68e8e04e93
o major overhaul of the way channels are handled: channels are now fully enumerated and uniquely identify the operating characteristics; these changes are visible to user applications which require changes o make scanning support independent of the state machine to enable background scanning and roaming o move scanning support into loadable modules based on the operating mode to enable different policies and reduce the memory footprint on systems w/ constrained resources o add background scanning in station mode (no support for adhoc/ibss mode yet) o significantly speedup sta mode scanning with a variety of techniques o add roaming support when background scanning is supported; for now we use a simple algorithm to trigger a roam: we threshold the rssi and tx rate, if either drops too low we try to roam to a new ap o add tx fragmentation support o add first cut at 802.11n support: this code works with forthcoming drivers but is incomplete; it's included now to establish a baseline for other drivers to be developed and for user applications o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates prepending mbufs for traffic generated locally o add support for Atheros protocol extensions; mainly the fast frames encapsulation (note this can be used with any card that can tx+rx large frames correctly) o add sta support for ap's that beacon both WPA1+2 support o change all data types from bsd-style to posix-style o propagate noise floor data from drivers to net80211 and on to user apps o correct various issues in the sta mode state machine related to handling authentication and association failures o enable the addition of sta mode power save support for drivers that need net80211 support (not in this commit) o remove old WI compatibility ioctls (wicontrol is officially dead) o change the data structures returned for get sta info and get scan results so future additions will not break user apps o fixed tx rate is now maintained internally as an ieee rate and not an index into the rate set; this needs to be extended to deal with multi-mode operation o add extended channel specifications to radiotap to enable 11n sniffing Drivers: o ath: add support for bg scanning, tx fragmentation, fast frames, dynamic turbo (lightly tested), 11n (sniffing only and needs new hal) o awi: compile tested only o ndis: lightly tested o ipw: lightly tested o iwi: add support for bg scanning (well tested but may have some rough edges) o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data o wi: lightly tested This work is based on contributions by Atheros, kmacy, sephe, thompsa, mlaier, kevlo, and others. Much of the scanning work was supported by Atheros. The 11n work was supported by Marvell.
225 lines
8.4 KiB
C
225 lines
8.4 KiB
C
/*-
|
|
* Copyright (c) 2001 Atsushi Onoe
|
|
* Copyright (c) 2002-2007 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
#ifndef _NET80211_IEEE80211_CRYPTO_H_
|
|
#define _NET80211_IEEE80211_CRYPTO_H_
|
|
|
|
/*
|
|
* 802.11 protocol crypto-related definitions.
|
|
*/
|
|
#define IEEE80211_KEYBUF_SIZE 16
|
|
#define IEEE80211_MICBUF_SIZE (8+8) /* space for both tx+rx keys */
|
|
|
|
/*
|
|
* Old WEP-style key. Deprecated.
|
|
*/
|
|
struct ieee80211_wepkey {
|
|
u_int wk_len; /* key length in bytes */
|
|
uint8_t wk_key[IEEE80211_KEYBUF_SIZE];
|
|
};
|
|
|
|
struct ieee80211_cipher;
|
|
|
|
/*
|
|
* Crypto key state. There is sufficient room for all supported
|
|
* ciphers (see below). The underlying ciphers are handled
|
|
* separately through loadable cipher modules that register with
|
|
* the generic crypto support. A key has a reference to an instance
|
|
* of the cipher; any per-key state is hung off wk_private by the
|
|
* cipher when it is attached. Ciphers are automatically called
|
|
* to detach and cleanup any such state when the key is deleted.
|
|
*
|
|
* The generic crypto support handles encap/decap of cipher-related
|
|
* frame contents for both hardware- and software-based implementations.
|
|
* A key requiring software crypto support is automatically flagged and
|
|
* the cipher is expected to honor this and do the necessary work.
|
|
* Ciphers such as TKIP may also support mixed hardware/software
|
|
* encrypt/decrypt and MIC processing.
