720a3741cf
entropy estimation, but causes an immediate reseed after the input (read in sizeof(u_int64_t) chunks) is "harvested". This will be used in the reboot "reseeder", coming in another commit. This can be used very effectively at any time you think your randomness is compromised; something like # (ps -gauxwww; netstat -an; dmesg; vmstat -c10 1) > /dev/random will give the attacker something to think about.
385 lines
10 KiB
C
385 lines
10 KiB
C
/*-
|
|
* Copyright (c) 2000 Mark R V Murray
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer
|
|
* in this position and unchanged.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/* NOTE NOTE NOTE - This is not finished! It will supply numbers, but
|
|
it is not yet cryptographically secure!! */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/random.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <crypto/blowfish/blowfish.h>
|
|
|
|
#include <dev/randomdev/yarrow.h>
|
|
|
|
/* #define DEBUG */
|
|
|
|
static void generator_gate(void);
|
|
static void reseed(int);
|
|
static void random_harvest_internal(struct timespec *nanotime, u_int64_t entropy, u_int bits, u_int frac, enum esource source);
|
|
|
|
/* Structure holding the entropy state */
|
|
struct random_state random_state;
|
|
|
|
/* When enough entropy has been harvested, asynchronously "stir" it in */
|
|
/* The regate task is run at splsofttq() */
|
|
static struct task regate_task[2];
|
|
|
|
struct context {
|
|
u_int pool;
|
|
} context[2] = {
|
|
{ 0 },
|
|
{ 1 }
|
|
};
|
|
|
|
static void
|
|
regate(void *context, int pending)
|
|
{
|
|
#ifdef DEBUG
|
|
printf("Regate task\n");
|
|
#endif
|
|
reseed(((struct context *)context)->pool);
|
|
}
|
|
|
|
void
|
|
random_init(void)
|
|
{
|
|
#ifdef DEBUG
|
|
printf("Random init\n");
|
|
#endif
|
|
random_state.gengateinterval = 10;
|
|
random_state.bins = 10;
|
|
random_state.pool[0].thresh = 100;
|
|
random_state.pool[1].thresh = 160;
|
|
random_state.slowoverthresh = 2;
|
|
random_state.which = FAST;
|
|
TASK_INIT(®ate_task[FAST], FAST, ®ate, (void *)&context[FAST]);
|
|
TASK_INIT(®ate_task[SLOW], SLOW, ®ate, (void *)&context[SLOW]);
|
|
random_init_harvester(random_harvest_internal);
|
|
}
|
|
|
|
void
|
|
random_deinit(void)
|
|
{
|
|
#ifdef DEBUG
|
|
printf("Random deinit\n");
|
|
#endif
|
|
random_deinit_harvester();
|
|
}
|
|
|
|
static void
|
|
reseed(int fastslow)
|
|
{
|
|
/* Interrupt-context stack is a limited resource; make static */
|
|
/* large structures; XXX Revisit - needs to move to the large */
|
|
/* random_state structure. */
|
|
static unsigned char v[TIMEBIN][KEYSIZE]; /* v[i] */
|
|
unsigned char hash[KEYSIZE]; /* h' */
|
|
static BF_KEY hashkey;
|
|
unsigned char ivec[8];
|
|
unsigned char temp[KEYSIZE];
|
|
struct entropy *bucket;
|
|
int i, j;
|
|
|
|
#ifdef DEBUG
|
|
printf("Reseed type %d\n", fastslow);
|
|
#endif
|
|
|
|
/* 1. Hash the accumulated entropy into v[0] */
|
|
|
|
bzero((void *)&v[0], KEYSIZE);
|
|
if (fastslow == SLOW) {
|
|
/* Feed a hash of the slow pool into the fast pool */
|
|
for (i = 0; i < ENTROPYSOURCE; i++) {
|
|
for (j = 0; j < ENTROPYBIN; j++) {
|
|
bucket = &random_state.pool[SLOW].source[i].entropy[j];
|
|
if(bucket->nanotime.tv_sec || bucket->nanotime.tv_nsec) {
|
|
BF_set_key(&hashkey, sizeof(struct entropy),
|
|
(void *)bucket);
|
|
BF_cbc_encrypt(v[0], temp, KEYSIZE, &hashkey, ivec,
|
|
BF_ENCRYPT);
|
|
memcpy(&v[0], temp, KEYSIZE);
|
|
bucket->nanotime.tv_sec = 0;
|
|
