freebsd-nq/sys/dev/usb/wlan/if_urtwn.c

3034 lines
80 KiB
C

/* $OpenBSD: if_urtwn.c,v 1.16 2011/02/10 17:26:40 jakemsr Exp $ */
/*-
* Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188RU/RTL8192CU.
*/
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <sys/kdb.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_ratectl.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR urtwn_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/wlan/if_urtwnreg.h>
#ifdef USB_DEBUG
static int urtwn_debug = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, urtwn, CTLFLAG_RW, 0, "USB urtwn");
SYSCTL_INT(_hw_usb_urtwn, OID_AUTO, debug, CTLFLAG_RW, &urtwn_debug, 0,
"Debug level");
#endif
#define URTWN_RSSI(r) (r) - 110
#define IEEE80211_HAS_ADDR4(wh) \
(((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS)
/* various supported device vendors/products */
static const STRUCT_USB_HOST_ID urtwn_devs[] = {
#define URTWN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
URTWN_DEV(ABOCOM, RTL8188CU_1),
URTWN_DEV(ABOCOM, RTL8188CU_2),
URTWN_DEV(ABOCOM, RTL8192CU),
URTWN_DEV(ASUS, RTL8192CU),
URTWN_DEV(AZUREWAVE, RTL8188CE_1),
URTWN_DEV(AZUREWAVE, RTL8188CE_2),
URTWN_DEV(AZUREWAVE, RTL8188CU),
URTWN_DEV(BELKIN, F7D2102),
URTWN_DEV(BELKIN, RTL8188CU),
URTWN_DEV(BELKIN, RTL8192CU),
URTWN_DEV(CHICONY, RTL8188CUS_1),
URTWN_DEV(CHICONY, RTL8188CUS_2),
URTWN_DEV(CHICONY, RTL8188CUS_3),
URTWN_DEV(CHICONY, RTL8188CUS_4),
URTWN_DEV(CHICONY, RTL8188CUS_5),
URTWN_DEV(COREGA, RTL8192CU),
URTWN_DEV(DLINK, RTL8188CU),
URTWN_DEV(DLINK, RTL8192CU_1),
URTWN_DEV(DLINK, RTL8192CU_2),
URTWN_DEV(DLINK, RTL8192CU_3),
URTWN_DEV(DLINK, DWA131B),
URTWN_DEV(EDIMAX, EW7811UN),
URTWN_DEV(EDIMAX, RTL8192CU),
URTWN_DEV(FEIXUN, RTL8188CU),
URTWN_DEV(FEIXUN, RTL8192CU),
URTWN_DEV(GUILLEMOT, HWNUP150),
URTWN_DEV(HAWKING, RTL8192CU),
URTWN_DEV(HP3, RTL8188CU),
URTWN_DEV(NETGEAR, WNA1000M),
URTWN_DEV(NETGEAR, RTL8192CU),
URTWN_DEV(NETGEAR4, RTL8188CU),
URTWN_DEV(NOVATECH, RTL8188CU),
URTWN_DEV(PLANEX2, RTL8188CU_1),
URTWN_DEV(PLANEX2, RTL8188CU_2),
URTWN_DEV(PLANEX2, RTL8188CU_3),
URTWN_DEV(PLANEX2, RTL8188CU_4),
URTWN_DEV(PLANEX2, RTL8188CUS),
URTWN_DEV(PLANEX2, RTL8192CU),
URTWN_DEV(REALTEK, RTL8188CE_0),
URTWN_DEV(REALTEK, RTL8188CE_1),
URTWN_DEV(REALTEK, RTL8188CTV),
URTWN_DEV(REALTEK, RTL8188CU_0),
URTWN_DEV(REALTEK, RTL8188CU_1),
URTWN_DEV(REALTEK, RTL8188CU_2),
URTWN_DEV(REALTEK, RTL8188CU_COMBO),
URTWN_DEV(REALTEK, RTL8188CUS),
URTWN_DEV(REALTEK, RTL8188RU_1),
URTWN_DEV(REALTEK, RTL8188RU_2),
URTWN_DEV(REALTEK, RTL8191CU),
URTWN_DEV(REALTEK, RTL8192CE),
URTWN_DEV(REALTEK, RTL8192CU),
URTWN_DEV(REALTEK, RTL8188CU_0),
URTWN_DEV(SITECOMEU, RTL8188CU_1),
URTWN_DEV(SITECOMEU, RTL8188CU_2),
URTWN_DEV(SITECOMEU, RTL8192CU),
URTWN_DEV(TRENDNET, RTL8188CU),
URTWN_DEV(TRENDNET, RTL8192CU),
URTWN_DEV(ZYXEL, RTL8192CU),
#undef URTWN_DEV
};
static device_probe_t urtwn_match;
static device_attach_t urtwn_attach;
static device_detach_t urtwn_detach;
static usb_callback_t urtwn_bulk_tx_callback;
static usb_callback_t urtwn_bulk_rx_callback;
static usb_error_t urtwn_do_request(struct urtwn_softc *sc,
struct usb_device_request *req, void *data);
static struct ieee80211vap *urtwn_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void urtwn_vap_delete(struct ieee80211vap *);
static struct mbuf * urtwn_rx_frame(struct urtwn_softc *, uint8_t *, int,
int *);
static struct mbuf * urtwn_rxeof(struct usb_xfer *, struct urtwn_data *,
int *, int8_t *);
static void urtwn_txeof(struct usb_xfer *, struct urtwn_data *);
static int urtwn_alloc_list(struct urtwn_softc *,
struct urtwn_data[], int, int);
static int urtwn_alloc_rx_list(struct urtwn_softc *);
static int urtwn_alloc_tx_list(struct urtwn_softc *);
static void urtwn_free_tx_list(struct urtwn_softc *);
static void urtwn_free_rx_list(struct urtwn_softc *);
static void urtwn_free_list(struct urtwn_softc *,
struct urtwn_data data[], int);
static struct urtwn_data * _urtwn_getbuf(struct urtwn_softc *);
static struct urtwn_data * urtwn_getbuf(struct urtwn_softc *);
static int urtwn_write_region_1(struct urtwn_softc *, uint16_t,
uint8_t *, int);
static void urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t);
static void urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t);
static void urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t);
static int urtwn_read_region_1(struct urtwn_softc *, uint16_t,
uint8_t *, int);
static uint8_t urtwn_read_1(struct urtwn_softc *, uint16_t);
static uint16_t urtwn_read_2(struct urtwn_softc *, uint16_t);
static uint32_t urtwn_read_4(struct urtwn_softc *, uint16_t);
static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t,
const void *, int);
static void urtwn_rf_write(struct urtwn_softc *, int, uint8_t,
uint32_t);
static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t);
static int urtwn_llt_write(struct urtwn_softc *, uint32_t,
uint32_t);
static uint8_t urtwn_efuse_read_1(struct urtwn_softc *, uint16_t);
static void urtwn_efuse_read(struct urtwn_softc *);
static int urtwn_read_chipid(struct urtwn_softc *);
static void urtwn_read_rom(struct urtwn_softc *);
static int urtwn_ra_init(struct urtwn_softc *);
static void urtwn_tsf_sync_enable(struct urtwn_softc *);
static void urtwn_set_led(struct urtwn_softc *, int, int);
static int urtwn_newstate(struct ieee80211vap *,
enum ieee80211_state, int);
static void urtwn_watchdog(void *);
static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t);
static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *);
static int urtwn_tx_start(struct urtwn_softc *,
struct ieee80211_node *, struct mbuf *,
struct urtwn_data *);
static void urtwn_start(struct ifnet *);
static int urtwn_ioctl(struct ifnet *, u_long, caddr_t);
static int urtwn_power_on(struct urtwn_softc *);
static int urtwn_llt_init(struct urtwn_softc *);
static void urtwn_fw_reset(struct urtwn_softc *);
static int urtwn_fw_loadpage(struct urtwn_softc *, int,
const uint8_t *, int);
static int urtwn_load_firmware(struct urtwn_softc *);
static int urtwn_dma_init(struct urtwn_softc *);
static void urtwn_mac_init(struct urtwn_softc *);
static void urtwn_bb_init(struct urtwn_softc *);
static void urtwn_rf_init(struct urtwn_softc *);
static void urtwn_cam_init(struct urtwn_softc *);
static void urtwn_pa_bias_init(struct urtwn_softc *);
static void urtwn_rxfilter_init(struct urtwn_softc *);
static void urtwn_edca_init(struct urtwn_softc *);
static void urtwn_write_txpower(struct urtwn_softc *, int,
uint16_t[]);
static void urtwn_get_txpower(struct urtwn_softc *, int,
struct ieee80211_channel *,
struct ieee80211_channel *, uint16_t[]);
static void urtwn_set_txpower(struct urtwn_softc *,
struct ieee80211_channel *,
struct ieee80211_channel *);
static void urtwn_scan_start(struct ieee80211com *);
static void urtwn_scan_end(struct ieee80211com *);
static void urtwn_set_channel(struct ieee80211com *);
static void urtwn_set_chan(struct urtwn_softc *,
struct ieee80211_channel *,
struct ieee80211_channel *);
static void urtwn_update_mcast(struct ifnet *);
static void urtwn_iq_calib(struct urtwn_softc *);
static void urtwn_lc_calib(struct urtwn_softc *);
static void urtwn_init(void *);
static void urtwn_init_locked(void *);
static void urtwn_stop(struct ifnet *, int);
static void urtwn_stop_locked(struct ifnet *, int);
static void urtwn_abort_xfers(struct urtwn_softc *);
static int urtwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
