freebsd-nq/contrib/libpcap/pcap-linux.c
2009-03-21 22:58:08 +00:00

3601 lines
100 KiB
C

/*
* pcap-linux.c: Packet capture interface to the Linux kernel
*
* Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
* Sebastian Krahmer <krahmer@cs.uni-potsdam.de>
*
* License: BSD
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. The names of the authors may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Modifications: Added PACKET_MMAP support
* Paolo Abeni <paolo.abeni@email.it>
*
* based on previous works of:
* Simon Patarin <patarin@cs.unibo.it>
* Phil Wood <cpw@lanl.gov>
*/
#ifndef lint
static const char rcsid[] _U_ =
"@(#) $Header: /tcpdump/master/libpcap/pcap-linux.c,v 1.129.2.29 2008-10-28 00:50:39 guy Exp $ (LBL)";
#endif
/*
* Known problems with 2.0[.x] kernels:
*
* - The loopback device gives every packet twice; on 2.2[.x] kernels,
* if we use PF_PACKET, we can filter out the transmitted version
* of the packet by using data in the "sockaddr_ll" returned by
* "recvfrom()", but, on 2.0[.x] kernels, we have to use
* PF_INET/SOCK_PACKET, which means "recvfrom()" supplies a
* "sockaddr_pkt" which doesn't give us enough information to let
* us do that.
*
* - We have to set the interface's IFF_PROMISC flag ourselves, if
* we're to run in promiscuous mode, which means we have to turn
* it off ourselves when we're done; the kernel doesn't keep track
* of how many sockets are listening promiscuously, which means
* it won't get turned off automatically when no sockets are
* listening promiscuously. We catch "pcap_close()" and, for
* interfaces we put into promiscuous mode, take them out of
* promiscuous mode - which isn't necessarily the right thing to
* do, if another socket also requested promiscuous mode between
* the time when we opened the socket and the time when we close
* the socket.
*
* - MSG_TRUNC isn't supported, so you can't specify that "recvfrom()"
* return the amount of data that you could have read, rather than
* the amount that was returned, so we can't just allocate a buffer
* whose size is the snapshot length and pass the snapshot length
* as the byte count, and also pass MSG_TRUNC, so that the return
* value tells us how long the packet was on the wire.
*
* This means that, if we want to get the actual size of the packet,
* so we can return it in the "len" field of the packet header,
* we have to read the entire packet, not just the part that fits
* within the snapshot length, and thus waste CPU time copying data
* from the kernel that our caller won't see.
*
* We have to get the actual size, and supply it in "len", because
* otherwise, the IP dissector in tcpdump, for example, will complain
* about "truncated-ip", as the packet will appear to have been
* shorter, on the wire, than the IP header said it should have been.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/utsname.h>
#include <sys/mman.h>
#include <net/if.h>
#include <netinet/in.h>
#include <linux/if_ether.h>
#include <net/if_arp.h>
#include <poll.h>
/*
* Got Wireless Extensions?
*/
#ifdef HAVE_LINUX_WIRELESS_H
#include <linux/wireless.h>
#endif
#include "pcap-int.h"
#include "pcap/sll.h"
#include "pcap/vlan.h"
#ifdef HAVE_DAG_API
#include "pcap-dag.h"
#endif /* HAVE_DAG_API */
#ifdef HAVE_SEPTEL_API
#include "pcap-septel.h"
#endif /* HAVE_SEPTEL_API */
#ifdef PCAP_SUPPORT_USB
#include "pcap-usb-linux.h"
#endif
#ifdef PCAP_SUPPORT_BT
#include "pcap-bt-linux.h"
#endif
/*
* If PF_PACKET is defined, we can use {SOCK_RAW,SOCK_DGRAM}/PF_PACKET
* sockets rather than SOCK_PACKET sockets.
*
* To use them, we include <linux/if_packet.h> rather than
* <netpacket/packet.h>; we do so because
*
* some Linux distributions (e.g., Slackware 4.0) have 2.2 or
* later kernels and libc5, and don't provide a <netpacket/packet.h>
* file;
*
* not all versions of glibc2 have a <netpacket/packet.h> file
* that defines stuff needed for some of the 2.4-or-later-kernel
* features, so if the system has a 2.4 or later kernel, we
* still can't use those features.
*
* We're already including a number of other <linux/XXX.h> headers, and
* this code is Linux-specific (no other OS has PF_PACKET sockets as
* a raw packet capture mechanism), so it's not as if you gain any
* useful portability by using <netpacket/packet.h>
*
* XXX - should we just include <linux/if_packet.h> even if PF_PACKET
* isn't defined? It only defines one data structure in 2.0.x, so
* it shouldn't cause any problems.
*/
#ifdef PF_PACKET
# include <linux/if_packet.h>
/*
* On at least some Linux distributions (for example, Red Hat 5.2),
* there's no <netpacket/packet.h> file, but PF_PACKET is defined if
* you include <sys/socket.h>, but <linux/if_packet.h> doesn't define
* any of the PF_PACKET stuff such as "struct sockaddr_ll" or any of
* the PACKET_xxx stuff.
*
* So we check whether PACKET_HOST is defined, and assume that we have
* PF_PACKET sockets only if it is defined.
*/
# ifdef PACKET_HOST
# define HAVE_PF_PACKET_SOCKETS
# ifdef PACKET_AUXDATA
# define HAVE_PACKET_AUXDATA
# endif /* PACKET_AUXDATA */
# endif /* PACKET_HOST */
/* check for memory mapped access avaibility. We assume every needed
* struct is defined if the macro TPACKET_HDRLEN is defined, because it
* uses many ring related structs and macros */
# ifdef TPACKET_HDRLEN
# define HAVE_PACKET_RING
# ifdef TPACKET2_HDRLEN
# define HAVE_TPACKET2
# else
# define TPACKET_V1 0
# endif /* TPACKET2_HDRLEN */
# endif /* TPACKET_HDRLEN */
#endif /* PF_PACKET */
#ifdef SO_ATTACH_FILTER
#include <linux/types.h>
#include <linux/filter.h>
#endif
#ifndef HAVE_SOCKLEN_T
typedef int socklen_t;
#endif
#ifndef MSG_TRUNC
/*
* This is being compiled on a system that lacks MSG_TRUNC; define it
* with the value it has in the 2.2 and later kernels, so that, on
* those kernels, when we pass it in the flags argument to "recvfrom()"
* we're passing the right value and thus get the MSG_TRUNC behavior
* we want. (We don't get that behavior on 2.0[.x] kernels, because
* they didn't support MSG_TRUNC.)
*/
#define MSG_TRUNC 0x20
#endif
#ifndef SOL_PACKET
/*
* This is being compiled on a system that lacks SOL_PACKET; define it
* with the value it has in the 2.2 and later kernels, so that we can
* set promiscuous mode in the good modern way rather than the old
* 2.0-kernel crappy way.
*/
#define SOL_PACKET 263
#endif
#define MAX_LINKHEADER_SIZE 256
/*
* When capturing on all interfaces we use this as the buffer size.
* Should be bigger then all MTUs that occur in real life.
* 64kB should be enough for now.
*/
#define BIGGER_THAN_ALL_MTUS (64*1024)
/*
* Prototypes for internal functions and methods.
