90dfa8f0ac
MFC after: 2 weeks
1239 lines
38 KiB
C
1239 lines
38 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (C) 2012-2014 Intel Corporation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/proc.h>
|
|
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include "nvme_private.h"
|
|
|
|
typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
|
|
#define DO_NOT_RETRY 1
|
|
|
|
static void _nvme_qpair_submit_request(struct nvme_qpair *qpair,
|
|
struct nvme_request *req);
|
|
static void nvme_qpair_destroy(struct nvme_qpair *qpair);
|
|
|
|
struct nvme_opcode_string {
|
|
|
|
uint16_t opc;
|
|
const char * str;
|
|
};
|
|
|
|
static struct nvme_opcode_string admin_opcode[] = {
|
|
{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
|
|
{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
|
|
{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
|
|
{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
|
|
{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
|
|
{ NVME_OPC_IDENTIFY, "IDENTIFY" },
|
|
{ NVME_OPC_ABORT, "ABORT" },
|
|
{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
|
|
{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
|
|
{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
|
|
{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
|
|
{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
|
|
{ NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
|
|
{ NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
|
|
{ NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
|
|
{ NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
|
|
{ NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
|
|
{ NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
|
|
{ NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
|
|
{ NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
|
|
{ NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
|
|
{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
|
|
{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
|
|
{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
|
|
{ NVME_OPC_SANITIZE, "SANITIZE" },
|
|
{ NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
|
|
{ 0xFFFF, "ADMIN COMMAND" }
|
|
};
|
|
|
|
static struct nvme_opcode_string io_opcode[] = {
|
|
{ NVME_OPC_FLUSH, "FLUSH" },
|
|
{ NVME_OPC_WRITE, "WRITE" },
|
|
{ NVME_OPC_READ, "READ" },
|
|
{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
|
|
{ NVME_OPC_COMPARE, "COMPARE" },
|
|
{ NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
|
|
{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
|
|
{ NVME_OPC_VERIFY, "VERIFY" },
|
|
{ NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
|
|
{ NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
|
|
{ NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
|
|
{ NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
|
|
{ 0xFFFF, "IO COMMAND" }
|
|
};
|
|
|
|
static const char *
|
|
get_admin_opcode_string(uint16_t opc)
|
|
{
|
|
struct nvme_opcode_string *entry;
|
|
|
|
entry = admin_opcode;
|
|
|
|
while (entry->opc != 0xFFFF) {
|
|
if (entry->opc == opc)
|
|
return (entry->str);
|
|
entry++;
|
|
}
|
|
return (entry->str);
|
|
}
|
|
|
|
static const char *
|
|
get_io_opcode_string(uint16_t opc)
|
|
{
|
|
struct nvme_opcode_string *entry;
|
|
|
|
entry = io_opcode;
|
|
|
|
while (entry->opc != 0xFFFF) {
|
|
if (entry->opc == opc)
|
|
return (entry->str);
|
|
entry++;
|
|
}
|
|
return (entry->str);
|
|
}
|
|
|
|
|
|
static void
|
|
nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
|
|
struct nvme_command *cmd)
|
|
{
|
|
|
|
nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
|
|
"cdw10:%08x cdw11:%08x\n",
|
|
get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
|
|
le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
|
|
}
|
|
|
|
static void
|
|
nvme_io_qpair_print_command(struct nvme_qpair *qpair,
|
|
struct nvme_command *cmd)
|
|
{
|
|
|
|
switch (cmd->opc) {
|
|
case NVME_OPC_WRITE:
|
|
case NVME_OPC_READ:
|
|
case NVME_OPC_WRITE_UNCORRECTABLE:
|
|
case NVME_OPC_COMPARE:
|
|
case NVME_OPC_WRITE_ZEROES:
|
|
case NVME_OPC_VERIFY:
|
|
nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
|
|
"lba:%llu len:%d\n",
|
|
get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
|
|
((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
|
|
(le32toh(cmd->cdw12) & 0xFFFF) + 1);
|
|
break;
|
|
case NVME_OPC_FLUSH:
|
|
case NVME_OPC_DATASET_MANAGEMENT:
|
|
case NVME_OPC_RESERVATION_REGISTER:
|
|
case NVME_OPC_RESERVATION_REPORT:
|
|
case NVME_OPC_RESERVATION_ACQUIRE:
|
|
case NVME_OPC_RESERVATION_RELEASE:
|
|
nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
|
|
get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
|
|
break;
|
|
default:
|
|
nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
|
|
get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
|
|
cmd->cid, le32toh(cmd->nsid));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
|
|
{
|
|
if (qpair->id == 0)
|
|
nvme_admin_qpair_print_command(qpair, cmd);
|
|
else
|
|
nvme_io_qpair_print_command(qpair, cmd);
|
|
if (nvme_verbose_cmd_dump) {
|
|
nvme_printf(qpair->ctrlr,
|
|
"nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
|
|
cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
|
|
(uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
|
|
nvme_printf(qpair->ctrlr,
|
|
"cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
|
|
cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
|
|
cmd->cdw15);
|
|
}
|
|
}
|
|
|
|
struct nvme_status_string {
|
|
|
|
uint16_t sc;
|
|
const char * str;
|
|
};
|
|
|
|
static struct nvme_status_string generic_status[] = {
|
|
{ NVME_SC_SUCCESS, "SUCCESS" },
|
|
{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
|
|
{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
|
|
{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
|
|
{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
|
|
{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
|
|
{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
|
|
{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
|
|
{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
|
|
{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
|
|
{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
|
|
{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
