device_t, int, int));
static int dc_miibus_writereg __P((device_t, int, int, int));
static void dc_miibus_statchg __P((device_t));
static void dc_miibus_mediainit __P((device_t));
static void dc_setcfg __P((struct dc_softc *, int));
static u_int32_t dc_crc_le __P((struct dc_softc *, caddr_t));
static u_int32_t dc_crc_be __P((caddr_t));
static void dc_setfilt_21143 __P((struct dc_softc *));
static void dc_setfilt_asix __P((struct dc_softc *));
static void dc_setfilt_admtek __P((struct dc_softc *));
static void dc_setfilt __P((struct dc_softc *));
static void dc_reset __P((struct dc_softc *));
static int dc_list_rx_init __P((struct dc_softc *));
static int dc_list_tx_init __P((struct dc_softc *));
#ifdef DC_USEIOSPACE
#define DC_RES SYS_RES_IOPORT
#define DC_RID DC_PCI_CFBIO
#else
#define DC_RES SYS_RES_MEMORY
#define DC_RID DC_PCI_CFBMA
#endif
static device_method_t dc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, dc_probe),
DEVMETHOD(device_attach, dc_attach),
DEVMETHOD(device_detach, dc_detach),
DEVMETHOD(device_shutdown, dc_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, dc_miibus_readreg),
DEVMETHOD(miibus_writereg, dc_miibus_writereg),
DEVMETHOD(miibus_statchg, dc_miibus_statchg),
DEVMETHOD(miibus_mediainit, dc_miibus_mediainit),
{ 0, 0 }
};
static driver_t dc_driver = {
"dc",
dc_methods,
sizeof(struct dc_softc)
};
static devclass_t dc_devclass;
DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
#define DC_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
#define DC_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x))
#define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x))
static void dc_delay(sc)
struct dc_softc *sc;
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, DC_BUSCTL);
}
static void dc_eeprom_idle(sc)
struct dc_softc *sc;
{
register int i;
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
for (i = 0; i < 25; i++) {
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
}
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
CSR_WRITE_4(sc, DC_SIO, 0x00000000);
return;
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void dc_eeprom_putbyte(sc, addr)
struct dc_softc *sc;
int addr;
{
register int d, i;
/*
* The AN985 has a 93C66 EEPROM on it instead of
* a 93C46. It uses a different bit sequence for
* specifying the "read" opcode.
*/
if (DC_IS_CENTAUR(sc))
d = addr | (DC_EECMD_READ << 2);
else
d = addr | DC_EECMD_READ;
/*
* Feed in each bit and strobe the clock.
*/
for (i = 0x400; i; i >>= 1) {
if (d & i) {
SIO_SET(DC_SIO_EE_DATAIN);
} else {
SIO_CLR(DC_SIO_EE_DATAIN);
}
dc_delay(sc);
SIO_SET(DC_SIO_EE_CLK);
dc_delay(sc);
SIO_CLR(DC_SIO_EE_CLK);
dc_delay(sc);
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
* The PNIC 82c168/82c169 has its own non-standard way to read
* the EEPROM.
*/
static void dc_eeprom_getword_pnic(sc, addr, dest)
struct dc_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int32_t r;
CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(1);
r = CSR_READ_4(sc, DC_SIO);
if (!(r & DC_PN_SIOCTL_BUSY)) {
*dest = (u_int16_t)(r & 0xFFFF);
return;
}
}
return;
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void dc_eeprom_getword(sc, addr, dest)
struct dc_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
dc_eeprom_idle(sc);
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
/*
* Send address of word we want to read.
*/
dc_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(DC_SIO_EE_CLK);
dc_delay(sc);
if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
word |= i;
dc_delay(sc);
SIO_CLR(DC_SIO_EE_CLK);
dc_delay(sc);
}
/* Turn off EEPROM access mode. */
dc_eeprom_idle(sc);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void dc_read_eeprom(sc, dest, off, cnt, swap)
struct dc_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
if (DC_IS_PNIC(sc))
dc_eeprom_getword_pnic(sc, off + i, &word);
else
dc_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
/*
* The following two routines are taken from the Macronix 98713
* Application Notes pp.19-21.
*/
/*
* Write a bit to the MII bus.
*/
static void dc_mii_writebit(sc, bit)
struct dc_softc *sc;
int bit;
{
if (bit)
CSR_WRITE_4(sc, DC_SIO,
DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
else
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
return;
}
/*
* Read a bit from the MII bus.
*/
static int dc_mii_readbit(sc)
struct dc_softc *sc;
{
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
CSR_READ_4(sc, DC_SIO);
DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
return(1);
return(0);
}
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void dc_mii_sync(sc)
struct dc_softc *sc;
{
register int i;
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
for (i = 0; i < 32; i++)
dc_mii_writebit(sc, 1);
return;
}
/*
* Clock a series of bits through the MII.
*/
static void dc_mii_send(sc, bits, cnt)
struct dc_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
for (i = (0x1 << (cnt - 1)); i; i >>= 1)
dc_mii_writebit(sc, bits & i);
}
/*
* Read an PHY register through the MII.
*/
static int dc_mii_readreg(sc, frame)
struct dc_softc *sc;
struct dc_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = DC_MII_STARTDELIM;
frame->mii_opcode = DC_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Sync the PHYs.
*/
dc_mii_sync(sc);
/*
* Send command/address info.
*/
dc_mii_send(sc, frame->mii_stdelim, 2);
dc_mii_send(sc, frame->mii_opcode, 2);
dc_mii_send(sc, frame->mii_phyaddr, 5);
dc_mii_send(sc, frame->mii_regaddr, 5);
#ifdef notdef
/* Idle bit */
dc_mii_writebit(sc, 1);
dc_mii_writebit(sc, 0);
#endif
/* Check for ack */
ack = dc_mii_readbit(sc);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
dc_mii_readbit(sc);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
if (!ack) {
if (dc_mii_readbit(sc))
frame->mii_data |= i;
}
}
fail:
dc_mii_writebit(sc, 0);
dc_mii_writebit(sc, 0);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int dc_mii_writereg(sc, frame)
struct dc_softc *sc;
struct dc_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = DC_MII_STARTDELIM;
frame->mii_opcode = DC_MII_WRITEOP;
frame->mii_turnaround = DC_MII_TURNAROUND;
/*
* Sync the PHYs.
