7008be5bd7
in the future in a backward compatible (API and ABI) way. The cap_rights_t represents capability rights. We used to use one bit to represent one right, but we are running out of spare bits. Currently the new structure provides place for 114 rights (so 50 more than the previous cap_rights_t), but it is possible to grow the structure to hold at least 285 rights, although we can make it even larger if 285 rights won't be enough. The structure definition looks like this: struct cap_rights { uint64_t cr_rights[CAP_RIGHTS_VERSION + 2]; }; The initial CAP_RIGHTS_VERSION is 0. The top two bits in the first element of the cr_rights[] array contain total number of elements in the array - 2. This means if those two bits are equal to 0, we have 2 array elements. The top two bits in all remaining array elements should be 0. The next five bits in all array elements contain array index. Only one bit is used and bit position in this five-bits range defines array index. This means there can be at most five array elements in the future. To define new right the CAPRIGHT() macro must be used. The macro takes two arguments - an array index and a bit to set, eg. #define CAP_PDKILL CAPRIGHT(1, 0x0000000000000800ULL) We still support aliases that combine few rights, but the rights have to belong to the same array element, eg: #define CAP_LOOKUP CAPRIGHT(0, 0x0000000000000400ULL) #define CAP_FCHMOD CAPRIGHT(0, 0x0000000000002000ULL) #define CAP_FCHMODAT (CAP_FCHMOD | CAP_LOOKUP) There is new API to manage the new cap_rights_t structure: cap_rights_t *cap_rights_init(cap_rights_t *rights, ...); void cap_rights_set(cap_rights_t *rights, ...); void cap_rights_clear(cap_rights_t *rights, ...); bool cap_rights_is_set(const cap_rights_t *rights, ...); bool cap_rights_is_valid(const cap_rights_t *rights); void cap_rights_merge(cap_rights_t *dst, const cap_rights_t *src); void cap_rights_remove(cap_rights_t *dst, const cap_rights_t *src); bool cap_rights_contains(const cap_rights_t *big, const cap_rights_t *little); Capability rights to the cap_rights_init(), cap_rights_set(), cap_rights_clear() and cap_rights_is_set() functions are provided by separating them with commas, eg: cap_rights_t rights; cap_rights_init(&rights, CAP_READ, CAP_WRITE, CAP_FSTAT); There is no need to terminate the list of rights, as those functions are actually macros that take care of the termination, eg: #define cap_rights_set(rights, ...) \ __cap_rights_set((rights), __VA_ARGS__, 0ULL) void __cap_rights_set(cap_rights_t *rights, ...); Thanks to using one bit as an array index we can assert in those functions that there are no two rights belonging to different array elements provided together. For example this is illegal and will be detected, because CAP_LOOKUP belongs to element 0 and CAP_PDKILL to element 1: cap_rights_init(&rights, CAP_LOOKUP | CAP_PDKILL); Providing several rights that belongs to the same array's element this way is correct, but is not advised. It should only be used for aliases definition. This commit also breaks compatibility with some existing Capsicum system calls, but I see no other way to do that. This should be fine as Capsicum is still experimental and this change is not going to 9.x. Sponsored by: The FreeBSD Foundation
1355 lines
37 KiB
C
1355 lines
37 KiB
C
/*-
|
|
* Copyright (c) 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Rick Macklem at The University of Guelph.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet6.h"
|
|
#include "opt_kdtrace.h"
|
|
|
|
#include <sys/capability.h>
|
|
|
|
/*
|
|
* generally, I don't like #includes inside .h files, but it seems to
|
|
* be the easiest way to handle the port.
|
|
*/
|
|
#include <sys/hash.h>
|
|
#include <fs/nfs/nfsport.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <net/if_types.h>
|
|
|
|
#include <fs/nfsclient/nfs_kdtrace.h>
|
|
|
|
#ifdef KDTRACE_HOOKS
|
|
dtrace_nfsclient_attrcache_flush_probe_func_t
|
|
dtrace_nfscl_attrcache_flush_done_probe;
|
|
uint32_t nfscl_attrcache_flush_done_id;
|
|
|
|
dtrace_nfsclient_attrcache_get_hit_probe_func_t
|
|
dtrace_nfscl_attrcache_get_hit_probe;
|
|
uint32_t nfscl_attrcache_get_hit_id;
|
|
|
|
dtrace_nfsclient_attrcache_get_miss_probe_func_t
|
|
dtrace_nfscl_attrcache_get_miss_probe;
|
|
uint32_t nfscl_attrcache_get_miss_id;
|
|
|
|
dtrace_nfsclient_attrcache_load_probe_func_t
|
|
dtrace_nfscl_attrcache_load_done_probe;
|
|
uint32_t nfscl_attrcache_load_done_id;
|
|
#endif /* !KDTRACE_HOOKS */
|
|
|
|
extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
|
|
extern struct vop_vector newnfs_vnodeops;
|
|
extern struct vop_vector newnfs_fifoops;
|
|
extern uma_zone_t newnfsnode_zone;
|
|
extern struct buf_ops buf_ops_newnfs;
|
|
extern int ncl_pbuf_freecnt;
|
|
extern short nfsv4_cbport;
|
|
extern int nfscl_enablecallb;
|
|
extern int nfs_numnfscbd;
|
|
extern int nfscl_inited;
|
|
struct mtx nfs_clstate_mutex;
|
|
struct mtx ncl_iod_mutex;
|
|
NFSDLOCKMUTEX;
|
|
|
|
extern void (*ncl_call_invalcaches)(struct vnode *);
|
|
|
|
/*
|
|
* Comparison function for vfs_hash functions.
|
|
*/
|
|
int
|
|
newnfs_vncmpf(struct vnode *vp, void *arg)
|
|
{
|
|
struct nfsfh *nfhp = (struct nfsfh *)arg;
|
|
struct nfsnode *np = VTONFS(vp);
|
|
|
|
if (np->n_fhp->nfh_len != nfhp->nfh_len ||
|
|
NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Look up a vnode/nfsnode by file handle.
|
|
* Callers must check for mount points!!
|
|
* In all cases, a pointer to a
|
|
* nfsnode structure is returned.
|
|
* This variant takes a "struct nfsfh *" as second argument and uses
|
|
* that structure up, either by hanging off the nfsnode or FREEing it.