|
|
{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
|
|
{ NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
|
|
{ NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
|
|
{ NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
|
|
{ NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
|
|
{ NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
|
|
{ NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
|
|
{ NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
|
|
{ NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
|
|
{ NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
|
|
{ NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
|
|
{ NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
|
|
{ NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
|
|
{ NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
|
|
{ NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
|
|
{ NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
|
|
{ NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
|
|
{ NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
|
|
{ NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
|
|
{ NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
|
|
{ NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
|
|
{ NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
|
|
|
|
{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
|
|
{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
|
|
{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
|
|
{ NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
|
|
{ NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
|
|
{ 0xFFFF, "GENERIC" }
|
|
};
|
|
|
|
static struct nvme_status_string command_specific_status[] = {
|
|
{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
|
|
{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
|
|
{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
|
|
{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
|
|
{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
|
|
{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
|
|
{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
|
|
{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
|
|
{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
|
|
{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
|
|
{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
|
|
{ NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
|
|
{ NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
|
|
{ NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
|
|
{ NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
|
|
{ NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
|
|
{ NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
|
|
{ NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
|
|
{ NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
|
|
{ NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
|
|
{ NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
|
|
{ NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
|
|
{ NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
|
|
{ NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
|
|
{ NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
|
|
{ NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
|
|
{ NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
|
|
{ NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
|
|
{ NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
|
|
{ NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
|
|
{ NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
|
|
{ NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
|
|
{ NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
|
|
{ NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
|
|
{ NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
|
|
{ NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
|
|
|
|
{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
|
|
{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
|
|
{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
|
|
{ 0xFFFF, "COMMAND SPECIFIC" }
|
|
};
|
|
|
|
static struct nvme_status_string media_error_status[] = {
|
|
{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
|
|
{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
|
|
{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
|
|
{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
|
|
{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
|
|
{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
|
|
{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
|
|
{ NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
|
|
{ 0xFFFF, "MEDIA ERROR" }
|
|
};
|
|
|
|
static const char *
|
|
get_status_string(uint16_t sct, uint16_t sc)
|
|
{
|
|
struct nvme_status_string *entry;
|
|
|
|
switch (sct) {
|
|
case NVME_SCT_GENERIC:
|
|
entry = generic_status;
|
|
break;
|
|
case NVME_SCT_COMMAND_SPECIFIC:
|
|
entry = command_specific_status;
|
|
break;
|
|
case NVME_SCT_MEDIA_ERROR:
|
|
entry = media_error_status;
|
|
break;
|
|
case NVME_SCT_VENDOR_SPECIFIC:
|
|
return ("VENDOR SPECIFIC");
|
|
default:
|
|
return ("RESERVED");
|
|
}
|
|
|
|
while (entry->sc != 0xFFFF) {
|
|
if (entry->sc == sc)
|
|
return (entry->str);
|
|
entry++;
|
|
}
|
|
return (entry->str);
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_print_completion(struct nvme_qpair *qpair,
|
|
struct nvme_completion *cpl)
|
|
{
|
|
uint16_t sct, sc;
|
|
|
|
sct = NVME_STATUS_GET_SCT(cpl->status);
|
|
sc = NVME_STATUS_GET_SC(cpl->status);
|
|
|
|
nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
|
|
get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
|
|
cpl->cdw0);
|
|
}
|
|
|
|
static boolean_t
|
|
nvme_completion_is_retry(const struct nvme_completion *cpl)
|
|
{
|
|
uint8_t sct, sc, dnr;
|
|
|
|
sct = NVME_STATUS_GET_SCT(cpl->status);
|
|
sc = NVME_STATUS_GET_SC(cpl->status);
|
|
dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
|
|
|
|
/*
|
|
* TODO: spec is not clear how commands that are aborted due
|
|
* to TLER will be marked. So for now, it seems
|
|
* NAMESPACE_NOT_READY is the only case where we should
|
|
* look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
|
|
* set the DNR bit correctly since the driver controls that.