*/
dc_mii_sync(sc);
dc_mii_send(sc, frame->mii_stdelim, 2);
dc_mii_send(sc, frame->mii_opcode, 2);
dc_mii_send(sc, frame->mii_phyaddr, 5);
dc_mii_send(sc, frame->mii_regaddr, 5);
dc_mii_send(sc, frame->mii_turnaround, 2);
dc_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
dc_mii_writebit(sc, 0);
dc_mii_writebit(sc, 0);
splx(s);
return(0);
}
static int dc_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct dc_mii_frame frame;
struct dc_softc *sc;
int i, rval, phy_reg;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
/*
* Note: both the AL981 and AN985 have internal PHYs,
* however the AL981 provides direct access to the PHY
* registers while the AN985 uses a serial MII interface.
* The AN985's MII interface is also buggy in that you
* can read from any MII address (0 to 31), but only address 1
* behaves normally. To deal with both cases, we pretend
* that the PHY is at MII address 1.
*/
if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
return(0);
if (sc->dc_pmode == DC_PMODE_SYM) {
if (phy == (MII_NPHY - 1)) {
switch(reg) {
case MII_BMSR:
/*
* Fake something to make the probe
* code think there's a PHY here.
*/
return(BMSR_MEDIAMASK);
break;
case MII_PHYIDR1:
if (DC_IS_PNIC(sc))
return(DC_VENDORID_LO);
return(DC_VENDORID_DEC);
break;
case MII_PHYIDR2:
if (DC_IS_PNIC(sc))
return(DC_DEVICEID_82C168);
return(DC_DEVICEID_21143);
break;
default:
return(0);
break;
}
} else
return(0);
}
if (DC_IS_PNIC(sc)) {
CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
(phy << 23) | (reg << 18));
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(1);
rval = CSR_READ_4(sc, DC_PN_MII);
if (!(rval & DC_PN_MII_BUSY)) {
rval &= 0xFFFF;
return(rval == 0xFFFF ? 0 : rval);
}
}
return(0);
}
if (DC_IS_COMET(sc)) {
switch(reg) {
case MII_BMCR:
phy_reg = DC_AL_BMCR;
break;
case MII_BMSR:
phy_reg = DC_AL_BMSR;
break;
case MII_PHYIDR1:
phy_reg = DC_AL_VENID;
break;
case MII_PHYIDR2:
phy_reg = DC_AL_DEVID;
break;
case MII_ANAR:
phy_reg = DC_AL_ANAR;
break;
case MII_ANLPAR:
phy_reg = DC_AL_LPAR;
break;
case MII_ANER:
phy_reg = DC_AL_ANER;
break;
default:
printf("dc%d: phy_read: bad phy register %x\n",
sc->dc_unit, reg);
return(0);
break;
}
rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
if (rval == 0xFFFF)
return(0);
return(rval);
}
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
phy_reg = CSR_READ_4(sc, DC_NETCFG);
CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
dc_mii_readreg(sc, &frame);
CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
return(frame.mii_data);
}
static int dc_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct dc_softc *sc;
struct dc_mii_frame frame;
int i, phy_reg;
sc = device_get_softc(dev);
bzero((char *)&frame, sizeof(frame));
if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
return(0);
if (DC_IS_PNIC(sc)) {
CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
(phy << 23) | (reg << 10) | data);
for (i = 0; i < DC_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
break;
}
return(0);
}
if (DC_IS_COMET(sc)) {
switch(reg) {
case MII_BMCR:
phy_reg = DC_AL_BMCR;
break;
case MII_BMSR:
phy_reg = DC_AL_BMSR;
break;
case MII_PHYIDR1:
phy_reg = DC_AL_VENID;
break;
case MII_PHYIDR2:
phy_reg = DC_AL_DEVID;
break;
case MII_ANAR:
phy_reg = DC_AL_ANAR;
break;
case MII_ANLPAR:
phy_reg = DC_AL_LPAR;
break;
case MII_ANER:
phy_reg = DC_AL_ANER;
break;
default:
printf("dc%d: phy_write: bad phy register %x\n",
sc->dc_unit, reg);
return(0);
break;
}
CSR_WRITE_4(sc, phy_reg, data);
return(0);
}
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
phy_reg = CSR_READ_4(sc, DC_NETCFG);
CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
dc_mii_writereg(sc, &frame);
CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
return(0);
}
static void dc_miibus_statchg(dev)
device_t dev;
{
struct dc_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = device_get_softc(dev);
if (DC_IS_ADMTEK(sc))
return;
mii = device_get_softc(sc->dc_miibus);
ifm = &mii->mii_media;
if (DC_IS_DAVICOM(sc) &&
IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
dc_setcfg(sc, ifm->ifm_media);
sc->dc_if_media = ifm->ifm_media;
} else {
dc_setcfg(sc, mii->mii_media_active);
sc->dc_if_media = mii->mii_media_active;
}
return;
}
/*
* Special support for DM9102A cards with HomePNA PHYs. Note:
* with the Davicom DM9102A/DM9801 eval board that I have, it seems
* to be impossible to talk to the management interface of the DM9801
* PHY (its MDIO pin is not connected to anything). Consequently,
* the driver has to just 'know' about the additional mode and deal
* with it itself. *sigh*
*/
static void dc_miibus_mediainit(dev)
device_t dev;
{
struct dc_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
int rev;
rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
sc = device_get_softc(dev);
mii = device_get_softc(sc->dc_miibus);
ifm = &mii->mii_media;
if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
ifmedia_add(ifm, IFM_ETHER|IFM_homePNA, 0, NULL);
return;
}
#define DC_POLY 0xEDB88320
#define DC_BITS 9
#define DC_BITS_PNIC_II 7
static u_int32_t dc_crc_le(sc, addr)
struct dc_softc *sc;
caddr_t addr;
{
u_int32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
}
/* The hash table on the PNIC II is only 128 bits wide. */
if (DC_IS_PNICII(sc))
return (crc & ((1 << DC_BITS_PNIC_II) - 1));
return (crc & ((1 << DC_BITS) - 1));
}
/*
* Calculate CRC of a multicast group address, return the lower 6 bits.
*/
static u_int32_t dc_crc_be(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return((crc >> 26) & 0x0000003F);
}
/*
* 21143-style RX filter setup routine. Filter programming is done by
* downloading a special setup frame into the TX engine. 21143, Macronix,
* PNIC, PNIC II and Davicom chips are programmed this way.