*/
static void map_arphrd_to_dlt(pcap_t *, int, int);
#ifdef HAVE_PF_PACKET_SOCKETS
static short int map_packet_type_to_sll_type(short int);
#endif
static int pcap_activate_linux(pcap_t *);
static int activate_old(pcap_t *);
static int activate_new(pcap_t *);
static int activate_mmap(pcap_t *);
static int pcap_can_set_rfmon_linux(pcap_t *);
static int pcap_read_linux(pcap_t *, int, pcap_handler, u_char *);
static int pcap_read_packet(pcap_t *, pcap_handler, u_char *);
static int pcap_inject_linux(pcap_t *, const void *, size_t);
static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
static int pcap_setdirection_linux(pcap_t *, pcap_direction_t);
static void pcap_cleanup_linux(pcap_t *);
union thdr {
struct tpacket_hdr *h1;
struct tpacket2_hdr *h2;
void *raw;
};
#ifdef HAVE_PACKET_RING
#define RING_GET_FRAME(h) (((union thdr **)h->buffer)[h->offset])
static void destroy_ring(pcap_t *handle);
static int create_ring(pcap_t *handle);
static int prepare_tpacket_socket(pcap_t *handle);
static void pcap_cleanup_linux_mmap(pcap_t *);
static int pcap_read_linux_mmap(pcap_t *, int, pcap_handler , u_char *);
static int pcap_setfilter_linux_mmap(pcap_t *, struct bpf_program *);
static int pcap_setnonblock_mmap(pcap_t *p, int nonblock, char *errbuf);
static int pcap_getnonblock_mmap(pcap_t *p, char *errbuf);
#endif
/*
* Wrap some ioctl calls
*/
#ifdef HAVE_PF_PACKET_SOCKETS
static int iface_get_id(int fd, const char *device, char *ebuf);
#endif
static int iface_get_mtu(int fd, const char *device, char *ebuf);
static int iface_get_arptype(int fd, const char *device, char *ebuf);
#ifdef HAVE_PF_PACKET_SOCKETS
static int iface_bind(int fd, int ifindex, char *ebuf);
static int has_wext(int sock_fd, const char *device, char *ebuf);
static int enter_rfmon_mode_wext(pcap_t *handle, int sock_fd,
const char *device);
#endif
static int iface_bind_old(int fd, const char *device, char *ebuf);
#ifdef SO_ATTACH_FILTER
static int fix_program(pcap_t *handle, struct sock_fprog *fcode);
static int fix_offset(struct bpf_insn *p);
static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
static int reset_kernel_filter(pcap_t *handle);
static struct sock_filter total_insn
= BPF_STMT(BPF_RET | BPF_K, 0);
static struct sock_fprog total_fcode
= { 1, &total_insn };
#endif
pcap_t *
pcap_create(const char *device, char *ebuf)
{
pcap_t *handle;
#ifdef HAVE_DAG_API
if (strstr(device, "dag")) {
return dag_create(device, ebuf);
}
#endif /* HAVE_DAG_API */
#ifdef HAVE_SEPTEL_API
if (strstr(device, "septel")) {
return septel_create(device, ebuf);
}
#endif /* HAVE_SEPTEL_API */
#ifdef PCAP_SUPPORT_BT
if (strstr(device, "bluetooth")) {
return bt_create(device, ebuf);
}
#endif
#ifdef PCAP_SUPPORT_USB
if (strstr(device, "usb")) {
return usb_create(device, ebuf);
}
#endif
handle = pcap_create_common(device, ebuf);
if (handle == NULL)
return NULL;
handle->activate_op = pcap_activate_linux;
handle->can_set_rfmon_op = pcap_can_set_rfmon_linux;
return handle;
}
static int
pcap_can_set_rfmon_linux(pcap_t *p)
{
#ifdef IW_MODE_MONITOR
int sock_fd;
struct iwreq ireq;
#endif
if (p->opt.source == NULL) {
/*
* This is equivalent to the "any" device, and we don't
* support monitor mode on it.
*/
return 0;
}
#ifdef IW_MODE_MONITOR
/*
* Bleah. There doesn't appear to be an ioctl to use to ask
* whether a device supports monitor mode; we'll just do
* SIOCGIWMODE and, if it succeeds, assume the device supports
* monitor mode.
*
* Open a socket on which to attempt to get the mode.
* (We assume that if we have Wireless Extensions support
* we also have PF_PACKET support.)
*/
sock_fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
if (sock_fd == -1) {
(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
"socket: %s", pcap_strerror(errno));
return PCAP_ERROR;
}
/*
* Attempt to get the current mode.
*/
strncpy(ireq.ifr_ifrn.ifrn_name, p->opt.source,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
if (ioctl(sock_fd, SIOCGIWMODE, &ireq) != -1) {
/*
* Well, we got the mode; assume we can set it.
*/
close(sock_fd);
return 1;
}
if (errno == ENODEV) {
/* The device doesn't even exist. */
close(sock_fd);
return PCAP_ERROR_NO_SUCH_DEVICE;
}
close(sock_fd);
#endif
return 0;
}
/*
* With older kernels promiscuous mode is kind of interesting because we
* have to reset the interface before exiting. The problem can't really
* be solved without some daemon taking care of managing usage counts.
* If we put the interface into promiscuous mode, we set a flag indicating
* that we must take it out of that mode when the interface is closed,
* and, when closing the interface, if that flag is set we take it out
* of promiscuous mode.
*
* Even with newer kernels, we have the same issue with rfmon mode.
*/
static void pcap_cleanup_linux( pcap_t *handle )
{
struct ifreq ifr;
#ifdef IW_MODE_MONITOR
struct iwreq ireq;
#endif
if (handle->md.must_clear != 0) {
/*
* There's something we have to do when closing this
* pcap_t.
*/
if (handle->md.must_clear & MUST_CLEAR_PROMISC) {
/*
* We put the interface into promiscuous mode;
* take it out of promiscuous mode.
*
* XXX - if somebody else wants it in promiscuous
* mode, this code cannot know that, so it'll take
* it out of promiscuous mode. That's not fixable
* in 2.0[.x] kernels.
*/
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, handle->md.device,
sizeof(ifr.ifr_name));
if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
fprintf(stderr,
"Can't restore interface flags (SIOCGIFFLAGS failed: %s).\n"
"Please adjust manually.\n"
"Hint: This can't happen with Linux >= 2.2.0.\n",
strerror(errno));
} else {
if (ifr.ifr_flags & IFF_PROMISC) {
/*
* Promiscuous mode is currently on;
* turn it off.
*/
ifr.ifr_flags &= ~IFF_PROMISC;
if (ioctl(handle->fd, SIOCSIFFLAGS,
&ifr) == -1) {
fprintf(stderr,
"Can't restore interface flags (SIOCSIFFLAGS failed: %s).\n"
"Please adjust manually.\n"
"Hint: This can't happen with Linux >= 2.2.0.\n",
strerror(errno));
}
}
}
}
#ifdef IW_MODE_MONITOR
if (handle->md.must_clear & MUST_CLEAR_RFMON) {
/*
* We put the interface into rfmon mode;
* take it out of rfmon mode.
*
* XXX - if somebody else wants it in rfmon
* mode, this code cannot know that, so it'll take
* it out of rfmon mode.
*/
strncpy(ireq.ifr_ifrn.ifrn_name, handle->md.device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1]
= 0;
ireq.u.mode = handle->md.oldmode;
if (ioctl(handle->fd, SIOCSIWMODE, &ireq) == -1) {
/*
* Scientist, you've failed.