|
|
*/
|
|
switch (sct) {
|
|
case NVME_SCT_GENERIC:
|
|
switch (sc) {
|
|
case NVME_SC_ABORTED_BY_REQUEST:
|
|
case NVME_SC_NAMESPACE_NOT_READY:
|
|
if (dnr)
|
|
return (0);
|
|
else
|
|
return (1);
|
|
case NVME_SC_INVALID_OPCODE:
|
|
case NVME_SC_INVALID_FIELD:
|
|
case NVME_SC_COMMAND_ID_CONFLICT:
|
|
case NVME_SC_DATA_TRANSFER_ERROR:
|
|
case NVME_SC_ABORTED_POWER_LOSS:
|
|
case NVME_SC_INTERNAL_DEVICE_ERROR:
|
|
case NVME_SC_ABORTED_SQ_DELETION:
|
|
case NVME_SC_ABORTED_FAILED_FUSED:
|
|
case NVME_SC_ABORTED_MISSING_FUSED:
|
|
case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
|
|
case NVME_SC_COMMAND_SEQUENCE_ERROR:
|
|
case NVME_SC_LBA_OUT_OF_RANGE:
|
|
case NVME_SC_CAPACITY_EXCEEDED:
|
|
default:
|
|
return (0);
|
|
}
|
|
case NVME_SCT_COMMAND_SPECIFIC:
|
|
case NVME_SCT_MEDIA_ERROR:
|
|
case NVME_SCT_VENDOR_SPECIFIC:
|
|
default:
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
|
|
struct nvme_completion *cpl, error_print_t print_on_error)
|
|
{
|
|
struct nvme_request *req;
|
|
boolean_t retry, error, retriable;
|
|
|
|
req = tr->req;
|
|
error = nvme_completion_is_error(cpl);
|
|
retriable = nvme_completion_is_retry(cpl);
|
|
retry = error && retriable && req->retries < nvme_retry_count;
|
|
if (retry)
|
|
qpair->num_retries++;
|
|
if (error && req->retries >= nvme_retry_count && retriable)
|
|
qpair->num_failures++;
|
|
|
|
if (error && (print_on_error == ERROR_PRINT_ALL ||
|
|
(!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
|
|
nvme_qpair_print_command(qpair, &req->cmd);
|
|
nvme_qpair_print_completion(qpair, cpl);
|
|
}
|
|
|
|
qpair->act_tr[cpl->cid] = NULL;
|
|
|
|
KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
|
|
|
|
if (req->cb_fn && !retry)
|
|
req->cb_fn(req->cb_arg, cpl);
|
|
|
|
mtx_lock(&qpair->lock);
|
|
callout_stop(&tr->timer);
|
|
|
|
if (retry) {
|
|
req->retries++;
|
|
nvme_qpair_submit_tracker(qpair, tr);
|
|
} else {
|
|
if (req->type != NVME_REQUEST_NULL) {
|
|
bus_dmamap_sync(qpair->dma_tag_payload,
|
|
tr->payload_dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(qpair->dma_tag_payload,
|
|
tr->payload_dma_map);
|
|
}
|
|
|
|
nvme_free_request(req);
|
|
tr->req = NULL;
|
|
|
|
TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
|
|
TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
|
|
|
|
/*
|
|
* If the controller is in the middle of resetting, don't
|
|
* try to submit queued requests here - let the reset logic
|
|
* handle that instead.
|
|
*/
|
|
if (!STAILQ_EMPTY(&qpair->queued_req) &&
|
|
!qpair->ctrlr->is_resetting) {
|
|
req = STAILQ_FIRST(&qpair->queued_req);
|
|
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
|
|
_nvme_qpair_submit_request(qpair, req);
|
|
}
|
|
}
|
|
|
|
mtx_unlock(&qpair->lock);
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
|
|
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
|
|
error_print_t print_on_error)
|
|
{
|
|
struct nvme_completion cpl;
|
|
|
|
memset(&cpl, 0, sizeof(cpl));
|
|
cpl.sqid = qpair->id;
|
|
cpl.cid = tr->cid;
|
|
cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
|
|
cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
|
|
cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
|
|
nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
|
|
}
|
|
|
|
void
|
|
nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
|
|
struct nvme_request *req, uint32_t sct, uint32_t sc)
|
|
{
|
|
struct nvme_completion cpl;
|
|
boolean_t error;
|
|
|
|
memset(&cpl, 0, sizeof(cpl));
|
|
cpl.sqid = qpair->id;
|
|
cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
|
|
cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
|
|
|
|
error = nvme_completion_is_error(&cpl);
|
|
|
|
if (error) {
|
|
nvme_qpair_print_command(qpair, &req->cmd);
|
|
nvme_qpair_print_completion(qpair, &cpl);
|
|
}
|
|
|
|
if (req->cb_fn)
|
|
req->cb_fn(req->cb_arg, &cpl);
|
|
|
|
nvme_free_request(req);
|
|
}
|
|
|
|
bool
|
|
nvme_qpair_process_completions(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
struct nvme_completion cpl;
|
|
int done = 0;
|
|
bool in_panic = dumping || SCHEDULER_STOPPED();
|
|
|
|
qpair->num_intr_handler_calls++;
|
|
|
|
/*
|
|
* qpair is not enabled, likely because a controller reset is is in
|
|
* progress. Ignore the interrupt - any I/O that was associated with
|
|
* this interrupt will get retried when the reset is complete.