*
* We always program the chip using 'hash perfect' mode, i.e. one perfect
* address (our node address) and a 512-bit hash filter for multicast
* frames. We also sneak the broadcast address into the hash filter since
* we need that too.
*/
void dc_setfilt_21143(sc)
struct dc_softc *sc;
{
struct dc_desc *sframe;
u_int32_t h, *sp;
struct ifmultiaddr *ifma;
struct ifnet *ifp;
int i;
ifp = &sc->arpcom.ac_if;
i = sc->dc_cdata.dc_tx_prod;
DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
sc->dc_cdata.dc_tx_cnt++;
sframe = &sc->dc_ldata->dc_tx_list[i];
sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
bzero((char *)sp, DC_SFRAME_LEN);
sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
DC_FILTER_HASHPERF | DC_TXCTL_FINT;
sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
if (ifp->if_flags & IFF_ALLMULTI)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = dc_crc_le(sc,
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
sp[h >> 4] |= 1 << (h & 0xF);
}
if (ifp->if_flags & IFF_BROADCAST) {
h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
sp[h >> 4] |= 1 << (h & 0xF);
}
/* Set our MAC address */
sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
sframe->dc_status = DC_TXSTAT_OWN;
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
/*
* The PNIC takes an exceedingly long time to process its
* setup frame; wait 10ms after posting the setup frame
* before proceeding, just so it has time to swallow its
* medicine.
*/
DELAY(10000);
ifp->if_timer = 5;
return;
}
void dc_setfilt_admtek(sc)
struct dc_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
ifp = &sc->arpcom.ac_if;
/* Init our MAC address */
CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
if (ifp->if_flags & IFF_ALLMULTI)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, DC_AL_MAR0, 0);
CSR_WRITE_4(sc, DC_AL_MAR1, 0);
/*
* If we're already in promisc or allmulti mode, we
* don't have to bother programming the multicast filter.
*/
if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
return;
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
return;
}
void dc_setfilt_asix(sc)
struct dc_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ifmultiaddr *ifma;
ifp = &sc->arpcom.ac_if;
/* Init our MAC address */
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
CSR_WRITE_4(sc, DC_AX_FILTDATA,
*(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
CSR_WRITE_4(sc, DC_AX_FILTDATA,
*(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
if (ifp->if_flags & IFF_ALLMULTI)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
else
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
/*
* The ASIX chip has a special bit to enable reception
* of broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST)
DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
else
DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
/*
* If we're already in promisc or allmulti mode, we
* don't have to bother programming the multicast filter.
*/
if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
return;
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
return;
}
static void dc_setfilt(sc)
struct dc_softc *sc;
{
if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc))
dc_setfilt_21143(sc);
if (DC_IS_ASIX(sc))
dc_setfilt_asix(sc);
if (DC_IS_ADMTEK(sc))
dc_setfilt_admtek(sc);
return;
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
static void dc_setcfg(sc, media)
struct dc_softc *sc;
int media;
{
int i, restart = 0;
u_int32_t isr;
if (IFM_SUBTYPE(media) == IFM_NONE)
return;
if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
restart = 1;
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(10);
isr = CSR_READ_4(sc, DC_ISR);
if (isr & DC_ISR_TX_IDLE ||
(isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
break;
}
if (i == DC_TIMEOUT)
printf("dc%d: failed to force tx and "
"rx to idle state\n", sc->dc_unit);
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
if (sc->dc_pmode == DC_PMODE_MII) {
DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
if (sc->dc_type == DC_TYPE_98713)
DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
DC_NETCFG_SCRAMBLER));
if (!DC_IS_DAVICOM(sc))
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
} else {
if (DC_IS_PNIC(sc)) {
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
}
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL|
DC_NETCFG_PCS|DC_NETCFG_SCRAMBLER);
}
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
if (sc->dc_pmode == DC_PMODE_MII) {
DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
if (sc->dc_type == DC_TYPE_98713)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
if (!DC_IS_DAVICOM(sc))
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
} else {
if (DC_IS_PNIC(sc)) {
DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
}
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
}
}
/*
* If this is a Davicom DM9102A card with a DM9801 HomePNA
* PHY and we want HomePNA mode, set the portsel bit to turn
* on the external MII port.
*/
if (DC_IS_DAVICOM(sc)) {
if (IFM_SUBTYPE(media) == IFM_homePNA) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
sc->dc_link = 1;
} else {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
}
}
if ((media & IFM_GMASK) == IFM_FDX) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
} else {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
}
if (restart)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
return;
}
static void dc_reset(sc)
struct dc_softc *sc;
{
register int i;
DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
break;
}
if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc)) {
DELAY(10000);
DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
i = 0;
}
if (i == DC_TIMEOUT)
printf("dc%d: reset never completed!\n", sc->dc_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
/*
* Bring the SIA out of reset. In some cases, it looks
* like failing to unreset the SIA soon enough gets it
* into a state where it will never come out of reset
* until we reset the whole chip again.
*/
if (DC_IS_INTEL(sc))
DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
return;
}
static struct dc_type *dc_devtype(dev)
device_t dev;
{
struct dc_type *t;
u_int32_t rev;
t = dc_devs;
while(t->dc_name != NULL) {
if ((pci_get_vendor(dev) == t->dc_vid) &&
(pci_get_device(dev) == t->dc_did)) {
/* Check the PCI revision */
rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
if (t->dc_did == DC_DEVICEID_98713 &&
rev >= DC_REVISION_98713A)
t++;
if (t->dc_did == DC_DEVICEID_98713_CP &&
rev >= DC_REVISION_98713A)
t++;
if (t->dc_did == DC_DEVICEID_987x5 &&
rev >= DC_REVISION_98725)
t++;
if (t->dc_did == DC_DEVICEID_AX88140A &&
rev >= DC_REVISION_88141)
t++;
if (t->dc_did == DC_DEVICEID_82C168 &&
rev >= DC_REVISION_82C169)
t++;
if (t->dc_did == DC_DEVICEID_DM9102 &&
rev >= DC_REVISION_DM9102A)
t++;
return(t);
}
t++;
}
return(NULL);
}
/*
* Probe for a 21143 or clone chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
* We do a little bit of extra work to identify the exact type of
* chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
* but different revision IDs. The same is true for 98715/98715A
* chips and the 98725, as well as the ASIX and ADMtek chips. In some
* cases, the exact chip revision affects driver behavior.