|
|
*/
|
|
int
|
|
nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
|
|
struct componentname *cnp, struct thread *td, struct nfsnode **npp,
|
|
void *stuff, int lkflags)
|
|
{
|
|
struct nfsnode *np, *dnp;
|
|
struct vnode *vp, *nvp;
|
|
struct nfsv4node *newd, *oldd;
|
|
int error;
|
|
u_int hash;
|
|
struct nfsmount *nmp;
|
|
|
|
nmp = VFSTONFS(mntp);
|
|
dnp = VTONFS(dvp);
|
|
*npp = NULL;
|
|
|
|
hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
|
|
|
|
error = vfs_hash_get(mntp, hash, lkflags,
|
|
td, &nvp, newnfs_vncmpf, nfhp);
|
|
if (error == 0 && nvp != NULL) {
|
|
/*
|
|
* I believe there is a slight chance that vgonel() could
|
|
* get called on this vnode between when NFSVOPLOCK() drops
|
|
* the VI_LOCK() and vget() acquires it again, so that it
|
|
* hasn't yet had v_usecount incremented. If this were to
|
|
* happen, the VI_DOOMED flag would be set, so check for
|
|
* that here. Since we now have the v_usecount incremented,
|
|
* we should be ok until we vrele() it, if the VI_DOOMED
|
|
* flag isn't set now.
|
|
*/
|
|
VI_LOCK(nvp);
|
|
if ((nvp->v_iflag & VI_DOOMED)) {
|
|
VI_UNLOCK(nvp);
|
|
vrele(nvp);
|
|
error = ENOENT;
|
|
} else {
|
|
VI_UNLOCK(nvp);
|
|
}
|
|
}
|
|
if (error) {
|
|
FREE((caddr_t)nfhp, M_NFSFH);
|
|
return (error);
|
|
}
|
|
if (nvp != NULL) {
|
|
np = VTONFS(nvp);
|
|
/*
|
|
* For NFSv4, check to see if it is the same name and
|
|
* replace the name, if it is different.
|
|
*/
|
|
oldd = newd = NULL;
|
|
if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
|
|
nvp->v_type == VREG &&
|
|
(np->n_v4->n4_namelen != cnp->cn_namelen ||
|
|
NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
|
|
cnp->cn_namelen) ||
|
|
dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
|
|
NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
|
|
dnp->n_fhp->nfh_len))) {
|
|
MALLOC(newd, struct nfsv4node *,
|
|
sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
|
|
+ cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
|
|
NFSLOCKNODE(np);
|
|
if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
|
|
&& (np->n_v4->n4_namelen != cnp->cn_namelen ||
|
|
NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
|
|
cnp->cn_namelen) ||
|
|
dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
|
|
NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
|
|
dnp->n_fhp->nfh_len))) {
|
|
oldd = np->n_v4;
|
|
np->n_v4 = newd;
|
|
newd = NULL;
|
|
np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
|
|
np->n_v4->n4_namelen = cnp->cn_namelen;
|
|
NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
|
|
dnp->n_fhp->nfh_len);
|
|
NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
|
|
cnp->cn_namelen);
|
|
}
|
|
NFSUNLOCKNODE(np);
|
|
}
|
|
if (newd != NULL)
|
|
FREE((caddr_t)newd, M_NFSV4NODE);
|
|
if (oldd != NULL)
|
|
FREE((caddr_t)oldd, M_NFSV4NODE);
|
|
*npp = np;
|
|
FREE((caddr_t)nfhp, M_NFSFH);
|
|
return (0);
|
|
}
|
|
np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
|
|
|
|
error = getnewvnode("newnfs", mntp, &newnfs_vnodeops, &nvp);
|
|
if (error) {
|
|
uma_zfree(newnfsnode_zone, np);
|
|
FREE((caddr_t)nfhp, M_NFSFH);
|
|
return (error);
|
|
}
|
|
vp = nvp;
|
|
KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0"));
|
|
vp->v_bufobj.bo_ops = &buf_ops_newnfs;
|
|
vp->v_data = np;
|
|
np->n_vnode = vp;
|
|
/*
|
|
* Initialize the mutex even if the vnode is going to be a loser.
|
|
* This simplifies the logic in reclaim, which can then unconditionally
|
|
* destroy the mutex (in the case of the loser, or if hash_insert
|
|
* happened to return an error no special casing is needed).
|
|
*/
|
|
mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
|
|
|
|
/*
|
|
* Are we getting the root? If so, make sure the vnode flags
|
|
* are correct
|
|
*/
|
|
if ((nfhp->nfh_len == nmp->nm_fhsize) &&
|
|
!bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
|
|
if (vp->v_type == VNON)
|
|
vp->v_type = VDIR;
|
|
vp->v_vflag |= VV_ROOT;
|
|
}
|
|
|
|
np->n_fhp = nfhp;
|
|
/*
|
|
* For NFSv4, we have to attach the directory file handle and
|
|
* file name, so that Open Ops can be done later.
|
|
*/
|
|
if (nmp->nm_flag & NFSMNT_NFSV4) {
|
|
MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
|
|
+ dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
|
|
M_WAITOK);
|
|
np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
|
|
np->n_v4->n4_namelen = cnp->cn_namelen;
|
|
NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
|
|
dnp->n_fhp->nfh_len);
|
|
NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
|
|
cnp->cn_namelen);
|
|
} else {
|
|
np->n_v4 = NULL;
|
|
}
|
|
|
|
/*
|
|
* NFS supports recursive and shared locking.
|
|
*/
|
|
lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
|
|
VN_LOCK_AREC(vp);
|
|
VN_LOCK_ASHARE(vp);
|
|
error = insmntque(vp, mntp);
|
|
if (error != 0) {
|
|
*npp = NULL;
|
|
mtx_destroy(&np->n_mtx);
|
|
FREE((caddr_t)nfhp, M_NFSFH);
|
|
if (np->n_v4 != NULL)
|
|
FREE((caddr_t)np->n_v4, M_NFSV4NODE);
|
|
uma_zfree(newnfsnode_zone, np);
|
|
return (error);
|
|
}
|
|
error = vfs_hash_insert(vp, hash, lkflags,
|
|
td, &nvp, newnfs_vncmpf, nfhp);
|
|
if (error)
|
|
return (error);
|
|
if (nvp != NULL) {
|
|
*npp = VTONFS(nvp);
|
|
/* vfs_hash_insert() vput()'s the losing vnode */
|
|
return (0);
|
|
}
|
|
*npp = np;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Anothe variant of nfs_nget(). This one is only used by reopen. It
|
|
* takes almost the same args as nfs_nget(), but only succeeds if an entry
|
|
* exists in the cache. (Since files should already be "open" with a
|
|
* vnode ref cnt on the node when reopen calls this, it should always
|
|
* succeed.)