|
|
*/
|
|
if (!qpair->is_enabled)
|
|
return (false);
|
|
|
|
/*
|
|
* A panic can stop the CPU this routine is running on at any point. If
|
|
* we're called during a panic, complete the sq_head wrap protocol for
|
|
* the case where we are interrupted just after the increment at 1
|
|
* below, but before we can reset cq_head to zero at 2. Also cope with
|
|
* the case where we do the zero at 2, but may or may not have done the
|
|
* phase adjustment at step 3. The panic machinery flushes all pending
|
|
* memory writes, so we can make these strong ordering assumptions
|
|
* that would otherwise be unwise if we were racing in real time.
|
|
*/
|
|
if (__predict_false(in_panic)) {
|
|
if (qpair->cq_head == qpair->num_entries) {
|
|
/*
|
|
* Here we know that we need to zero cq_head and then negate
|
|
* the phase, which hasn't been assigned if cq_head isn't
|
|
* zero due to the atomic_store_rel.
|
|
*/
|
|
qpair->cq_head = 0;
|
|
qpair->phase = !qpair->phase;
|
|
} else if (qpair->cq_head == 0) {
|
|
/*
|
|
* In this case, we know that the assignment at 2
|
|
* happened below, but we don't know if it 3 happened or
|
|
* not. To do this, we look at the last completion
|
|
* entry and set the phase to the opposite phase
|
|
* that it has. This gets us back in sync
|
|
*/
|
|
cpl = qpair->cpl[qpair->num_entries - 1];
|
|
nvme_completion_swapbytes(&cpl);
|
|
qpair->phase = !NVME_STATUS_GET_P(cpl.status);
|
|
}
|
|
}
|
|
|
|
bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
while (1) {
|
|
cpl = qpair->cpl[qpair->cq_head];
|
|
|
|
/* Convert to host endian */
|
|
nvme_completion_swapbytes(&cpl);
|
|
|
|
if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
|
|
break;
|
|
|
|
tr = qpair->act_tr[cpl.cid];
|
|
|
|
if (tr != NULL) {
|
|
nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
|
|
qpair->sq_head = cpl.sqhd;
|
|
done++;
|
|
} else if (!in_panic) {
|
|
/*
|
|
* A missing tracker is normally an error. However, a
|
|
* panic can stop the CPU this routine is running on
|
|
* after completing an I/O but before updating
|
|
* qpair->cq_head at 1 below. Later, we re-enter this
|
|
* routine to poll I/O associated with the kernel
|
|
* dump. We find that the tr has been set to null before
|
|
* calling the completion routine. If it hasn't
|
|
* completed (or it triggers a panic), then '1' below
|
|
* won't have updated cq_head. Rather than panic again,
|
|
* ignore this condition because it's not unexpected.
|
|
*/
|
|
nvme_printf(qpair->ctrlr,
|
|
"cpl does not map to outstanding cmd\n");
|
|
/* nvme_dump_completion expects device endianess */
|
|
nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
|
|
KASSERT(0, ("received completion for unknown cmd"));
|
|
}
|
|
|
|
/*
|
|
* There's a number of races with the following (see above) when
|
|
* the system panics. We compensate for each one of them by
|
|
* using the atomic store to force strong ordering (at least when
|
|
* viewed in the aftermath of a panic).
|
|
*/
|
|
if (++qpair->cq_head == qpair->num_entries) { /* 1 */
|
|
atomic_store_rel_int(&qpair->cq_head, 0); /* 2 */
|
|
qpair->phase = !qpair->phase; /* 3 */
|
|
}
|
|
|
|
nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
|
|
qpair->cq_head);
|
|
}
|
|
return (done != 0);
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_msix_handler(void *arg)
|
|
{
|
|
struct nvme_qpair *qpair = arg;
|
|
|
|
nvme_qpair_process_completions(qpair);
|
|
}
|
|
|
|
int
|
|
nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
|
|
uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
|
|
struct nvme_controller *ctrlr)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
size_t cmdsz, cplsz, prpsz, allocsz, prpmemsz;
|
|
uint64_t queuemem_phys, prpmem_phys, list_phys;
|
|
uint8_t *queuemem, *prpmem, *prp_list;
|
|
int i, err;
|
|
|
|
qpair->id = id;
|
|
qpair->vector = vector;
|
|
qpair->num_entries = num_entries;
|
|
qpair->num_trackers = num_trackers;
|
|
qpair->ctrlr = ctrlr;
|
|
|
|
if (ctrlr->msix_enabled) {
|
|
|
|
/*
|
|
* MSI-X vector resource IDs start at 1, so we add one to
|
|
* the queue's vector to get the corresponding rid to use.
