165e0ac05b
waiting for a context switch
1828 lines
48 KiB
C
1828 lines
48 KiB
C
/*-
|
|
* Copyright (c) 2003 Peter Wemm.
|
|
* Copyright (c) 1992 Terrence R. Lambert.
|
|
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_atalk.h"
|
|
#include "opt_atpic.h"
|
|
#include "opt_compat.h"
|
|
#include "opt_cpu.h"
|
|
#include "opt_ddb.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_ipx.h"
|
|
#include "opt_isa.h"
|
|
#include "opt_kstack_pages.h"
|
|
#include "opt_maxmem.h"
|
|
#include "opt_msgbuf.h"
|
|
#include "opt_perfmon.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/imgact.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/ucontext.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/eventhandler.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/vm_extern.h>
|
|
|
|
#include <sys/user.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/cons.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <net/netisr.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/cputypes.h>
|
|
#include <machine/reg.h>
|
|
#include <machine/clock.h>
|
|
#include <machine/specialreg.h>
|
|
#include <machine/intr_machdep.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/metadata.h>
|
|
#include <machine/proc.h>
|
|
#ifdef PERFMON
|
|
#include <machine/perfmon.h>
|
|
#endif
|
|
#include <machine/tss.h>
|
|
#ifdef SMP
|
|
#include <machine/smp.h>
|
|
#endif
|
|
|
|
#include <amd64/isa/icu.h>
|
|
|
|
#include <isa/isareg.h>
|
|
#include <isa/rtc.h>
|
|
#include <sys/ptrace.h>
|
|
#include <machine/sigframe.h>
|
|
|
|
/* Sanity check for __curthread() */
|
|
CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
|
|
|
|
extern u_int64_t hammer_time(u_int64_t, u_int64_t);
|
|
extern void dblfault_handler(void);
|
|
|
|
extern void printcpuinfo(void); /* XXX header file */
|
|
extern void identify_cpu(void);
|
|
extern void panicifcpuunsupported(void);
|
|
extern void initializecpu(void);
|
|
|
|
#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
|
|
#define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
|
|
|
|
static void cpu_startup(void *);
|
|
static void get_fpcontext(struct thread *td, mcontext_t *mcp);
|
|
static int set_fpcontext(struct thread *td, const mcontext_t *mcp);
|
|
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
|
|
|
|
int _udatasel, _ucodesel, _ucode32sel;
|
|
u_long atdevbase;
|
|
|
|
int cold = 1;
|
|
|
|
long Maxmem = 0;
|
|
|
|
vm_paddr_t phys_avail[20];
|
|
|
|
/* must be 2 less so 0 0 can signal end of chunks */
|
|
#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2)
|
|
|
|
struct kva_md_info kmi;
|
|
|
|
static struct trapframe proc0_tf;
|
|
struct region_descriptor r_gdt, r_idt;
|
|
|
|
struct pcpu __pcpu[MAXCPU];
|
|
|
|
struct mtx icu_lock;
|
|
|
|
static void
|
|
cpu_startup(dummy)
|
|
void *dummy;
|
|
{
|
|
/*
|
|
* Good {morning,afternoon,evening,night}.
|
|
*/
|
|
startrtclock();
|
|
printcpuinfo();
|
|
panicifcpuunsupported();
|
|
#ifdef PERFMON
|
|
perfmon_init();
|
|
#endif
|
|
printf("real memory = %ju (%ju MB)\n", ptoa((uintmax_t)Maxmem),
|
|
ptoa((uintmax_t)Maxmem) / 1048576);
|
|
/*
|
|
* Display any holes after the first chunk of extended memory.
|
|
*/
|
|
if (bootverbose) {
|
|
int indx;
|
|
|
|
printf("Physical memory chunk(s):\n");
|
|
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
|
|
vm_paddr_t size;
|
|
|
|
size = phys_avail[indx + 1] - phys_avail[indx];
|
|
printf(
|
|
"0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
|
|
(uintmax_t)phys_avail[indx],
|
|
(uintmax_t)phys_avail[indx + 1] - 1,
|
|
(uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
vm_ksubmap_init(&kmi);
|
|
|
|
printf("avail memory = %ju (%ju MB)\n",
|
|
ptoa((uintmax_t)cnt.v_free_count),
|
|
ptoa((uintmax_t)cnt.v_free_count) / 1048576);
|
|
|
|
/*
|
|
* Set up buffers, so they can be used to read disk labels.
|
|
*/
|
|
bufinit();
|
|
vm_pager_bufferinit();
|
|
|
|
cpu_setregs();
|
|
}
|
|
|
|
/*
|
|
* Send an interrupt to process.
|
|
*
|
|
* Stack is set up to allow sigcode stored
|
|
* at top to call routine, followed by kcall
|
|
* to sigreturn routine below. After sigreturn
|
|
* resets the signal mask, the stack, and the
|
|
* frame pointer, it returns to the user
|
|
* specified pc, psl.
|
|
*/
|
|
void
|
|
sendsig(catcher, sig, mask, code)
|
|
sig_t catcher;
|
|
int sig;
|
|
sigset_t *mask;
|
|
u_long code;
|
|
{
|
|
struct sigframe sf, *sfp;
|
|
struct proc *p;
|
|
struct thread *td;
|
|
struct sigacts *psp;
|
|
char *sp;
|
|
struct trapframe *regs;
|
|
int oonstack;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
psp = p->p_sigacts;
|
|
mtx_assert(&psp->ps_mtx, MA_OWNED);
|
|
regs = td->td_frame;
|
|
oonstack = sigonstack(regs->tf_rsp);
|
|
|
|
/* Save user context. */
|
|
bzero(&sf, sizeof(sf));
|
|
sf.sf_uc.uc_sigmask = *mask;
|
|
sf.sf_uc.uc_stack = td->td_sigstk;
|
|
sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
|
|
? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
|
|
sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
|
|
bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
|
|
sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
|
|
get_fpcontext(td, &sf.sf_uc.uc_mcontext);
|
|
fpstate_drop(td);
|
|
|
|
/* Allocate space for the signal handler context. */
|
|
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
|
|
SIGISMEMBER(psp->ps_sigonstack, sig)) {
|
|
sp = td->td_sigstk.ss_sp +
|
|
td->td_sigstk.ss_size - sizeof(struct sigframe);
|
|
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
|
|
td->td_sigstk.ss_flags |= SS_ONSTACK;
|
|
#endif
|
|
} else
|
|
sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
|
|
/* Align to 16 bytes. */
|
|
sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
|
|
|
|
/* Translate the signal if appropriate. */
|
|
if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
|
|
sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
|
|
|
|
/* Build the argument list for the signal handler. */
|
|
regs->tf_rdi = sig; /* arg 1 in %rdi */
|
|
regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
|
|
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
|
|
/* Signal handler installed with SA_SIGINFO. */
|
|
regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
|
|
sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
|
|
|
|
/* Fill in POSIX parts */
|
|
sf.sf_si.si_signo = sig;
|
|
sf.sf_si.si_code = code;
|
|
regs->tf_rcx = regs->tf_addr; /* arg 4 in %rcx */
|
|
} else {
|
|
/* Old FreeBSD-style arguments. */
|
|
regs->tf_rsi = code; /* arg 2 in %rsi */
|
|
regs->tf_rcx = regs->tf_addr; /* arg 4 in %rcx */
|
|
sf.sf_ahu.sf_handler = catcher;
|
|
}
|
|
mtx_unlock(&psp->ps_mtx);
|
|
PROC_UNLOCK(p);
|
|
|
|
/*
|
|
* Copy the sigframe out to the user's stack.