/* Aliases. */
#define urtwn_bb_write urtwn_write_4
#define urtwn_bb_read urtwn_read_4
static const struct usb_config urtwn_config[URTWN_N_TRANSFER] = {
[URTWN_BULK_RX] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = URTWN_RXBUFSZ,
.flags = {
.pipe_bof = 1,
.short_xfer_ok = 1
},
.callback = urtwn_bulk_rx_callback,
},
[URTWN_BULK_TX_BE] = {
.type = UE_BULK,
.endpoint = 0x03,
.direction = UE_DIR_OUT,
.bufsize = URTWN_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.force_short_xfer = 1
},
.callback = urtwn_bulk_tx_callback,
.timeout = URTWN_TX_TIMEOUT, /* ms */
},
[URTWN_BULK_TX_BK] = {
.type = UE_BULK,
.endpoint = 0x03,
.direction = UE_DIR_OUT,
.bufsize = URTWN_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.force_short_xfer = 1,
},
.callback = urtwn_bulk_tx_callback,
.timeout = URTWN_TX_TIMEOUT, /* ms */
},
[URTWN_BULK_TX_VI] = {
.type = UE_BULK,
.endpoint = 0x02,
.direction = UE_DIR_OUT,
.bufsize = URTWN_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.force_short_xfer = 1
},
.callback = urtwn_bulk_tx_callback,
.timeout = URTWN_TX_TIMEOUT, /* ms */
},
[URTWN_BULK_TX_VO] = {
.type = UE_BULK,
.endpoint = 0x02,
.direction = UE_DIR_OUT,
.bufsize = URTWN_TXBUFSZ,
.flags = {
.ext_buffer = 1,
.pipe_bof = 1,
.force_short_xfer = 1
},
.callback = urtwn_bulk_tx_callback,
.timeout = URTWN_TX_TIMEOUT, /* ms */
},
};
static int
urtwn_match(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != URTWN_CONFIG_INDEX)
return (ENXIO);
if (uaa->info.bIfaceIndex != URTWN_IFACE_INDEX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(urtwn_devs, sizeof(urtwn_devs), uaa));
}
static int
urtwn_attach(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
struct urtwn_softc *sc = device_get_softc(self);
struct ifnet *ifp;
struct ieee80211com *ic;
uint8_t iface_index, bands;
int error;
device_set_usb_desc(self);
sc->sc_udev = uaa->device;
sc->sc_dev = self;
mtx_init(&sc->sc_mtx, device_get_nameunit(self),
MTX_NETWORK_LOCK, MTX_DEF);
callout_init(&sc->sc_watchdog_ch, 0);
iface_index = URTWN_IFACE_INDEX;
error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
urtwn_config, URTWN_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(self, "could not allocate USB transfers, "
"err=%s\n", usbd_errstr(error));
goto detach;
}
URTWN_LOCK(sc);
error = urtwn_read_chipid(sc);
if (error) {
device_printf(sc->sc_dev, "unsupported test chip\n");
URTWN_UNLOCK(sc);
goto detach;
}
/* Determine number of Tx/Rx chains. */
if (sc->chip & URTWN_CHIP_92C) {
sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2;
sc->nrxchains = 2;
} else {
sc->ntxchains = 1;
sc->nrxchains = 1;
}
urtwn_read_rom(sc);
device_printf(sc->sc_dev, "MAC/BB RTL%s, RF 6052 %dT%dR\n",
(sc->chip & URTWN_CHIP_92C) ? "8192CU" :
(sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
(sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" :
"8188CUS", sc->ntxchains, sc->nrxchains);
URTWN_UNLOCK(sc);
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
goto detach;
}
ic = ifp->if_l2com;
ifp->if_softc = sc;
if_initname(ifp, "urtwn", device_get_unit(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = urtwn_init;
ifp->if_ioctl = urtwn_ioctl;
ifp->if_start = urtwn_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_BGSCAN /* capable of bg scanning */
| IEEE80211_C_WPA /* 802.11i */
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
ieee80211_init_channels(ic, NULL, &bands);
ieee80211_ifattach(ic, sc->sc_bssid);
ic->ic_raw_xmit = urtwn_raw_xmit;
ic->ic_scan_start = urtwn_scan_start;
ic->ic_scan_end = urtwn_scan_end;
ic->ic_set_channel = urtwn_set_channel;
ic->ic_vap_create = urtwn_vap_create;
ic->ic_vap_delete = urtwn_vap_delete;
ic->ic_update_mcast = urtwn_update_mcast;
ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr,
sizeof(sc->sc_txtap), URTWN_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
URTWN_RX_RADIOTAP_PRESENT);
if (bootverbose)
ieee80211_announce(ic);
return (0);
detach:
urtwn_detach(self);
return (ENXIO); /* failure */
}
static int
urtwn_detach(device_t self)
{
struct urtwn_softc *sc = device_get_softc(self);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
if (!device_is_attached(self))
return (0);
urtwn_stop(ifp, 1);
callout_drain(&sc->sc_watchdog_ch);
/* stop all USB transfers */
usbd_transfer_unsetup(sc->sc_xfer, URTWN_N_TRANSFER);
ieee80211_ifdetach(ic);
urtwn_free_tx_list(sc);
urtwn_free_rx_list(sc);
if_free(ifp);
mtx_destroy(&sc->sc_mtx);
return (0);
}
static void
urtwn_free_tx_list(struct urtwn_softc *sc)
{
urtwn_free_list(sc, sc->sc_tx, URTWN_TX_LIST_COUNT);
}
static void
urtwn_free_rx_list(struct urtwn_softc *sc)
{
urtwn_free_list(sc, sc->sc_rx, URTWN_RX_LIST_COUNT);
}
static void
urtwn_free_list(struct urtwn_softc *sc, struct urtwn_data data[], int ndata)
{
int i;
for (i = 0; i < ndata; i++) {
struct urtwn_data *dp = &data[i];
if (dp->buf != NULL) {
free(dp->buf, M_USBDEV);
dp->buf = NULL;
}
if (dp->ni != NULL) {
ieee80211_free_node(dp->ni);
dp->ni = NULL;
}
}
}
static usb_error_t
urtwn_do_request(struct urtwn_softc *sc, struct usb_device_request *req,
void *data)
{
usb_error_t err;
int ntries = 10;
URTWN_ASSERT_LOCKED(sc);
while (ntries--) {
err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
req, data, 0, NULL, 250 /* ms */);
if (err == 0)
break;
DPRINTFN(1, "Control request failed, %s (retrying)\n",
usbd_errstr(err));
usb_pause_mtx(&sc->sc_mtx, hz / 100);
}
return (err);
}
static struct ieee80211vap *
urtwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct urtwn_vap *uvp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return (NULL);
uvp = (struct urtwn_vap *) malloc(sizeof(struct urtwn_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (uvp == NULL)
return (NULL);
vap = &uvp->vap;
/* enable s/w bmiss handling for sta mode */
if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid, mac) != 0) {
/* out of memory */
free(uvp, M_80211_VAP);
return (NULL);
}
/* override state transition machine */
uvp->newstate = vap->iv_newstate;
vap->iv_newstate = urtwn_newstate;
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change,
ieee80211_media_status);
ic->ic_opmode = opmode;
return (vap);
}
static void
urtwn_vap_delete(struct ieee80211vap *vap)
{
struct urtwn_vap *uvp = URTWN_VAP(vap);
ieee80211_vap_detach(vap);
free(uvp, M_80211_VAP);
}
static struct mbuf *
urtwn_rx_frame(struct urtwn_softc *sc, uint8_t *buf, int pktlen, int *rssi_p)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_frame *wh;
struct mbuf *m;
struct r92c_rx_stat *stat;
uint32_t rxdw0, rxdw3;
uint8_t rate;
int8_t rssi = 0;
int infosz;
/*
* don't pass packets to the ieee80211 framework if the driver isn't
* RUNNING.
*/
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
return (NULL);
stat = (struct r92c_rx_stat *)buf;
rxdw0 = le32toh(stat->rxdw0);
rxdw3 = le32toh(stat->rxdw3);
if (rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR)) {
/*
* This should not happen since we setup our Rx filter
* to not receive these frames.
*/
ifp->if_ierrors++;
return (NULL);
}
rate = MS(rxdw3, R92C_RXDW3_RATE);
infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
/* Get RSSI from PHY status descriptor if present. */
if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) {
rssi = urtwn_get_rssi(sc, rate, &stat[1]);
/* Update our average RSSI. */
urtwn_update_avgrssi(sc, rate, rssi);
/*
* Convert the RSSI to a range that will be accepted
* by net80211.