|
|
* Also, don't get a vnode lock, since it may already be locked by some
|
|
* other process that is handling it. This is ok, since all other threads
|
|
* on the client are blocked by the nfsc_lock being exclusively held by the
|
|
* caller of this function.
|
|
*/
|
|
int
|
|
nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
|
|
struct thread *td, struct nfsnode **npp)
|
|
{
|
|
struct vnode *nvp;
|
|
u_int hash;
|
|
struct nfsfh *nfhp;
|
|
int error;
|
|
|
|
*npp = NULL;
|
|
/* For forced dismounts, just return error. */
|
|
if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
|
|
return (EINTR);
|
|
MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
|
|
M_NFSFH, M_WAITOK);
|
|
bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
|
|
nfhp->nfh_len = fhsize;
|
|
|
|
hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
|
|
|
|
/*
|
|
* First, try to get the vnode locked, but don't block for the lock.
|
|
*/
|
|
error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
|
|
newnfs_vncmpf, nfhp);
|
|
if (error == 0 && nvp != NULL) {
|
|
NFSVOPUNLOCK(nvp, 0);
|
|
} else if (error == EBUSY) {
|
|
/*
|
|
* The LK_EXCLOTHER lock type tells nfs_lock1() to not try
|
|
* and lock the vnode, but just get a v_usecount on it.
|
|
* LK_NOWAIT is set so that when vget() returns ENOENT,
|
|
* vfs_hash_get() fails instead of looping.
|
|
* If this succeeds, it is safe so long as a vflush() with
|
|
* FORCECLOSE has not been done. Since the Renew thread is
|
|
* stopped and the MNTK_UNMOUNTF flag is set before doing
|
|
* a vflush() with FORCECLOSE, we should be ok here.
|
|
*/
|
|
if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
|
|
error = EINTR;
|
|
else
|
|
error = vfs_hash_get(mntp, hash,
|
|
(LK_EXCLOTHER | LK_NOWAIT), td, &nvp,
|
|
newnfs_vncmpf, nfhp);
|
|
}
|
|
FREE(nfhp, M_NFSFH);
|
|
if (error)
|
|
return (error);
|
|
if (nvp != NULL) {
|
|
*npp = VTONFS(nvp);
|
|
return (0);
|
|
}
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Load the attribute cache (that lives in the nfsnode entry) with
|
|
* the attributes of the second argument and
|
|
* Iff vaper not NULL
|
|
* copy the attributes to *vaper
|
|
* Similar to nfs_loadattrcache(), except the attributes are passed in
|
|
* instead of being parsed out of the mbuf list.
|
|
*/
|
|
int
|
|
nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
|
|
void *stuff, int writeattr, int dontshrink)
|
|
{
|
|
struct vnode *vp = *vpp;
|
|
struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
|
|
struct nfsnode *np;
|
|
struct nfsmount *nmp;
|
|
struct timespec mtime_save;
|
|
u_quad_t nsize;
|
|
int setnsize;
|
|
|
|
/*
|
|
* If v_type == VNON it is a new node, so fill in the v_type,
|
|
* n_mtime fields. Check to see if it represents a special
|
|
* device, and if so, check for a possible alias. Once the
|
|
* correct vnode has been obtained, fill in the rest of the
|
|
* information.
|
|
*/
|
|
np = VTONFS(vp);
|
|
NFSLOCKNODE(np);
|
|
if (vp->v_type != nvap->va_type) {
|
|
vp->v_type = nvap->va_type;
|
|
if (vp->v_type == VFIFO)
|
|
vp->v_op = &newnfs_fifoops;
|
|
np->n_mtime = nvap->va_mtime;
|
|
}
|
|
nmp = VFSTONFS(vp->v_mount);
|
|
vap = &np->n_vattr.na_vattr;
|
|
mtime_save = vap->va_mtime;
|
|
if (writeattr) {
|
|
np->n_vattr.na_filerev = nap->na_filerev;
|
|
np->n_vattr.na_size = nap->na_size;
|
|
np->n_vattr.na_mtime = nap->na_mtime;
|
|
np->n_vattr.na_ctime = nap->na_ctime;
|
|
np->n_vattr.na_fsid = nap->na_fsid;
|
|
np->n_vattr.na_mode = nap->na_mode;
|
|
} else {
|
|
NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
|
|
sizeof (struct nfsvattr));
|
|
}
|
|
|
|
/*
|
|
* For NFSv4, if the node's fsid is not equal to the mount point's
|
|
* fsid, return the low order 32bits of the node's fsid. This
|
|
* allows getcwd(3) to work. There is a chance that the fsid might
|
|
* be the same as a local fs, but since this is in an NFS mount
|
|
* point, I don't think that will cause any problems?
|
|
*/
|
|
if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) &&
|
|
(nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
|
|
nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) {
|
|
/*
|
|
* va_fsid needs to be set to some value derived from
|
|
* np->n_vattr.na_filesid that is not equal
|
|
* vp->v_mount->mnt_stat.f_fsid[0], so that it changes
|
|
* from the value used for the top level server volume
|
|
* in the mounted subtree.
|
|
*/
|
|
if (vp->v_mount->mnt_stat.f_fsid.val[0] !=
|
|
(uint32_t)np->n_vattr.na_filesid[0])
|
|
vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0];
|
|
else
|
|
vap->va_fsid = (uint32_t)hash32_buf(
|
|
np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0);
|
|
} else
|
|
vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
|
|
np->n_attrstamp = time_second;
|
|
setnsize = 0;
|
|
nsize = 0;
|
|
if (vap->va_size != np->n_size) {
|
|
if (vap->va_type == VREG) {
|
|
if (dontshrink && vap->va_size < np->n_size) {
|
|
/*
|
|
* We've been told not to shrink the file;
|
|
* zero np->n_attrstamp to indicate that
|
|
* the attributes are stale.
|
|
*/
|
|
vap->va_size = np->n_size;
|
|
np->n_attrstamp = 0;
|
|
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
|
|
vnode_pager_setsize(vp, np->n_size);
|
|
} else if (np->n_flag & NMODIFIED) {
|
|
/*
|
|
* We've modified the file: Use the larger
|
|
* of our size, and the server's size.