|
|
*/
|
|
if (copyout(&sf, sfp, sizeof(*sfp)) != 0) {
|
|
#ifdef DEBUG
|
|
printf("process %ld has trashed its stack\n", (long)p->p_pid);
|
|
#endif
|
|
PROC_LOCK(p);
|
|
sigexit(td, SIGILL);
|
|
}
|
|
|
|
regs->tf_rsp = (long)sfp;
|
|
regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
|
|
regs->tf_rflags &= ~PSL_T;
|
|
regs->tf_cs = _ucodesel;
|
|
PROC_LOCK(p);
|
|
mtx_lock(&psp->ps_mtx);
|
|
}
|
|
|
|
/*
|
|
* Build siginfo_t for SA thread
|
|
*/
|
|
void
|
|
cpu_thread_siginfo(int sig, u_long code, siginfo_t *si)
|
|
{
|
|
struct proc *p;
|
|
struct thread *td;
|
|
struct trapframe *regs;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
regs = td->td_frame;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
bzero(si, sizeof(*si));
|
|
si->si_signo = sig;
|
|
si->si_code = code;
|
|
si->si_addr = (void *)regs->tf_addr;
|
|
/* XXXKSE fill other fields */
|
|
}
|
|
|
|
/*
|
|
* System call to cleanup state after a signal
|
|
* has been taken. Reset signal mask and
|
|
* stack state from context left by sendsig (above).
|
|
* Return to previous pc and psl as specified by
|
|
* context left by sendsig. Check carefully to
|
|
* make sure that the user has not modified the
|
|
* state to gain improper privileges.
|
|
*
|
|
* MPSAFE
|
|
*/
|
|
int
|
|
sigreturn(td, uap)
|
|
struct thread *td;
|
|
struct sigreturn_args /* {
|
|
const __ucontext *sigcntxp;
|
|
} */ *uap;
|
|
{
|
|
ucontext_t uc;
|
|
struct proc *p = td->td_proc;
|
|
struct trapframe *regs;
|
|
const ucontext_t *ucp;
|
|
long rflags;
|
|
int cs, error, ret;
|
|
|
|
error = copyin(uap->sigcntxp, &uc, sizeof(uc));
|
|
if (error != 0)
|
|
return (error);
|
|
ucp = &uc;
|
|
regs = td->td_frame;
|
|
rflags = ucp->uc_mcontext.mc_rflags;
|
|
/*
|
|
* Don't allow users to change privileged or reserved flags.
|
|
*/
|
|
/*
|
|
* XXX do allow users to change the privileged flag PSL_RF.
|
|
* The cpu sets PSL_RF in tf_rflags for faults. Debuggers
|
|
* should sometimes set it there too. tf_rflags is kept in
|
|
* the signal context during signal handling and there is no
|
|
* other place to remember it, so the PSL_RF bit may be
|
|
* corrupted by the signal handler without us knowing.
|
|
* Corruption of the PSL_RF bit at worst causes one more or
|
|
* one less debugger trap, so allowing it is fairly harmless.
|
|
*/
|
|
if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
|
|
printf("sigreturn: rflags = 0x%lx\n", rflags);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Don't allow users to load a valid privileged %cs. Let the
|
|
* hardware check for invalid selectors, excess privilege in
|
|
* other selectors, invalid %eip's and invalid %esp's.
|
|
*/
|
|
cs = ucp->uc_mcontext.mc_cs;
|
|
if (!CS_SECURE(cs)) {
|
|
printf("sigreturn: cs = 0x%x\n", cs);
|
|
trapsignal(td, SIGBUS, T_PROTFLT);
|
|
return (EINVAL);
|
|
}
|
|
|
|
ret = set_fpcontext(td, &ucp->uc_mcontext);
|
|
if (ret != 0)
|
|
return (ret);
|
|
bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
|
|
|
|
PROC_LOCK(p);
|
|
#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
|
|
if (ucp->uc_mcontext.mc_onstack & 1)
|
|
td->td_sigstk.ss_flags |= SS_ONSTACK;
|
|
else
|
|
td->td_sigstk.ss_flags &= ~SS_ONSTACK;
|
|
#endif
|
|
|
|
td->td_sigmask = ucp->uc_sigmask;
|
|
SIG_CANTMASK(td->td_sigmask);
|
|
signotify(td);
|
|
PROC_UNLOCK(p);
|
|
td->td_pcb->pcb_flags |= PCB_FULLCTX;
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD4
|
|
int
|
|
freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
|
|
{
|
|
|
|
return sigreturn(td, (struct sigreturn_args *)uap);
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Machine dependent boot() routine
|
|
*
|
|
* I haven't seen anything to put here yet
|
|
* Possibly some stuff might be grafted back here from boot()
|
|
*/
|
|
void
|
|
cpu_boot(int howto)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Shutdown the CPU as much as possible
|
|
*/
|
|
void
|
|
cpu_halt(void)
|
|
{
|
|
for (;;)
|
|
__asm__ ("hlt");
|
|
}
|
|
|
|
/*
|
|
* Hook to idle the CPU when possible. In the SMP case we default to
|
|
* off because a halted cpu will not currently pick up a new thread in the
|
|
* run queue until the next timer tick. If turned on this will result in
|
|
* approximately a 4.2% loss in real time performance in buildworld tests
|
|
* (but improves user and sys times oddly enough), and saves approximately
|
|
* 5% in power consumption on an idle machine (tests w/2xCPU 1.1GHz P3).
|
|
*
|
|
* XXX we need to have a cpu mask of idle cpus and generate an IPI or
|
|
* otherwise generate some sort of interrupt to wake up cpus sitting in HLT.
|
|
* Then we can have our cake and eat it too.
|
|
*
|
|
* XXX I'm turning it on for SMP as well by default for now. It seems to
|
|
* help lock contention somewhat, and this is critical for HTT. -Peter
|
|
*/
|
|
static int cpu_idle_hlt = 1;
|
|
SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
|
|
&cpu_idle_hlt, 0, "Idle loop HLT enable");
|
|
|
|
static void
|
|
cpu_idle_default(void)
|
|
{
|
|
/*
|
|
* we must absolutely guarentee that hlt is the
|
|
* absolute next instruction after sti or we
|
|
* introduce a timing window.
|
|
*/
|
|
__asm __volatile("sti; hlt");
|
|
}
|
|
|
|
/*
|
|
* Note that we have to be careful here to avoid a race between checking
|
|
* sched_runnable() and actually halting. If we don't do this, we may waste
|
|
* the time between calling hlt and the next interrupt even though there
|
|
* is a runnable process.
|
|
*/
|
|
void
|
|
cpu_idle(void)
|
|
{
|
|
|
|
if (cpu_idle_hlt) {
|
|
disable_intr();
|
|
if (sched_runnable())
|
|
enable_intr();
|
|
else
|
|
(*cpu_idle_hook)();
|
|
}
|
|
}
|
|
|
|
/* Other subsystems (e.g., ACPI) can hook this later. */
|
|
void (*cpu_idle_hook)(void) = cpu_idle_default;
|
|
|
|
/*
|
|
* Clear registers on exec
|
|
*/
|
|
void
|
|
exec_setregs(td, entry, stack, ps_strings)
|
|
struct thread *td;
|
|
u_long entry;
|
|
u_long stack;
|
|
u_long ps_strings;
|
|
{
|
|
struct trapframe *regs = td->td_frame;
|
|
struct pcb *pcb = td->td_pcb;
|
|
|
|
wrmsr(MSR_FSBASE, 0);
|
|
wrmsr(MSR_KGSBASE, 0); /* User value while we're in the kernel */
|
|
pcb->pcb_fsbase = 0;
|
|
pcb->pcb_gsbase = 0;
|
|
load_ds(_udatasel);
|
|
load_es(_udatasel);
|
|
load_fs(_udatasel);
|
|
load_gs(_udatasel);
|
|
pcb->pcb_ds = _udatasel;
|
|
pcb->pcb_es = _udatasel;
|
|
pcb->pcb_fs = _udatasel;
|
|
pcb->pcb_gs = _udatasel;
|
|
|
|
bzero((char *)regs, sizeof(struct trapframe));
|
|
regs->tf_rip = entry;
|
|
regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
|
|
regs->tf_rdi = stack; /* argv */
|
|
regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
|
|
regs->tf_ss = _udatasel;
|
|
regs->tf_cs = _ucodesel;
|
|
|
|
/*
|
|
* Reset the hardware debug registers if they were in use.