*/
static int dc_probe(dev)
device_t dev;
{
struct dc_type *t;
t = dc_devtype(dev);
if (t != NULL) {
device_set_desc(dev, t->dc_name);
return(0);
}
return(ENXIO);
}
static void dc_acpi(dev)
device_t dev;
{
u_int32_t r, cptr;
int unit;
unit = device_get_unit(dev);
/* Find the location of the capabilities block */
cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
r = pci_read_config(dev, cptr, 4) & 0xFF;
if (r == 0x01) {
r = pci_read_config(dev, cptr + 4, 4);
if (r & DC_PSTATE_D3) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
irq = pci_read_config(dev, DC_PCI_CFIT, 4);
/* Reset the power state. */
printf("dc%d: chip is in D%d power mode "
"-- setting to D0\n", unit, r & DC_PSTATE_D3);
r &= 0xFFFFFFFC;
pci_write_config(dev, cptr + 4, r, 4);
/* Restore PCI config data. */
pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
pci_write_config(dev, DC_PCI_CFIT, irq, 4);
}
}
return;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int dc_attach(dev)
device_t dev;
{
int s;
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct dc_softc *sc;
struct ifnet *ifp;
u_int32_t revision;
int unit, error = 0, rid, mac_offset;
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
bzero(sc, sizeof(struct dc_softc));
/*
* Handle power management nonsense.
*/
dc_acpi(dev);
/*
* Map control/status registers.
*/
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
#ifdef DC_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("dc%d: failed to enable I/O ports!\n", unit);
error = ENXIO;
goto fail;
}
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("dc%d: failed to enable memory mapping!\n", unit);
error = ENXIO;
goto fail;
}
#endif
rid = DC_RID;
sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
0, ~0, 1, RF_ACTIVE);
if (sc->dc_res == NULL) {
printf("dc%d: couldn't map ports/memory\n", unit);
error = ENXIO;
goto fail;
}
sc->dc_btag = rman_get_bustag(sc->dc_res);
sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
/* Allocate interrupt */
rid = 0;
sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->dc_irq == NULL) {
printf("dc%d: couldn't map interrupt\n", unit);
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
error = ENXIO;
goto fail;
}
error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
dc_intr, sc, &sc->dc_intrhand);
if (error) {
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
printf("dc%d: couldn't set up irq\n", unit);
goto fail;
}
/* Need this info to decide on a chip type. */
sc->dc_info = dc_devtype(dev);
revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
switch(sc->dc_info->dc_did) {
case DC_DEVICEID_21143:
sc->dc_type = DC_TYPE_21143;
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
sc->dc_flags |= DC_REDUCED_MII_POLL;
break;
case DC_DEVICEID_DM9100:
case DC_DEVICEID_DM9102:
sc->dc_type = DC_TYPE_DM9102;
sc->dc_flags |= DC_TX_COALESCE|DC_TX_USE_TX_INTR;
sc->dc_flags |= DC_REDUCED_MII_POLL;
sc->dc_pmode = DC_PMODE_MII;
break;
case DC_DEVICEID_AL981:
sc->dc_type = DC_TYPE_AL981;
sc->dc_flags |= DC_TX_USE_TX_INTR;
sc->dc_flags |= DC_TX_ADMTEK_WAR;
sc->dc_pmode = DC_PMODE_MII;
break;
case DC_DEVICEID_AN985:
sc->dc_type = DC_TYPE_AN985;
sc->dc_flags |= DC_TX_USE_TX_INTR;
sc->dc_flags |= DC_TX_ADMTEK_WAR;
sc->dc_pmode = DC_PMODE_MII;
break;
case DC_DEVICEID_98713:
case DC_DEVICEID_98713_CP:
if (revision < DC_REVISION_98713A) {
sc->dc_type = DC_TYPE_98713;
sc->dc_flags |= DC_REDUCED_MII_POLL;
}
if (revision >= DC_REVISION_98713A)
sc->dc_type = DC_TYPE_98713A;
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
break;
case DC_DEVICEID_987x5:
sc->dc_type = DC_TYPE_987x5;
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
break;
case DC_DEVICEID_82C115:
sc->dc_type = DC_TYPE_PNICII;
sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
break;
case DC_DEVICEID_82C168:
sc->dc_type = DC_TYPE_PNIC;
sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
if (revision < DC_REVISION_82C169)
sc->dc_pmode = DC_PMODE_SYM;
break;
case DC_DEVICEID_AX88140A:
sc->dc_type = DC_TYPE_ASIX;
sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
sc->dc_flags |= DC_REDUCED_MII_POLL;
sc->dc_pmode = DC_PMODE_MII;
break;
default:
printf("dc%d: unknown device: %x\n", sc->dc_unit,
sc->dc_info->dc_did);
break;
}
/* Save the cache line size. */
if (DC_IS_DAVICOM(sc))
sc->dc_cachesize = 0;
else
sc->dc_cachesize = pci_read_config(dev,
DC_PCI_CFLT, 4) & 0xFF;
/* Reset the adapter. */
dc_reset(sc);
/* Take 21143 out of snooze mode */
if (DC_IS_INTEL(sc)) {
command = pci_read_config(dev, DC_PCI_CFDD, 4);
command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
pci_write_config(dev, DC_PCI_CFDD, command, 4);
}
/*
* Try to learn something about the supported media.
* We know that ASIX and ADMtek and Davicom devices
* will *always* be using MII media, so that's a no-brainer.
* The tricky ones are the Macronix/PNIC II and the
* Intel 21143.
*/
if (DC_IS_INTEL(sc)) {
u_int32_t media, cwuc;
cwuc = pci_read_config(dev, DC_PCI_CWUC, 4);
cwuc |= DC_CWUC_FORCE_WUL;
pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
DELAY(10000);
media = pci_read_config(dev, DC_PCI_CWUC, 4);
cwuc &= ~DC_CWUC_FORCE_WUL;
pci_write_config(dev, DC_PCI_CWUC, cwuc, 4);
DELAY(10000);
if (media & DC_CWUC_MII_ABILITY)
sc->dc_pmode = DC_PMODE_MII;
if (media & DC_CWUC_SYM_ABILITY)
sc->dc_pmode = DC_PMODE_SYM;
/*
* If none of the bits are set, then this NIC
* isn't meant to support 'wake up LAN' mode.
* This is usually only the case on multiport
* cards, and these cards almost always have
* MII transceivers.