*/
fprintf(stderr,
"Can't restore interface wireless mode (SIOCSIWMODE failed: %s).\n"
"Please adjust manually.\n",
strerror(errno));
}
}
#endif
/*
* Take this pcap out of the list of pcaps for which we
* have to take the interface out of some mode.
*/
pcap_remove_from_pcaps_to_close(handle);
}
if (handle->md.device != NULL) {
free(handle->md.device);
handle->md.device = NULL;
}
pcap_cleanup_live_common(handle);
}
/*
* Get a handle for a live capture from the given device. You can
* pass NULL as device to get all packages (without link level
* information of course). If you pass 1 as promisc the interface
* will be set to promiscous mode (XXX: I think this usage should
* be deprecated and functions be added to select that later allow
* modification of that values -- Torsten).
*/
static int
pcap_activate_linux(pcap_t *handle)
{
const char *device;
int status = 0;
int activate_ok = 0;
device = handle->opt.source;
handle->inject_op = pcap_inject_linux;
handle->setfilter_op = pcap_setfilter_linux;
handle->setdirection_op = pcap_setdirection_linux;
handle->set_datalink_op = NULL; /* can't change data link type */
handle->getnonblock_op = pcap_getnonblock_fd;
handle->setnonblock_op = pcap_setnonblock_fd;
handle->cleanup_op = pcap_cleanup_linux;
handle->read_op = pcap_read_linux;
handle->stats_op = pcap_stats_linux;
/*
* NULL and "any" are special devices which give us the hint to
* monitor all devices.
*/
if (!device || strcmp(device, "any") == 0) {
device = NULL;
handle->md.device = strdup("any");
if (handle->opt.promisc) {
handle->opt.promisc = 0;
/* Just a warning. */
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"Promiscuous mode not supported on the \"any\" device");
status = PCAP_WARNING_PROMISC_NOTSUP;
}
} else
handle->md.device = strdup(device);
if (handle->md.device == NULL) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "strdup: %s",
pcap_strerror(errno) );
return PCAP_ERROR;
}
/*
* Current Linux kernels use the protocol family PF_PACKET to
* allow direct access to all packets on the network while
* older kernels had a special socket type SOCK_PACKET to
* implement this feature.
* While this old implementation is kind of obsolete we need
* to be compatible with older kernels for a while so we are
* trying both methods with the newer method preferred.
*/
if ((status = activate_new(handle)) == 1) {
activate_ok = 1;
/*
* Try to use memory-mapped access.
*/
if (activate_mmap(handle) == 1)
return 0; /* we succeeded; nothing more to do */
}
else if (status == 0) {
/* Non-fatal error; try old way */
if ((status = activate_old(handle)) == 1)
activate_ok = 1;
}
if (!activate_ok) {
/*
* Both methods to open the packet socket failed. Tidy
* up and report our failure (ebuf is expected to be
* set by the functions above).
*/
goto fail;
}
if (handle->opt.buffer_size != 0) {
/*
* Set the socket buffer size to the specified value.
*/
if (setsockopt(handle->fd, SOL_SOCKET, SO_RCVBUF,
&handle->opt.buffer_size,
sizeof(handle->opt.buffer_size)) == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"SO_RCVBUF: %s", pcap_strerror(errno));
status = PCAP_ERROR;
goto fail;
}
}
/* Allocate the buffer */
handle->buffer = malloc(handle->bufsize + handle->offset);
if (!handle->buffer) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
status = PCAP_ERROR;
goto fail;
}
/*
* "handle->fd" is a socket, so "select()" and "poll()"
* should work on it.
*/
handle->selectable_fd = handle->fd;
return status;
fail:
pcap_cleanup_linux(handle);
return status;
}
/*
* Read at most max_packets from the capture stream and call the callback
* for each of them. Returns the number of packets handled or -1 if an
* error occured.
*/
static int
pcap_read_linux(pcap_t *handle, int max_packets, pcap_handler callback, u_char *user)
{
/*
* Currently, on Linux only one packet is delivered per read,
* so we don't loop.
*/
return pcap_read_packet(handle, callback, user);
}
/*
* Read a packet from the socket calling the handler provided by
* the user. Returns the number of packets received or -1 if an
* error occured.
*/
static int
pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata)
{
u_char *bp;
int offset;
#ifdef HAVE_PF_PACKET_SOCKETS
struct sockaddr_ll from;
struct sll_header *hdrp;
#else
struct sockaddr from;
#endif
#if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
struct iovec iov;
struct msghdr msg;
struct cmsghdr *cmsg;
union {
struct cmsghdr cmsg;
char buf[CMSG_SPACE(sizeof(struct tpacket_auxdata))];
} cmsg_buf;
#else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
socklen_t fromlen;
#endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
int packet_len, caplen;
struct pcap_pkthdr pcap_header;
#ifdef HAVE_PF_PACKET_SOCKETS
/*
* If this is a cooked device, leave extra room for a
* fake packet header.
*/
if (handle->md.cooked)
offset = SLL_HDR_LEN;
else
offset = 0;
#else
/*
* This system doesn't have PF_PACKET sockets, so it doesn't
* support cooked devices.
*/
offset = 0;
#endif
/*
* Receive a single packet from the kernel.
* We ignore EINTR, as that might just be due to a signal
* being delivered - if the signal should interrupt the
* loop, the signal handler should call pcap_breakloop()
* to set handle->break_loop (we ignore it on other
* platforms as well).
* We also ignore ENETDOWN, so that we can continue to
* capture traffic if the interface goes down and comes
* back up again; comments in the kernel indicate that
* we'll just block waiting for packets if we try to
* receive from a socket that delivered ENETDOWN, and,
* if we're using a memory-mapped buffer, we won't even
* get notified of "network down" events.
*/
bp = handle->buffer + handle->offset;
#if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
msg.msg_name = &from;
msg.msg_namelen = sizeof(from);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = &cmsg_buf;
msg.msg_controllen = sizeof(cmsg_buf);
msg.msg_flags = 0;
iov.iov_len = handle->bufsize - offset;
iov.iov_base = bp + offset;
#endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
do {
/*
* Has "pcap_breakloop()" been called?
*/
if (handle->break_loop) {
/*
* Yes - clear the flag that indicates that it
* has, and return -2 as an indication that we
* were told to break out of the loop.
*/
handle->break_loop = 0;
return -2;
}
#if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
packet_len = recvmsg(handle->fd, &msg, MSG_TRUNC);
#else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
fromlen = sizeof(from);
packet_len = recvfrom(
handle->fd, bp + offset,
handle->bufsize - offset, MSG_TRUNC,
(struct sockaddr *) &from, &fromlen);
#endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
} while (packet_len == -1 && (errno == EINTR || errno == ENETDOWN));
/* Check if an error occured */
if (packet_len == -1) {
if (errno == EAGAIN)
return 0; /* no packet there */
else {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"recvfrom: %s", pcap_strerror(errno));
return -1;
}
}
#ifdef HAVE_PF_PACKET_SOCKETS
if (!handle->md.sock_packet) {
/*
* Unfortunately, there is a window between socket() and
* bind() where the kernel may queue packets from any
* interface. If we're bound to a particular interface,
* discard packets not from that interface.
*
* (If socket filters are supported, we could do the
* same thing we do when changing the filter; however,
* that won't handle packet sockets without socket
* filter support, and it's a bit more complicated.
* It would save some instructions per packet, however.)
*/
if (handle->md.ifindex != -1 &&
from.sll_ifindex != handle->md.ifindex)
return 0;
/*
* Do checks based on packet direction.