|
|
* They won't have any meaning for the newly exec'd process.
|
|
*/
|
|
if (pcb->pcb_flags & PCB_DBREGS) {
|
|
pcb->pcb_dr0 = 0;
|
|
pcb->pcb_dr1 = 0;
|
|
pcb->pcb_dr2 = 0;
|
|
pcb->pcb_dr3 = 0;
|
|
pcb->pcb_dr6 = 0;
|
|
pcb->pcb_dr7 = 0;
|
|
if (pcb == PCPU_GET(curpcb)) {
|
|
/*
|
|
* Clear the debug registers on the running
|
|
* CPU, otherwise they will end up affecting
|
|
* the next process we switch to.
|
|
*/
|
|
reset_dbregs();
|
|
}
|
|
pcb->pcb_flags &= ~PCB_DBREGS;
|
|
}
|
|
|
|
/*
|
|
* Arrange to trap the next fpu or `fwait' instruction (see fpu.c
|
|
* for why fwait must be trapped at least if there is an fpu or an
|
|
* emulator). This is mainly to handle the case where npx0 is not
|
|
* configured, since the fpu routines normally set up the trap
|
|
* otherwise. It should be done only at boot time, but doing it
|
|
* here allows modifying `fpu_exists' for testing the emulator on
|
|
* systems with an fpu.
|
|
*/
|
|
load_cr0(rcr0() | CR0_MP | CR0_TS);
|
|
|
|
/* Initialize the fpu (if any) for the current process. */
|
|
/*
|
|
* XXX the above load_cr0() also initializes it and is a layering
|
|
* violation. It drops the fpu state partially
|
|
* and this would be fatal if we were interrupted now, and decided
|
|
* to force the state to the pcb, and checked the invariant
|
|
* (CR0_TS clear) if and only if PCPU_GET(fpcurthread) != NULL).
|
|
* ALL of this can happen except the check. The check used to
|
|
* happen and be fatal later when we didn't complete the drop
|
|
* before returning to user mode. This should be fixed properly
|
|
* soon.
|
|
*/
|
|
fpstate_drop(td);
|
|
}
|
|
|
|
void
|
|
cpu_setregs(void)
|
|
{
|
|
register_t cr0;
|
|
|
|
cr0 = rcr0();
|
|
cr0 |= CR0_NE; /* Done by fpuinit() */
|
|
cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
|
|
cr0 |= CR0_WP | CR0_AM;
|
|
load_cr0(cr0);
|
|
}
|
|
|
|
static int
|
|
sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
|
|
req);
|
|
if (!error && req->newptr)
|
|
resettodr();
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
|
|
&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
|
|
|
|
SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
|
|
CTLFLAG_RW, &disable_rtc_set, 0, "");
|
|
|
|
SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
|
|
CTLFLAG_RW, &wall_cmos_clock, 0, "");
|
|
|
|
/*
|
|
* Initialize 386 and configure to run kernel
|
|
*/
|
|
|
|
/*
|
|
* Initialize segments & interrupt table
|
|
*/
|
|
|
|
struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor table */
|
|
static struct gate_descriptor idt0[NIDT];
|
|
struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
|
|
|
|
static char dblfault_stack[PAGE_SIZE] __aligned(16);
|
|
|
|
struct amd64tss common_tss[MAXCPU];
|
|
|
|
/* software prototypes -- in more palatable form */
|
|
struct soft_segment_descriptor gdt_segs[] = {
|
|
/* GNULL_SEL 0 Null Descriptor */
|
|
{ 0x0, /* segment base address */
|
|
0x0, /* length */
|
|
0, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
0, /* segment descriptor present */
|
|
0, /* long */
|
|
0, /* default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* GCODE_SEL 1 Code Descriptor for kernel */
|
|
{ 0x0, /* segment base address */
|
|
0xfffff, /* length - all address space */
|
|
SDT_MEMERA, /* segment type */
|
|
SEL_KPL, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
1, /* long */
|
|
0, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
/* GDATA_SEL 2 Data Descriptor for kernel */
|
|
{ 0x0, /* segment base address */
|
|
0xfffff, /* length - all address space */
|
|
SDT_MEMRWA, /* segment type */
|
|
SEL_KPL, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
1, /* long */
|
|
0, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
/* GUCODE32_SEL 3 32 bit Code Descriptor for user */
|
|
{ 0x0, /* segment base address */
|
|
0xfffff, /* length - all address space */
|
|
SDT_MEMERA, /* segment type */
|
|
SEL_UPL, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, /* long */
|
|
1, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
/* GUDATA_SEL 4 32/64 bit Data Descriptor for user */
|
|
{ 0x0, /* segment base address */
|
|
0xfffff, /* length - all address space */
|
|
SDT_MEMRWA, /* segment type */
|
|
SEL_UPL, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, /* long */
|
|
1, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
/* GUCODE_SEL 5 64 bit Code Descriptor for user */
|
|
{ 0x0, /* segment base address */
|
|
0xfffff, /* length - all address space */
|
|
SDT_MEMERA, /* segment type */
|
|
SEL_UPL, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
1, /* long */
|
|
0, /* default 32 vs 16 bit size */
|
|
1 /* limit granularity (byte/page units)*/ },
|
|
/* GPROC0_SEL 6 Proc 0 Tss Descriptor */
|
|
{
|
|
0x0, /* segment base address */
|
|
sizeof(struct amd64tss)-1,/* length - all address space */
|
|
SDT_SYSTSS, /* segment type */
|
|
SEL_KPL, /* segment descriptor priority level */
|
|
1, /* segment descriptor present */
|
|
0, /* long */
|
|
0, /* unused - default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
/* Actually, the TSS is a system descriptor which is double size */
|
|
{ 0x0, /* segment base address */
|
|
0x0, /* length */
|
|
0, /* segment type */
|
|
0, /* segment descriptor priority level */
|
|
0, /* segment descriptor present */
|
|
0, /* long */
|
|
0, /* default 32 vs 16 bit size */
|
|
0 /* limit granularity (byte/page units)*/ },
|
|
};
|
|
|
|
void
|
|
setidt(idx, func, typ, dpl, ist)
|
|
int idx;
|
|
inthand_t *func;
|
|
int typ;
|
|
int dpl;
|
|
int ist;
|
|
{
|
|
struct gate_descriptor *ip;
|
|
|
|
ip = idt + idx;
|
|
ip->gd_looffset = (uintptr_t)func;
|
|
ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
|
|
ip->gd_ist = ist;
|
|
ip->gd_xx = 0;
|
|
ip->gd_type = typ;
|
|
ip->gd_dpl = dpl;
|
|
ip->gd_p = 1;
|
|
ip->gd_hioffset = ((uintptr_t)func)>>16 ;
|
|
}
|
|
|
|
#define IDTVEC(name) __CONCAT(X,name)
|
|
|
|
extern inthand_t
|
|
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
|
|
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
|
|
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
|
|
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
|
|
IDTVEC(xmm), IDTVEC(dblfault),
|
|
IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
|
|
|
|
void
|
|
sdtossd(sd, ssd)
|
|
struct user_segment_descriptor *sd;
|
|
struct soft_segment_descriptor *ssd;
|
|
{
|
|
|
|
ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
|
|
ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
|
|
ssd->ssd_type = sd->sd_type;
|
|
ssd->ssd_dpl = sd->sd_dpl;
|
|
ssd->ssd_p = sd->sd_p;
|
|
ssd->ssd_long = sd->sd_long;
|
|
ssd->ssd_def32 = sd->sd_def32;
|
|
ssd->ssd_gran = sd->sd_gran;
|
|
}
|
|
|
|
void
|
|
ssdtosd(ssd, sd)
|
|
struct soft_segment_descriptor *ssd;
|
|
struct user_segment_descriptor *sd;
|
|
{
|
|
|
|
sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
|
|
sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
|
|
sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
|
|
sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
|
|
sd->sd_type = ssd->ssd_type;
|
|
sd->sd_dpl = ssd->ssd_dpl;
|
|
sd->sd_p = ssd->ssd_p;
|
|
sd->sd_long = ssd->ssd_long;
|
|
sd->sd_def32 = ssd->ssd_def32;
|
|
sd->sd_gran = ssd->ssd_gran;
|
|
}
|
|
|
|
void
|
|
ssdtosyssd(ssd, sd)
|
|
struct soft_segment_descriptor *ssd;
|
|
struct system_segment_descriptor *sd;
|
|
{
|
|
|
|
sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
|
|
sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
|
|
sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
|
|
sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
|
|
sd->sd_type = ssd->ssd_type;
|
|
sd->sd_dpl = ssd->ssd_dpl;
|
|
sd->sd_p = ssd->ssd_p;
|
|
sd->sd_gran = ssd->ssd_gran;
|
|
}
|
|
|
|
#if !defined(DEV_ATPIC) && defined(DEV_ISA)
|
|
#include <isa/isavar.h>
|
|
u_int
|
|
isa_irq_pending(void)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
#define PHYSMAP_SIZE (2 * 8)
|
|
|
|
struct bios_smap {
|
|
u_int64_t base;
|
|
u_int64_t length;
|
|
u_int32_t type;
|
|
} __packed;
|
|
|
|
u_int basemem;
|
|
|
|
/*
|
|
* Populate the (physmap) array with base/bound pairs describing the
|
|
* available physical memory in the system, then test this memory and
|
|
* build the phys_avail array describing the actually-available memory.