|
|
*/
|
|
typedef uint16_t ieee80211_keyix; /* h/w key index */
|
|
|
|
struct ieee80211_key {
|
|
uint8_t wk_keylen; /* key length in bytes */
|
|
uint8_t wk_pad;
|
|
uint16_t wk_flags;
|
|
#define IEEE80211_KEY_XMIT 0x01 /* key used for xmit */
|
|
#define IEEE80211_KEY_RECV 0x02 /* key used for recv */
|
|
#define IEEE80211_KEY_GROUP 0x04 /* key used for WPA group operation */
|
|
#define IEEE80211_KEY_SWCRYPT 0x10 /* host-based encrypt/decrypt */
|
|
#define IEEE80211_KEY_SWMIC 0x20 /* host-based enmic/demic */
|
|
ieee80211_keyix wk_keyix; /* h/w key index */
|
|
ieee80211_keyix wk_rxkeyix; /* optional h/w rx key index */
|
|
uint8_t wk_key[IEEE80211_KEYBUF_SIZE+IEEE80211_MICBUF_SIZE];
|
|
#define wk_txmic wk_key+IEEE80211_KEYBUF_SIZE+0 /* XXX can't () right */
|
|
#define wk_rxmic wk_key+IEEE80211_KEYBUF_SIZE+8 /* XXX can't () right */
|
|
uint64_t wk_keyrsc; /* key receive sequence counter */
|
|
uint64_t wk_keytsc; /* key transmit sequence counter */
|
|
const struct ieee80211_cipher *wk_cipher;
|
|
void *wk_private; /* private cipher state */
|
|
};
|
|
#define IEEE80211_KEY_COMMON /* common flags passed in by apps */\
|
|
(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV | IEEE80211_KEY_GROUP)
|
|
|
|
/*
|
|
* NB: these values are ordered carefully; there are lots of
|
|
* of implications in any reordering. In particular beware
|
|
* that 4 is not used to avoid conflicting with IEEE80211_F_PRIVACY.
|
|
*/
|
|
#define IEEE80211_CIPHER_WEP 0
|
|
#define IEEE80211_CIPHER_TKIP 1
|
|
#define IEEE80211_CIPHER_AES_OCB 2
|
|
#define IEEE80211_CIPHER_AES_CCM 3
|
|
#define IEEE80211_CIPHER_CKIP 5
|
|
#define IEEE80211_CIPHER_NONE 6 /* pseudo value */
|
|
|
|
#define IEEE80211_CIPHER_MAX (IEEE80211_CIPHER_NONE+1)
|
|
|
|
#define IEEE80211_KEYIX_NONE ((ieee80211_keyix) -1)
|
|
|
|
#if defined(__KERNEL__) || defined(_KERNEL)
|
|
|
|
struct ieee80211com;
|
|
struct ieee80211_node;
|
|
struct mbuf;
|
|
|
|
/*
|
|
* Crypto state kept in each ieee80211com. Some of this
|
|
* can/should be shared when virtual AP's are supported.
|
|
*
|
|
* XXX save reference to ieee80211com to properly encapsulate state.
|
|
* XXX split out crypto capabilities from ic_caps
|
|
*/
|
|
struct ieee80211_crypto_state {
|
|
struct ieee80211_key cs_nw_keys[IEEE80211_WEP_NKID];
|
|
ieee80211_keyix cs_def_txkey; /* default/group tx key index */
|
|
uint16_t cs_max_keyix; /* max h/w key index */
|
|
|
|
int (*cs_key_alloc)(struct ieee80211com *,
|
|
const struct ieee80211_key *,
|
|
ieee80211_keyix *, ieee80211_keyix *);
|
|
int (*cs_key_delete)(struct ieee80211com *,
|
|
const struct ieee80211_key *);
|
|
int (*cs_key_set)(struct ieee80211com *,
|
|
const struct ieee80211_key *,
|
|
const uint8_t mac[IEEE80211_ADDR_LEN]);
|
|
void (*cs_key_update_begin)(struct ieee80211com *);
|
|
void (*cs_key_update_end)(struct ieee80211com *);
|
|
};
|
|
|
|
void ieee80211_crypto_attach(struct ieee80211com *);
|
|
void ieee80211_crypto_detach(struct ieee80211com *);
|
|
int ieee80211_crypto_newkey(struct ieee80211com *,
|
|
int cipher, int flags, struct ieee80211_key *);
|
|
int ieee80211_crypto_delkey(struct ieee80211com *,
|
|
struct ieee80211_key *);
|
|
int ieee80211_crypto_setkey(struct ieee80211com *,
|
|
struct ieee80211_key *, const uint8_t macaddr[IEEE80211_ADDR_LEN]);
|
|
void ieee80211_crypto_delglobalkeys(struct ieee80211com *);
|
|
|
|
/*
|
|
* Template for a supported cipher. Ciphers register with the
|
|
* crypto code and are typically loaded as separate modules
|
|
* (the null cipher is always present).