|
|
*/
|
|
qpair->rid = vector + 1;
|
|
|
|
qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
|
|
&qpair->rid, RF_ACTIVE);
|
|
bus_setup_intr(ctrlr->dev, qpair->res,
|
|
INTR_TYPE_MISC | INTR_MPSAFE, NULL,
|
|
nvme_qpair_msix_handler, qpair, &qpair->tag);
|
|
if (id == 0) {
|
|
bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
|
|
"admin");
|
|
} else {
|
|
bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
|
|
"io%d", id - 1);
|
|
}
|
|
}
|
|
|
|
mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
|
|
|
|
/* Note: NVMe PRP format is restricted to 4-byte alignment. */
|
|
err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
|
|
4, PAGE_SIZE, BUS_SPACE_MAXADDR,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
|
|
(NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
|
|
NULL, NULL, &qpair->dma_tag_payload);
|
|
if (err != 0) {
|
|
nvme_printf(ctrlr, "payload tag create failed %d\n", err);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Each component must be page aligned, and individual PRP lists
|
|
* cannot cross a page boundary.
|
|
*/
|
|
cmdsz = qpair->num_entries * sizeof(struct nvme_command);
|
|
cmdsz = roundup2(cmdsz, PAGE_SIZE);
|
|
cplsz = qpair->num_entries * sizeof(struct nvme_completion);
|
|
cplsz = roundup2(cplsz, PAGE_SIZE);
|
|
prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
|
|
prpmemsz = qpair->num_trackers * prpsz;
|
|
allocsz = cmdsz + cplsz + prpmemsz;
|
|
|
|
err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
|
|
PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
|
|
if (err != 0) {
|
|
nvme_printf(ctrlr, "tag create failed %d\n", err);
|
|
goto out;
|
|
}
|
|
|
|
if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
|
|
BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
|
|
nvme_printf(ctrlr, "failed to alloc qpair memory\n");
|
|
goto out;
|
|
}
|
|
|
|
if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
|
|
queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
|
|
nvme_printf(ctrlr, "failed to load qpair memory\n");
|
|
goto out;
|
|
}
|
|
|
|
qpair->num_cmds = 0;
|
|
qpair->num_intr_handler_calls = 0;
|
|
qpair->num_retries = 0;
|
|
qpair->num_failures = 0;
|
|
qpair->cmd = (struct nvme_command *)queuemem;
|
|
qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
|
|
prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
|
|
qpair->cmd_bus_addr = queuemem_phys;
|
|
qpair->cpl_bus_addr = queuemem_phys + cmdsz;
|
|
prpmem_phys = queuemem_phys + cmdsz + cplsz;
|
|
|
|
qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
|
|
qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);
|
|
|
|
TAILQ_INIT(&qpair->free_tr);
|
|
TAILQ_INIT(&qpair->outstanding_tr);
|
|
STAILQ_INIT(&qpair->queued_req);
|
|
|
|
list_phys = prpmem_phys;
|
|
prp_list = prpmem;
|
|
for (i = 0; i < qpair->num_trackers; i++) {
|
|
|
|
if (list_phys + prpsz > prpmem_phys + prpmemsz) {
|
|
qpair->num_trackers = i;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure that the PRP list for this tracker doesn't
|
|
* overflow to another page.
|
|
*/
|
|
if (trunc_page(list_phys) !=
|
|
trunc_page(list_phys + prpsz - 1)) {
|
|
list_phys = roundup2(list_phys, PAGE_SIZE);
|
|
prp_list =
|
|
(uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
|
|
}
|
|
|
|
tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
|
|
bus_dmamap_create(qpair->dma_tag_payload, 0,
|
|
&tr->payload_dma_map);
|
|
callout_init(&tr->timer, 1);
|
|
tr->cid = i;
|
|
tr->qpair = qpair;
|
|
tr->prp = (uint64_t *)prp_list;
|
|
tr->prp_bus_addr = list_phys;
|
|
TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
|
|
list_phys += prpsz;
|
|
prp_list += prpsz;
|
|
}
|
|
|
|
if (qpair->num_trackers == 0) {
|
|
nvme_printf(ctrlr, "failed to allocate enough trackers\n");
|
|
goto out;
|
|
}
|
|
|
|
qpair->act_tr = malloc(sizeof(struct nvme_tracker *) *
|
|
qpair->num_entries, M_NVME, M_ZERO | M_WAITOK);
|
|
return (0);
|
|
|
|
out:
|
|
nvme_qpair_destroy(qpair);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_destroy(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
|
|
if (qpair->tag)
|
|
bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
|
|
|
|
if (mtx_initialized(&qpair->lock))
|
|
mtx_destroy(&qpair->lock);
|
|
|
|
if (qpair->res)