|
|
*
|
|
* If we cannot accurately determine the physical memory map, then use
|
|
* value from the 0xE801 call, and failing that, the RTC.
|
|
*
|
|
* Total memory size may be set by the kernel environment variable
|
|
* hw.physmem or the compile-time define MAXMEM.
|
|
*
|
|
* XXX first should be vm_paddr_t.
|
|
*/
|
|
static void
|
|
getmemsize(caddr_t kmdp, u_int64_t first)
|
|
{
|
|
int i, physmap_idx, pa_indx;
|
|
vm_paddr_t pa, physmap[PHYSMAP_SIZE];
|
|
pt_entry_t *pte;
|
|
char *cp;
|
|
struct bios_smap *smapbase, *smap, *smapend;
|
|
u_int32_t smapsize;
|
|
|
|
bzero(physmap, sizeof(physmap));
|
|
basemem = 0;
|
|
physmap_idx = 0;
|
|
|
|
/*
|
|
* get memory map from INT 15:E820, kindly supplied by the loader.
|
|
*
|
|
* subr_module.c says:
|
|
* "Consumer may safely assume that size value precedes data."
|
|
* ie: an int32_t immediately precedes smap.
|
|
*/
|
|
smapbase = (struct bios_smap *)preload_search_info(kmdp,
|
|
MODINFO_METADATA | MODINFOMD_SMAP);
|
|
if (smapbase == NULL)
|
|
panic("No BIOS smap info from loader!");
|
|
|
|
smapsize = *((u_int32_t *)smapbase - 1);
|
|
smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
|
|
|
|
for (smap = smapbase; smap < smapend; smap++) {
|
|
if (boothowto & RB_VERBOSE)
|
|
printf("SMAP type=%02x base=%016lx len=%016lx\n",
|
|
smap->type, smap->base, smap->length);
|
|
|
|
if (smap->type != 0x01)
|
|
continue;
|
|
|
|
if (smap->length == 0)
|
|
continue;
|
|
|
|
for (i = 0; i <= physmap_idx; i += 2) {
|
|
if (smap->base < physmap[i + 1]) {
|
|
if (boothowto & RB_VERBOSE)
|
|
printf(
|
|
"Overlapping or non-montonic memory region, ignoring second region\n");
|
|
goto next_run;
|
|
}
|
|
}
|
|
|
|
if (smap->base == physmap[physmap_idx + 1]) {
|
|
physmap[physmap_idx + 1] += smap->length;
|
|
next_run:
|
|
continue;
|
|
}
|
|
|
|
physmap_idx += 2;
|
|
if (physmap_idx == PHYSMAP_SIZE) {
|
|
printf(
|
|
"Too many segments in the physical address map, giving up\n");
|
|
break;
|
|
}
|
|
physmap[physmap_idx] = smap->base;
|
|
physmap[physmap_idx + 1] = smap->base + smap->length;
|
|
}
|
|
|
|
/*
|
|
* Find the 'base memory' segment for SMP
|
|
*/
|
|
basemem = 0;
|
|
for (i = 0; i <= physmap_idx; i += 2) {
|
|
if (physmap[i] == 0x00000000) {
|
|
basemem = physmap[i + 1] / 1024;
|
|
break;
|
|
}
|
|
}
|
|
if (basemem == 0)
|
|
panic("BIOS smap did not include a basemem segment!");
|
|
|
|
#ifdef SMP
|
|
/* make hole for AP bootstrap code */
|
|
physmap[1] = mp_bootaddress(physmap[1] / 1024);
|
|
#endif
|
|
|
|
/*
|
|
* Maxmem isn't the "maximum memory", it's one larger than the
|
|
* highest page of the physical address space. It should be
|
|
* called something like "Maxphyspage". We may adjust this
|
|
* based on ``hw.physmem'' and the results of the memory test.
|
|
*/
|
|
Maxmem = atop(physmap[physmap_idx + 1]);
|
|
|
|
#ifdef MAXMEM
|
|
Maxmem = MAXMEM / 4;
|
|
#endif
|
|
|
|
/*
|
|
* hw.physmem is a size in bytes; we also allow k, m, and g suffixes
|
|
* for the appropriate modifiers. This overrides MAXMEM.
|
|
*/
|
|
cp = getenv("hw.physmem");
|
|
if (cp != NULL) {
|
|
u_int64_t AllowMem, sanity;
|
|
char *ep;
|
|
|
|
sanity = AllowMem = strtouq(cp, &ep, 0);
|
|
if ((ep != cp) && (*ep != 0)) {
|
|
switch(*ep) {
|
|
case 'g':
|
|
case 'G':
|
|
AllowMem <<= 10;
|
|
case 'm':
|
|
case 'M':
|
|
AllowMem <<= 10;
|
|
case 'k':
|
|
case 'K':
|
|
AllowMem <<= 10;
|
|
break;
|
|
default:
|
|
AllowMem = sanity = 0;
|
|
}
|
|
if (AllowMem < sanity)
|
|
AllowMem = 0;
|
|
}
|
|
if (AllowMem == 0)
|
|
printf("Ignoring invalid memory size of '%s'\n", cp);
|
|
else
|
|
Maxmem = atop(AllowMem);
|
|
freeenv(cp);
|
|
}
|
|
|
|
if (atop(physmap[physmap_idx + 1]) != Maxmem &&
|
|
(boothowto & RB_VERBOSE))
|
|
printf("Physical memory use set to %ldK\n", Maxmem * 4);
|
|
|
|
/*
|
|
* If Maxmem has been increased beyond what the system has detected,
|
|
* extend the last memory segment to the new limit.