|
|
*/
|
|
if (vap->va_size < np->n_size) {
|
|
vap->va_size = np->n_size;
|
|
} else {
|
|
np->n_size = vap->va_size;
|
|
np->n_flag |= NSIZECHANGED;
|
|
}
|
|
vnode_pager_setsize(vp, np->n_size);
|
|
} else if (vap->va_size < np->n_size) {
|
|
/*
|
|
* When shrinking the size, the call to
|
|
* vnode_pager_setsize() cannot be done
|
|
* with the mutex held, so delay it until
|
|
* after the mtx_unlock call.
|
|
*/
|
|
nsize = np->n_size = vap->va_size;
|
|
np->n_flag |= NSIZECHANGED;
|
|
setnsize = 1;
|
|
} else {
|
|
np->n_size = vap->va_size;
|
|
np->n_flag |= NSIZECHANGED;
|
|
vnode_pager_setsize(vp, np->n_size);
|
|
}
|
|
} else {
|
|
np->n_size = vap->va_size;
|
|
}
|
|
}
|
|
/*
|
|
* The following checks are added to prevent a race between (say)
|
|
* a READDIR+ and a WRITE.
|
|
* READDIR+, WRITE requests sent out.
|
|
* READDIR+ resp, WRITE resp received on client.
|
|
* However, the WRITE resp was handled before the READDIR+ resp
|
|
* causing the post op attrs from the write to be loaded first
|
|
* and the attrs from the READDIR+ to be loaded later. If this
|
|
* happens, we have stale attrs loaded into the attrcache.
|
|
* We detect this by for the mtime moving back. We invalidate the
|
|
* attrcache when this happens.
|
|
*/
|
|
if (timespeccmp(&mtime_save, &vap->va_mtime, >)) {
|
|
/* Size changed or mtime went backwards */
|
|
np->n_attrstamp = 0;
|
|
KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
|
|
}
|
|
if (vaper != NULL) {
|
|
NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
|
|
if (np->n_flag & NCHG) {
|
|
if (np->n_flag & NACC)
|
|
vaper->va_atime = np->n_atim;
|
|
if (np->n_flag & NUPD)
|
|
vaper->va_mtime = np->n_mtim;
|
|
}
|
|
}
|
|
#ifdef KDTRACE_HOOKS
|
|
if (np->n_attrstamp != 0)
|
|
KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, 0);
|
|
#endif
|
|
NFSUNLOCKNODE(np);
|
|
if (setnsize)
|
|
vnode_pager_setsize(vp, nsize);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Fill in the client id name. For these bytes:
|
|
* 1 - they must be unique
|
|
* 2 - they should be persistent across client reboots
|
|
* 1 is more critical than 2
|
|
* Use the mount point's unique id plus either the uuid or, if that
|
|
* isn't set, random junk.
|
|
*/
|
|
void
|
|
nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
|
|
{
|
|
int uuidlen;
|
|
|
|
/*
|
|
* First, put in the 64bit mount point identifier.
|
|
*/
|
|
if (idlen >= sizeof (u_int64_t)) {
|
|
NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
|
|
cp += sizeof (u_int64_t);
|
|
idlen -= sizeof (u_int64_t);
|
|
}
|
|
|
|
/*
|
|
* If uuid is non-zero length, use it.
|
|
*/
|
|
uuidlen = strlen(uuid);
|
|
if (uuidlen > 0 && idlen >= uuidlen) {
|
|
NFSBCOPY(uuid, cp, uuidlen);
|
|
cp += uuidlen;
|
|
idlen -= uuidlen;
|
|
}
|
|
|
|
/*
|
|
* This only normally happens if the uuid isn't set.
|
|
*/
|
|
while (idlen > 0) {
|
|
*cp++ = (u_int8_t)(arc4random() % 256);
|
|
idlen--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in a lock owner name. For now, pid + the process's creation time.
|
|
*/
|
|
void
|
|
nfscl_filllockowner(void *id, u_int8_t *cp, int flags)
|
|
{
|
|
union {
|
|
u_int32_t lval;
|
|
u_int8_t cval[4];
|
|
} tl;
|
|
struct proc *p;
|
|
|
|
if (id == NULL) {
|
|
printf("NULL id\n");
|
|
bzero(cp, NFSV4CL_LOCKNAMELEN);
|
|
return;
|
|
}
|
|
if ((flags & F_POSIX) != 0) {
|
|
p = (struct proc *)id;
|
|
tl.lval = p->p_pid;
|
|
*cp++ = tl.cval[0];
|
|
*cp++ = tl.cval[1];
|
|
*cp++ = tl.cval[2];
|
|
*cp++ = tl.cval[3];
|
|
tl.lval = p->p_stats->p_start.tv_sec;
|
|
*cp++ = tl.cval[0];
|
|
*cp++ = tl.cval[1];
|
|
*cp++ = tl.cval[2];
|
|
*cp++ = tl.cval[3];
|
|
tl.lval = p->p_stats->p_start.tv_usec;
|
|
*cp++ = tl.cval[0];
|
|
*cp++ = tl.cval[1];
|
|
*cp++ = tl.cval[2];
|
|
*cp = tl.cval[3];
|
|
} else if ((flags & F_FLOCK) != 0) {
|
|
bcopy(&id, cp, sizeof(id));
|
|
bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id));
|
|
} else {
|
|
printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n");
|
|
bzero(cp, NFSV4CL_LOCKNAMELEN);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the parent process for the thread passed in as an argument.
|
|
* If none exists, return NULL, otherwise return a thread for the parent.
|
|
* (Can be any of the threads, since it is only used for td->td_proc.)
|
|
*/
|
|
NFSPROC_T *
|
|
nfscl_getparent(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
struct thread *ptd;
|
|
|
|
if (td == NULL)
|
|
return (NULL);
|
|
p = td->td_proc;
|
|
if (p->p_pid == 0)
|
|
return (NULL);
|
|
p = p->p_pptr;
|
|
if (p == NULL)
|
|
return (NULL);
|
|
ptd = TAILQ_FIRST(&p->p_threads);
|
|
return (ptd);
|
|
}
|
|
|
|
/*
|
|
* Start up the renew kernel thread.
|
|
*/
|
|
static void
|
|
start_nfscl(void *arg)
|
|
{
|
|
struct nfsclclient *clp;
|
|
struct thread *td;
|
|
|
|
clp = (struct nfsclclient *)arg;
|
|
td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
|
|
nfscl_renewthread(clp, td);
|
|
kproc_exit(0);
|
|
}
|
|
|
|
void
|
|
nfscl_start_renewthread(struct nfsclclient *clp)
|
|
{
|
|
|
|
kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
|
|
"nfscl");
|
|
}
|
|
|
|
/*
|
|
* Handle wcc_data.