*/
rssi = URTWN_RSSI(rssi);
}
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
device_printf(sc->sc_dev, "could not create RX mbuf\n");
return (NULL);
}
/* Finalize mbuf. */
m->m_pkthdr.rcvif = ifp;
wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz);
memcpy(mtod(m, uint8_t *), wh, pktlen);
m->m_pkthdr.len = m->m_len = pktlen;
if (ieee80211_radiotap_active(ic)) {
struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
/* Map HW rate index to 802.11 rate. */
if (!(rxdw3 & R92C_RXDW3_HT)) {
switch (rate) {
/* CCK. */
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
/* OFDM. */
case 4: tap->wr_rate = 12; break;
case 5: tap->wr_rate = 18; break;
case 6: tap->wr_rate = 24; break;
case 7: tap->wr_rate = 36; break;
case 8: tap->wr_rate = 48; break;
case 9: tap->wr_rate = 72; break;
case 10: tap->wr_rate = 96; break;
case 11: tap->wr_rate = 108; break;
}
} else if (rate >= 12) { /* MCS0~15. */
/* Bit 7 set means HT MCS instead of rate. */
tap->wr_rate = 0x80 | (rate - 12);
}
tap->wr_dbm_antsignal = rssi;
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
}
*rssi_p = rssi;
return (m);
}
static struct mbuf *
urtwn_rxeof(struct usb_xfer *xfer, struct urtwn_data *data, int *rssi,
int8_t *nf)
{
struct urtwn_softc *sc = data->sc;
struct ifnet *ifp = sc->sc_ifp;
struct r92c_rx_stat *stat;
struct mbuf *m, *m0 = NULL, *prevm = NULL;
uint32_t rxdw0;
uint8_t *buf;
int len, totlen, pktlen, infosz, npkts;
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
if (len < sizeof(*stat)) {
ifp->if_ierrors++;
return (NULL);
}
buf = data->buf;
/* Get the number of encapsulated frames. */
stat = (struct r92c_rx_stat *)buf;
npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT);
DPRINTFN(6, "Rx %d frames in one chunk\n", npkts);
/* Process all of them. */
while (npkts-- > 0) {
if (len < sizeof(*stat))
break;
stat = (struct r92c_rx_stat *)buf;
rxdw0 = le32toh(stat->rxdw0);
pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN);
if (pktlen == 0)
break;
infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8;
/* Make sure everything fits in xfer. */
totlen = sizeof(*stat) + infosz + pktlen;
if (totlen > len)
break;
m = urtwn_rx_frame(sc, buf, pktlen, rssi);
if (m0 == NULL)
m0 = m;
if (prevm == NULL)
prevm = m;
else {
prevm->m_next = m;
prevm = m;
}
/* Next chunk is 128-byte aligned. */
totlen = (totlen + 127) & ~127;
buf += totlen;
len -= totlen;
}
return (m0);
}
static void
urtwn_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct urtwn_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m = NULL, *next;
struct urtwn_data *data;
int8_t nf;
int rssi = 1;
URTWN_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data == NULL)
goto tr_setup;
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
m = urtwn_rxeof(xfer, data, &rssi, &nf);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&sc->sc_rx_inactive);
if (data == NULL) {
KASSERT(m == NULL, ("mbuf isn't NULL"));
return;
}
STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
usbd_xfer_set_frame_data(xfer, 0, data->buf,
usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
/*
* To avoid LOR we should unlock our private mutex here to call
* ieee80211_input() because here is at the end of a USB
* callback and safe to unlock.
*/
URTWN_UNLOCK(sc);
while (m != NULL) {
next = m->m_next;
m->m_next = NULL;
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic,
(struct ieee80211_frame_min *)wh);
nf = URTWN_NOISE_FLOOR;
if (ni != NULL) {
(void)ieee80211_input(ni, m, rssi, nf);
ieee80211_free_node(ni);
} else
(void)ieee80211_input_all(ic, m, rssi, nf);
m = next;
}
URTWN_LOCK(sc);
break;
default:
/* needs it to the inactive queue due to a error. */
data = STAILQ_FIRST(&sc->sc_rx_active);
if (data != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
}
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
ifp->if_ierrors++;
goto tr_setup;
}
break;
}
}
static void
urtwn_txeof(struct usb_xfer *xfer, struct urtwn_data *data)
{
struct urtwn_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
URTWN_ASSERT_LOCKED(sc);
/*
* Do any tx complete callback. Note this must be done before releasing
* the node reference.
*/
if (data->m) {
m = data->m;
if (m->m_flags & M_TXCB) {
/* XXX status? */
ieee80211_process_callback(data->ni, m, 0);
}
m_freem(m);
data->m = NULL;
}
if (data->ni) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
sc->sc_txtimer = 0;
ifp->if_opackets++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
static void
urtwn_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct urtwn_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = sc->sc_ifp;
struct urtwn_data *data;
URTWN_ASSERT_LOCKED(sc);
switch (USB_GET_STATE(xfer)){
case USB_ST_TRANSFERRED:
data = STAILQ_FIRST(&sc->sc_tx_active);
if (data == NULL)
goto tr_setup;
STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
urtwn_txeof(xfer, data);
STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&sc->sc_tx_pending);
if (data == NULL) {
DPRINTF("%s: empty pending queue\n", __func__);
return;
}
STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
usbd_transfer_submit(xfer);
URTWN_UNLOCK(sc);
urtwn_start(ifp);
URTWN_LOCK(sc);
break;
default:
data = STAILQ_FIRST(&sc->sc_tx_active);
if (data == NULL)
goto tr_setup;
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
ifp->if_oerrors++;
}
if (error != USB_ERR_CANCELLED) {
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
}
static struct urtwn_data *
_urtwn_getbuf(struct urtwn_softc *sc)
{
struct urtwn_data *bf;
bf = STAILQ_FIRST(&sc->sc_tx_inactive);
if (bf != NULL)
STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
else
bf = NULL;
if (bf == NULL)
DPRINTF("%s: %s\n", __func__, "out of xmit buffers");
return (bf);
}
static struct urtwn_data *
urtwn_getbuf(struct urtwn_softc *sc)
{
struct urtwn_data *bf;
URTWN_ASSERT_LOCKED(sc);
bf = _urtwn_getbuf(sc);
if (bf == NULL) {
struct ifnet *ifp = sc->sc_ifp;
DPRINTF("%s: stop queue\n", __func__);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
return (bf);
}
static int
urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = R92C_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (urtwn_do_request(sc, &req, buf));
}
static void
urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val)
{
urtwn_write_region_1(sc, addr, &val, 1);
}
static void
urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val)
{
val = htole16(val);
urtwn_write_region_1(sc, addr, (uint8_t *)&val, 2);
}
static void
urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val)
{
val = htole32(val);
urtwn_write_region_1(sc, addr, (uint8_t *)&val, 4);
}
static int
urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = R92C_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (urtwn_do_request(sc, &req, buf));
}
static uint8_t
urtwn_read_1(struct urtwn_softc *sc, uint16_t addr)
{
uint8_t val;
if (urtwn_read_region_1(sc, addr, &val, 1) != 0)
return (0xff);
return (val);
}
static uint16_t
urtwn_read_2(struct urtwn_softc *sc, uint16_t addr)
{
uint16_t val;
if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0)
return (0xffff);
return (le16toh(val));
}
static uint32_t
urtwn_read_4(struct urtwn_softc *sc, uint16_t addr)
{
uint32_t val;
if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0)
return (0xffffffff);
return (le32toh(val));
}
static int
urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len)
{
struct r92c_fw_cmd cmd;
int ntries;
/* Wait for current FW box to be empty. */
for (ntries = 0; ntries < 100; ntries++) {
if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << sc->fwcur)))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"could not send firmware command\n");
return (ETIMEDOUT);
}
memset(&cmd, 0, sizeof(cmd));
cmd.id = id;
if (len > 3)
cmd.id |= R92C_CMD_FLAG_EXT;
KASSERT(len <= sizeof(cmd.msg), ("urtwn_fw_cmd\n"));
memcpy(cmd.msg, buf, len);
/* Write the first word last since that will trigger the FW. */
urtwn_write_region_1(sc, R92C_HMEBOX_EXT(sc->fwcur),
(uint8_t *)&cmd + 4, 2);
urtwn_write_region_1(sc, R92C_HMEBOX(sc->fwcur),
(uint8_t *)&cmd + 0, 4);
sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
return (0);
}
static void
urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val)
{
urtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
SM(R92C_LSSI_PARAM_ADDR, addr) |
SM(R92C_LSSI_PARAM_DATA, val));
}
static uint32_t
urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr)
{
uint32_t reg[R92C_MAX_CHAINS], val;
reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
if (chain != 0)
reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
urtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI)
val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
else
val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
return (MS(val, R92C_LSSI_READBACK_DATA));
}
static int
urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data)
{
int ntries;
urtwn_write_4(sc, R92C_LLT_INIT,
SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) |
SM(R92C_LLT_INIT_ADDR, addr) |
SM(R92C_LLT_INIT_DATA, data));
/* Wait for write operation to complete. */
for (ntries = 0; ntries < 20; ntries++) {
if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) ==
R92C_LLT_INIT_OP_NO_ACTIVE)
return (0);
DELAY(5);
}
return (ETIMEDOUT);
}
static uint8_t
urtwn_efuse_read_1(struct urtwn_softc *sc, uint16_t addr)
{
uint32_t reg;
int ntries;
reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
reg &= ~R92C_EFUSE_CTRL_VALID;
urtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
/* Wait for read operation to complete. */
for (ntries = 0; ntries < 100; ntries++) {
reg = urtwn_read_4(sc, R92C_EFUSE_CTRL);
if (reg & R92C_EFUSE_CTRL_VALID)
return (MS(reg, R92C_EFUSE_CTRL_DATA));
DELAY(5);
}
device_printf(sc->sc_dev,
"could not read efuse byte at address 0x%x\n", addr);
return (0xff);
}
static void
urtwn_efuse_read(struct urtwn_softc *sc)
{
uint8_t *rom = (uint8_t *)&sc->rom;
uint16_t addr = 0;
uint32_t reg;
uint8_t off, msk;
int i;
reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL);
if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
}
reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
reg | R92C_SYS_FUNC_EN_ELDR);
}
reg = urtwn_read_2(sc, R92C_SYS_CLKR);
if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
(R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
urtwn_write_2(sc, R92C_SYS_CLKR,
reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
}
memset(&sc->rom, 0xff, sizeof(sc->rom));
while (addr < 512) {
reg = urtwn_efuse_read_1(sc, addr);
if (reg == 0xff)
break;
addr++;
off = reg >> 4;
msk = reg & 0xf;
for (i = 0; i < 4; i++) {
if (msk & (1 << i))
continue;
rom[off * 8 + i * 2 + 0] =
urtwn_efuse_read_1(sc, addr);
addr++;
rom[off * 8 + i * 2 + 1] =
urtwn_efuse_read_1(sc, addr);
addr++;
}
}
#ifdef URTWN_DEBUG
if (urtwn_debug >= 2) {
/* Dump ROM content. */
printf("\n");
for (i = 0; i < sizeof(sc->rom); i++)
printf("%02x:", rom[i]);
printf("\n");
}
#endif
}
static int
urtwn_read_chipid(struct urtwn_softc *sc)
{
uint32_t reg;
reg = urtwn_read_4(sc, R92C_SYS_CFG);
if (reg & R92C_SYS_CFG_TRP_VAUX_EN)
return (EIO);
if (reg & R92C_SYS_CFG_TYPE_92C) {
sc->chip |= URTWN_CHIP_92C;
/* Check if it is a castrated 8192C. */
if (MS(urtwn_read_4(sc, R92C_HPON_FSM),
R92C_HPON_FSM_CHIP_BONDING_ID) ==
R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R)
sc->chip |= URTWN_CHIP_92C_1T2R;
}
if (reg & R92C_SYS_CFG_VENDOR_UMC) {
sc->chip |= URTWN_CHIP_UMC;
if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0)
sc->chip |= URTWN_CHIP_UMC_A_CUT;
}
return (0);
}
static void
urtwn_read_rom(struct urtwn_softc *sc)
{
struct r92c_rom *rom = &sc->rom;
/* Read full ROM image. */
urtwn_efuse_read(sc);
/* XXX Weird but this is what the vendor driver does. */
sc->pa_setting = urtwn_efuse_read_1(sc, 0x1fa);
DPRINTF("PA setting=0x%x\n", sc->pa_setting);
sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
DPRINTF("regulatory type=%d\n", sc->regulatory);
IEEE80211_ADDR_COPY(sc->sc_bssid, rom->macaddr);
}
/*
* Initialize rate adaptation in firmware.