|
|
*/
|
|
if (atop(physmap[physmap_idx + 1]) < Maxmem)
|
|
physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem);
|
|
|
|
/* call pmap initialization to make new kernel address space */
|
|
pmap_bootstrap(&first);
|
|
|
|
/*
|
|
* Size up each available chunk of physical memory.
|
|
*/
|
|
physmap[0] = PAGE_SIZE; /* mask off page 0 */
|
|
pa_indx = 0;
|
|
phys_avail[pa_indx++] = physmap[0];
|
|
phys_avail[pa_indx] = physmap[0];
|
|
pte = CMAP1;
|
|
|
|
/*
|
|
* physmap is in bytes, so when converting to page boundaries,
|
|
* round up the start address and round down the end address.
|
|
*/
|
|
for (i = 0; i <= physmap_idx; i += 2) {
|
|
vm_paddr_t end;
|
|
|
|
end = ptoa((vm_paddr_t)Maxmem);
|
|
if (physmap[i + 1] < end)
|
|
end = trunc_page(physmap[i + 1]);
|
|
for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
|
|
int tmp, page_bad;
|
|
int *ptr = (int *)CADDR1;
|
|
|
|
/*
|
|
* block out kernel memory as not available.
|
|
*/
|
|
if (pa >= 0x100000 && pa < first)
|
|
continue;
|
|
|
|
page_bad = FALSE;
|
|
|
|
/*
|
|
* map page into kernel: valid, read/write,non-cacheable
|
|
*/
|
|
*pte = pa | PG_V | PG_RW | PG_N;
|
|
invltlb();
|
|
|
|
tmp = *(int *)ptr;
|
|
/*
|
|
* Test for alternating 1's and 0's
|
|
*/
|
|
*(volatile int *)ptr = 0xaaaaaaaa;
|
|
if (*(volatile int *)ptr != 0xaaaaaaaa)
|
|
page_bad = TRUE;
|
|
/*
|
|
* Test for alternating 0's and 1's
|
|
*/
|
|
*(volatile int *)ptr = 0x55555555;
|
|
if (*(volatile int *)ptr != 0x55555555)
|
|
page_bad = TRUE;
|
|
/*
|
|
* Test for all 1's
|
|
*/
|
|
*(volatile int *)ptr = 0xffffffff;
|
|
if (*(volatile int *)ptr != 0xffffffff)
|
|
page_bad = TRUE;
|
|
/*
|
|
* Test for all 0's
|
|
*/
|
|
*(volatile int *)ptr = 0x0;
|
|
if (*(volatile int *)ptr != 0x0)
|
|
page_bad = TRUE;
|
|
/*
|
|
* Restore original value.
|
|
*/
|
|
*(int *)ptr = tmp;
|
|
|
|
/*
|
|
* Adjust array of valid/good pages.
|
|
*/
|
|
if (page_bad == TRUE)
|
|
continue;
|
|
/*
|
|
* If this good page is a continuation of the
|
|
* previous set of good pages, then just increase
|
|
* the end pointer. Otherwise start a new chunk.
|
|
* Note that "end" points one higher than end,
|
|
* making the range >= start and < end.
|
|
* If we're also doing a speculative memory
|
|
* test and we at or past the end, bump up Maxmem
|
|
* so that we keep going. The first bad page
|
|
* will terminate the loop.
|
|
*/
|
|
if (phys_avail[pa_indx] == pa) {
|
|
phys_avail[pa_indx] += PAGE_SIZE;
|
|
} else {
|
|
pa_indx++;
|
|
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
|
|
printf(
|
|
"Too many holes in the physical address space, giving up\n");
|
|
pa_indx--;
|
|
break;
|
|
}
|
|
phys_avail[pa_indx++] = pa; /* start */
|
|
phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
|
|
}
|
|
physmem++;
|
|
}
|
|
}
|
|
*pte = 0;
|
|
invltlb();
|
|
|
|
/*
|
|
* XXX
|
|
* The last chunk must contain at least one page plus the message
|
|
* buffer to avoid complicating other code (message buffer address
|
|
* calculation, etc.).
|
|
*/
|
|
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
|
|
round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
|
|
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
|
|
phys_avail[pa_indx--] = 0;
|
|
phys_avail[pa_indx--] = 0;
|
|
}
|
|
|
|
Maxmem = atop(phys_avail[pa_indx]);
|
|
|
|
/* Trim off space for the message buffer. */
|
|
phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
|
|
|
|
avail_end = phys_avail[pa_indx];
|
|
}
|
|
|
|
u_int64_t
|
|
hammer_time(u_int64_t modulep, u_int64_t physfree)
|
|
{
|
|
caddr_t kmdp;
|
|
int gsel_tss, off, x;
|
|
struct pcpu *pc;
|
|
u_int64_t msr;
|
|
char *env;
|
|
|
|
#ifdef DEV_ISA
|
|
/* Preemptively mask the atpics and leave them shut down */
|
|
outb(IO_ICU1 + ICU_IMR_OFFSET, 0xff);
|
|
outb(IO_ICU2 + ICU_IMR_OFFSET, 0xff);
|
|
#else
|
|
#error "have you forgotten the isa device?";
|
|
#endif
|
|
|
|
#if 0 /* Not till we test the features bit */
|
|
/* Turn on PTE NX (no execute) bit */
|
|
msr = rdmsr(MSR_EFER) | EFER_NXE;
|
|
wrmsr(MSR_EFER, msr);
|
|
#endif
|
|
|
|
proc0.p_uarea = (struct user *)(physfree + KERNBASE);
|
|
bzero(proc0.p_uarea, UAREA_PAGES * PAGE_SIZE);
|
|
physfree += UAREA_PAGES * PAGE_SIZE;
|
|
thread0.td_kstack = physfree + KERNBASE;
|
|
bzero((void *)thread0.td_kstack, KSTACK_PAGES * PAGE_SIZE);
|
|
physfree += KSTACK_PAGES * PAGE_SIZE;
|
|
thread0.td_pcb = (struct pcb *)
|
|
(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
|
|
|
|
atdevbase = ISA_HOLE_START + KERNBASE;
|
|
|
|
/*
|
|
* This may be done better later if it gets more high level
|
|
* components in it. If so just link td->td_proc here.
|
|
*/
|
|
proc_linkup(&proc0, &ksegrp0, &kse0, &thread0);
|
|
|
|
preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
|
|
preload_bootstrap_relocate(KERNBASE);
|
|
kmdp = preload_search_by_type("elf kernel");
|
|
if (kmdp == NULL)
|
|
kmdp = preload_search_by_type("elf64 kernel");
|
|
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
|
|
kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
|
|
|
|
/* Init basic tunables, hz etc */
|
|
init_param1();
|
|
|
|
/*
|
|
* make gdt memory segments
|
|
*/
|
|
gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
|
|
|
|
for (x = 0; x < NGDT; x++) {
|
|
if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
|
|
ssdtosd(&gdt_segs[x], &gdt[x]);
|
|
}
|
|
ssdtosyssd(&gdt_segs[GPROC0_SEL],
|
|
(struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
|
|
|
|
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
|
|
r_gdt.rd_base = (long) gdt;
|
|
lgdt(&r_gdt);
|
|
pc = &__pcpu[0];
|
|
|
|
wrmsr(MSR_FSBASE, 0); /* User value */
|
|
wrmsr(MSR_GSBASE, (u_int64_t)pc);
|
|
wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
|
|
|
|
pcpu_init(pc, 0, sizeof(struct pcpu));
|
|
PCPU_SET(prvspace, pc);
|
|
PCPU_SET(curthread, &thread0);
|
|
PCPU_SET(curpcb, thread0.td_pcb);
|
|
PCPU_SET(tssp, &common_tss[0]);
|
|
|
|
/*
|
|
* Initialize mutexes.