* We can only do this if we're using PF_PACKET; the
* address returned for SOCK_PACKET is a "sockaddr_pkt"
* which lacks the relevant packet type information.
*/
if (from.sll_pkttype == PACKET_OUTGOING) {
/*
* Outgoing packet.
* If this is from the loopback device, reject it;
* we'll see the packet as an incoming packet as well,
* and we don't want to see it twice.
*/
if (from.sll_ifindex == handle->md.lo_ifindex)
return 0;
/*
* If the user only wants incoming packets, reject it.
*/
if (handle->direction == PCAP_D_IN)
return 0;
} else {
/*
* Incoming packet.
* If the user only wants outgoing packets, reject it.
*/
if (handle->direction == PCAP_D_OUT)
return 0;
}
}
#endif
#ifdef HAVE_PF_PACKET_SOCKETS
/*
* If this is a cooked device, fill in the fake packet header.
*/
if (handle->md.cooked) {
/*
* Add the length of the fake header to the length
* of packet data we read.
*/
packet_len += SLL_HDR_LEN;
hdrp = (struct sll_header *)bp;
hdrp->sll_pkttype = map_packet_type_to_sll_type(from.sll_pkttype);
hdrp->sll_hatype = htons(from.sll_hatype);
hdrp->sll_halen = htons(from.sll_halen);
memcpy(hdrp->sll_addr, from.sll_addr,
(from.sll_halen > SLL_ADDRLEN) ?
SLL_ADDRLEN :
from.sll_halen);
hdrp->sll_protocol = from.sll_protocol;
}
#if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
struct tpacket_auxdata *aux;
unsigned int len;
struct vlan_tag *tag;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct tpacket_auxdata)) ||
cmsg->cmsg_level != SOL_PACKET ||
cmsg->cmsg_type != PACKET_AUXDATA)
continue;
aux = (struct tpacket_auxdata *)CMSG_DATA(cmsg);
if (aux->tp_vlan_tci == 0)
continue;
len = packet_len > iov.iov_len ? iov.iov_len : packet_len;
if (len < 2 * ETH_ALEN)
break;
bp -= VLAN_TAG_LEN;
memmove(bp, bp + VLAN_TAG_LEN, 2 * ETH_ALEN);
tag = (struct vlan_tag *)(bp + 2 * ETH_ALEN);
tag->vlan_tpid = htons(ETH_P_8021Q);
tag->vlan_tci = htons(aux->tp_vlan_tci);
packet_len += VLAN_TAG_LEN;
}
#endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
#endif /* HAVE_PF_PACKET_SOCKETS */
/*
* XXX: According to the kernel source we should get the real
* packet len if calling recvfrom with MSG_TRUNC set. It does
* not seem to work here :(, but it is supported by this code
* anyway.
* To be honest the code RELIES on that feature so this is really
* broken with 2.2.x kernels.
* I spend a day to figure out what's going on and I found out
* that the following is happening:
*
* The packet comes from a random interface and the packet_rcv
* hook is called with a clone of the packet. That code inserts
* the packet into the receive queue of the packet socket.
* If a filter is attached to that socket that filter is run
* first - and there lies the problem. The default filter always
* cuts the packet at the snaplen:
*
* # tcpdump -d
* (000) ret #68
*
* So the packet filter cuts down the packet. The recvfrom call
* says "hey, it's only 68 bytes, it fits into the buffer" with
* the result that we don't get the real packet length. This
* is valid at least until kernel 2.2.17pre6.
*
* We currently handle this by making a copy of the filter
* program, fixing all "ret" instructions with non-zero
* operands to have an operand of 65535 so that the filter
* doesn't truncate the packet, and supplying that modified
* filter to the kernel.
*/
caplen = packet_len;
if (caplen > handle->snapshot)
caplen = handle->snapshot;
/* Run the packet filter if not using kernel filter */
if (!handle->md.use_bpf && handle->fcode.bf_insns) {
if (bpf_filter(handle->fcode.bf_insns, bp,
packet_len, caplen) == 0)
{
/* rejected by filter */
return 0;
}
}
/* Fill in our own header data */
if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"SIOCGSTAMP: %s", pcap_strerror(errno));
return -1;
}
pcap_header.caplen = caplen;
pcap_header.len = packet_len;
/*
* Count the packet.
*
* Arguably, we should count them before we check the filter,
* as on many other platforms "ps_recv" counts packets
* handed to the filter rather than packets that passed
* the filter, but if filtering is done in the kernel, we
* can't get a count of packets that passed the filter,
* and that would mean the meaning of "ps_recv" wouldn't
* be the same on all Linux systems.
*
* XXX - it's not the same on all systems in any case;
* ideally, we should have a "get the statistics" call
* that supplies more counts and indicates which of them
* it supplies, so that we supply a count of packets
* handed to the filter only on platforms where that
* information is available.
*
* We count them here even if we can get the packet count
* from the kernel, as we can only determine at run time
* whether we'll be able to get it from the kernel (if
* HAVE_TPACKET_STATS isn't defined, we can't get it from
* the kernel, but if it is defined, the library might
* have been built with a 2.4 or later kernel, but we
* might be running on a 2.2[.x] kernel without Alexey
* Kuznetzov's turbopacket patches, and thus the kernel
* might not be able to supply those statistics). We
* could, I guess, try, when opening the socket, to get
* the statistics, and if we can not increment the count
* here, but it's not clear that always incrementing
* the count is more expensive than always testing a flag
* in memory.
*
* We keep the count in "md.packets_read", and use that for
* "ps_recv" if we can't get the statistics from the kernel.
* We do that because, if we *can* get the statistics from
* the kernel, we use "md.stat.ps_recv" and "md.stat.ps_drop"
* as running counts, as reading the statistics from the
* kernel resets the kernel statistics, and if we directly
* increment "md.stat.ps_recv" here, that means it will
* count packets *twice* on systems where we can get kernel
* statistics - once here, and once in pcap_stats_linux().
*/
handle->md.packets_read++;
/* Call the user supplied callback function */
callback(userdata, &pcap_header, bp);
return 1;
}
static int
pcap_inject_linux(pcap_t *handle, const void *buf, size_t size)
{
int ret;
#ifdef HAVE_PF_PACKET_SOCKETS
if (!handle->md.sock_packet) {
/* PF_PACKET socket */
if (handle->md.ifindex == -1) {
/*
* We don't support sending on the "any" device.
*/
strlcpy(handle->errbuf,
"Sending packets isn't supported on the \"any\" device",
PCAP_ERRBUF_SIZE);
return (-1);
}
if (handle->md.cooked) {
/*
* We don't support sending on the "any" device.
*
* XXX - how do you send on a bound cooked-mode
* socket?
* Is a "sendto()" required there?
*/
strlcpy(handle->errbuf,
"Sending packets isn't supported in cooked mode",
PCAP_ERRBUF_SIZE);
return (-1);
}
}
#endif
ret = send(handle->fd, buf, size, 0);
if (ret == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "send: %s",
pcap_strerror(errno));
return (-1);
}
return (ret);
}
/*
* Get the statistics for the given packet capture handle.
* Reports the number of dropped packets iff the kernel supports
* the PACKET_STATISTICS "getsockopt()" argument (2.4 and later
* kernels, and 2.2[.x] kernels with Alexey Kuznetzov's turbopacket
* patches); otherwise, that information isn't available, and we lie
* and report 0 as the count of dropped packets.