bucket->nanotime.tv_nsec = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ENTROPYSOURCE; i++) {
|
|
for (j = 0; j < ENTROPYBIN; j++) {
|
|
bucket = &random_state.pool[FAST].source[i].entropy[j];
|
|
if(bucket->nanotime.tv_sec || bucket->nanotime.tv_nsec) {
|
|
BF_set_key(&hashkey, sizeof(struct entropy), (void *)bucket);
|
|
BF_cbc_encrypt(v[0], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
|
|
memcpy(&v[0], temp, KEYSIZE);
|
|
bucket->nanotime.tv_sec = 0;
|
|
bucket->nanotime.tv_nsec = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* 2. Compute hash values for all v. _Supposed_ to be computationally */
|
|
/* intensive. */
|
|
|
|
if (random_state.bins > TIMEBIN)
|
|
random_state.bins = TIMEBIN;
|
|
for (i = 1; i < random_state.bins; i++) {
|
|
bzero((void *)&v[i], KEYSIZE);
|
|
/* v[i] #= h(v[i-1]) */
|
|
BF_set_key(&hashkey, KEYSIZE, v[i - 1]);
|
|
BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
|
|
memcpy(&v[i], temp, KEYSIZE);
|
|
/* v[i] #= h(v[0]) */
|
|
BF_set_key(&hashkey, KEYSIZE, v[0]);
|
|
BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
|
|
memcpy(&v[i], temp, KEYSIZE);
|
|
/* v[i] #= h(i) */
|
|
BF_set_key(&hashkey, sizeof(int), (unsigned char *)&i);
|
|
BF_cbc_encrypt(v[i], temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
|
|
memcpy(&v[i], temp, KEYSIZE);
|
|
}
|
|
|
|
/* 3. Compute a new Key. */
|
|
|
|
bzero((void *)hash, KEYSIZE);
|
|
BF_set_key(&hashkey, KEYSIZE, (unsigned char *)&random_state.key);
|
|
BF_cbc_encrypt(hash, temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
|
|
memcpy(hash, temp, KEYSIZE);
|
|
for (i = 1; i < random_state.bins; i++) {
|
|
BF_set_key(&hashkey, KEYSIZE, v[i]);
|
|
BF_cbc_encrypt(hash, temp, KEYSIZE, &hashkey, ivec, BF_ENCRYPT);
|
|
memcpy(hash, temp, KEYSIZE);
|
|
}
|
|
BF_set_key(&random_state.key, KEYSIZE, hash);
|
|
|
|
/* 4. Recompute the counter */
|
|
|
|
random_state.counter = 0;
|
|
BF_cbc_encrypt((unsigned char *)&random_state.counter, temp,
|
|
sizeof(random_state.counter), &random_state.key,
|
|
random_state.ivec, BF_ENCRYPT);
|
|
memcpy(&random_state.counter, temp, random_state.counter);
|
|
|
|
/* 5. Reset entropy estimate accumulators to zero */
|
|
|
|
for (i = 0; i <= fastslow; i++) {
|
|
for (j = 0; j < ENTROPYSOURCE; j++) {
|
|
random_state.pool[i].source[j].bits = 0;
|
|
random_state.pool[i].source[j].frac = 0;
|
|
}
|
|
}
|
|
|
|
/* 6. Wipe memory of intermediate values */
|
|
|
|
bzero((void *)v, sizeof(v));
|
|
bzero((void *)temp, sizeof(temp));
|
|
bzero((void *)hash, sizeof(hash));
|
|
|
|
/* 7. Dump to seed file (XXX done by external process?) */
|
|
|
|
}
|
|
|
|
u_int
|
|
read_random(char *buf, u_int count)
|
|
{
|
|
static int cur = 0;
|
|
static int gate = 1;
|
|
u_int i;
|
|
u_int retval;
|
|
u_int64_t genval;
|
|
intrmask_t mask;
|
|
|
|
/* The reseed task must not be jumped on */
|
|
mask = splsofttq();
|
|
|
|
if (gate) {
|
|
generator_gate();
|
|
random_state.outputblocks = 0;
|
|
gate = 0;
|
|
}
|
|
if (count >= sizeof(random_state.counter)) {
|
|
retval = 0;
|
|
for (i = 0; i < count; i += sizeof(random_state.counter)) {
|
|
random_state.counter++;
|
|
BF_cbc_encrypt((unsigned char *)&random_state.counter,
|
|
(unsigned char *)&genval,
|
|
sizeof(random_state.counter),
|
|
&random_state.key, random_state.ivec, BF_ENCRYPT);
|
|
memcpy(&buf[i], &genval, sizeof(random_state.counter));
|
|
if (++random_state.outputblocks >= random_state.gengateinterval) {
|
|
generator_gate();
|
|
random_state.outputblocks = 0;