|
|
*
|
|
* icu_lock: in order to allow an interrupt to occur in a critical
|
|
* section, to set pcpu->ipending (etc...) properly, we
|
|
* must be able to get the icu lock, so it can't be
|
|
* under witness.
|
|
*/
|
|
mutex_init();
|
|
mtx_init(&clock_lock, "clk", NULL, MTX_SPIN);
|
|
mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
|
|
|
|
/* exceptions */
|
|
for (x = 0; x < NIDT; x++)
|
|
setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
|
|
setidt(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
|
|
setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
|
|
setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
|
|
|
|
r_idt.rd_limit = sizeof(idt0) - 1;
|
|
r_idt.rd_base = (long) idt;
|
|
lidt(&r_idt);
|
|
|
|
/*
|
|
* Initialize the console before we print anything out.
|
|
*/
|
|
cninit();
|
|
|
|
#ifdef DEV_ATPIC
|
|
atpic_startup();
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
kdb_init();
|
|
if (boothowto & RB_KDB)
|
|
Debugger("Boot flags requested debugger");
|
|
#endif
|
|
|
|
identify_cpu(); /* Final stage of CPU initialization */
|
|
initializecpu(); /* Initialize CPU registers */
|
|
|
|
/* make an initial tss so cpu can get interrupt stack on syscall! */
|
|
common_tss[0].tss_rsp0 = thread0.td_kstack + \
|
|
KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb);
|
|
/* Ensure the stack is aligned to 16 bytes */
|
|
common_tss[0].tss_rsp0 &= ~0xFul;
|
|
PCPU_SET(rsp0, common_tss[0].tss_rsp0);
|
|
|
|
/* doublefault stack space, runs on ist1 */
|
|
common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
|
|
|
|
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
|
|
ltr(gsel_tss);
|
|
|
|
/* Set up the fast syscall stuff */
|
|
msr = rdmsr(MSR_EFER) | EFER_SCE;
|
|
wrmsr(MSR_EFER, msr);
|
|
wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
|
|
wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
|
|
msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
|
|
((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
|
|
wrmsr(MSR_STAR, msr);
|
|
wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
|
|
|
|
getmemsize(kmdp, physfree);
|
|
init_param2(physmem);
|
|
|
|
/* now running on new page tables, configured,and u/iom is accessible */
|
|
|
|
/* Map the message buffer. */
|
|
for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
|
|
pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
|
|
|
|
msgbufinit(msgbufp, MSGBUF_SIZE);
|
|
fpuinit();
|
|
|
|
/* transfer to user mode */
|
|
|
|
_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
|
|
_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
|
|
_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
|
|
|
|
/* setup proc 0's pcb */
|
|
thread0.td_pcb->pcb_flags = 0; /* XXXKSE */
|
|
thread0.td_pcb->pcb_cr3 = KPML4phys;
|
|
thread0.td_frame = &proc0_tf;
|
|
|
|
env = getenv("kernelname");
|
|
if (env != NULL)
|
|
strlcpy(kernelname, env, sizeof(kernelname));
|
|
|
|
/* Location of kernel stack for locore */
|
|
return ((u_int64_t)thread0.td_pcb);
|
|
}
|
|
|
|
void
|
|
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
|
|
{
|
|
|
|
pcpu->pc_acpi_id = 0xffffffff;
|
|
}
|
|
|
|
int
|
|
ptrace_set_pc(struct thread *td, unsigned long addr)
|
|
{
|
|
td->td_frame->tf_rip = addr;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ptrace_single_step(struct thread *td)
|
|
{
|
|
td->td_frame->tf_rflags |= PSL_T;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fill_regs(struct thread *td, struct reg *regs)
|
|
{
|
|
struct pcb *pcb;
|
|
struct trapframe *tp;
|
|
|
|
tp = td->td_frame;
|
|
regs->r_r15 = tp->tf_r15;
|
|
regs->r_r14 = tp->tf_r14;
|
|
regs->r_r13 = tp->tf_r13;
|
|
regs->r_r12 = tp->tf_r12;
|
|
regs->r_r11 = tp->tf_r11;
|
|
regs->r_r10 = tp->tf_r10;
|
|
regs->r_r9 = tp->tf_r9;
|
|
regs->r_r8 = tp->tf_r8;
|
|
regs->r_rdi = tp->tf_rdi;
|
|
regs->r_rsi = tp->tf_rsi;
|
|
regs->r_rbp = tp->tf_rbp;
|
|
regs->r_rbx = tp->tf_rbx;
|
|
regs->r_rdx = tp->tf_rdx;
|
|
regs->r_rcx = tp->tf_rcx;
|
|
regs->r_rax = tp->tf_rax;
|
|
regs->r_rip = tp->tf_rip;
|
|
regs->r_cs = tp->tf_cs;
|
|
regs->r_rflags = tp->tf_rflags;
|
|
regs->r_rsp = tp->tf_rsp;
|
|
regs->r_ss = tp->tf_ss;
|
|
pcb = td->td_pcb;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_regs(struct thread *td, struct reg *regs)
|
|
{
|
|
struct pcb *pcb;
|
|
struct trapframe *tp;
|
|
|
|
tp = td->td_frame;
|
|
if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
|
|
!CS_SECURE(regs->r_cs))
|
|
return (EINVAL);
|
|
tp->tf_r15 = regs->r_r15;
|
|
tp->tf_r14 = regs->r_r14;
|
|
tp->tf_r13 = regs->r_r13;
|
|
tp->tf_r12 = regs->r_r12;
|
|
tp->tf_r11 = regs->r_r11;
|
|
tp->tf_r10 = regs->r_r10;
|
|
tp->tf_r9 = regs->r_r9;
|
|
tp->tf_r8 = regs->r_r8;
|
|
tp->tf_rdi = regs->r_rdi;
|
|
tp->tf_rsi = regs->r_rsi;
|
|
tp->tf_rbp = regs->r_rbp;
|
|
tp->tf_rbx = regs->r_rbx;
|
|
tp->tf_rdx = regs->r_rdx;
|
|
tp->tf_rcx = regs->r_rcx;
|
|
tp->tf_rax = regs->r_rax;
|
|
tp->tf_rip = regs->r_rip;
|
|
tp->tf_cs = regs->r_cs;
|
|
tp->tf_rflags = regs->r_rflags;
|
|
tp->tf_rsp = regs->r_rsp;
|
|
tp->tf_ss = regs->r_ss;
|
|
pcb = td->td_pcb;
|
|
return (0);
|
|
}
|
|
|
|
/* XXX check all this stuff! */
|
|
/* externalize from sv_xmm */
|
|
static void
|
|
fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
|
|
{
|
|
struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
|
|
struct envxmm *penv_xmm = &sv_xmm->sv_env;
|
|
int i;
|
|
|
|
/* pcb -> fpregs */
|
|
bzero(fpregs, sizeof(*fpregs));
|
|
|
|
/* FPU control/status */
|
|
penv_fpreg->en_cw = penv_xmm->en_cw;
|
|
penv_fpreg->en_sw = penv_xmm->en_sw;
|
|
penv_fpreg->en_tw = penv_xmm->en_tw;
|
|
penv_fpreg->en_opcode = penv_xmm->en_opcode;
|
|
penv_fpreg->en_rip = penv_xmm->en_rip;
|
|
penv_fpreg->en_rdp = penv_xmm->en_rdp;
|
|
penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
|
|
penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
|
|
|
|
/* FPU registers */
|
|
for (i = 0; i < 8; ++i)
|
|
bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
|
|
|
|
/* SSE registers */
|
|
for (i = 0; i < 16; ++i)
|
|
bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
|
|
}
|
|
|
|
/* internalize from fpregs into sv_xmm */
|
|
static void
|
|
set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
|
|
{
|
|
struct envxmm *penv_xmm = &sv_xmm->sv_env;
|
|
struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
|
|
int i;
|
|
|
|
/* fpregs -> pcb */
|
|
/* FPU control/status */
|
|
penv_xmm->en_cw = penv_fpreg->en_cw;
|
|
penv_xmm->en_sw = penv_fpreg->en_sw;
|
|
penv_xmm->en_tw = penv_fpreg->en_tw;
|
|
penv_xmm->en_opcode = penv_fpreg->en_opcode;
|
|
penv_xmm->en_rip = penv_fpreg->en_rip;
|
|
penv_xmm->en_rdp = penv_fpreg->en_rdp;
|
|
penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
|
|
penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask;
|
|
|
|
/* FPU registers */
|
|
for (i = 0; i < 8; ++i)
|
|
bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
|
|
|
|
/* SSE registers */
|
|
for (i = 0; i < 16; ++i)
|
|
bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
|
|
}
|
|
|
|
/* externalize from td->pcb */
|
|
int
|
|
fill_fpregs(struct thread *td, struct fpreg *fpregs)
|
|
{
|
|
|
|
fill_fpregs_xmm(&td->td_pcb->pcb_save, fpregs);
|
|
return (0);
|
|
}
|
|
|
|
/* internalize to td->pcb */
|
|
int
|
|
set_fpregs(struct thread *td, struct fpreg *fpregs)
|
|
{
|
|
|
|
set_fpregs_xmm(fpregs, &td->td_pcb->pcb_save);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get machine context.