|
|
* For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
|
|
* as the first Op after PutFH.
|
|
* (For NFSv4, the postop attributes are after the Op, so they can't be
|
|
* parsed here. A separate call to nfscl_postop_attr() is required.)
|
|
*/
|
|
int
|
|
nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
|
|
struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
|
|
{
|
|
u_int32_t *tl;
|
|
struct nfsnode *np = VTONFS(vp);
|
|
struct nfsvattr nfsva;
|
|
int error = 0;
|
|
|
|
if (wccflagp != NULL)
|
|
*wccflagp = 0;
|
|
if (nd->nd_flag & ND_NFSV3) {
|
|
*flagp = 0;
|
|
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
if (*tl == newnfs_true) {
|
|
NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
|
|
if (wccflagp != NULL) {
|
|
mtx_lock(&np->n_mtx);
|
|
*wccflagp = (np->n_mtime.tv_sec ==
|
|
fxdr_unsigned(u_int32_t, *(tl + 2)) &&
|
|
np->n_mtime.tv_nsec ==
|
|
fxdr_unsigned(u_int32_t, *(tl + 3)));
|
|
mtx_unlock(&np->n_mtx);
|
|
}
|
|
}
|
|
error = nfscl_postop_attr(nd, nap, flagp, stuff);
|
|
} else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
|
|
== (ND_NFSV4 | ND_V4WCCATTR)) {
|
|
error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
|
|
NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
|
|
NULL, NULL, NULL, NULL, NULL);
|
|
if (error)
|
|
return (error);
|
|
/*
|
|
* Get rid of Op# and status for next op.
|
|
*/
|
|
NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
if (*++tl)
|
|
nd->nd_flag |= ND_NOMOREDATA;
|
|
if (wccflagp != NULL &&
|
|
nfsva.na_vattr.va_mtime.tv_sec != 0) {
|
|
mtx_lock(&np->n_mtx);
|
|
*wccflagp = (np->n_mtime.tv_sec ==
|
|
nfsva.na_vattr.va_mtime.tv_sec &&
|
|
np->n_mtime.tv_nsec ==
|
|
nfsva.na_vattr.va_mtime.tv_sec);
|
|
mtx_unlock(&np->n_mtx);
|
|
}
|
|
}
|
|
nfsmout:
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get postop attributes.
|
|
*/
|
|
int
|
|
nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
|
|
void *stuff)
|
|
{
|
|
u_int32_t *tl;
|
|
int error = 0;
|
|
|
|
*retp = 0;
|
|
if (nd->nd_flag & ND_NOMOREDATA)
|
|
return (error);
|
|
if (nd->nd_flag & ND_NFSV3) {
|
|
NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*retp = fxdr_unsigned(int, *tl);
|
|
} else if (nd->nd_flag & ND_NFSV4) {
|
|
/*
|
|
* For NFSv4, the postop attr are at the end, so no point
|
|
* in looking if nd_repstat != 0.
|
|
*/
|
|
if (!nd->nd_repstat) {
|
|
NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
if (*(tl + 1))
|
|
/* should never happen since nd_repstat != 0 */
|
|
nd->nd_flag |= ND_NOMOREDATA;
|
|
else
|
|
*retp = 1;
|
|
}
|
|
} else if (!nd->nd_repstat) {
|
|
/* For NFSv2, the attributes are here iff nd_repstat == 0 */
|
|
*retp = 1;
|
|
}
|
|
if (*retp) {
|
|
error = nfsm_loadattr(nd, nap);
|
|
if (error)
|
|
*retp = 0;
|
|
}
|
|
nfsmout:
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Fill in the setable attributes. The full argument indicates whether
|
|
* to fill in them all or just mode and time.
|
|
*/
|
|
void
|
|
nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
|
|
struct vnode *vp, int flags, u_int32_t rdev)
|
|
{
|
|
u_int32_t *tl;
|
|
struct nfsv2_sattr *sp;
|
|
nfsattrbit_t attrbits;
|
|
|
|
switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
|
|
case ND_NFSV2:
|
|
NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
|
|
if (vap->va_mode == (mode_t)VNOVAL)
|
|
sp->sa_mode = newnfs_xdrneg1;
|
|
else
|
|
sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
|
|
if (vap->va_uid == (uid_t)VNOVAL)
|
|
sp->sa_uid = newnfs_xdrneg1;
|
|
else
|
|
sp->sa_uid = txdr_unsigned(vap->va_uid);
|
|
if (vap->va_gid == (gid_t)VNOVAL)
|
|
sp->sa_gid = newnfs_xdrneg1;
|
|
else
|
|
sp->sa_gid = txdr_unsigned(vap->va_gid);
|
|
if (flags & NFSSATTR_SIZE0)
|
|
sp->sa_size = 0;
|
|
else if (flags & NFSSATTR_SIZENEG1)
|
|
sp->sa_size = newnfs_xdrneg1;
|
|
else if (flags & NFSSATTR_SIZERDEV)
|
|
sp->sa_size = txdr_unsigned(rdev);
|
|
else
|
|
sp->sa_size = txdr_unsigned(vap->va_size);
|
|
txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
|
|
txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
|
|
break;
|
|
case ND_NFSV3:
|
|
if (vap->va_mode != (mode_t)VNOVAL) {
|
|
NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
*tl++ = newnfs_true;
|
|
*tl = txdr_unsigned(vap->va_mode);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = newnfs_false;
|
|
}
|
|
if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
|
|
NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
*tl++ = newnfs_true;
|
|
*tl = txdr_unsigned(vap->va_uid);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = newnfs_false;
|
|
}
|
|
if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
|
|
NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
|
|
*tl++ = newnfs_true;
|
|
*tl = txdr_unsigned(vap->va_gid);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = newnfs_false;
|
|
}
|
|
if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
|
|
NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
|
|
*tl++ = newnfs_true;
|
|
txdr_hyper(vap->va_size, tl);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = newnfs_false;
|
|
}
|
|
if (vap->va_atime.tv_sec != VNOVAL) {
|
|
if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
|
|
NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
|
|
*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
|
|
txdr_nfsv3time(&vap->va_atime, tl);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
|
|
}
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
|
|
}
|
|
if (vap->va_mtime.tv_sec != VNOVAL) {
|
|
if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
|
|
NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
|
|
*tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
|
|
txdr_nfsv3time(&vap->va_mtime, tl);
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
|
|
}
|
|
} else {
|
|
NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
|
|
*tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
|
|
}
|
|
break;
|
|
case ND_NFSV4:
|
|
NFSZERO_ATTRBIT(&attrbits);
|
|
if (vap->va_mode != (mode_t)VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
|
|
if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
|
|
if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
|
|
if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
|
|
if (vap->va_atime.tv_sec != VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
|
|
if (vap->va_mtime.tv_sec != VNOVAL)
|
|
NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
|
|
(void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0,
|
|
&attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0);
|
|
break;
|
|
};
|
|
}
|
|
|
|
/*
|
|
* nfscl_request() - mostly a wrapper for newnfs_request().