*/
static int
pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
{
#ifdef HAVE_TPACKET_STATS
struct tpacket_stats kstats;
socklen_t len = sizeof (struct tpacket_stats);
#endif
#ifdef HAVE_TPACKET_STATS
/*
* Try to get the packet counts from the kernel.
*/
if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
&kstats, &len) > -1) {
/*
* On systems where the PACKET_STATISTICS "getsockopt()"
* argument is supported on PF_PACKET sockets:
*
* "ps_recv" counts only packets that *passed* the
* filter, not packets that didn't pass the filter.
* This includes packets later dropped because we
* ran out of buffer space.
*
* "ps_drop" counts packets dropped because we ran
* out of buffer space. It doesn't count packets
* dropped by the interface driver. It counts only
* packets that passed the filter.
*
* Both statistics include packets not yet read from
* the kernel by libpcap, and thus not yet seen by
* the application.
*
* In "linux/net/packet/af_packet.c", at least in the
* 2.4.9 kernel, "tp_packets" is incremented for every
* packet that passes the packet filter *and* is
* successfully queued on the socket; "tp_drops" is
* incremented for every packet dropped because there's
* not enough free space in the socket buffer.
*
* When the statistics are returned for a PACKET_STATISTICS
* "getsockopt()" call, "tp_drops" is added to "tp_packets",
* so that "tp_packets" counts all packets handed to
* the PF_PACKET socket, including packets dropped because
* there wasn't room on the socket buffer - but not
* including packets that didn't pass the filter.
*
* In the BSD BPF, the count of received packets is
* incremented for every packet handed to BPF, regardless
* of whether it passed the filter.
*
* We can't make "pcap_stats()" work the same on both
* platforms, but the best approximation is to return
* "tp_packets" as the count of packets and "tp_drops"
* as the count of drops.
*
* Keep a running total because each call to
* getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, ....
* resets the counters to zero.
*/
handle->md.stat.ps_recv += kstats.tp_packets;
handle->md.stat.ps_drop += kstats.tp_drops;
*stats = handle->md.stat;
return 0;
}
else
{
/*
* If the error was EOPNOTSUPP, fall through, so that
* if you build the library on a system with
* "struct tpacket_stats" and run it on a system
* that doesn't, it works as it does if the library
* is built on a system without "struct tpacket_stats".
*/
if (errno != EOPNOTSUPP) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"pcap_stats: %s", pcap_strerror(errno));
return -1;
}
}
#endif
/*
* On systems where the PACKET_STATISTICS "getsockopt()" argument
* is not supported on PF_PACKET sockets:
*
* "ps_recv" counts only packets that *passed* the filter,
* not packets that didn't pass the filter. It does not
* count packets dropped because we ran out of buffer
* space.
*
* "ps_drop" is not supported.
*
* "ps_recv" doesn't include packets not yet read from
* the kernel by libpcap.
*
* We maintain the count of packets processed by libpcap in
* "md.packets_read", for reasons described in the comment
* at the end of pcap_read_packet(). We have no idea how many
* packets were dropped.
*/
stats->ps_recv = handle->md.packets_read;
stats->ps_drop = 0;
return 0;
}
/*
* Description string for the "any" device.
*/
static const char any_descr[] = "Pseudo-device that captures on all interfaces";
int
pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf)
{
if (pcap_add_if(alldevsp, "any", 0, any_descr, errbuf) < 0)
return (-1);
#ifdef HAVE_DAG_API
if (dag_platform_finddevs(alldevsp, errbuf) < 0)
return (-1);
#endif /* HAVE_DAG_API */
#ifdef HAVE_SEPTEL_API
if (septel_platform_finddevs(alldevsp, errbuf) < 0)
return (-1);
#endif /* HAVE_SEPTEL_API */
#ifdef PCAP_SUPPORT_BT
if (bt_platform_finddevs(alldevsp, errbuf) < 0)
return (-1);
#endif
#ifdef PCAP_SUPPORT_USB
if (usb_platform_finddevs(alldevsp, errbuf) < 0)
return (-1);
#endif
return (0);
}
/*
* Attach the given BPF code to the packet capture device.
*/
static int
pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
{
#ifdef SO_ATTACH_FILTER
struct sock_fprog fcode;
int can_filter_in_kernel;
int err = 0;
#endif
if (!handle)
return -1;
if (!filter) {
strncpy(handle->errbuf, "setfilter: No filter specified",
PCAP_ERRBUF_SIZE);
return -1;
}
/* Make our private copy of the filter */
if (install_bpf_program(handle, filter) < 0)
/* install_bpf_program() filled in errbuf */
return -1;
/*
* Run user level packet filter by default. Will be overriden if
* installing a kernel filter succeeds.
*/
handle->md.use_bpf = 0;
/* Install kernel level filter if possible */
#ifdef SO_ATTACH_FILTER
#ifdef USHRT_MAX
if (handle->fcode.bf_len > USHRT_MAX) {
/*
* fcode.len is an unsigned short for current kernel.
* I have yet to see BPF-Code with that much
* instructions but still it is possible. So for the
* sake of correctness I added this check.
*/
fprintf(stderr, "Warning: Filter too complex for kernel\n");
fcode.len = 0;
fcode.filter = NULL;
can_filter_in_kernel = 0;
} else
#endif /* USHRT_MAX */
{
/*
* Oh joy, the Linux kernel uses struct sock_fprog instead
* of struct bpf_program and of course the length field is
* of different size. Pointed out by Sebastian
*
* Oh, and we also need to fix it up so that all "ret"
* instructions with non-zero operands have 65535 as the
* operand, and so that, if we're in cooked mode, all
* memory-reference instructions use special magic offsets
* in references to the link-layer header and assume that
* the link-layer payload begins at 0; "fix_program()"
* will do that.
*/
switch (fix_program(handle, &fcode)) {
case -1:
default:
/*
* Fatal error; just quit.
* (The "default" case shouldn't happen; we
* return -1 for that reason.)
*/
return -1;
case 0:
/*
* The program performed checks that we can't make
* work in the kernel.
*/
can_filter_in_kernel = 0;
break;
case 1:
/*
* We have a filter that'll work in the kernel.
*/
can_filter_in_kernel = 1;
break;
}
}
if (can_filter_in_kernel) {
if ((err = set_kernel_filter(handle, &fcode)) == 0)
{
/* Installation succeded - using kernel filter. */
handle->md.use_bpf = 1;
}
else if (err == -1) /* Non-fatal error */
{
/*
* Print a warning if we weren't able to install
* the filter for a reason other than "this kernel
* isn't configured to support socket filters.
*/
if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
fprintf(stderr,
"Warning: Kernel filter failed: %s\n",
pcap_strerror(errno));
}
}
}
/*
* If we're not using the kernel filter, get rid of any kernel
* filter that might've been there before, e.g. because the
* previous filter could work in the kernel, or because some other
* code attached a filter to the socket by some means other than
* calling "pcap_setfilter()". Otherwise, the kernel filter may
* filter out packets that would pass the new userland filter.
*/
if (!handle->md.use_bpf)
reset_kernel_filter(handle);
/*
* Free up the copy of the filter that was made by "fix_program()".
*/
if (fcode.filter != NULL)
free(fcode.filter);
if (err == -2)
/* Fatal error */
return -1;
#endif /* SO_ATTACH_FILTER */
return 0;
}
/*
* Set direction flag: Which packets do we accept on a forwarding
* single device? IN, OUT or both?