*/
static int
urtwn_ra_init(struct urtwn_softc *sc)
{
static const uint8_t map[] =
{ 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ieee80211_node *ni;
struct ieee80211_rateset *rs;
struct r92c_fw_cmd_macid_cfg cmd;
uint32_t rates, basicrates;
uint8_t mode;
int maxrate, maxbasicrate, error, i, j;
ni = ieee80211_ref_node(vap->iv_bss);
rs = &ni->ni_rates;
/* Get normal and basic rates mask. */
rates = basicrates = 0;
maxrate = maxbasicrate = 0;
for (i = 0; i < rs->rs_nrates; i++) {
/* Convert 802.11 rate to HW rate index. */
for (j = 0; j < nitems(map); j++)
if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j])
break;
if (j == nitems(map)) /* Unknown rate, skip. */
continue;
rates |= 1 << j;
if (j > maxrate)
maxrate = j;
if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
basicrates |= 1 << j;
if (j > maxbasicrate)
maxbasicrate = j;
}
}
if (ic->ic_curmode == IEEE80211_MODE_11B)
mode = R92C_RAID_11B;
else
mode = R92C_RAID_11BG;
DPRINTF("mode=0x%x rates=0x%08x, basicrates=0x%08x\n",
mode, rates, basicrates);
/* Set rates mask for group addressed frames. */
cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID;
cmd.mask = htole32(mode << 28 | basicrates);
error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
ieee80211_free_node(ni);
device_printf(sc->sc_dev,
"could not add broadcast station\n");
return (error);
}
/* Set initial MRR rate. */
DPRINTF("maxbasicrate=%d\n", maxbasicrate);
urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC),
maxbasicrate);
/* Set rates mask for unicast frames. */
cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID;
cmd.mask = htole32(mode << 28 | rates);
error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
ieee80211_free_node(ni);
device_printf(sc->sc_dev, "could not add BSS station\n");
return (error);
}
/* Set initial MRR rate. */
DPRINTF("maxrate=%d\n", maxrate);
urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS),
maxrate);
/* Indicate highest supported rate. */
ni->ni_txrate = rs->rs_rates[rs->rs_nrates - 1];
ieee80211_free_node(ni);
return (0);
}
void
urtwn_tsf_sync_enable(struct urtwn_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ieee80211_node *ni = vap->iv_bss;
uint64_t tsf;
/* Enable TSF synchronization. */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
/* Set initial TSF. */
memcpy(&tsf, ni->ni_tstamp.data, 8);
tsf = le64toh(tsf);
tsf = tsf - (tsf % (vap->iv_bss->ni_intval * IEEE80211_DUR_TU));
tsf -= IEEE80211_DUR_TU;
urtwn_write_4(sc, R92C_TSFTR + 0, tsf);
urtwn_write_4(sc, R92C_TSFTR + 4, tsf >> 32);
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
}
static void
urtwn_set_led(struct urtwn_softc *sc, int led, int on)
{
uint8_t reg;
if (led == URTWN_LED_LINK) {
reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
if (!on)
reg |= R92C_LEDCFG0_DIS;
urtwn_write_1(sc, R92C_LEDCFG0, reg);
sc->ledlink = on; /* Save LED state. */
}
}
static int
urtwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct urtwn_vap *uvp = URTWN_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct urtwn_softc *sc = ic->ic_ifp->if_softc;
struct ieee80211_node *ni;
enum ieee80211_state ostate;
uint32_t reg;
ostate = vap->iv_state;
DPRINTF("%s -> %s\n", ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
URTWN_LOCK(sc);
callout_stop(&sc->sc_watchdog_ch);
if (ostate == IEEE80211_S_RUN) {
/* Turn link LED off. */
urtwn_set_led(sc, URTWN_LED_LINK, 0);
/* Set media status to 'No Link'. */
reg = urtwn_read_4(sc, R92C_CR);
reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_NOLINK);
urtwn_write_4(sc, R92C_CR, reg);
/* Stop Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0);
/* Rest TSF. */
urtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
/* Disable TSF synchronization. */
urtwn_write_1(sc, R92C_BCN_CTRL,
urtwn_read_1(sc, R92C_BCN_CTRL) |
R92C_BCN_CTRL_DIS_TSF_UDT0);
/* Reset EDCA parameters. */
urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217);
urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317);
urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320);
urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444);
}
switch (nstate) {
case IEEE80211_S_INIT:
/* Turn link LED off. */
urtwn_set_led(sc, URTWN_LED_LINK, 0);
break;
case IEEE80211_S_SCAN:
if (ostate != IEEE80211_S_SCAN) {
/* Allow Rx from any BSSID. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
/* Set gain for scanning. */
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
}
/* Make link LED blink during scan. */
urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink);
/* Pause AC Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE,
urtwn_read_1(sc, R92C_TXPAUSE) | 0x0f);
urtwn_set_chan(sc, ic->ic_curchan, NULL);
break;
case IEEE80211_S_AUTH:
/* Set initial gain under link. */
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
urtwn_set_chan(sc, ic->ic_curchan, NULL);
break;
case IEEE80211_S_RUN:
if (vap->iv_opmode == IEEE80211_M_MONITOR) {
/* Enable Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Turn link LED on. */
urtwn_set_led(sc, URTWN_LED_LINK, 1);
break;
}
ni = ieee80211_ref_node(vap->iv_bss);
/* Set media status to 'Associated'. */
reg = urtwn_read_4(sc, R92C_CR);
reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
urtwn_write_4(sc, R92C_CR, reg);
/* Set BSSID. */
urtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
urtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
if (ic->ic_curmode == IEEE80211_MODE_11B)
urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
else /* 802.11b/g */
urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
/* Enable Rx of data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Flush all AC queues. */
urtwn_write_1(sc, R92C_TXPAUSE, 0);
/* Set beacon interval. */
urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
/* Allow Rx from our BSSID only. */
urtwn_write_4(sc, R92C_RCR,
urtwn_read_4(sc, R92C_RCR) |
R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
/* Enable TSF synchronization. */
urtwn_tsf_sync_enable(sc);
urtwn_write_1(sc, R92C_SIFS_CCK + 1, 10);
urtwn_write_1(sc, R92C_SIFS_OFDM + 1, 10);
urtwn_write_1(sc, R92C_SPEC_SIFS + 1, 10);
urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, 10);
urtwn_write_1(sc, R92C_R2T_SIFS + 1, 10);
urtwn_write_1(sc, R92C_T2T_SIFS + 1, 10);
/* Intialize rate adaptation. */
urtwn_ra_init(sc);
/* Turn link LED on. */
urtwn_set_led(sc, URTWN_LED_LINK, 1);
sc->avg_pwdb = -1; /* Reset average RSSI. */
/* Reset temperature calibration state machine. */
sc->thcal_state = 0;
sc->thcal_lctemp = 0;
ieee80211_free_node(ni);
break;
default:
break;
}
URTWN_UNLOCK(sc);
IEEE80211_LOCK(ic);
return(uvp->newstate(vap, nstate, arg));
}
static void
urtwn_watchdog(void *arg)
{
struct urtwn_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
if (sc->sc_txtimer > 0) {
if (--sc->sc_txtimer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
ifp->if_oerrors++;
return;
}
callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
}
}
static void
urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi)
{
int pwdb;
/* Convert antenna signal to percentage. */
if (rssi <= -100 || rssi >= 20)
pwdb = 0;
else if (rssi >= 0)
pwdb = 100;
else
pwdb = 100 + rssi;
if (rate <= 3) {
/* CCK gain is smaller than OFDM/MCS gain. */
pwdb += 6;
if (pwdb > 100)
pwdb = 100;
if (pwdb <= 14)
pwdb -= 4;
else if (pwdb <= 26)
pwdb -= 8;
else if (pwdb <= 34)
pwdb -= 6;
else if (pwdb <= 42)
pwdb -= 2;
}
if (sc->avg_pwdb == -1) /* Init. */
sc->avg_pwdb = pwdb;
else if (sc->avg_pwdb < pwdb)
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
else
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
DPRINTFN(4, "PWDB=%d EMA=%d\n", pwdb, sc->avg_pwdb);
}
static int8_t
urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt)
{
static const int8_t cckoff[] = { 16, -12, -26, -46 };
struct r92c_rx_phystat *phy;
struct r92c_rx_cck *cck;
uint8_t rpt;
int8_t rssi;
if (rate <= 3) {
cck = (struct r92c_rx_cck *)physt;
if (sc->sc_flags & URTWN_FLAG_CCK_HIPWR) {
rpt = (cck->agc_rpt >> 5) & 0x3;
rssi = (cck->agc_rpt & 0x1f) << 1;
} else {
rpt = (cck->agc_rpt >> 6) & 0x3;
rssi = cck->agc_rpt & 0x3e;
}
rssi = cckoff[rpt] - rssi;
} else { /* OFDM/HT. */
phy = (struct r92c_rx_phystat *)physt;
rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110;
}
return (rssi);
}
static int
urtwn_tx_start(struct urtwn_softc *sc, struct ieee80211_node *ni,
struct mbuf *m0, struct urtwn_data *data)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = ni->ni_vap;
struct usb_xfer *xfer;
struct r92c_tx_desc *txd;
uint8_t raid, type;
uint16_t sum;
int i, hasqos, xferlen;
struct usb_xfer *urtwn_pipes[4] = {
sc->sc_xfer[URTWN_BULK_TX_BE],
sc->sc_xfer[URTWN_BULK_TX_BK],
sc->sc_xfer[URTWN_BULK_TX_VI],
sc->sc_xfer[URTWN_BULK_TX_VO]
};
URTWN_ASSERT_LOCKED(sc);
/*
* Software crypto.