|
|
*/
|
|
int
|
|
nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
|
|
struct ucred *cred, void *stuff)
|
|
{
|
|
int ret, vers;
|
|
struct nfsmount *nmp;
|
|
|
|
nmp = VFSTONFS(vp->v_mount);
|
|
if (nd->nd_flag & ND_NFSV4)
|
|
vers = NFS_VER4;
|
|
else if (nd->nd_flag & ND_NFSV3)
|
|
vers = NFS_VER3;
|
|
else
|
|
vers = NFS_VER2;
|
|
ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
|
|
NFS_PROG, vers, NULL, 1, NULL, NULL);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* fill in this bsden's variant of statfs using nfsstatfs.
|
|
*/
|
|
void
|
|
nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
|
|
{
|
|
struct statfs *sbp = (struct statfs *)statfs;
|
|
|
|
if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
|
|
sbp->f_bsize = NFS_FABLKSIZE;
|
|
sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE;
|
|
sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE;
|
|
/*
|
|
* Although sf_abytes is uint64_t and f_bavail is int64_t,
|
|
* the value after dividing by NFS_FABLKSIZE is small
|
|
* enough that it will fit in 63bits, so it is ok to
|
|
* assign it to f_bavail without fear that it will become
|
|
* negative.
|
|
*/
|
|
sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE;
|
|
sbp->f_files = sfp->sf_tfiles;
|
|
/* Since f_ffree is int64_t, clip it to 63bits. */
|
|
if (sfp->sf_ffiles > INT64_MAX)
|
|
sbp->f_ffree = INT64_MAX;
|
|
else
|
|
sbp->f_ffree = sfp->sf_ffiles;
|
|
} else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
|
|
/*
|
|
* The type casts to (int32_t) ensure that this code is
|
|
* compatible with the old NFS client, in that it will
|
|
* propagate bit31 to the high order bits. This may or may
|
|
* not be correct for NFSv2, but since it is a legacy
|
|
* environment, I'd rather retain backwards compatibility.
|
|
*/
|
|
sbp->f_bsize = (int32_t)sfp->sf_bsize;
|
|
sbp->f_blocks = (int32_t)sfp->sf_blocks;
|
|
sbp->f_bfree = (int32_t)sfp->sf_bfree;
|
|
sbp->f_bavail = (int32_t)sfp->sf_bavail;
|
|
sbp->f_files = 0;
|
|
sbp->f_ffree = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Use the fsinfo stuff to update the mount point.
|
|
*/
|
|
void
|
|
nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
|
|
{
|
|
|
|
if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
|
|
fsp->fs_wtpref >= NFS_FABLKSIZE)
|
|
nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
|
|
~(NFS_FABLKSIZE - 1);
|
|
if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
|
|
nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
|
|
if (nmp->nm_wsize == 0)
|
|
nmp->nm_wsize = fsp->fs_wtmax;
|
|
}
|
|
if (nmp->nm_wsize < NFS_FABLKSIZE)
|
|
nmp->nm_wsize = NFS_FABLKSIZE;
|
|
if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
|
|
fsp->fs_rtpref >= NFS_FABLKSIZE)
|
|
nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
|
|
~(NFS_FABLKSIZE - 1);
|
|
if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
|
|
nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
|
|
if (nmp->nm_rsize == 0)
|
|
nmp->nm_rsize = fsp->fs_rtmax;
|
|
}
|
|
if (nmp->nm_rsize < NFS_FABLKSIZE)
|
|
nmp->nm_rsize = NFS_FABLKSIZE;
|
|
if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
|
|
&& fsp->fs_dtpref >= NFS_DIRBLKSIZ)
|
|
nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
|
|
~(NFS_DIRBLKSIZ - 1);
|
|
if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
|
|
nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
|
|
if (nmp->nm_readdirsize == 0)
|
|
nmp->nm_readdirsize = fsp->fs_rtmax;
|
|
}
|
|
if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
|
|
nmp->nm_readdirsize = NFS_DIRBLKSIZ;
|
|
if (fsp->fs_maxfilesize > 0 &&
|
|
fsp->fs_maxfilesize < nmp->nm_maxfilesize)
|
|
nmp->nm_maxfilesize = fsp->fs_maxfilesize;
|
|
nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
|
|
nmp->nm_state |= NFSSTA_GOTFSINFO;
|
|
}
|
|
|
|
/*
|
|
* Get a pointer to my IP addrress and return it.
|
|
* Return NULL if you can't find one.
|
|
*/
|
|
u_int8_t *
|
|
nfscl_getmyip(struct nfsmount *nmp, int *isinet6p)
|
|
{
|
|
struct sockaddr_in sad, *sin;
|
|
struct rtentry *rt;
|
|
u_int8_t *retp = NULL;
|
|
static struct in_addr laddr;
|
|
|
|
*isinet6p = 0;
|
|
/*
|
|
* Loop up a route for the destination address.