|
|
bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
|
|
rman_get_rid(qpair->res), qpair->res);
|
|
|
|
if (qpair->cmd != NULL) {
|
|
bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
|
|
bus_dmamem_free(qpair->dma_tag, qpair->cmd,
|
|
qpair->queuemem_map);
|
|
}
|
|
|
|
if (qpair->act_tr)
|
|
free(qpair->act_tr, M_NVME);
|
|
|
|
while (!TAILQ_EMPTY(&qpair->free_tr)) {
|
|
tr = TAILQ_FIRST(&qpair->free_tr);
|
|
TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
|
|
bus_dmamap_destroy(qpair->dma_tag_payload,
|
|
tr->payload_dma_map);
|
|
free(tr, M_NVME);
|
|
}
|
|
|
|
if (qpair->dma_tag)
|
|
bus_dma_tag_destroy(qpair->dma_tag);
|
|
|
|
if (qpair->dma_tag_payload)
|
|
bus_dma_tag_destroy(qpair->dma_tag_payload);
|
|
}
|
|
|
|
static void
|
|
nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
|
|
tr = TAILQ_FIRST(&qpair->outstanding_tr);
|
|
while (tr != NULL) {
|
|
if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
|
|
nvme_qpair_manual_complete_tracker(qpair, tr,
|
|
NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
|
|
ERROR_PRINT_NONE);
|
|
tr = TAILQ_FIRST(&qpair->outstanding_tr);
|
|
} else {
|
|
tr = TAILQ_NEXT(tr, tailq);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
|
|
{
|
|
|
|
nvme_admin_qpair_abort_aers(qpair);
|
|
nvme_qpair_destroy(qpair);
|
|
}
|
|
|
|
void
|
|
nvme_io_qpair_destroy(struct nvme_qpair *qpair)
|
|
{
|
|
|
|
nvme_qpair_destroy(qpair);
|
|
}
|
|
|
|
static void
|
|
nvme_abort_complete(void *arg, const struct nvme_completion *status)
|
|
{
|
|
struct nvme_tracker *tr = arg;
|
|
|
|
/*
|
|
* If cdw0 == 1, the controller was not able to abort the command
|
|
* we requested. We still need to check the active tracker array,
|
|
* to cover race where I/O timed out at same time controller was
|
|
* completing the I/O.
|
|
*/
|
|
if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
|
|
/*
|
|
* An I/O has timed out, and the controller was unable to
|
|
* abort it for some reason. Construct a fake completion
|
|
* status, and then complete the I/O's tracker manually.
|
|
*/
|
|
nvme_printf(tr->qpair->ctrlr,
|
|
"abort command failed, aborting command manually\n");
|
|
nvme_qpair_manual_complete_tracker(tr->qpair, tr,
|
|
NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_timeout(void *arg)
|
|
{
|
|
struct nvme_tracker *tr = arg;
|
|
struct nvme_qpair *qpair = tr->qpair;
|
|
struct nvme_controller *ctrlr = qpair->ctrlr;
|
|
uint32_t csts;
|
|
uint8_t cfs;
|
|
|
|
/*
|
|
* Read csts to get value of cfs - controller fatal status.
|
|
* If no fatal status, try to call the completion routine, and
|
|
* if completes transactions, report a missed interrupt and
|
|
* return (this may need to be rate limited). Otherwise, if
|
|
* aborts are enabled and the controller is not reporting
|
|
* fatal status, abort the command. Otherwise, just reset the
|
|
* controller and hope for the best.
|
|
*/
|
|
csts = nvme_mmio_read_4(ctrlr, csts);
|
|
cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
|
|
if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
|
|
nvme_printf(ctrlr, "Missing interrupt\n");
|
|
return;
|
|
}
|
|
if (ctrlr->enable_aborts && cfs == 0) {
|
|
nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
|
|
nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
|
|
nvme_abort_complete, tr);
|
|
} else {
|
|
nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
|
|
cfs ? " and fatal error status" : "");
|
|
nvme_ctrlr_reset(ctrlr);
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
|
|
{
|
|
struct nvme_request *req;
|
|
struct nvme_controller *ctrlr;
|
|
|
|
mtx_assert(&qpair->lock, MA_OWNED);
|
|
|
|
req = tr->req;
|
|
req->cmd.cid = tr->cid;
|
|
qpair->act_tr[tr->cid] = tr;
|
|
ctrlr = qpair->ctrlr;
|
|
|
|
if (req->timeout)
|
|
callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
|
|
nvme_timeout, tr);
|
|
|
|
/* Copy the command from the tracker to the submission queue. */
|
|
memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
|
|
|
|
if (++qpair->sq_tail == qpair->num_entries)
|
|
qpair->sq_tail = 0;
|
|
|
|
bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
#ifndef __powerpc__
|
|
/*
|
|
* powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
|
|
* no other archs do.