*/
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
device_printf(sc->sc_dev,
"ieee80211_crypto_encap returns NULL.\n");
/* XXX we don't expect the fragmented frames */
m_freem(m0);
return (ENOBUFS);
}
/* in case packet header moved, reset pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
case IEEE80211_FC0_TYPE_CTL:
case IEEE80211_FC0_TYPE_MGT:
xfer = sc->sc_xfer[URTWN_BULK_TX_VO];
break;
default:
KASSERT(M_WME_GETAC(m0) < 4,
("unsupported WME pipe %d", M_WME_GETAC(m0)));
xfer = urtwn_pipes[M_WME_GETAC(m0)];
break;
}
hasqos = 0;
/* Fill Tx descriptor. */
txd = (struct r92c_tx_desc *)data->buf;
memset(txd, 0, sizeof(*txd));
txd->txdw0 |= htole32(
SM(R92C_TXDW0_PKTLEN, m0->m_pkthdr.len) |
SM(R92C_TXDW0_OFFSET, sizeof(*txd)) |
R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG);
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
txd->txdw0 |= htole32(R92C_TXDW0_BMCAST);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
type == IEEE80211_FC0_TYPE_DATA) {
if (ic->ic_curmode == IEEE80211_MODE_11B)
raid = R92C_RAID_11B;
else
raid = R92C_RAID_11BG;
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, URTWN_MACID_BSS) |
SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BE) |
SM(R92C_TXDW1_RAID, raid) |
R92C_TXDW1_AGGBK);
if (ic->ic_flags & IEEE80211_F_USEPROT) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF |
R92C_TXDW4_HWRTSEN);
} else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
txd->txdw4 |= htole32(R92C_TXDW4_RTSEN |
R92C_TXDW4_HWRTSEN);
}
}
/* Send RTS at OFDM24. */
txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8));
txd->txdw5 |= htole32(0x0001ff00);
/* Send data at OFDM54. */
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11));
} else {
txd->txdw1 |= htole32(
SM(R92C_TXDW1_MACID, 0) |
SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) |
SM(R92C_TXDW1_RAID, R92C_RAID_11B));
/* Force CCK1. */
txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE);
txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0));
}
/* Set sequence number (already little endian). */
txd->txdseq |= *(uint16_t *)wh->i_seq;
if (!hasqos) {
/* Use HW sequence numbering for non-QoS frames. */
txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ);
txd->txdseq |= htole16(0x8000);
} else
txd->txdw4 |= htole32(R92C_TXDW4_QOS);
/* Compute Tx descriptor checksum. */
sum = 0;
for (i = 0; i < sizeof(*txd) / 2; i++)
sum ^= ((uint16_t *)txd)[i];
txd->txdsum = sum; /* NB: already little endian. */
if (ieee80211_radiotap_active_vap(vap)) {
struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
ieee80211_radiotap_tx(vap, m0);
}
xferlen = sizeof(*txd) + m0->m_pkthdr.len;
m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&txd[1]);
data->buflen = xferlen;
data->ni = ni;
data->m = m0;
STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
usbd_transfer_start(xfer);
return (0);
}
static void
urtwn_start(struct ifnet *ifp)
{
struct urtwn_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct mbuf *m;
struct urtwn_data *bf;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
URTWN_LOCK(sc);
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
bf = urtwn_getbuf(sc);
if (bf == NULL) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
break;
}
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
if (urtwn_tx_start(sc, ni, m, bf) != 0) {
ifp->if_oerrors++;
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
ieee80211_free_node(ni);
break;
}
sc->sc_txtimer = 5;
callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
}
URTWN_UNLOCK(sc);
}
static int
urtwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
urtwn_init(ifp->if_softc);
startall = 1;
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
urtwn_stop(ifp, 1);
}
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return (error);
}
static int
urtwn_alloc_list(struct urtwn_softc *sc, struct urtwn_data data[],
int ndata, int maxsz)
{
int i, error;
for (i = 0; i < ndata; i++) {
struct urtwn_data *dp = &data[i];
dp->sc = sc;
dp->m = NULL;
dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT);
if (dp->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate buffer\n");
error = ENOMEM;
goto fail;
}
dp->ni = NULL;
}
return (0);
fail:
urtwn_free_list(sc, data, ndata);
return (error);
}
static int
urtwn_alloc_rx_list(struct urtwn_softc *sc)
{
int error, i;
error = urtwn_alloc_list(sc, sc->sc_rx, URTWN_RX_LIST_COUNT,
URTWN_RXBUFSZ);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_rx_active);
STAILQ_INIT(&sc->sc_rx_inactive);
for (i = 0; i < URTWN_RX_LIST_COUNT; i++)
STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next);
return (0);
}
static int
urtwn_alloc_tx_list(struct urtwn_softc *sc)
{
int error, i;
error = urtwn_alloc_list(sc, sc->sc_tx, URTWN_TX_LIST_COUNT,
URTWN_TXBUFSZ);
if (error != 0)
return (error);
STAILQ_INIT(&sc->sc_tx_active);
STAILQ_INIT(&sc->sc_tx_inactive);
STAILQ_INIT(&sc->sc_tx_pending);
for (i = 0; i < URTWN_TX_LIST_COUNT; i++)
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next);
return (0);
}
static int
urtwn_power_on(struct urtwn_softc *sc)
{
uint32_t reg;
int ntries;
/* Wait for autoload done bit. */
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN)
break;
DELAY(5);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for chip autoload\n");
return (ETIMEDOUT);
}
/* Unlock ISO/CLK/Power control register. */
urtwn_write_1(sc, R92C_RSV_CTRL, 0);
/* Move SPS into PWM mode. */
urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b);
DELAY(100);
reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL);
if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) {
urtwn_write_1(sc, R92C_LDOV12D_CTRL,
reg | R92C_LDOV12D_CTRL_LDV12_EN);
DELAY(100);
urtwn_write_1(sc, R92C_SYS_ISO_CTRL,
urtwn_read_1(sc, R92C_SYS_ISO_CTRL) &
~R92C_SYS_ISO_CTRL_MD2PP);
}
/* Auto enable WLAN. */
urtwn_write_2(sc, R92C_APS_FSMCO,
urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC);
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_2(sc, R92C_APS_FSMCO) &
R92C_APS_FSMCO_APFM_ONMAC)
break;
DELAY(5);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for MAC auto ON\n");
return (ETIMEDOUT);
}
/* Enable radio, GPIO and LED functions. */
urtwn_write_2(sc, R92C_APS_FSMCO,
R92C_APS_FSMCO_AFSM_HSUS |
R92C_APS_FSMCO_PDN_EN |
R92C_APS_FSMCO_PFM_ALDN);
/* Release RF digital isolation. */
urtwn_write_2(sc, R92C_SYS_ISO_CTRL,
urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR);
/* Initialize MAC. */
urtwn_write_1(sc, R92C_APSD_CTRL,
urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF);
for (ntries = 0; ntries < 200; ntries++) {
if (!(urtwn_read_1(sc, R92C_APSD_CTRL) &
R92C_APSD_CTRL_OFF_STATUS))
break;
DELAY(5);
}
if (ntries == 200) {
device_printf(sc->sc_dev,
"timeout waiting for MAC initialization\n");
return (ETIMEDOUT);
}
/* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */
reg = urtwn_read_2(sc, R92C_CR);
reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN |
R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN |
R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN |
R92C_CR_ENSEC;
urtwn_write_2(sc, R92C_CR, reg);
urtwn_write_1(sc, 0xfe10, 0x19);
return (0);
}
static int
urtwn_llt_init(struct urtwn_softc *sc)
{
int i, error;
/* Reserve pages [0; R92C_TX_PAGE_COUNT]. */
for (i = 0; i < R92C_TX_PAGE_COUNT; i++) {
if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
return (error);
}
/* NB: 0xff indicates end-of-list. */
if ((error = urtwn_llt_write(sc, i, 0xff)) != 0)
return (error);
/*
* Use pages [R92C_TX_PAGE_COUNT + 1; R92C_TXPKTBUF_COUNT - 1]
* as ring buffer.