|
|
*/
|
|
if (nmp->nm_nam->sa_family == AF_INET) {
|
|
bzero(&sad, sizeof (sad));
|
|
sin = (struct sockaddr_in *)nmp->nm_nam;
|
|
sad.sin_family = AF_INET;
|
|
sad.sin_len = sizeof (struct sockaddr_in);
|
|
sad.sin_addr.s_addr = sin->sin_addr.s_addr;
|
|
CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
|
|
rt = rtalloc1_fib((struct sockaddr *)&sad, 0, 0UL,
|
|
curthread->td_proc->p_fibnum);
|
|
if (rt != NULL) {
|
|
if (rt->rt_ifp != NULL &&
|
|
rt->rt_ifa != NULL &&
|
|
((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
|
|
rt->rt_ifa->ifa_addr->sa_family == AF_INET) {
|
|
sin = (struct sockaddr_in *)
|
|
rt->rt_ifa->ifa_addr;
|
|
laddr.s_addr = sin->sin_addr.s_addr;
|
|
retp = (u_int8_t *)&laddr;
|
|
}
|
|
RTFREE_LOCKED(rt);
|
|
}
|
|
CURVNET_RESTORE();
|
|
#ifdef INET6
|
|
} else if (nmp->nm_nam->sa_family == AF_INET6) {
|
|
struct sockaddr_in6 sad6, *sin6;
|
|
static struct in6_addr laddr6;
|
|
|
|
bzero(&sad6, sizeof (sad6));
|
|
sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
|
|
sad6.sin6_family = AF_INET6;
|
|
sad6.sin6_len = sizeof (struct sockaddr_in6);
|
|
sad6.sin6_addr = sin6->sin6_addr;
|
|
CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
|
|
rt = rtalloc1_fib((struct sockaddr *)&sad6, 0, 0UL,
|
|
curthread->td_proc->p_fibnum);
|
|
if (rt != NULL) {
|
|
if (rt->rt_ifp != NULL &&
|
|
rt->rt_ifa != NULL &&
|
|
((rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) &&
|
|
rt->rt_ifa->ifa_addr->sa_family == AF_INET6) {
|
|
sin6 = (struct sockaddr_in6 *)
|
|
rt->rt_ifa->ifa_addr;
|
|
laddr6 = sin6->sin6_addr;
|
|
retp = (u_int8_t *)&laddr6;
|
|
*isinet6p = 1;
|
|
}
|
|
RTFREE_LOCKED(rt);
|
|
}
|
|
CURVNET_RESTORE();
|
|
#endif
|
|
}
|
|
return (retp);
|
|
}
|
|
|
|
/*
|
|
* Copy NFS uid, gids from the cred structure.
|
|
*/
|
|
void
|
|
newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
|
|
{
|
|
int i;
|
|
|
|
KASSERT(cr->cr_ngroups >= 0,
|
|
("newnfs_copyincred: negative cr_ngroups"));
|
|
nfscr->nfsc_uid = cr->cr_uid;
|
|
nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
|
|
for (i = 0; i < nfscr->nfsc_ngroups; i++)
|
|
nfscr->nfsc_groups[i] = cr->cr_groups[i];
|
|
}
|
|
|
|
|
|
/*
|
|
* Do any client specific initialization.
|
|
*/
|
|
void
|
|
nfscl_init(void)
|
|
{
|
|
static int inited = 0;
|
|
|
|
if (inited)
|
|
return;
|
|
inited = 1;
|
|
nfscl_inited = 1;
|
|
ncl_pbuf_freecnt = nswbuf / 2 + 1;
|
|
}
|
|
|
|
/*
|
|
* Check each of the attributes to be set, to ensure they aren't already
|
|
* the correct value. Disable setting ones already correct.
|
|
*/
|
|
int
|
|
nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
|
|
{
|
|
|
|
if (vap->va_mode != (mode_t)VNOVAL) {
|
|
if (vap->va_mode == nvap->na_mode)
|
|
vap->va_mode = (mode_t)VNOVAL;
|
|
}
|
|
if (vap->va_uid != (uid_t)VNOVAL) {
|
|
if (vap->va_uid == nvap->na_uid)
|
|
vap->va_uid = (uid_t)VNOVAL;
|
|
}
|
|
if (vap->va_gid != (gid_t)VNOVAL) {
|
|
if (vap->va_gid == nvap->na_gid)
|
|
vap->va_gid = (gid_t)VNOVAL;
|
|
}
|
|
if (vap->va_size != VNOVAL) {
|
|
if (vap->va_size == nvap->na_size)
|
|
vap->va_size = VNOVAL;
|
|
}
|
|
|
|
/*
|
|
* We are normally called with only a partially initialized
|
|
* VAP. Since the NFSv3 spec says that server may use the
|
|
* file attributes to store the verifier, the spec requires
|
|
* us to do a SETATTR RPC. FreeBSD servers store the verifier
|
|
* in atime, but we can't really assume that all servers will
|
|
* so we ensure that our SETATTR sets both atime and mtime.
|
|
*/
|
|
if (vap->va_mtime.tv_sec == VNOVAL)
|
|
vfs_timestamp(&vap->va_mtime);
|
|
if (vap->va_atime.tv_sec == VNOVAL)
|
|
vap->va_atime = vap->va_mtime;
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Map nfsv4 errors to errno.h errors.
|
|
* The uid and gid arguments are only used for NFSERR_BADOWNER and that
|
|
* error should only be returned for the Open, Create and Setattr Ops.
|
|
* As such, most calls can just pass in 0 for those arguments.
|
|
*/
|
|
APPLESTATIC int
|
|
nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
|
|
{
|
|
struct proc *p;
|
|
|
|
if (error < 10000)
|
|
return (error);
|
|
if (td != NULL)
|
|
p = td->td_proc;
|
|
else
|
|
p = NULL;
|
|
switch (error) {
|
|
case NFSERR_BADOWNER:
|
|
tprintf(p, LOG_INFO,
|
|
"No name and/or group mapping for uid,gid:(%d,%d)\n",
|
|
uid, gid);
|
|
return (EPERM);
|
|
case NFSERR_BADNAME:
|
|
case NFSERR_BADCHAR:
|
|
printf("nfsv4 char/name not handled by server\n");
|
|
return (ENOENT);
|
|
case NFSERR_STALECLIENTID:
|
|
case NFSERR_STALESTATEID:
|
|
case NFSERR_EXPIRED:
|
|
case NFSERR_BADSTATEID:
|
|
case NFSERR_BADSESSION:
|
|
printf("nfsv4 recover err returned %d\n", error);
|
|
return (EIO);
|
|
case NFSERR_BADHANDLE:
|
|
case NFSERR_SERVERFAULT:
|
|
case NFSERR_BADTYPE:
|
|
case NFSERR_FHEXPIRED:
|
|
case NFSERR_RESOURCE:
|
|
case NFSERR_MOVED:
|
|
case NFSERR_NOFILEHANDLE:
|
|
case NFSERR_MINORVERMISMATCH:
|
|
case NFSERR_OLDSTATEID:
|
|
case NFSERR_BADSEQID:
|
|
case NFSERR_LEASEMOVED:
|
|
case NFSERR_RECLAIMBAD:
|
|
case NFSERR_BADXDR:
|
|
case NFSERR_OPILLEGAL:
|
|
printf("nfsv4 client/server protocol prob err=%d\n",
|
|
error);
|
|
return (EIO);
|
|
default:
|
|
tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
|
|
return (EIO);
|
|
};
|
|
}
|
|
|
|
/*
|
|
* Check to see if the process for this owner exists. Return 1 if it doesn't
|
|
* and 0 otherwise.