|
|
}
|
|
retval += sizeof(random_state.counter);
|
|
}
|
|
}
|
|
else {
|
|
if (!cur) {
|
|
random_state.counter++;
|
|
BF_cbc_encrypt((unsigned char *)&random_state.counter,
|
|
(unsigned char *)&genval,
|
|
sizeof(random_state.counter),
|
|
&random_state.key, random_state.ivec,
|
|
BF_ENCRYPT);
|
|
memcpy(buf, &genval, count);
|
|
cur = sizeof(random_state.counter) - count;
|
|
if (++random_state.outputblocks >= random_state.gengateinterval) {
|
|
generator_gate();
|
|
random_state.outputblocks = 0;
|
|
}
|
|
retval = count;
|
|
}
|
|
else {
|
|
retval = cur < count ? cur : count;
|
|
memcpy(buf,
|
|
(char *)&random_state.counter +
|
|
(sizeof(random_state.counter) - retval),
|
|
retval);
|
|
cur -= retval;
|
|
}
|
|
}
|
|
splx(mask);
|
|
return retval;
|
|
}
|
|
|
|
void
|
|
write_random(char *buf, u_int count)
|
|
{
|
|
u_int i;
|
|
intrmask_t mask;
|
|
struct timespec nanotime;
|
|
|
|
/* The reseed task must not be jumped on */
|
|
mask = splsofttq();
|
|
for (i = 0; i < count/sizeof(u_int64_t); i++) {
|
|
getnanotime(&nanotime);
|
|
random_harvest_internal(&nanotime,
|
|
*(u_int64_t *)&buf[i*sizeof(u_int64_t)],
|
|
0, 0, RANDOM_WRITE);
|
|
}
|
|
reseed(FAST);
|
|
splx(mask);
|
|
}
|
|
|
|
static void
|
|
generator_gate(void)
|
|
{
|
|
int i;
|
|
unsigned char temp[KEYSIZE];
|
|
intrmask_t mask;
|
|
|
|
#ifdef DEBUG
|
|
printf("Generator gate\n");
|
|
#endif
|
|
|
|
/* The reseed task must not be jumped on */
|
|
mask = splsofttq();
|
|
|
|
for (i = 0; i < KEYSIZE; i += sizeof(random_state.counter)) {
|
|
random_state.counter++;
|
|
BF_cbc_encrypt((unsigned char *)&random_state.counter,
|
|
&(temp[i]), sizeof(random_state.counter),
|
|
&random_state.key, random_state.ivec, BF_ENCRYPT);
|
|
}
|
|
|
|
BF_set_key(&random_state.key, KEYSIZE, temp);
|
|
bzero((void *)temp, KEYSIZE);
|
|
|
|
splx(mask);
|
|
}
|
|
|
|
/* Entropy harvesting routine. This is supposed to be fast; do */
|
|
/* not do anything slow in here! */
|
|
|
|
static void
|
|
random_harvest_internal(struct timespec *nanotime, u_int64_t entropy,
|
|
u_int bits, u_int frac, enum esource origin)
|
|
{
|
|
u_int insert;
|
|
int which; /* fast or slow */
|
|
struct entropy *bucket;
|
|
struct source *source;
|
|
struct pool *pool;
|
|
intrmask_t mask;
|
|
|
|
#ifdef DEBUG
|
|
printf("Random harvest\n");
|
|
#endif
|
|
if (origin < ENTROPYSOURCE) {
|
|
|
|
/* Called inside irq handlers; protect from interference */
|
|
mask = splhigh();
|
|
|
|
which = random_state.which;
|
|
pool = &random_state.pool[which];
|
|
source = &pool->source[origin];
|
|
|
|
insert = source->current + 1;
|
|
if (insert >= ENTROPYBIN)
|
|
insert = 0;
|
|
|
|
bucket = &source->entropy[insert];
|
|
|
|
if (!bucket->nanotime.tv_sec && !bucket->nanotime.tv_nsec) {
|
|
|
|
/* nanotime provides clock jitter */
|
|
bucket->nanotime = *nanotime;
|
|
|
|
/* the harvested entropy */
|
|
bucket->data = entropy;
|
|
|
|
/* update the estimates - including "fractional bits" */
|
|
source->bits += bits;
|
|
source->frac += frac;
|
|
if (source->frac >= 1024) {
|
|
source->bits += source->frac / 1024;
|
|
source->frac %= 1024;
|
|
}
|
|
if (source->bits >= pool->thresh) {
|
|
/* XXX Slowoverthresh nees to be considered */
|
|
taskqueue_enqueue(taskqueue_swi, ®ate_task[which]);
|
|
}
|
|
|
|
/* bump the insertion point */
|
|
source->current = insert;
|
|
|
|
/* toggle the pool for next insertion */
|
|
random_state.which = !random_state.which;
|
|
|
|
}
|
|
splx(mask);
|
|
}
|
|
}
|