*/
for (++i; i < R92C_TXPKTBUF_COUNT - 1; i++) {
if ((error = urtwn_llt_write(sc, i, i + 1)) != 0)
return (error);
}
/* Make the last page point to the beginning of the ring buffer. */
error = urtwn_llt_write(sc, i, R92C_TX_PAGE_COUNT + 1);
return (error);
}
static void
urtwn_fw_reset(struct urtwn_softc *sc)
{
uint16_t reg;
int ntries;
/* Tell 8051 to reset itself. */
urtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
/* Wait until 8051 resets by itself. */
for (ntries = 0; ntries < 100; ntries++) {
reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
return;
DELAY(50);
}
/* Force 8051 reset. */
urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
}
static int
urtwn_fw_loadpage(struct urtwn_softc *sc, int page, const uint8_t *buf, int len)
{
uint32_t reg;
int off, mlen, error = 0;
reg = urtwn_read_4(sc, R92C_MCUFWDL);
reg = RW(reg, R92C_MCUFWDL_PAGE, page);
urtwn_write_4(sc, R92C_MCUFWDL, reg);
off = R92C_FW_START_ADDR;
while (len > 0) {
if (len > 196)
mlen = 196;
else if (len > 4)
mlen = 4;
else
mlen = 1;
/* XXX fix this deconst */
error = urtwn_write_region_1(sc, off,
__DECONST(uint8_t *, buf), mlen);
if (error != 0)
break;
off += mlen;
buf += mlen;
len -= mlen;
}
return (error);
}
static int
urtwn_load_firmware(struct urtwn_softc *sc)
{
const struct firmware *fw;
const struct r92c_fw_hdr *hdr;
const char *imagename;
const u_char *ptr;
size_t len;
uint32_t reg;
int mlen, ntries, page, error;
/* Read firmware image from the filesystem. */
if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
URTWN_CHIP_UMC_A_CUT)
imagename = "urtwn-rtl8192cfwU";
else
imagename = "urtwn-rtl8192cfwT";
fw = firmware_get(imagename);
if (fw == NULL) {
device_printf(sc->sc_dev,
"failed loadfirmware of file %s\n", imagename);
return (ENOENT);
}
len = fw->datasize;
if (len < sizeof(*hdr)) {
device_printf(sc->sc_dev, "firmware too short\n");
error = EINVAL;
goto fail;
}
ptr = fw->data;
hdr = (const struct r92c_fw_hdr *)ptr;
/* Check if there is a valid FW header and skip it. */
if ((le16toh(hdr->signature) >> 4) == 0x88c ||
(le16toh(hdr->signature) >> 4) == 0x92c) {
DPRINTF("FW V%d.%d %02d-%02d %02d:%02d\n",
le16toh(hdr->version), le16toh(hdr->subversion),
hdr->month, hdr->date, hdr->hour, hdr->minute);
ptr += sizeof(*hdr);
len -= sizeof(*hdr);
}
if (urtwn_read_1(sc, R92C_MCUFWDL) & 0x80) {
urtwn_fw_reset(sc);
urtwn_write_1(sc, R92C_MCUFWDL, 0);
}
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
R92C_SYS_FUNC_EN_CPUEN);
urtwn_write_1(sc, R92C_MCUFWDL,
urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
urtwn_write_1(sc, R92C_MCUFWDL + 2,
urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08);
for (page = 0; len > 0; page++) {
mlen = min(len, R92C_FW_PAGE_SIZE);
error = urtwn_fw_loadpage(sc, page, ptr, mlen);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load firmware page\n");
goto fail;
}
ptr += mlen;
len -= mlen;
}
urtwn_write_1(sc, R92C_MCUFWDL,
urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
urtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
/* Wait for checksum report. */
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
break;
DELAY(5);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for checksum report\n");
error = ETIMEDOUT;
goto fail;
}
reg = urtwn_read_4(sc, R92C_MCUFWDL);
reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
urtwn_write_4(sc, R92C_MCUFWDL, reg);
/* Wait for firmware readiness. */
for (ntries = 0; ntries < 1000; ntries++) {
if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
break;
DELAY(5);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for firmware readiness\n");
error = ETIMEDOUT;
goto fail;
}
fail:
firmware_put(fw, FIRMWARE_UNLOAD);
return (error);
}
static int
urtwn_dma_init(struct urtwn_softc *sc)
{
int hashq, hasnq, haslq, nqueues, nqpages, nrempages;
uint32_t reg;
int error;
/* Initialize LLT table. */
error = urtwn_llt_init(sc);
if (error != 0)
return (error);
/* Get Tx queues to USB endpoints mapping. */
hashq = hasnq = haslq = 0;
reg = urtwn_read_2(sc, R92C_USB_EP + 1);
DPRINTFN(2, "USB endpoints mapping 0x%x\n", reg);
if (MS(reg, R92C_USB_EP_HQ) != 0)
hashq = 1;
if (MS(reg, R92C_USB_EP_NQ) != 0)
hasnq = 1;
if (MS(reg, R92C_USB_EP_LQ) != 0)
haslq = 1;
nqueues = hashq + hasnq + haslq;
if (nqueues == 0)
return (EIO);
/* Get the number of pages for each queue. */
nqpages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) / nqueues;
/* The remaining pages are assigned to the high priority queue. */
nrempages = (R92C_TX_PAGE_COUNT - R92C_PUBQ_NPAGES) % nqueues;
/* Set number of pages for normal priority queue. */
urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0);
urtwn_write_4(sc, R92C_RQPN,
/* Set number of pages for public queue. */
SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) |
/* Set number of pages for high priority queue. */
SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) |
/* Set number of pages for low priority queue. */
SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) |
/* Load values. */
R92C_RQPN_LD);
urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY);
urtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY);
/* Set queue to USB pipe mapping. */
reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL);
reg &= ~R92C_TRXDMA_CTRL_QMAP_M;
if (nqueues == 1) {
if (hashq)
reg |= R92C_TRXDMA_CTRL_QMAP_HQ;
else if (hasnq)
reg |= R92C_TRXDMA_CTRL_QMAP_NQ;
else
reg |= R92C_TRXDMA_CTRL_QMAP_LQ;
} else if (nqueues == 2) {
/* All 2-endpoints configs have a high priority queue. */
if (!hashq)
return (EIO);
if (hasnq)
reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ;
else
reg |= R92C_TRXDMA_CTRL_QMAP_HQ_LQ;
} else
reg |= R92C_TRXDMA_CTRL_QMAP_3EP;
urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg);
/* Set Tx/Rx transfer page boundary. */
urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff);
/* Set Tx/Rx transfer page size. */
urtwn_write_1(sc, R92C_PBP,
SM(R92C_PBP_PSRX, R92C_PBP_128) |
SM(R92C_PBP_PSTX, R92C_PBP_128));
return (0);
}
static void
urtwn_mac_init(struct urtwn_softc *sc)
{
int i;
/* Write MAC initialization values. */
for (i = 0; i < nitems(rtl8192cu_mac); i++)
urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val);
}
static void
urtwn_bb_init(struct urtwn_softc *sc)
{
const struct urtwn_bb_prog *prog;
uint32_t reg;
int i;
/* Enable BB and RF. */
urtwn_write_2(sc, R92C_SYS_FUNC_EN,
urtwn_read_2(sc, R92C_SYS_FUNC_EN) |
R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST |
R92C_SYS_FUNC_EN_DIO_RF);
urtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0xdb83);
urtwn_write_1(sc, R92C_RF_CTRL,
R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB);
urtwn_write_1(sc, R92C_SYS_FUNC_EN,
R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD |
R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB);
urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f);
urtwn_write_1(sc, 0x15, 0xe9);
urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80);
/* Select BB programming based on board type. */
if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
prog = &rtl8188ce_bb_prog;
else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
prog = &rtl8188ru_bb_prog;
else
prog = &rtl8188cu_bb_prog;
} else {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
prog = &rtl8192ce_bb_prog;
else
prog = &rtl8192cu_bb_prog;
}
/* Write BB initialization values. */
for (i = 0; i < prog->count; i++) {
urtwn_bb_write(sc, prog->regs[i], prog->vals[i]);
DELAY(1);
}
if (sc->chip & URTWN_CHIP_92C_1T2R) {
/* 8192C 1T only configuration. */
reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO);
reg = (reg & ~0x00000003) | 0x2;
urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg);
reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO);
reg = (reg & ~0x00300033) | 0x00200022;
urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg);
reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING);
reg = (reg & ~0xff000000) | 0x45 << 24;
urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
reg = (reg & ~0x000000ff) | 0x23;
urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg);
reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1);
reg = (reg & ~0x00000030) | 1 << 4;
urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg);
reg = urtwn_bb_read(sc, 0xe74);
reg = (reg & ~0x0c000000) | 2 << 26;
urtwn_bb_write(sc, 0xe74, reg);
reg = urtwn_bb_read(sc, 0xe78);
reg = (reg & ~0x0c000000) | 2 << 26;
urtwn_bb_write(sc, 0xe78, reg);
reg = urtwn_bb_read(sc, 0xe7c);
reg = (reg & ~0x0c000000) | 2 << 26;
urtwn_bb_write(sc, 0xe7c, reg);
reg = urtwn_bb_read(sc, 0xe80);
reg = (reg & ~0x0c000000) | 2 << 26;
urtwn_bb_write(sc, 0xe80, reg);
reg = urtwn_bb_read(sc, 0xe88);
reg = (reg & ~0x0c000000) | 2 << 26;
urtwn_bb_write(sc, 0xe88, reg);
}
/* Write AGC values. */
for (i = 0; i < prog->agccount; i++) {
urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE,
prog->agcvals[i]);
DELAY(1);
}
if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) &
R92C_HSSI_PARAM2_CCK_HIPWR)
sc->sc_flags |= URTWN_FLAG_CCK_HIPWR;
}
void
urtwn_rf_init(struct urtwn_softc *sc)
{
const struct urtwn_rf_prog *prog;
uint32_t reg, type;
int i, j, idx, off;
/* Select RF programming based on board type. */
if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
prog = rtl8188ce_rf_prog;
else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
prog = rtl8188ru_rf_prog;
else
prog = rtl8188cu_rf_prog;
} else
prog = rtl8192ce_rf_prog;
for (i = 0; i < sc->nrxchains; i++) {
/* Save RF_ENV control type. */
idx = i / 2;
off = (i % 2) * 16;
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx));
type = (reg >> off) & 0x10;
/* Set RF_ENV enable. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x100000;
urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
DELAY(1);
/* Set RF_ENV output high. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x10;
urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
DELAY(1);
/* Set address and data lengths of RF registers. */
reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
DELAY(1);
reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
DELAY(1);
/* Write RF initialization values for this chain. */
for (j = 0; j < prog[i].count; j++) {
if (prog[i].regs[j] >= 0xf9 &&
prog[i].regs[j] <= 0xfe) {
/*
* These are fake RF registers offsets that
* indicate a delay is required.