*/
if (media == 0)
sc->dc_pmode = DC_PMODE_MII;
} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
if (sc->dc_type == DC_TYPE_98713)
sc->dc_pmode = DC_PMODE_MII;
else
sc->dc_pmode = DC_PMODE_SYM;
} else if (!sc->dc_pmode)
sc->dc_pmode = DC_PMODE_MII;
/*
* Get station address from the EEPROM.
*/
switch(sc->dc_type) {
case DC_TYPE_98713:
case DC_TYPE_98713A:
case DC_TYPE_987x5:
case DC_TYPE_PNICII:
dc_read_eeprom(sc, (caddr_t)&mac_offset,
(DC_EE_NODEADDR_OFFSET / 2), 1, 0);
dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
break;
case DC_TYPE_PNIC:
dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
break;
case DC_TYPE_DM9102:
case DC_TYPE_21143:
case DC_TYPE_ASIX:
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
break;
case DC_TYPE_AL981:
case DC_TYPE_AN985:
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
break;
default:
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
break;
}
/*
* A 21143 or clone chip was detected. Inform the world.
*/
printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->dc_unit = unit;
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
if (sc->dc_ldata == NULL) {
printf("dc%d: no memory for list buffers!\n", unit);
bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
error = ENXIO;
goto fail;
}
bzero(sc->dc_ldata, sizeof(struct dc_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "dc";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = dc_ioctl;
ifp->if_output = ether_output;
ifp->if_start = dc_start;
ifp->if_watchdog = dc_watchdog;
ifp->if_init = dc_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
/*
* Do MII setup.
*/
error = mii_phy_probe(dev, &sc->dc_miibus,
dc_ifmedia_upd, dc_ifmedia_sts);
if (error && DC_IS_INTEL(sc)) {
sc->dc_pmode = DC_PMODE_SYM;
mii_phy_probe(dev, &sc->dc_miibus,
dc_ifmedia_upd, dc_ifmedia_sts);
error = 0;
}
if (error) {
printf("dc%d: MII without any PHY!\n", sc->dc_unit);
bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
error = ENXIO;
goto fail;
}
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
callout_handle_init(&sc->dc_stat_ch);
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#ifdef __alpha__
sc->dc_srm_media = 0;
/* Remember the SRM console media setting */
if (DC_IS_INTEL(sc)) {
command = pci_read_config(dev, DC_PCI_CFDD, 4);
command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
switch ((command >> 8) & 0xff) {
case 3:
sc->dc_srm_media = IFM_10_T;
break;
case 4:
sc->dc_srm_media = IFM_10_T | IFM_FDX;
break;
case 5:
sc->dc_srm_media = IFM_100_TX;
break;
case 6:
sc->dc_srm_media = IFM_100_TX | IFM_FDX;
break;
}
if (sc->dc_srm_media)
sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
}
#endif
fail:
splx(s);
return(error);
}
static int dc_detach(dev)
device_t dev;
{
struct dc_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
dc_stop(sc);
if_detach(ifp);
bus_generic_detach(dev);
device_delete_child(dev, sc->dc_miibus);
bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
if (sc->dc_pnic_rx_buf != NULL)
free(sc->dc_pnic_rx_buf, M_DEVBUF);
splx(s);
return(0);
}
/*
* Initialize the transmit descriptors.
*/
static int dc_list_tx_init(sc)
struct dc_softc *sc;
{
struct dc_chain_data *cd;
struct dc_list_data *ld;
int i;
cd = &sc->dc_cdata;
ld = sc->dc_ldata;
for (i = 0; i < DC_TX_LIST_CNT; i++) {
if (i == (DC_TX_LIST_CNT - 1)) {
ld->dc_tx_list[i].dc_next =
vtophys(&ld->dc_tx_list[0]);
} else {
ld->dc_tx_list[i].dc_next =
vtophys(&ld->dc_tx_list[i + 1]);
}
cd->dc_tx_chain[i] = NULL;
ld->dc_tx_list[i].dc_data = 0;
ld->dc_tx_list[i].dc_ctl = 0;
}
cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int dc_list_rx_init(sc)
struct dc_softc *sc;
{
struct dc_chain_data *cd;
struct dc_list_data *ld;
int i;
cd = &sc->dc_cdata;
ld = sc->dc_ldata;
for (i = 0; i < DC_RX_LIST_CNT; i++) {
if (dc_newbuf(sc, i, NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (DC_RX_LIST_CNT - 1)) {
ld->dc_rx_list[i].dc_next =
vtophys(&ld->dc_rx_list[0]);
} else {
ld->dc_rx_list[i].dc_next =
vtophys(&ld->dc_rx_list[i + 1]);
}
}
cd->dc_rx_prod = 0;
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int dc_newbuf(sc, i, m)
struct dc_softc *sc;
int i;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
struct dc_desc *c;
c = &sc->dc_ldata->dc_rx_list[i];
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("dc%d: no memory for rx list "
"-- packet dropped!\n", sc->dc_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("dc%d: no memory for rx list "
"-- packet dropped!\n", sc->dc_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
/*
* If this is a PNIC chip, zero the buffer. This is part
* of the workaround for the receive bug in the 82c168 and
* 82c169 chips.
*/
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
bzero((char *)mtod(m_new, char *), m_new->m_len);
sc->dc_cdata.dc_rx_chain[i] = m_new;
c->dc_data = vtophys(mtod(m_new, caddr_t));
c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
c->dc_status = DC_RXSTAT_OWN;
return(0);
}
/*
* Grrrrr.
* The PNIC chip has a terrible bug in it that manifests itself during
* periods of heavy activity. The exact mode of failure if difficult to
* pinpoint: sometimes it only happens in promiscuous mode, sometimes it
* will happen on slow machines. The bug is that sometimes instead of
* uploading one complete frame during reception, it uploads what looks
* like the entire contents of its FIFO memory. The frame we want is at
* the end of the whole mess, but we never know exactly how much data has
* been uploaded, so salvaging the frame is hard.
*
* There is only one way to do it reliably, and it's disgusting.
* Here's what we know:
*
* - We know there will always be somewhere between one and three extra
* descriptors uploaded.
*
* - We know the desired received frame will always be at the end of the
* total data upload.
*
* - We know the size of the desired received frame because it will be
* provided in the length field of the status word in the last descriptor.
*
* Here's what we do:
*
* - When we allocate buffers for the receive ring, we bzero() them.