*/
static int
pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d)
{
#ifdef HAVE_PF_PACKET_SOCKETS
if (!handle->md.sock_packet) {
handle->direction = d;
return 0;
}
#endif
/*
* We're not using PF_PACKET sockets, so we can't determine
* the direction of the packet.
*/
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"Setting direction is not supported on SOCK_PACKET sockets");
return -1;
}
#ifdef HAVE_PF_PACKET_SOCKETS
/*
* Map the PACKET_ value to a LINUX_SLL_ value; we
* want the same numerical value to be used in
* the link-layer header even if the numerical values
* for the PACKET_ #defines change, so that programs
* that look at the packet type field will always be
* able to handle DLT_LINUX_SLL captures.
*/
static short int
map_packet_type_to_sll_type(short int sll_pkttype)
{
switch (sll_pkttype) {
case PACKET_HOST:
return htons(LINUX_SLL_HOST);
case PACKET_BROADCAST:
return htons(LINUX_SLL_BROADCAST);
case PACKET_MULTICAST:
return htons(LINUX_SLL_MULTICAST);
case PACKET_OTHERHOST:
return htons(LINUX_SLL_OTHERHOST);
case PACKET_OUTGOING:
return htons(LINUX_SLL_OUTGOING);
default:
return -1;
}
}
#endif
/*
* Linux uses the ARP hardware type to identify the type of an
* interface. pcap uses the DLT_xxx constants for this. This
* function takes a pointer to a "pcap_t", and an ARPHRD_xxx
* constant, as arguments, and sets "handle->linktype" to the
* appropriate DLT_XXX constant and sets "handle->offset" to
* the appropriate value (to make "handle->offset" plus link-layer
* header length be a multiple of 4, so that the link-layer payload
* will be aligned on a 4-byte boundary when capturing packets).
* (If the offset isn't set here, it'll be 0; add code as appropriate
* for cases where it shouldn't be 0.)
*
* If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
* in cooked mode; otherwise, we can't use cooked mode, so we have
* to pick some type that works in raw mode, or fail.
*
* Sets the link type to -1 if unable to map the type.
*/
static void map_arphrd_to_dlt(pcap_t *handle, int arptype, int cooked_ok)
{
switch (arptype) {
case ARPHRD_ETHER:
/*
* This is (presumably) a real Ethernet capture; give it a
* link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so
* that an application can let you choose it, in case you're
* capturing DOCSIS traffic that a Cisco Cable Modem
* Termination System is putting out onto an Ethernet (it
* doesn't put an Ethernet header onto the wire, it puts raw
* DOCSIS frames out on the wire inside the low-level
* Ethernet framing).
*
* XXX - are there any sorts of "fake Ethernet" that have
* ARPHRD_ETHER but that *shouldn't offer DLT_DOCSIS as
* a Cisco CMTS won't put traffic onto it or get traffic
* bridged onto it? ISDN is handled in "activate_new()",
* as we fall back on cooked mode there; are there any
* others?
*/
handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
/*
* If that fails, just leave the list empty.
*/
if (handle->dlt_list != NULL) {
handle->dlt_list[0] = DLT_EN10MB;
handle->dlt_list[1] = DLT_DOCSIS;
handle->dlt_count = 2;
}
/* FALLTHROUGH */
case ARPHRD_METRICOM:
case ARPHRD_LOOPBACK:
handle->linktype = DLT_EN10MB;
handle->offset = 2;
break;
case ARPHRD_EETHER:
handle->linktype = DLT_EN3MB;
break;
case ARPHRD_AX25:
handle->linktype = DLT_AX25_KISS;
break;
case ARPHRD_PRONET:
handle->linktype = DLT_PRONET;
break;
case ARPHRD_CHAOS:
handle->linktype = DLT_CHAOS;
break;
#ifndef ARPHRD_IEEE802_TR
#define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */
#endif
case ARPHRD_IEEE802_TR:
case ARPHRD_IEEE802:
handle->linktype = DLT_IEEE802;
handle->offset = 2;
break;
case ARPHRD_ARCNET:
handle->linktype = DLT_ARCNET_LINUX;
break;
#ifndef ARPHRD_FDDI /* From Linux 2.2.13 */
#define ARPHRD_FDDI 774
#endif
case ARPHRD_FDDI:
handle->linktype = DLT_FDDI;
handle->offset = 3;
break;
#ifndef ARPHRD_ATM /* FIXME: How to #include this? */
#define ARPHRD_ATM 19
#endif
case ARPHRD_ATM:
/*
* The Classical IP implementation in ATM for Linux
* supports both what RFC 1483 calls "LLC Encapsulation",
* in which each packet has an LLC header, possibly
* with a SNAP header as well, prepended to it, and
* what RFC 1483 calls "VC Based Multiplexing", in which
* different virtual circuits carry different network
* layer protocols, and no header is prepended to packets.
*
* They both have an ARPHRD_ type of ARPHRD_ATM, so
* you can't use the ARPHRD_ type to find out whether
* captured packets will have an LLC header, and,
* while there's a socket ioctl to *set* the encapsulation
* type, there's no ioctl to *get* the encapsulation type.
*
* This means that
*
* programs that dissect Linux Classical IP frames
* would have to check for an LLC header and,
* depending on whether they see one or not, dissect
* the frame as LLC-encapsulated or as raw IP (I
* don't know whether there's any traffic other than
* IP that would show up on the socket, or whether
* there's any support for IPv6 in the Linux
* Classical IP code);
*
* filter expressions would have to compile into
* code that checks for an LLC header and does
* the right thing.
*
* Both of those are a nuisance - and, at least on systems
* that support PF_PACKET sockets, we don't have to put
* up with those nuisances; instead, we can just capture
* in cooked mode. That's what we'll do, if we can.
* Otherwise, we'll just fail.
*/
if (cooked_ok)
handle->linktype = DLT_LINUX_SLL;
else
handle->linktype = -1;
break;
#ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */
#define ARPHRD_IEEE80211 801
#endif
case ARPHRD_IEEE80211:
handle->linktype = DLT_IEEE802_11;
break;
#ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */
#define ARPHRD_IEEE80211_PRISM 802
#endif
case ARPHRD_IEEE80211_PRISM:
handle->linktype = DLT_PRISM_HEADER;
break;
#ifndef ARPHRD_IEEE80211_RADIOTAP /* new */
#define ARPHRD_IEEE80211_RADIOTAP 803
#endif
case ARPHRD_IEEE80211_RADIOTAP:
handle->linktype = DLT_IEEE802_11_RADIO;
break;
case ARPHRD_PPP:
/*
* Some PPP code in the kernel supplies no link-layer
* header whatsoever to PF_PACKET sockets; other PPP
* code supplies PPP link-layer headers ("syncppp.c");
* some PPP code might supply random link-layer
* headers (PPP over ISDN - there's code in Ethereal,
* for example, to cope with PPP-over-ISDN captures
* with which the Ethereal developers have had to cope,
* heuristically trying to determine which of the
* oddball link-layer headers particular packets have).
*
* As such, we just punt, and run all PPP interfaces
* in cooked mode, if we can; otherwise, we just treat
* it as DLT_RAW, for now - if somebody needs to capture,
* on a 2.0[.x] kernel, on PPP devices that supply a
* link-layer header, they'll have to add code here to
* map to the appropriate DLT_ type (possibly adding a
* new DLT_ type, if necessary).