*/
usb_pause_mtx(&sc->sc_mtx, 50);
continue;
}
urtwn_rf_write(sc, i, prog[i].regs[j],
prog[i].vals[j]);
DELAY(1);
}
/* Restore RF_ENV control type. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx));
reg &= ~(0x10 << off) | (type << off);
urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg);
/* Cache RF register CHNLBW. */
sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW);
}
if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) ==
URTWN_CHIP_UMC_A_CUT) {
urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
}
}
static void
urtwn_cam_init(struct urtwn_softc *sc)
{
/* Invalidate all CAM entries. */
urtwn_write_4(sc, R92C_CAMCMD,
R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
}
static void
urtwn_pa_bias_init(struct urtwn_softc *sc)
{
uint8_t reg;
int i;
for (i = 0; i < sc->nrxchains; i++) {
if (sc->pa_setting & (1 << i))
continue;
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
}
if (!(sc->pa_setting & 0x10)) {
reg = urtwn_read_1(sc, 0x16);
reg = (reg & ~0xf0) | 0x90;
urtwn_write_1(sc, 0x16, reg);
}
}
static void
urtwn_rxfilter_init(struct urtwn_softc *sc)
{
/* Initialize Rx filter. */
/* TODO: use better filter for monitor mode. */
urtwn_write_4(sc, R92C_RCR,
R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
/* Accept all multicast frames. */
urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
/* Accept all management frames. */
urtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
/* Reject all control frames. */
urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
/* Accept all data frames. */
urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
}
static void
urtwn_edca_init(struct urtwn_softc *sc)
{
urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b);
urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f);
urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324);
urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226);
}
void
urtwn_write_txpower(struct urtwn_softc *sc, int chain,
uint16_t power[URTWN_RIDX_COUNT])
{
uint32_t reg;
/* Write per-CCK rate Tx power. */
if (chain == 0) {
reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]);
urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]);
reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]);
reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
} else {
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]);
reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]);
reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]);
urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
}
/* Write per-OFDM rate Tx power. */
urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
SM(R92C_TXAGC_RATE06, power[ 4]) |
SM(R92C_TXAGC_RATE09, power[ 5]) |
SM(R92C_TXAGC_RATE12, power[ 6]) |
SM(R92C_TXAGC_RATE18, power[ 7]));
urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
SM(R92C_TXAGC_RATE24, power[ 8]) |
SM(R92C_TXAGC_RATE36, power[ 9]) |
SM(R92C_TXAGC_RATE48, power[10]) |
SM(R92C_TXAGC_RATE54, power[11]));
/* Write per-MCS Tx power. */
urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
SM(R92C_TXAGC_MCS00, power[12]) |
SM(R92C_TXAGC_MCS01, power[13]) |
SM(R92C_TXAGC_MCS02, power[14]) |
SM(R92C_TXAGC_MCS03, power[15]));
urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
SM(R92C_TXAGC_MCS04, power[16]) |
SM(R92C_TXAGC_MCS05, power[17]) |
SM(R92C_TXAGC_MCS06, power[18]) |
SM(R92C_TXAGC_MCS07, power[19]));
urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
SM(R92C_TXAGC_MCS08, power[20]) |
SM(R92C_TXAGC_MCS08, power[21]) |
SM(R92C_TXAGC_MCS10, power[22]) |
SM(R92C_TXAGC_MCS11, power[23]));
urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
SM(R92C_TXAGC_MCS12, power[24]) |
SM(R92C_TXAGC_MCS13, power[25]) |
SM(R92C_TXAGC_MCS14, power[26]) |
SM(R92C_TXAGC_MCS15, power[27]));
}
void
urtwn_get_txpower(struct urtwn_softc *sc, int chain,
struct ieee80211_channel *c, struct ieee80211_channel *extc,
uint16_t power[URTWN_RIDX_COUNT])
{
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct r92c_rom *rom = &sc->rom;
uint16_t cckpow, ofdmpow, htpow, diff, max;
const struct urtwn_txpwr *base;
int ridx, chan, group;
/* Determine channel group. */
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
if (chan <= 3)
group = 0;
else if (chan <= 9)
group = 1;
else
group = 2;
/* Get original Tx power based on board type and RF chain. */
if (!(sc->chip & URTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
base = &rtl8188ru_txagc[chain];
else
base = &rtl8192cu_txagc[chain];
} else
base = &rtl8192cu_txagc[chain];
memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0]));
if (sc->regulatory == 0) {
for (ridx = 0; ridx <= 3; ridx++)
power[ridx] = base->pwr[0][ridx];
}
for (ridx = 4; ridx < URTWN_RIDX_COUNT; ridx++) {
if (sc->regulatory == 3) {
power[ridx] = base->pwr[0][ridx];
/* Apply vendor limits. */
if (extc != NULL)
max = rom->ht40_max_pwr[group];
else
max = rom->ht20_max_pwr[group];
max = (max >> (chain * 4)) & 0xf;
if (power[ridx] > max)
power[ridx] = max;
} else if (sc->regulatory == 1) {
if (extc == NULL)
power[ridx] = base->pwr[group][ridx];
} else if (sc->regulatory != 2)
power[ridx] = base->pwr[0][ridx];
}
/* Compute per-CCK rate Tx power. */
cckpow = rom->cck_tx_pwr[chain][group];
for (ridx = 0; ridx <= 3; ridx++) {
power[ridx] += cckpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
htpow = rom->ht40_1s_tx_pwr[chain][group];
if (sc->ntxchains > 1) {
/* Apply reduction for 2 spatial streams. */
diff = rom->ht40_2s_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow = (htpow > diff) ? htpow - diff : 0;
}
/* Compute per-OFDM rate Tx power. */
diff = rom->ofdm_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
ofdmpow = htpow + diff; /* HT->OFDM correction. */
for (ridx = 4; ridx <= 11; ridx++) {
power[ridx] += ofdmpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
/* Compute per-MCS Tx power. */
if (extc == NULL) {
diff = rom->ht20_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow += diff; /* HT40->HT20 correction. */
}
for (ridx = 12; ridx <= 27; ridx++) {
power[ridx] += htpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
#ifdef URTWN_DEBUG
if (urtwn_debug >= 4) {
/* Dump per-rate Tx power values. */
printf("Tx power for chain %d:\n", chain);
for (ridx = 0; ridx < URTWN_RIDX_COUNT; ridx++)
printf("Rate %d = %u\n", ridx, power[ridx]);
}
#endif
}
void
urtwn_set_txpower(struct urtwn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint16_t power[URTWN_RIDX_COUNT];
int i;
for (i = 0; i < sc->ntxchains; i++) {
/* Compute per-rate Tx power values. */
urtwn_get_txpower(sc, i, c, extc, power);
/* Write per-rate Tx power values to hardware. */
urtwn_write_txpower(sc, i, power);
}
}
static void
urtwn_scan_start(struct ieee80211com *ic)
{
/* XXX do nothing? */
}
static void
urtwn_scan_end(struct ieee80211com *ic)
{
/* XXX do nothing? */
}
static void
urtwn_set_channel(struct ieee80211com *ic)
{
struct urtwn_softc *sc = ic->ic_ifp->if_softc;
URTWN_LOCK(sc);
urtwn_set_chan(sc, ic->ic_curchan, NULL);
URTWN_UNLOCK(sc);
}
static void
urtwn_update_mcast(struct ifnet *ifp)
{
/* XXX do nothing? */
}
static void
urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
uint32_t reg;
u_int chan;
int i;
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
device_printf(sc->sc_dev,
"%s: invalid channel %x\n", __func__, chan);
return;
}
/* Set Tx power for this new channel. */
urtwn_set_txpower(sc, c, extc);
for (i = 0; i < sc->nrxchains; i++) {
urtwn_rf_write(sc, i, R92C_RF_CHNLBW,
RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan));
}
#ifndef IEEE80211_NO_HT
if (extc != NULL) {
/* Is secondary channel below or above primary? */
int prichlo = c->ic_freq < extc->ic_freq;
urtwn_write_1(sc, R92C_BWOPMODE,
urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ);
reg = urtwn_read_1(sc, R92C_RRSR + 2);
reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
urtwn_write_1(sc, R92C_RRSR + 2, reg);
urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
/* Set CCK side band. */
reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM);
reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF);
reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
~R92C_FPGA0_ANAPARAM2_CBW20);
reg = urtwn_bb_read(sc, 0x818);
reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
urtwn_bb_write(sc, 0x818, reg);
/* Select 40MHz bandwidth. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
(sc->rf_chnlbw[0] & ~0xfff) | chan);
} else
#endif
{
urtwn_write_1(sc, R92C_BWOPMODE,
urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ);
urtwn_bb_write(sc, R92C_FPGA0_RFMOD,
urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
urtwn_bb_write(sc, R92C_FPGA1_RFMOD,
urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
R92C_FPGA0_ANAPARAM2_CBW20);
/* Select 20MHz bandwidth. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
(sc->rf_chnlbw[0] & ~0xfff) | R92C_RF_CHNLBW_BW20 | chan);
}
}
static void
urtwn_iq_calib(struct urtwn_softc *sc)
{
/* TODO */
}
static void
urtwn_lc_calib(struct urtwn_softc *sc)
{
uint32_t rf_ac[2];
uint8_t txmode;
int i;
txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
if ((txmode & 0x70) != 0) {
/* Disable all continuous Tx. */
urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
/* Set RF mode to standby mode. */
for (i = 0; i < sc->nrxchains; i++) {
rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC);
urtwn_rf_write(sc, i, R92C_RF_AC,
RW(rf_ac[i], R92C_RF_AC_MODE,
R92C_RF_AC_MODE_STANDBY));
}
} else {
/* Block all Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE, 0xff);
}
/* Start calibration. */
urtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
/* Give calibration the time to complete. */
usb_pause_mtx(&sc->sc_mtx, 100);
/* Restore configuration. */
if ((txmode & 0x70) != 0) {
/* Restore Tx mode. */
urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
/* Restore RF mode. */
for (i = 0; i < sc->nrxchains; i++)
urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
} else {
/* Unblock all Tx queues. */
urtwn_write_1(sc, R92C_TXPAUSE, 0x00);
}
}
static void
urtwn_init_locked(void *arg)
{
struct urtwn_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
uint32_t reg;
int error;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
urtwn_stop_locked(ifp, 0);
/* Init firmware commands ring. */
sc->fwcur = 0;
/* Allocate Tx/Rx buffers. */
error = urtwn_alloc_rx_list(sc);
if (error != 0)
goto fail;
error = urtwn_alloc_tx_list(sc);
if (error != 0)
goto fail;
/* Power on adapter. */
error = urtwn_power_on(sc);
if (error != 0)
goto fail;
/* Initialize DMA. */
error = urtwn_dma_init(sc);
if (error != 0)
goto fail;
/* Set info size in Rx descriptors (in 64-bit words). */
urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
/* Init interrupts. */
urtwn_write_4(sc, R92C_HISR, 0xffffffff);
urtwn_write_4(sc, R92C_HIMR, 0xffffffff);
/* Set MAC address. */
urtwn_write_region_1(sc, R92C_MACID, IF_LLADDR(ifp),
IEEE80211_ADDR_LEN);
/* Set initial network type. */
reg = urtwn_read_4(sc, R92C_CR);
reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA);
urtwn_write_4(sc, R92C_CR, reg);
urtwn_rxfilter_init(sc);
reg = urtwn_read_4(sc, R92C_RRSR);
reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M);
urtwn_write_4(sc, R92C_RRSR, reg);
/* Set short/long retry limits. */
urtwn_write_2(sc, R92C_RL,
SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
/* Initialize EDCA parameters. */
urtwn_edca_init(sc);
/* Setup rate fallback. */
urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
/* Set ACK timeout. */
urtwn_write_1(sc, R92C_ACKTO, 0x40);
/* Setup USB aggregation. */
reg = urtwn_read_4(sc, R92C_TDECTRL);
reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6);
urtwn_write_4(sc, R92C_TDECTRL, reg);
urtwn_write_1(sc, R92C_TRXDMA_CTRL,
urtwn_read_1(sc, R92C_TRXDMA_CTRL) |
R92C_TRXDMA_CTRL_RXDMA_AGG_EN);
urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) |
R92C_USB_SPECIAL_OPTION_AGG_EN);
urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48);
urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4);
urtwn_write_1(sc, R92C_USB_AGG_TH, 8);
urtwn_write_1(sc, R92C_USB_AGG_TO, 6);
/* Initialize beacon parameters. */
urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
urtwn_write_1(sc, R92C_DRVERLYINT, 0x05);
urtwn_write_1(sc, R92C_BCNDMATIM, 0x02);
urtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
/* Setup AMPDU aggregation. */
urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */
urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
urtwn_write_2(sc, 0x4ca, 0x0708);
urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
urtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0);
/* Load 8051 microcode. */
error = urtwn_load_firmware(sc);
if (error != 0)
goto fail;
/* Initialize MAC/BB/RF blocks. */
urtwn_mac_init(sc);
urtwn_bb_init(sc);
urtwn_rf_init(sc);
/* Turn CCK and OFDM blocks on. */
reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_CCK_EN;
urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_OFDM_EN;
urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
/* Clear per-station keys table. */
urtwn_cam_init(sc);
/* Enable hardware sequence numbering. */
urtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
/* Perform LO and IQ calibrations. */
urtwn_iq_calib(sc);
/* Perform LC calibration. */
urtwn_lc_calib(sc);
/* Fix USB interference issue. */
urtwn_write_1(sc, 0xfe40, 0xe0);
urtwn_write_1(sc, 0xfe41, 0x8d);
urtwn_write_1(sc, 0xfe42, 0x80);
urtwn_pa_bias_init(sc);
/* Initialize GPIO setting. */
urtwn_write_1(sc, R92C_GPIO_MUXCFG,
urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
/* Fix for lower temperature. */
urtwn_write_1(sc, 0x15, 0xe9);
usbd_transfer_start(sc->sc_xfer[URTWN_BULK_RX]);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc);
fail:
return;
}
static void
urtwn_init(void *arg)
{
struct urtwn_softc *sc = arg;
URTWN_LOCK(sc);
urtwn_init_locked(arg);
URTWN_UNLOCK(sc);
}
static void
urtwn_stop_locked(struct ifnet *ifp, int disable)
{
struct urtwn_softc *sc = ifp->if_softc;
(void)disable;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
callout_stop(&sc->sc_watchdog_ch);
urtwn_abort_xfers(sc);
}
static void
urtwn_stop(struct ifnet *ifp, int disable)
{
struct urtwn_softc *sc = ifp->if_softc;
URTWN_LOCK(sc);
urtwn_stop_locked(ifp, disable);
URTWN_UNLOCK(sc);
}
static void
urtwn_abort_xfers(struct urtwn_softc *sc)
{
int i;
URTWN_ASSERT_LOCKED(sc);
/* abort any pending transfers */
for (i = 0; i < URTWN_N_TRANSFER; i++)
usbd_transfer_stop(sc->sc_xfer[i]);
}
static int
urtwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct urtwn_softc *sc = ifp->if_softc;
struct urtwn_data *bf;
/* prevent management frames from being sent if we're not ready */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
m_freem(m);
ieee80211_free_node(ni);
return (ENETDOWN);
}
URTWN_LOCK(sc);
bf = urtwn_getbuf(sc);
if (bf == NULL) {
ieee80211_free_node(ni);
m_freem(m);
URTWN_UNLOCK(sc);
return (ENOBUFS);
}
ifp->if_opackets++;
if (urtwn_tx_start(sc, ni, m, bf) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
URTWN_UNLOCK(sc);
return (EIO);
}
URTWN_UNLOCK(sc);
sc->sc_txtimer = 5;
return (0);
}
static device_method_t urtwn_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, urtwn_match),
DEVMETHOD(device_attach, urtwn_attach),
DEVMETHOD(device_detach, urtwn_detach),
{ 0, 0 }
};
static driver_t urtwn_driver = {
"urtwn",
urtwn_methods,
sizeof(struct urtwn_softc)
};
static devclass_t urtwn_devclass;
DRIVER_MODULE(urtwn, uhub, urtwn_driver, urtwn_devclass, NULL, NULL);
MODULE_DEPEND(urtwn, usb, 1, 1, 1);
MODULE_DEPEND(urtwn, wlan, 1, 1, 1);
MODULE_DEPEND(urtwn, firmware, 1, 1, 1);
MODULE_VERSION(urtwn, 1);