* This means that we know that the buffer contents should be all
* zeros, except for data uploaded by the chip.
*
* - We also force the PNIC chip to upload frames that include the
* ethernet CRC at the end.
*
* - We gather all of the bogus frame data into a single buffer.
*
* - We then position a pointer at the end of this buffer and scan
* backwards until we encounter the first non-zero byte of data.
* This is the end of the received frame. We know we will encounter
* some data at the end of the frame because the CRC will always be
* there, so even if the sender transmits a packet of all zeros,
* we won't be fooled.
*
* - We know the size of the actual received frame, so we subtract
* that value from the current pointer location. This brings us
* to the start of the actual received packet.
*
* - We copy this into an mbuf and pass it on, along with the actual
* frame length.
*
* The performance hit is tremendous, but it beats dropping frames all
* the time.
*/
#define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
static void dc_pnic_rx_bug_war(sc, idx)
struct dc_softc *sc;
int idx;
{
struct dc_desc *cur_rx;
struct dc_desc *c = NULL;
struct mbuf *m = NULL;
unsigned char *ptr;
int i, total_len;
u_int32_t rxstat = 0;
i = sc->dc_pnic_rx_bug_save;
cur_rx = &sc->dc_ldata->dc_rx_list[idx];
ptr = sc->dc_pnic_rx_buf;
bzero(ptr, sizeof(DC_RXLEN * 5));
/* Copy all the bytes from the bogus buffers. */
while (1) {
c = &sc->dc_ldata->dc_rx_list[i];
rxstat = c->dc_status;
m = sc->dc_cdata.dc_rx_chain[i];
bcopy(mtod(m, char *), ptr, DC_RXLEN);
ptr += DC_RXLEN;
/* If this is the last buffer, break out. */
if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
break;
dc_newbuf(sc, i, m);
DC_INC(i, DC_RX_LIST_CNT);
}
/* Find the length of the actual receive frame. */
total_len = DC_RXBYTES(rxstat);
/* Scan backwards until we hit a non-zero byte. */
while(*ptr == 0x00)
ptr--;
/* Round off. */
if ((uintptr_t)(ptr) & 0x3)
ptr -= 1;
/* Now find the start of the frame. */
ptr -= total_len;
if (ptr < sc->dc_pnic_rx_buf)
ptr = sc->dc_pnic_rx_buf;
/*
* Now copy the salvaged frame to the last mbuf and fake up
* the status word to make it look like a successful
* frame reception.
*/
dc_newbuf(sc, i, m);
bcopy(ptr, mtod(m, char *), total_len);
cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
return;
}
/*
* This routine searches the RX ring for dirty descriptors in the
* event that the rxeof routine falls out of sync with the chip's
* current descriptor pointer. This may happen sometimes as a result
* of a "no RX buffer available" condition that happens when the chip
* consumes all of the RX buffers before the driver has a chance to
* process the RX ring. This routine may need to be called more than
* once to bring the driver back in sync with the chip, however we
* should still be getting RX DONE interrupts to drive the search
* for new packets in the RX ring, so we should catch up eventually.
*/
static int dc_rx_resync(sc)
struct dc_softc *sc;
{
int i, pos;
struct dc_desc *cur_rx;
pos = sc->dc_cdata.dc_rx_prod;
for (i = 0; i < DC_RX_LIST_CNT; i++) {
cur_rx = &sc->dc_ldata->dc_rx_list[pos];
if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
break;
DC_INC(pos, DC_RX_LIST_CNT);
}
/* If the ring really is empty, then just return. */
if (i == DC_RX_LIST_CNT)
return(0);
/* We've fallen behing the chip: catch it. */
sc->dc_cdata.dc_rx_prod = pos;
return(EAGAIN);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void dc_rxeof(sc)
struct dc_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct dc_desc *cur_rx;
int i, total_len = 0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
i = sc->dc_cdata.dc_rx_prod;
while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
struct mbuf *m0 = NULL;
cur_rx = &sc->dc_ldata->dc_rx_list[i];
rxstat = cur_rx->dc_status;
m = sc->dc_cdata.dc_rx_chain[i];
total_len = DC_RXBYTES(rxstat);
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
if (rxstat & DC_RXSTAT_FIRSTFRAG)
sc->dc_pnic_rx_bug_save = i;
if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
DC_INC(i, DC_RX_LIST_CNT);
continue;
}
dc_pnic_rx_bug_war(sc, i);
rxstat = cur_rx->dc_status;
total_len = DC_RXBYTES(rxstat);
}
}
sc->dc_cdata.dc_rx_chain[i] = NULL;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & DC_RXSTAT_RXERR) {
ifp->if_ierrors++;
if (rxstat & DC_RXSTAT_COLLSEEN)
ifp->if_collisions++;
dc_newbuf(sc, i, m);
if (rxstat & DC_RXSTAT_CRCERR) {
DC_INC(i, DC_RX_LIST_CNT);
continue;
} else {
dc_init(sc);
return;
}
}
/* No errors; receive the packet. */
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
total_len + ETHER_ALIGN, 0, ifp, NULL);
dc_newbuf(sc, i, m);
DC_INC(i, DC_RX_LIST_CNT);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m_adj(m0, ETHER_ALIGN);
m = m0;
ifp->if_ipackets++;
eh = mtod(m, struct ether_header *);
/* Handle BPF listeners. Let the BPF user see the packet */
if (ifp->if_bpf)
bpf_mtap(ifp, m);
#ifdef BRIDGE
if (do_bridge) {
struct ifnet *bdg_ifp ;
bdg_ifp = bridge_in(m);
if (bdg_ifp != BDG_LOCAL && bdg_ifp != BDG_DROP)
bdg_forward(&m, bdg_ifp);
if (((bdg_ifp != BDG_LOCAL) && (bdg_ifp != BDG_BCAST) && (bdg_ifp != BDG_MCAST)) || bdg_ifp == BDG_DROP) {
m_freem(m);
continue;
}
}
eh = mtod(m, struct ether_header *);
#endif
/* Don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
/* Remove header from mbuf and pass it on. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
}
sc->dc_cdata.dc_rx_prod = i;
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void dc_txeof(sc)
struct dc_softc *sc;
{
struct dc_desc *cur_tx = NULL;
struct ifnet *ifp;
int idx;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
idx = sc->dc_cdata.dc_tx_cons;
while(idx != sc->dc_cdata.dc_tx_prod) {
u_int32_t txstat;
cur_tx = &sc->dc_ldata->dc_tx_list[idx];
txstat = cur_tx->dc_status;
if (txstat & DC_TXSTAT_OWN)
break;
if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
cur_tx->dc_ctl & DC_TXCTL_SETUP) {
sc->dc_cdata.dc_tx_cnt--;
if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
/*
* Yes, the PNIC is so brain damaged
* that it will sometimes generate a TX
* underrun error while DMAing the RX
* filter setup frame. If we detect this,
* we have to send the setup frame again,
* or else the filter won't be programmed
* correctly.