|
|
*/
|
|
int
|
|
get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
|
|
{
|
|
struct trapframe *tp;
|
|
|
|
tp = td->td_frame;
|
|
PROC_LOCK(curthread->td_proc);
|
|
mcp->mc_onstack = sigonstack(tp->tf_rsp);
|
|
PROC_UNLOCK(curthread->td_proc);
|
|
mcp->mc_r15 = tp->tf_r15;
|
|
mcp->mc_r14 = tp->tf_r14;
|
|
mcp->mc_r13 = tp->tf_r13;
|
|
mcp->mc_r12 = tp->tf_r12;
|
|
mcp->mc_r11 = tp->tf_r11;
|
|
mcp->mc_r10 = tp->tf_r10;
|
|
mcp->mc_r9 = tp->tf_r9;
|
|
mcp->mc_r8 = tp->tf_r8;
|
|
mcp->mc_rdi = tp->tf_rdi;
|
|
mcp->mc_rsi = tp->tf_rsi;
|
|
mcp->mc_rbp = tp->tf_rbp;
|
|
mcp->mc_rbx = tp->tf_rbx;
|
|
mcp->mc_rcx = tp->tf_rcx;
|
|
if (flags & GET_MC_CLEAR_RET) {
|
|
mcp->mc_rax = 0;
|
|
mcp->mc_rdx = 0;
|
|
} else {
|
|
mcp->mc_rax = tp->tf_rax;
|
|
mcp->mc_rdx = tp->tf_rdx;
|
|
}
|
|
mcp->mc_rip = tp->tf_rip;
|
|
mcp->mc_cs = tp->tf_cs;
|
|
mcp->mc_rflags = tp->tf_rflags;
|
|
mcp->mc_rsp = tp->tf_rsp;
|
|
mcp->mc_ss = tp->tf_ss;
|
|
mcp->mc_len = sizeof(*mcp);
|
|
get_fpcontext(td, mcp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set machine context.
|
|
*
|
|
* However, we don't set any but the user modifiable flags, and we won't
|
|
* touch the cs selector.
|
|
*/
|
|
int
|
|
set_mcontext(struct thread *td, const mcontext_t *mcp)
|
|
{
|
|
struct trapframe *tp;
|
|
long rflags;
|
|
int ret;
|
|
|
|
tp = td->td_frame;
|
|
if (mcp->mc_len != sizeof(*mcp))
|
|
return (EINVAL);
|
|
rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
|
|
(tp->tf_rflags & ~PSL_USERCHANGE);
|
|
ret = set_fpcontext(td, mcp);
|
|
if (ret != 0)
|
|
return (ret);
|
|
tp->tf_r15 = mcp->mc_r15;
|
|
tp->tf_r14 = mcp->mc_r14;
|
|
tp->tf_r13 = mcp->mc_r13;
|
|
tp->tf_r12 = mcp->mc_r12;
|
|
tp->tf_r11 = mcp->mc_r11;
|
|
tp->tf_r10 = mcp->mc_r10;
|
|
tp->tf_r9 = mcp->mc_r9;
|
|
tp->tf_r8 = mcp->mc_r8;
|
|
tp->tf_rdi = mcp->mc_rdi;
|
|
tp->tf_rsi = mcp->mc_rsi;
|
|
tp->tf_rbp = mcp->mc_rbp;
|
|
tp->tf_rbx = mcp->mc_rbx;
|
|
tp->tf_rdx = mcp->mc_rdx;
|
|
tp->tf_rcx = mcp->mc_rcx;
|
|
tp->tf_rax = mcp->mc_rax;
|
|
tp->tf_rip = mcp->mc_rip;
|
|
tp->tf_rflags = rflags;
|
|
tp->tf_rsp = mcp->mc_rsp;
|
|
tp->tf_ss = mcp->mc_ss;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
get_fpcontext(struct thread *td, mcontext_t *mcp)
|
|
{
|
|
|
|
mcp->mc_ownedfp = fpugetregs(td, (struct savefpu *)&mcp->mc_fpstate);
|
|
mcp->mc_fpformat = fpuformat();
|
|
}
|
|
|
|
static int
|
|
set_fpcontext(struct thread *td, const mcontext_t *mcp)
|
|
{
|
|
|
|
if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
|
|
return (0);
|
|
else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
|
|
return (EINVAL);
|
|
else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE)
|
|
/* We don't care what state is left in the FPU or PCB. */
|
|
fpstate_drop(td);
|
|
else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
|
|
mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
|
|
/*
|
|
* XXX we violate the dubious requirement that fpusetregs()
|
|
* be called with interrupts disabled.
|
|
* XXX obsolete on trap-16 systems?
|
|
*/
|
|
fpusetregs(td, (struct savefpu *)&mcp->mc_fpstate);
|
|
} else
|
|
return (EINVAL);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
fpstate_drop(struct thread *td)
|
|
{
|
|
register_t s;
|
|
|
|
s = intr_disable();
|
|
if (PCPU_GET(fpcurthread) == td)
|
|
fpudrop();
|
|
/*
|
|
* XXX force a full drop of the fpu. The above only drops it if we
|
|
* owned it.
|
|
*
|
|
* XXX I don't much like fpugetregs()'s semantics of doing a full
|
|
* drop. Dropping only to the pcb matches fnsave's behaviour.
|
|
* We only need to drop to !PCB_INITDONE in sendsig(). But
|
|
* sendsig() is the only caller of fpugetregs()... perhaps we just
|
|
* have too many layers.