*/
if (cooked_ok)
handle->linktype = DLT_LINUX_SLL;
else {
/*
* XXX - handle ISDN types here? We can't fall
* back on cooked sockets, so we'd have to
* figure out from the device name what type of
* link-layer encapsulation it's using, and map
* that to an appropriate DLT_ value, meaning
* we'd map "isdnN" devices to DLT_RAW (they
* supply raw IP packets with no link-layer
* header) and "isdY" devices to a new DLT_I4L_IP
* type that has only an Ethernet packet type as
* a link-layer header.
*
* But sometimes we seem to get random crap
* in the link-layer header when capturing on
* ISDN devices....
*/
handle->linktype = DLT_RAW;
}
break;
#ifndef ARPHRD_CISCO
#define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */
#endif
case ARPHRD_CISCO:
handle->linktype = DLT_C_HDLC;
break;
/* Not sure if this is correct for all tunnels, but it
* works for CIPE */
case ARPHRD_TUNNEL:
#ifndef ARPHRD_SIT
#define ARPHRD_SIT 776 /* From Linux 2.2.13 */
#endif
case ARPHRD_SIT:
case ARPHRD_CSLIP:
case ARPHRD_SLIP6:
case ARPHRD_CSLIP6:
case ARPHRD_ADAPT:
case ARPHRD_SLIP:
#ifndef ARPHRD_RAWHDLC
#define ARPHRD_RAWHDLC 518
#endif
case ARPHRD_RAWHDLC:
#ifndef ARPHRD_DLCI
#define ARPHRD_DLCI 15
#endif
case ARPHRD_DLCI:
/*
* XXX - should some of those be mapped to DLT_LINUX_SLL
* instead? Should we just map all of them to DLT_LINUX_SLL?
*/
handle->linktype = DLT_RAW;
break;
#ifndef ARPHRD_FRAD
#define ARPHRD_FRAD 770
#endif
case ARPHRD_FRAD:
handle->linktype = DLT_FRELAY;
break;
case ARPHRD_LOCALTLK:
handle->linktype = DLT_LTALK;
break;
#ifndef ARPHRD_FCPP
#define ARPHRD_FCPP 784
#endif
case ARPHRD_FCPP:
#ifndef ARPHRD_FCAL
#define ARPHRD_FCAL 785
#endif
case ARPHRD_FCAL:
#ifndef ARPHRD_FCPL
#define ARPHRD_FCPL 786
#endif
case ARPHRD_FCPL:
#ifndef ARPHRD_FCFABRIC
#define ARPHRD_FCFABRIC 787
#endif
case ARPHRD_FCFABRIC:
/*
* We assume that those all mean RFC 2625 IP-over-
* Fibre Channel, with the RFC 2625 header at
* the beginning of the packet.
*/
handle->linktype = DLT_IP_OVER_FC;
break;
#ifndef ARPHRD_IRDA
#define ARPHRD_IRDA 783
#endif
case ARPHRD_IRDA:
/* Don't expect IP packet out of this interfaces... */
handle->linktype = DLT_LINUX_IRDA;
/* We need to save packet direction for IrDA decoding,
* so let's use "Linux-cooked" mode. Jean II */
//handle->md.cooked = 1;
break;
/* ARPHRD_LAPD is unofficial and randomly allocated, if reallocation
* is needed, please report it to <daniele@orlandi.com> */
#ifndef ARPHRD_LAPD
#define ARPHRD_LAPD 8445
#endif
case ARPHRD_LAPD:
/* Don't expect IP packet out of this interfaces... */
handle->linktype = DLT_LINUX_LAPD;
break;
#ifndef ARPHRD_NONE
#define ARPHRD_NONE 0xFFFE
#endif
case ARPHRD_NONE:
/*
* No link-layer header; packets are just IP
* packets, so use DLT_RAW.
*/
handle->linktype = DLT_RAW;
break;
default:
handle->linktype = -1;
break;
}
}
/* ===== Functions to interface to the newer kernels ================== */
/*
* Try to open a packet socket using the new kernel PF_PACKET interface.
* Returns 1 on success, 0 on an error that means the new interface isn't
* present (so the old SOCK_PACKET interface should be tried), and a
* PCAP_ERROR_ value on an error that means that the old mechanism won't
* work either (so it shouldn't be tried).
*/
static int
activate_new(pcap_t *handle)
{
#ifdef HAVE_PF_PACKET_SOCKETS
int sock_fd = -1, arptype, val;
int err = 0;
struct packet_mreq mr;
const char* device = handle->opt.source;
/*
* Open a socket with protocol family packet. If a device is
* given we try to open it in raw mode otherwise we use
* the cooked interface.
*/
sock_fd = device ?
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))
: socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL));
if (sock_fd == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "socket: %s",
pcap_strerror(errno) );
return 0; /* try old mechanism */
}
/* It seems the kernel supports the new interface. */
handle->md.sock_packet = 0;
/*
* Get the interface index of the loopback device.
* If the attempt fails, don't fail, just set the
* "md.lo_ifindex" to -1.
*
* XXX - can there be more than one device that loops
* packets back, i.e. devices other than "lo"? If so,
* we'd need to find them all, and have an array of
* indices for them, and check all of them in
* "pcap_read_packet()".
*/
handle->md.lo_ifindex = iface_get_id(sock_fd, "lo", handle->errbuf);
/*
* Default value for offset to align link-layer payload
* on a 4-byte boundary.
*/
handle->offset = 0;
/*
* What kind of frames do we have to deal with? Fall back
* to cooked mode if we have an unknown interface type
* or a type we know doesn't work well in raw mode.
*/
if (device) {
/* Assume for now we don't need cooked mode. */
handle->md.cooked = 0;
if (handle->opt.rfmon) {
/*
* We were asked to turn on monitor mode.
* Do so before we get the link-layer type,
* because entering monitor mode could change
* the link-layer type.
*/
err = enter_rfmon_mode_wext(handle, sock_fd, device);
if (err < 0) {
/* Hard failure */
close(sock_fd);
return err;
}
if (err == 0) {
/*
* Nothing worked for turning monitor mode
* on.
*/
close(sock_fd);
return PCAP_ERROR_RFMON_NOTSUP;
}
}
arptype = iface_get_arptype(sock_fd, device, handle->errbuf);
if (arptype < 0) {
close(sock_fd);
return arptype;
}
map_arphrd_to_dlt(handle, arptype, 1);
if (handle->linktype == -1 ||
handle->linktype == DLT_LINUX_SLL ||
handle->linktype == DLT_LINUX_IRDA ||
handle->linktype == DLT_LINUX_LAPD ||
(handle->linktype == DLT_EN10MB &&
(strncmp("isdn", device, 4) == 0 ||
strncmp("isdY", device, 4) == 0))) {
/*
* Unknown interface type (-1), or a
* device we explicitly chose to run
* in cooked mode (e.g., PPP devices),
* or an ISDN device (whose link-layer
* type we can only determine by using
* APIs that may be different on different
* kernels) - reopen in cooked mode.
*/
if (close(sock_fd) == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"close: %s", pcap_strerror(errno));
return PCAP_ERROR;
}
sock_fd = socket(PF_PACKET, SOCK_DGRAM,
htons(ETH_P_ALL));
if (sock_fd == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"socket: %s", pcap_strerror(errno));
return PCAP_ERROR;
}
handle->md.cooked = 1;
/*
* Get rid of any link-layer type list
* we allocated - this only supports cooked
* capture.
*/
if (handle->dlt_list != NULL) {
free(handle->dlt_list);
handle->dlt_list = NULL;
handle->dlt_count = 0;
}
if (handle->linktype == -1) {
/*
* Warn that we're falling back on
* cooked mode; we may want to
* update "map_arphrd_to_dlt()"
* to handle the new type.