*/
if (DC_IS_PNIC(sc)) {
if (txstat & DC_TXSTAT_ERRSUM)
dc_setfilt(sc);
}
sc->dc_cdata.dc_tx_chain[idx] = NULL;
}
DC_INC(idx, DC_TX_LIST_CNT);
continue;
}
if (/*sc->dc_type == DC_TYPE_21143 &&*/
sc->dc_pmode == DC_PMODE_MII &&
((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
txstat &= ~DC_TXSTAT_ERRSUM;
if (txstat & DC_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & DC_TXSTAT_EXCESSCOLL)
ifp->if_collisions++;
if (txstat & DC_TXSTAT_LATECOLL)
ifp->if_collisions++;
if (!(txstat & DC_TXSTAT_UNDERRUN)) {
dc_init(sc);
return;
}
}
ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
m_freem(sc->dc_cdata.dc_tx_chain[idx]);
sc->dc_cdata.dc_tx_chain[idx] = NULL;
}
sc->dc_cdata.dc_tx_cnt--;
DC_INC(idx, DC_TX_LIST_CNT);
}
sc->dc_cdata.dc_tx_cons = idx;
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
static void dc_tick(xsc)
void *xsc;
{
struct dc_softc *sc;
struct mii_data *mii;
struct ifnet *ifp;
int s;
u_int32_t r;
s = splimp();
sc = xsc;
ifp = &sc->arpcom.ac_if;
mii = device_get_softc(sc->dc_miibus);
if (sc->dc_flags & DC_REDUCED_MII_POLL) {
r = CSR_READ_4(sc, DC_ISR);
if (DC_IS_INTEL(sc)) {
if (r & DC_ISR_LINKFAIL)
sc->dc_link = 0;
if (sc->dc_link == 0)
mii_tick(mii);
} else {
if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
sc->dc_cdata.dc_tx_prod == 0)
mii_tick(mii);
}
} else
mii_tick(mii);
/*
* When the init routine completes, we expect to be able to send
* packets right away, and in fact the network code will send a
* gratuitous ARP the moment the init routine marks the interface
* as running. However, even though the MAC may have been initialized,
* there may be a delay of a few seconds before the PHY completes
* autonegotiation and the link is brought up. Any transmissions
* made during that delay will be lost. Dealing with this is tricky:
* we can't just pause in the init routine while waiting for the
* PHY to come ready since that would bring the whole system to
* a screeching halt for several seconds.
*
* What we do here is prevent the TX start routine from sending
* any packets until a link has been established. After the
* interface has been initialized, the tick routine will poll
* the state of the PHY until the IFM_ACTIVE flag is set. Until
* that time, packets will stay in the send queue, and once the
* link comes up, they will be flushed out to the wire.
*/
if (!sc->dc_link) {
mii_pollstat(mii);
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->dc_link++;
if (ifp->if_snd.ifq_head != NULL)
dc_start(ifp);
}
}
sc->dc_stat_ch = timeout(dc_tick, sc, hz);
splx(s);
return;
}
static void dc_intr(arg)
void *arg;
{
struct dc_softc *sc;
struct ifnet *ifp;
u_int32_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Supress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
dc_stop(sc);
return;
}
/* Disable interrupts. */
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
CSR_WRITE_4(sc, DC_ISR, status);
if (status & DC_ISR_RX_OK) {
int curpkts;
curpkts = ifp->if_ipackets;
dc_rxeof(sc);
if (curpkts == ifp->if_ipackets) {
while(dc_rx_resync(sc))
dc_rxeof(sc);
}
}
if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
dc_txeof(sc);
if (status & DC_ISR_TX_IDLE) {
dc_txeof(sc);
if (sc->dc_cdata.dc_tx_cnt) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
}
}
if (status & DC_ISR_TX_UNDERRUN) {
u_int32_t cfg;
printf("dc%d: TX underrun -- ", sc->dc_unit);
if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc))
dc_init(sc);
cfg = CSR_READ_4(sc, DC_NETCFG);
cfg &= ~DC_NETCFG_TX_THRESH;
if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
printf("using store and forward mode\n");
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
} else if (sc->dc_flags & DC_TX_STORENFWD) {
printf("resetting\n");
} else {
sc->dc_txthresh += 0x4000;
printf("increasing TX threshold\n");
CSR_WRITE_4(sc, DC_NETCFG, cfg);
DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
}
}
if ((status & DC_ISR_RX_WATDOGTIMEO)
|| (status & DC_ISR_RX_NOBUF)) {
int curpkts;
curpkts = ifp->if_ipackets;
dc_rxeof(sc);
if (curpkts == ifp->if_ipackets) {
while(dc_rx_resync(sc))
dc_rxeof(sc);
}
}
if (status & DC_ISR_BUS_ERR) {
dc_reset(sc);
dc_init(sc);
}
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
if (ifp->if_snd.ifq_head != NULL)
dc_start(ifp);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int dc_encap(sc, m_head, txidx)
struct dc_softc *sc;
struct mbuf *m_head;
u_int32_t *txidx;
{
struct dc_desc *f = NULL;
struct mbuf *m;
int frag, cur, cnt = 0;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
cur = frag = *txidx;
for (m = m_head; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
if (*txidx != sc->dc_cdata.dc_tx_prod &&
frag == (DC_TX_LIST_CNT - 1))
return(ENOBUFS);
}
if ((DC_TX_LIST_CNT -
(sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
return(ENOBUFS);
f = &sc->dc_ldata->dc_tx_list[frag];
f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
if (cnt == 0) {
f->dc_status = 0;
f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
} else
f->dc_status = DC_TXSTAT_OWN;
f->dc_data = vtophys(mtod(m, vm_offset_t));
cur = frag;
DC_INC(frag, DC_TX_LIST_CNT);
cnt++;
}
}
if (m != NULL)
return(ENOBUFS);
sc->dc_cdata.dc_tx_cnt += cnt;
sc->dc_cdata.dc_tx_chain[cur] = m_head;
sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
if (sc->dc_flags & DC_TX_INTR_ALWAYS)
sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
*txidx = frag;
return(0);
}
/*
* Coalesce an mbuf chain into a single mbuf cluster buffer.