|
|
*/
|
|
wmb();
|
|
#endif
|
|
|
|
nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
|
|
qpair->sq_tail);
|
|
|
|
qpair->num_cmds++;
|
|
}
|
|
|
|
static void
|
|
nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
|
|
{
|
|
struct nvme_tracker *tr = arg;
|
|
uint32_t cur_nseg;
|
|
|
|
/*
|
|
* If the mapping operation failed, return immediately. The caller
|
|
* is responsible for detecting the error status and failing the
|
|
* tracker manually.
|
|
*/
|
|
if (error != 0) {
|
|
nvme_printf(tr->qpair->ctrlr,
|
|
"nvme_payload_map err %d\n", error);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Note that we specified PAGE_SIZE for alignment and max
|
|
* segment size when creating the bus dma tags. So here
|
|
* we can safely just transfer each segment to its
|
|
* associated PRP entry.
|
|
*/
|
|
tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
|
|
|
|
if (nseg == 2) {
|
|
tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
|
|
} else if (nseg > 2) {
|
|
cur_nseg = 1;
|
|
tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
|
|
while (cur_nseg < nseg) {
|
|
tr->prp[cur_nseg-1] =
|
|
htole64((uint64_t)seg[cur_nseg].ds_addr);
|
|
cur_nseg++;
|
|
}
|
|
} else {
|
|
/*
|
|
* prp2 should not be used by the controller
|
|
* since there is only one segment, but set
|
|
* to 0 just to be safe.
|
|
*/
|
|
tr->req->cmd.prp2 = 0;
|
|
}
|
|
|
|
bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
nvme_qpair_submit_tracker(tr->qpair, tr);
|
|
}
|
|
|
|
static void
|
|
_nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
int err = 0;
|
|
|
|
mtx_assert(&qpair->lock, MA_OWNED);
|
|
|
|
tr = TAILQ_FIRST(&qpair->free_tr);
|
|
req->qpair = qpair;
|
|
|
|
if (tr == NULL || !qpair->is_enabled) {
|
|
/*
|
|
* No tracker is available, or the qpair is disabled due to
|
|
* an in-progress controller-level reset or controller
|
|
* failure.
|
|
*/
|
|
|
|
if (qpair->ctrlr->is_failed) {
|
|
/*
|
|
* The controller has failed. Post the request to a
|
|
* task where it will be aborted, so that we do not
|
|
* invoke the request's callback in the context
|
|
* of the submission.
|
|
*/
|
|
nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
|
|
} else {
|
|
/*
|
|
* Put the request on the qpair's request queue to be
|
|
* processed when a tracker frees up via a command
|
|
* completion or when the controller reset is
|
|
* completed.
|
|
*/
|
|
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
|
|
}
|
|
return;
|
|
}
|
|
|
|
TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
|
|
TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
|
|
tr->req = req;
|
|
|
|
switch (req->type) {
|
|
case NVME_REQUEST_VADDR:
|
|
KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
|
|
("payload_size (%d) exceeds max_xfer_size (%d)\n",
|
|
req->payload_size, qpair->ctrlr->max_xfer_size));
|
|
err = bus_dmamap_load(tr->qpair->dma_tag_payload,
|
|
tr->payload_dma_map, req->u.payload, req->payload_size,
|
|
nvme_payload_map, tr, 0);
|
|
if (err != 0)
|
|
nvme_printf(qpair->ctrlr,
|
|
"bus_dmamap_load returned 0x%x!\n", err);
|
|
break;
|
|
case NVME_REQUEST_NULL:
|
|
nvme_qpair_submit_tracker(tr->qpair, tr);
|
|
break;
|
|
case NVME_REQUEST_BIO:
|
|
KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
|
|
("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
|
|
(intmax_t)req->u.bio->bio_bcount,
|
|
qpair->ctrlr->max_xfer_size));
|
|
err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
|
|
tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
|
|
if (err != 0)
|
|
nvme_printf(qpair->ctrlr,
|
|
"bus_dmamap_load_bio returned 0x%x!\n", err);
|
|
break;
|
|
case NVME_REQUEST_CCB:
|
|
err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
|
|
tr->payload_dma_map, req->u.payload,
|
|
nvme_payload_map, tr, 0);
|
|
if (err != 0)
|
|
nvme_printf(qpair->ctrlr,
|
|
"bus_dmamap_load_ccb returned 0x%x!\n", err);
|
|
break;
|
|
default:
|
|
panic("unknown nvme request type 0x%x\n", req->type);
|
|
break;
|
|
}
|
|
|
|
if (err != 0) {
|
|
/*
|
|
* The dmamap operation failed, so we manually fail the
|
|
* tracker here with DATA_TRANSFER_ERROR status.
|
|
*
|
|
* nvme_qpair_manual_complete_tracker must not be called
|
|
* with the qpair lock held.