|
|
*/
|
|
int
|
|
nfscl_procdoesntexist(u_int8_t *own)
|
|
{
|
|
union {
|
|
u_int32_t lval;
|
|
u_int8_t cval[4];
|
|
} tl;
|
|
struct proc *p;
|
|
pid_t pid;
|
|
int ret = 0;
|
|
|
|
tl.cval[0] = *own++;
|
|
tl.cval[1] = *own++;
|
|
tl.cval[2] = *own++;
|
|
tl.cval[3] = *own++;
|
|
pid = tl.lval;
|
|
p = pfind_locked(pid);
|
|
if (p == NULL)
|
|
return (1);
|
|
if (p->p_stats == NULL) {
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
tl.cval[0] = *own++;
|
|
tl.cval[1] = *own++;
|
|
tl.cval[2] = *own++;
|
|
tl.cval[3] = *own++;
|
|
if (tl.lval != p->p_stats->p_start.tv_sec) {
|
|
ret = 1;
|
|
} else {
|
|
tl.cval[0] = *own++;
|
|
tl.cval[1] = *own++;
|
|
tl.cval[2] = *own++;
|
|
tl.cval[3] = *own;
|
|
if (tl.lval != p->p_stats->p_start.tv_usec)
|
|
ret = 1;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* - nfs pseudo system call for the client
|
|
*/
|
|
/*
|
|
* MPSAFE
|
|
*/
|
|
static int
|
|
nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
|
|
{
|
|
struct file *fp;
|
|
struct nfscbd_args nfscbdarg;
|
|
struct nfsd_nfscbd_args nfscbdarg2;
|
|
struct nameidata nd;
|
|
struct nfscl_dumpmntopts dumpmntopts;
|
|
cap_rights_t rights;
|
|
char *buf;
|
|
int error;
|
|
|
|
if (uap->flag & NFSSVC_CBADDSOCK) {
|
|
error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
|
|
if (error)
|
|
return (error);
|
|
/*
|
|
* Since we don't know what rights might be required,
|
|
* pretend that we need them all. It is better to be too
|
|
* careful than too reckless.
|
|
*/
|
|
error = fget(td, nfscbdarg.sock,
|
|
cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp);
|
|
if (error)
|
|
return (error);
|
|
if (fp->f_type != DTYPE_SOCKET) {
|
|
fdrop(fp, td);
|
|
return (EPERM);
|
|
}
|
|
error = nfscbd_addsock(fp);
|
|
fdrop(fp, td);
|
|
if (!error && nfscl_enablecallb == 0) {
|
|
nfsv4_cbport = nfscbdarg.port;
|
|
nfscl_enablecallb = 1;
|
|
}
|
|
} else if (uap->flag & NFSSVC_NFSCBD) {
|
|
if (uap->argp == NULL)
|
|
return (EINVAL);
|
|
error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
|
|
sizeof(nfscbdarg2));
|
|
if (error)
|
|
return (error);
|
|
error = nfscbd_nfsd(td, &nfscbdarg2);
|
|
} else if (uap->flag & NFSSVC_DUMPMNTOPTS) {
|
|
error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts));
|
|
if (error == 0 && (dumpmntopts.ndmnt_blen < 256 ||
|
|
dumpmntopts.ndmnt_blen > 1024))
|
|
error = EINVAL;
|
|
if (error == 0)
|
|
error = nfsrv_lookupfilename(&nd,
|
|
dumpmntopts.ndmnt_fname, td);
|
|
if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name,
|
|
"nfs") != 0) {
|
|
vput(nd.ni_vp);
|
|
error = EINVAL;
|
|
}
|
|
if (error == 0) {
|
|
buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK);
|
|
nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf,
|
|
dumpmntopts.ndmnt_blen);
|
|
vput(nd.ni_vp);
|
|
error = copyout(buf, dumpmntopts.ndmnt_buf,
|
|
dumpmntopts.ndmnt_blen);
|
|
free(buf, M_TEMP);
|
|
}
|
|
} else {
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
|
|
|
|
/*
|
|
* Called once to initialize data structures...
|
|
*/
|
|
static int
|
|
nfscl_modevent(module_t mod, int type, void *data)
|
|
{
|
|
int error = 0;
|
|
static int loaded = 0;
|
|
|
|
switch (type) {
|
|
case MOD_LOAD:
|
|
if (loaded)
|
|
return (0);
|
|
newnfs_portinit();
|
|
mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
|
|
MTX_DEF);
|
|
mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
|
|
nfscl_init();
|
|
NFSD_LOCK();
|
|
nfsrvd_cbinit(0);
|
|
NFSD_UNLOCK();
|
|
ncl_call_invalcaches = ncl_invalcaches;
|
|
nfsd_call_nfscl = nfssvc_nfscl;
|
|
loaded = 1;
|
|
break;
|
|
|
|
case MOD_UNLOAD:
|
|
if (nfs_numnfscbd != 0) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* XXX: Unloading of nfscl module is unsupported.
|
|
*/
|
|
#if 0
|
|
ncl_call_invalcaches = NULL;
|
|
nfsd_call_nfscl = NULL;
|
|
/* and get rid of the mutexes */
|
|
mtx_destroy(&nfs_clstate_mutex);
|
|
mtx_destroy(&ncl_iod_mutex);
|
|
loaded = 0;
|
|
break;
|
|
#else
|
|
/* FALLTHROUGH */
|
|
#endif
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
static moduledata_t nfscl_mod = {
|
|
"nfscl",
|
|
nfscl_modevent,
|
|
NULL,
|
|
};
|
|
DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
|
|
|
|
/* So that loader and kldload(2) can find us, wherever we are.. */
|
|
MODULE_VERSION(nfscl, 1);
|
|
MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
|
|
MODULE_DEPEND(nfscl, krpc, 1, 1, 1);
|
|
MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1);
|
|
MODULE_DEPEND(nfscl, nfslock, 1, 1, 1);
|
|
|