|
|
* XXX may need refcnts
|
|
*/
|
|
struct ieee80211_cipher {
|
|
const char *ic_name; /* printable name */
|
|
u_int ic_cipher; /* IEEE80211_CIPHER_* */
|
|
u_int ic_header; /* size of privacy header (bytes) */
|
|
u_int ic_trailer; /* size of privacy trailer (bytes) */
|
|
u_int ic_miclen; /* size of mic trailer (bytes) */
|
|
void* (*ic_attach)(struct ieee80211com *, struct ieee80211_key *);
|
|
void (*ic_detach)(struct ieee80211_key *);
|
|
int (*ic_setkey)(struct ieee80211_key *);
|
|
int (*ic_encap)(struct ieee80211_key *, struct mbuf *,
|
|
uint8_t keyid);
|
|
int (*ic_decap)(struct ieee80211_key *, struct mbuf *, int);
|
|
int (*ic_enmic)(struct ieee80211_key *, struct mbuf *, int);
|
|
int (*ic_demic)(struct ieee80211_key *, struct mbuf *, int);
|
|
};
|
|
extern const struct ieee80211_cipher ieee80211_cipher_none;
|
|
|
|
#define IEEE80211_KEY_UNDEFINED(k) \
|
|
((k)->wk_cipher == &ieee80211_cipher_none)
|
|
|
|
void ieee80211_crypto_register(const struct ieee80211_cipher *);
|
|
void ieee80211_crypto_unregister(const struct ieee80211_cipher *);
|
|
int ieee80211_crypto_available(u_int cipher);
|
|
|
|
struct ieee80211_key *ieee80211_crypto_encap(struct ieee80211com *,
|
|
struct ieee80211_node *, struct mbuf *);
|
|
struct ieee80211_key *ieee80211_crypto_decap(struct ieee80211com *,
|
|
struct ieee80211_node *, struct mbuf *, int);
|
|
|
|
/*
|
|
* Check and remove any MIC.
|
|
*/
|
|
static __inline int
|
|
ieee80211_crypto_demic(struct ieee80211com *ic, struct ieee80211_key *k,
|
|
struct mbuf *m, int force)
|
|
{
|
|
const struct ieee80211_cipher *cip = k->wk_cipher;
|
|
return (cip->ic_miclen > 0 ? cip->ic_demic(k, m, force) : 1);
|
|
}
|
|
|
|
/*
|
|
* Add any MIC.
|
|
*/
|
|
static __inline int
|
|
ieee80211_crypto_enmic(struct ieee80211com *ic,
|
|
struct ieee80211_key *k, struct mbuf *m, int force)
|
|
{
|
|
const struct ieee80211_cipher *cip = k->wk_cipher;
|
|
return (cip->ic_miclen > 0 ? cip->ic_enmic(k, m, force) : 1);
|
|
}
|
|
|
|
/*
|
|
* Reset key state to an unused state. The crypto
|
|
* key allocation mechanism insures other state (e.g.
|
|
* key data) is properly setup before a key is used.
|
|
*/
|
|
static __inline void
|
|
ieee80211_crypto_resetkey(struct ieee80211com *ic,
|
|
struct ieee80211_key *k, ieee80211_keyix ix)
|
|
{
|
|
k->wk_cipher = &ieee80211_cipher_none;;
|
|
k->wk_private = k->wk_cipher->ic_attach(ic, k);
|
|
k->wk_keyix = k->wk_rxkeyix = ix;
|
|
k->wk_flags = IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV;
|
|
}
|
|
|
|
/*
|
|
* Crypt-related notification methods.
|
|
*/
|
|
void ieee80211_notify_replay_failure(struct ieee80211com *,
|
|
const struct ieee80211_frame *, const struct ieee80211_key *,
|
|
u_int64_t rsc);
|
|
void ieee80211_notify_michael_failure(struct ieee80211com *,
|
|
const struct ieee80211_frame *, u_int keyix);
|
|
#endif /* defined(__KERNEL__) || defined(_KERNEL) */
|
|
#endif /* _NET80211_IEEE80211_CRYPTO_H_ */
|