|
|
*/
|
|
mtx_unlock(&qpair->lock);
|
|
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
|
|
NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
|
|
mtx_lock(&qpair->lock);
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
|
|
{
|
|
|
|
mtx_lock(&qpair->lock);
|
|
_nvme_qpair_submit_request(qpair, req);
|
|
mtx_unlock(&qpair->lock);
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_enable(struct nvme_qpair *qpair)
|
|
{
|
|
|
|
qpair->is_enabled = TRUE;
|
|
}
|
|
|
|
void
|
|
nvme_qpair_reset(struct nvme_qpair *qpair)
|
|
{
|
|
|
|
qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
|
|
|
|
/*
|
|
* First time through the completion queue, HW will set phase
|
|
* bit on completions to 1. So set this to 1 here, indicating
|
|
* we're looking for a 1 to know which entries have completed.
|
|
* we'll toggle the bit each time when the completion queue
|
|
* rolls over.
|
|
*/
|
|
qpair->phase = 1;
|
|
|
|
memset(qpair->cmd, 0,
|
|
qpair->num_entries * sizeof(struct nvme_command));
|
|
memset(qpair->cpl, 0,
|
|
qpair->num_entries * sizeof(struct nvme_completion));
|
|
}
|
|
|
|
void
|
|
nvme_admin_qpair_enable(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
struct nvme_tracker *tr_temp;
|
|
|
|
/*
|
|
* Manually abort each outstanding admin command. Do not retry
|
|
* admin commands found here, since they will be left over from
|
|
* a controller reset and its likely the context in which the
|
|
* command was issued no longer applies.
|
|
*/
|
|
TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
|
|
nvme_printf(qpair->ctrlr,
|
|
"aborting outstanding admin command\n");
|
|
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
|
|
NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
|
|
}
|
|
|
|
nvme_qpair_enable(qpair);
|
|
}
|
|
|
|
void
|
|
nvme_io_qpair_enable(struct nvme_qpair *qpair)
|
|
{
|
|
STAILQ_HEAD(, nvme_request) temp;
|
|
struct nvme_tracker *tr;
|
|
struct nvme_tracker *tr_temp;
|
|
struct nvme_request *req;
|
|
|
|
/*
|
|
* Manually abort each outstanding I/O. This normally results in a
|
|
* retry, unless the retry count on the associated request has
|
|
* reached its limit.
|
|
*/
|
|
TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
|
|
nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
|
|
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
|
|
NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
|
|
}
|
|
|
|
mtx_lock(&qpair->lock);
|
|
|
|
nvme_qpair_enable(qpair);
|
|
|
|
STAILQ_INIT(&temp);
|
|
STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
|
|
|
|
while (!STAILQ_EMPTY(&temp)) {
|
|
req = STAILQ_FIRST(&temp);
|
|
STAILQ_REMOVE_HEAD(&temp, stailq);
|
|
nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
|
|
nvme_qpair_print_command(qpair, &req->cmd);
|
|
_nvme_qpair_submit_request(qpair, req);
|
|
}
|
|
|
|
mtx_unlock(&qpair->lock);
|
|
}
|
|
|
|
static void
|
|
nvme_qpair_disable(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
|
|
qpair->is_enabled = FALSE;
|
|
mtx_lock(&qpair->lock);
|
|
TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
|
|
callout_stop(&tr->timer);
|
|
mtx_unlock(&qpair->lock);
|
|
}
|
|
|
|
void
|
|
nvme_admin_qpair_disable(struct nvme_qpair *qpair)
|
|
{
|
|
|
|
nvme_qpair_disable(qpair);
|
|
nvme_admin_qpair_abort_aers(qpair);
|
|
}
|
|
|
|
void
|
|
nvme_io_qpair_disable(struct nvme_qpair *qpair)
|
|
{
|
|
|
|
nvme_qpair_disable(qpair);
|
|
}
|
|
|
|
void
|
|
nvme_qpair_fail(struct nvme_qpair *qpair)
|
|
{
|
|
struct nvme_tracker *tr;
|
|
struct nvme_request *req;
|
|
|
|
if (!mtx_initialized(&qpair->lock))
|
|
return;
|
|
|
|
mtx_lock(&qpair->lock);
|
|
|
|
while (!STAILQ_EMPTY(&qpair->queued_req)) {
|
|
req = STAILQ_FIRST(&qpair->queued_req);
|
|
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
|
|
nvme_printf(qpair->ctrlr, "failing queued i/o\n");
|
|
mtx_unlock(&qpair->lock);
|
|
nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
|
|
NVME_SC_ABORTED_BY_REQUEST);
|
|
mtx_lock(&qpair->lock);
|
|
}
|
|
|
|
/* Manually abort each outstanding I/O. */
|
|
while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
|
|
tr = TAILQ_FIRST(&qpair->outstanding_tr);
|
|
/*
|
|
* Do not remove the tracker. The abort_tracker path will
|
|
* do that for us.
|
|
*/
|
|
nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
|
|
mtx_unlock(&qpair->lock);
|
|
nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
|
|
NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
|
|
mtx_lock(&qpair->lock);
|
|
}
|
|
|
|
mtx_unlock(&qpair->lock);
|
|
}
|
|
|