|
|
*/
|
|
curthread->td_pcb->pcb_flags &= ~PCB_FPUINITDONE;
|
|
intr_restore(s);
|
|
}
|
|
|
|
int
|
|
fill_dbregs(struct thread *td, struct dbreg *dbregs)
|
|
{
|
|
struct pcb *pcb;
|
|
|
|
if (td == NULL) {
|
|
dbregs->dr[0] = rdr0();
|
|
dbregs->dr[1] = rdr1();
|
|
dbregs->dr[2] = rdr2();
|
|
dbregs->dr[3] = rdr3();
|
|
dbregs->dr[6] = rdr6();
|
|
dbregs->dr[7] = rdr7();
|
|
} else {
|
|
pcb = td->td_pcb;
|
|
dbregs->dr[0] = pcb->pcb_dr0;
|
|
dbregs->dr[1] = pcb->pcb_dr1;
|
|
dbregs->dr[2] = pcb->pcb_dr2;
|
|
dbregs->dr[3] = pcb->pcb_dr3;
|
|
dbregs->dr[6] = pcb->pcb_dr6;
|
|
dbregs->dr[7] = pcb->pcb_dr7;
|
|
}
|
|
dbregs->dr[4] = 0;
|
|
dbregs->dr[5] = 0;
|
|
dbregs->dr[8] = 0;
|
|
dbregs->dr[9] = 0;
|
|
dbregs->dr[10] = 0;
|
|
dbregs->dr[11] = 0;
|
|
dbregs->dr[12] = 0;
|
|
dbregs->dr[13] = 0;
|
|
dbregs->dr[14] = 0;
|
|
dbregs->dr[15] = 0;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
set_dbregs(struct thread *td, struct dbreg *dbregs)
|
|
{
|
|
struct pcb *pcb;
|
|
int i;
|
|
u_int64_t mask1, mask2;
|
|
|
|
if (td == NULL) {
|
|
load_dr0(dbregs->dr[0]);
|
|
load_dr1(dbregs->dr[1]);
|
|
load_dr2(dbregs->dr[2]);
|
|
load_dr3(dbregs->dr[3]);
|
|
load_dr6(dbregs->dr[6]);
|
|
load_dr7(dbregs->dr[7]);
|
|
} else {
|
|
/*
|
|
* Don't let an illegal value for dr7 get set. Specifically,
|
|
* check for undefined settings. Setting these bit patterns
|
|
* result in undefined behaviour and can lead to an unexpected
|
|
* TRCTRAP or a general protection fault right here.
|
|
*/
|
|
for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
|
|
i++, mask1 <<= 2, mask2 <<= 2)
|
|
if ((dbregs->dr[7] & mask1) == mask2)
|
|
return (EINVAL);
|
|
|
|
pcb = td->td_pcb;
|
|
|
|
/*
|
|
* Don't let a process set a breakpoint that is not within the
|
|
* process's address space. If a process could do this, it
|
|
* could halt the system by setting a breakpoint in the kernel
|
|
* (if ddb was enabled). Thus, we need to check to make sure
|
|
* that no breakpoints are being enabled for addresses outside
|
|
* process's address space, unless, perhaps, we were called by
|
|
* uid 0.
|
|
*
|
|
* XXX - what about when the watched area of the user's
|
|
* address space is written into from within the kernel
|
|
* ... wouldn't that still cause a breakpoint to be generated
|
|
* from within kernel mode?
|
|
*/
|
|
|
|
if (suser(td) != 0) {
|
|
if (dbregs->dr[7] & 0x3) {
|
|
/* dr0 is enabled */
|
|
if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
|
|
return (EINVAL);
|
|
}
|
|
if (dbregs->dr[7] & 0x3<<2) {
|
|
/* dr1 is enabled */
|
|
if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
|
|
return (EINVAL);
|
|
}
|
|
if (dbregs->dr[7] & 0x3<<4) {
|
|
/* dr2 is enabled */
|
|
if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
|
|
return (EINVAL);
|
|
}
|
|
if (dbregs->dr[7] & 0x3<<6) {
|
|
/* dr3 is enabled */
|
|
if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
pcb->pcb_dr0 = dbregs->dr[0];
|
|
pcb->pcb_dr1 = dbregs->dr[1];
|
|
pcb->pcb_dr2 = dbregs->dr[2];
|
|
pcb->pcb_dr3 = dbregs->dr[3];
|
|
pcb->pcb_dr6 = dbregs->dr[6];
|
|
pcb->pcb_dr7 = dbregs->dr[7];
|
|
|
|
pcb->pcb_flags |= PCB_DBREGS;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
reset_dbregs(void)
|
|
{
|
|
|
|
load_dr7(0); /* Turn off the control bits first */
|
|
load_dr0(0);
|
|
load_dr1(0);
|
|
load_dr2(0);
|
|
load_dr3(0);
|
|
load_dr6(0);
|
|
}
|
|
|
|
/*
|
|
* Return > 0 if a hardware breakpoint has been hit, and the
|
|
* breakpoint was in user space. Return 0, otherwise.
|
|
*/
|
|
int
|
|
user_dbreg_trap(void)
|
|
{
|
|
u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
|
|
u_int64_t bp; /* breakpoint bits extracted from dr6 */
|
|
int nbp; /* number of breakpoints that triggered */
|
|
caddr_t addr[4]; /* breakpoint addresses */
|
|
int i;
|
|
|
|
dr7 = rdr7();
|
|
if ((dr7 & 0x000000ff) == 0) {
|
|
/*
|
|
* all GE and LE bits in the dr7 register are zero,
|
|
* thus the trap couldn't have been caused by the
|
|
* hardware debug registers
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
nbp = 0;
|
|
dr6 = rdr6();
|
|
bp = dr6 & 0x0000000f;
|
|
|
|
if (!bp) {
|
|
/*
|
|
* None of the breakpoint bits are set meaning this
|
|
* trap was not caused by any of the debug registers
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* at least one of the breakpoints were hit, check to see
|
|
* which ones and if any of them are user space addresses
|
|
*/
|
|
|
|
if (bp & 0x01) {
|
|
addr[nbp++] = (caddr_t)rdr0();
|
|
}
|
|
if (bp & 0x02) {
|
|
addr[nbp++] = (caddr_t)rdr1();
|
|
}
|
|
if (bp & 0x04) {
|
|
addr[nbp++] = (caddr_t)rdr2();
|
|
}
|
|
if (bp & 0x08) {
|
|
addr[nbp++] = (caddr_t)rdr3();
|
|
}
|
|
|
|
for (i=0; i<nbp; i++) {
|
|
if (addr[i] <
|
|
(caddr_t)VM_MAXUSER_ADDRESS) {
|
|
/*
|
|
* addr[i] is in user space
|
|
*/
|
|
return nbp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* None of the breakpoints are in user space.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
#ifndef DDB
|
|
void
|
|
Debugger(const char *msg)
|
|
{
|
|
printf("Debugger(\"%s\") called.\n", msg);
|
|
}
|
|
#endif /* no DDB */
|
|
|
|
#ifdef DDB
|
|
|
|
/*
|
|
* Provide inb() and outb() as functions. They are normally only
|
|
* available as macros calling inlined functions, thus cannot be
|
|
* called inside DDB.
|
|
*
|
|
* The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
|
|
*/
|
|
|
|
#undef inb
|
|
#undef outb
|
|
|
|
/* silence compiler warnings */
|
|
u_char inb(u_int);
|
|
void outb(u_int, u_char);
|
|
|
|
u_char
|
|
inb(u_int port)
|
|
{
|
|
u_char data;
|
|
/*
|
|
* We use %%dx and not %1 here because i/o is done at %dx and not at
|
|
* %edx, while gcc generates inferior code (movw instead of movl)
|
|
* if we tell it to load (u_short) port.
|
|
*/
|
|
__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
|
|
return (data);
|
|
}
|
|
|
|
void
|
|
outb(u_int port, u_char data)
|
|
{
|
|
u_char al;
|
|
/*
|
|
* Use an unnecessary assignment to help gcc's register allocator.
|
|
* This make a large difference for gcc-1.40 and a tiny difference
|
|
* for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
|
|
* best results. gcc-2.6.0 can't handle this.
|
|
*/
|
|
al = data;
|
|
__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
|
|
}
|
|
|
|
#endif /* DDB */
|