* Needed for some really badly behaved chips that just can't
* do scatter/gather correctly.
*/
static int dc_coal(sc, m_head)
struct dc_softc *sc;
struct mbuf **m_head;
{
struct mbuf *m_new, *m;
m = *m_head;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("dc%d: no memory for tx list", sc->dc_unit);
return(ENOBUFS);
}
if (m->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("dc%d: no memory for tx list", sc->dc_unit);
return(ENOBUFS);
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
m_freem(m);
*m_head = m_new;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void dc_start(ifp)
struct ifnet *ifp;
{
struct dc_softc *sc;
struct mbuf *m_head = NULL;
int idx;
sc = ifp->if_softc;
if (!sc->dc_link)
return;
if (ifp->if_flags & IFF_OACTIVE)
return;
idx = sc->dc_cdata.dc_tx_prod;
while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (sc->dc_flags & DC_TX_COALESCE) {
if (dc_coal(sc, &m_head)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
}
if (dc_encap(sc, m_head, &idx)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m_head);
}
/* Transmit */
sc->dc_cdata.dc_tx_prod = idx;
if (!(sc->dc_flags & DC_TX_POLL))
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
static void dc_init(xsc)
void *xsc;
{
struct dc_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
int s;
s = splimp();
mii = device_get_softc(sc->dc_miibus);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
dc_stop(sc);
dc_reset(sc);
/*
* Set cache alignment and burst length.
*/
if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
CSR_WRITE_4(sc, DC_BUSCTL, 0);
else
CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
} else {
DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
}
if (sc->dc_flags & DC_TX_POLL)
DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
switch(sc->dc_cachesize) {
case 32:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
break;
case 16:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
break;
case 8:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
break;
case 0:
default:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
break;
}
if (sc->dc_flags & DC_TX_STORENFWD)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
else {
if (sc->dc_txthresh == DC_TXTHRESH_160BYTES) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
} else {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
}
}
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
/*
* The app notes for the 98713 and 98715A say that
* in order to have the chips operate properly, a magic
* number must be written to CSR16. Macronix does not
* document the meaning of these bits so there's no way
* to know exactly what they do. The 98713 has a magic
* number all its own; the rest all use a different one.
*/
DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
if (sc->dc_type == DC_TYPE_98713)
DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
else
DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
}
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_72BYTES);
/* Init circular RX list. */
if (dc_list_rx_init(sc) == ENOBUFS) {
printf("dc%d: initialization failed: no "
"memory for rx buffers\n", sc->dc_unit);
dc_stop(sc);
(void)splx(s);
return;
}
/*
* Init tx descriptors.
*/
dc_list_tx_init(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
/* Enable transmitter. */
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
/*
* Load the RX/multicast filter. We do this sort of late
* because the filter programming scheme on the 21143 and
* some clones requires DMAing a setup frame via the TX
* engine, and we need the transmitter enabled for that.
*/
dc_setfilt(sc);
/* Enable receiver. */
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
mii_mediachg(mii);
dc_setcfg(sc, sc->dc_if_media);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
sc->dc_stat_ch = timeout(dc_tick, sc, hz);
#ifdef __alpha__
if(sc->dc_srm_media) {
struct ifreq ifr;
ifr.ifr_media = sc->dc_srm_media;
ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
sc->dc_srm_media = 0;
}
#endif
return;
}
/*
* Set media options.
*/
static int dc_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct dc_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = ifp->if_softc;
mii = device_get_softc(sc->dc_miibus);
mii_mediachg(mii);
ifm = &mii->mii_media;
if (DC_IS_DAVICOM(sc) &&
IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA)
dc_setcfg(sc, ifm->ifm_media);
else
sc->dc_link = 0;
return(0);
}
/*
* Report current media status.
*/
static void dc_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct dc_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = ifp->if_softc;
mii = device_get_softc(sc->dc_miibus);
mii_pollstat(mii);
ifm = &mii->mii_media;
if (DC_IS_DAVICOM(sc)) {
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
ifmr->ifm_active = ifm->ifm_media;
ifmr->ifm_status = 0;
return;
}
}
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
static int dc_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct dc_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->dc_if_flags & IFF_PROMISC)) {
dc_setfilt(sc);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->dc_if_flags & IFF_PROMISC) {
dc_setfilt(sc);
} else if (!(ifp->if_flags & IFF_RUNNING)) {
sc->dc_txthresh = 0;
dc_init(sc);
}
} else {
if (ifp->if_flags & IFF_RUNNING)
dc_stop(sc);
}
sc->dc_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
dc_setfilt(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->dc_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
#ifdef __alpha__
if (sc->dc_srm_media)
sc->dc_srm_media = 0;
#endif
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void dc_watchdog(ifp)
struct ifnet *ifp;
{
struct dc_softc *sc;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("dc%d: watchdog timeout\n", sc->dc_unit);
dc_stop(sc);
dc_reset(sc);
dc_init(sc);
if (ifp->if_snd.ifq_head != NULL)
dc_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void dc_stop(sc)
struct dc_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
untimeout(dc_tick, sc, sc->dc_stat_ch);
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
sc->dc_link = 0;
/*
* Free data in the RX lists.
*/
for (i = 0; i < DC_RX_LIST_CNT; i++) {
if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
m_freem(sc->dc_cdata.dc_rx_chain[i]);
sc->dc_cdata.dc_rx_chain[i] = NULL;
}
}
bzero((char *)&sc->dc_ldata->dc_rx_list,
sizeof(sc->dc_ldata->dc_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < DC_TX_LIST_CNT; i++) {
if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
DC_TXCTL_SETUP) {
sc->dc_cdata.dc_tx_chain[i] = NULL;
continue;
}
m_freem(sc->dc_cdata.dc_tx_chain[i]);
sc->dc_cdata.dc_tx_chain[i] = NULL;
}
}
bzero((char *)&sc->dc_ldata->dc_tx_list,
sizeof(sc->dc_ldata->dc_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void dc_shutdown(dev)
device_t dev;
{
struct dc_softc *sc;
sc = device_get_softc(dev);
dc_stop(sc);
return;
}