*/
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"arptype %d not "
"supported by libpcap - "
"falling back to cooked "
"socket",
arptype);
}
/*
* IrDA capture is not a real "cooked" capture,
* it's IrLAP frames, not IP packets. The
* same applies to LAPD capture.
*/
if (handle->linktype != DLT_LINUX_IRDA &&
handle->linktype != DLT_LINUX_LAPD)
handle->linktype = DLT_LINUX_SLL;
}
handle->md.ifindex = iface_get_id(sock_fd, device,
handle->errbuf);
if (handle->md.ifindex == -1) {
close(sock_fd);
return PCAP_ERROR;
}
if ((err = iface_bind(sock_fd, handle->md.ifindex,
handle->errbuf)) != 1) {
close(sock_fd);
if (err < 0)
return err;
else
return 0; /* try old mechanism */
}
} else {
/*
* This is cooked mode.
*/
handle->md.cooked = 1;
handle->linktype = DLT_LINUX_SLL;
/*
* We're not bound to a device.
* XXX - true? Or true only if we're using
* the "any" device?
* For now, we're using this as an indication
* that we can't transmit; stop doing that only
* if we figure out how to transmit in cooked
* mode.
*/
handle->md.ifindex = -1;
}
/*
* Select promiscuous mode on if "promisc" is set.
*
* Do not turn allmulti mode on if we don't select
* promiscuous mode - on some devices (e.g., Orinoco
* wireless interfaces), allmulti mode isn't supported
* and the driver implements it by turning promiscuous
* mode on, and that screws up the operation of the
* card as a normal networking interface, and on no
* other platform I know of does starting a non-
* promiscuous capture affect which multicast packets
* are received by the interface.
*/
/*
* Hmm, how can we set promiscuous mode on all interfaces?
* I am not sure if that is possible at all.
*/
if (device && handle->opt.promisc) {
memset(&mr, 0, sizeof(mr));
mr.mr_ifindex = handle->md.ifindex;
mr.mr_type = PACKET_MR_PROMISC;
if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP,
&mr, sizeof(mr)) == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"setsockopt: %s", pcap_strerror(errno));
close(sock_fd);
return PCAP_ERROR;
}
}
/* Enable auxillary data if supported and reserve room for
* reconstructing VLAN headers. */
#ifdef HAVE_PACKET_AUXDATA
val = 1;
if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, &val,
sizeof(val)) == -1 && errno != ENOPROTOOPT) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"setsockopt: %s", pcap_strerror(errno));
close(sock_fd);
return PCAP_ERROR;
}
handle->offset += VLAN_TAG_LEN;
#endif /* HAVE_PACKET_AUXDATA */
/*
* This is a 2.2[.x] or later kernel (we know that
* because we're not using a SOCK_PACKET socket -
* PF_PACKET is supported only in 2.2 and later
* kernels).
*
* We can safely pass "recvfrom()" a byte count
* based on the snapshot length.
*
* If we're in cooked mode, make the snapshot length
* large enough to hold a "cooked mode" header plus
* 1 byte of packet data (so we don't pass a byte
* count of 0 to "recvfrom()").
*/
if (handle->md.cooked) {
if (handle->snapshot < SLL_HDR_LEN + 1)
handle->snapshot = SLL_HDR_LEN + 1;
}
handle->bufsize = handle->snapshot;
/* Save the socket FD in the pcap structure */
handle->fd = sock_fd;
return 1;
#else
strncpy(ebuf,
"New packet capturing interface not supported by build "
"environment", PCAP_ERRBUF_SIZE);
return 0;
#endif
}
static int
activate_mmap(pcap_t *handle)
{
#ifdef HAVE_PACKET_RING
int ret;
if (handle->opt.buffer_size == 0) {
/* by default request 2M for the ring buffer */
handle->opt.buffer_size = 2*1024*1024;
}
ret = prepare_tpacket_socket(handle);
if (ret == 0)
return ret;
ret = create_ring(handle);
if (ret == 0)
return ret;
/* override some defaults and inherit the other fields from
* activate_new
* handle->offset is used to get the current position into the rx ring
* handle->cc is used to store the ring size */
handle->read_op = pcap_read_linux_mmap;
handle->cleanup_op = pcap_cleanup_linux_mmap;
handle->setfilter_op = pcap_setfilter_linux_mmap;
handle->setnonblock_op = pcap_setnonblock_mmap;
handle->getnonblock_op = pcap_getnonblock_mmap;
handle->selectable_fd = handle->fd;
return 1;
#else /* HAVE_PACKET_RING */
return 0;
#endif /* HAVE_PACKET_RING */
}
#ifdef HAVE_PACKET_RING
static int
prepare_tpacket_socket(pcap_t *handle)
{
#ifdef HAVE_TPACKET2
socklen_t len;
int val;
#endif
handle->md.tp_version = TPACKET_V1;
handle->md.tp_hdrlen = sizeof(struct tpacket_hdr);
#ifdef HAVE_TPACKET2
/* Probe whether kernel supports TPACKET_V2 */
val = TPACKET_V2;
len = sizeof(val);
if (getsockopt(handle->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) {
if (errno == ENOPROTOOPT)
return 1;
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"can't get TPACKET_V2 header len on socket %d: %d-%s",
handle->fd, errno, pcap_strerror(errno));
return 0;
}
handle->md.tp_hdrlen = val;
val = TPACKET_V2;
if (setsockopt(handle->fd, SOL_PACKET, PACKET_VERSION, &val,
sizeof(val)) < 0) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"can't activate TPACKET_V2 on socket %d: %d-%s",
handle->fd, errno, pcap_strerror(errno));
return 0;
}
handle->md.tp_version = TPACKET_V2;
/* Reserve space for VLAN tag reconstruction */
val = VLAN_TAG_LEN;
if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE, &val,
sizeof(val)) < 0) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"can't set up reserve on socket %d: %d-%s",
handle->fd, errno, pcap_strerror(errno));
return 0;
}
#endif /* HAVE_TPACKET2 */
return 1;
}
static void
compute_ring_block(int frame_size, unsigned *block_size, unsigned *frames_per_block)
{
/* compute the minumum block size that will handle this frame.
* The block has to be page size aligned.
* The max block size allowed by the kernel is arch-dependent and
* it's not explicitly checked here. */
*block_size = getpagesize();
while (*block_size < frame_size)
*block_size <<= 1;
*frames_per_block = *block_size/frame_size;
}
static int
create_ring(pcap_t *handle)
{
unsigned i, j, ringsize, frames_per_block;
struct tpacket_req req;
/* Note that with large snapshot (say 64K) only a few frames
* will be available in the ring even with pretty large ring size
* (and a lot of memory will be unused).
* The snap len should be carefully chosen to achive best
* performance */
req.tp_frame_size = TPACKET_ALIGN(handle->snapshot +
TPACKET_ALIGN(handle->md.tp_hdrlen) +
sizeof(struct sockaddr_ll));
req.tp_frame_nr = handle->opt.buffer_size/req.tp_frame_size;
compute_ring_block(req.tp_frame_size, &req.tp_block_size, &frames_per_block);
req.tp_block_nr = req.tp_frame_nr / frames_per_block;
/* req.tp_frame_nr is requested to match frames_per_block*req.tp_block_nr */
req.tp_frame_nr = req.tp_block_nr * frames_per_block;
/* ask the kernel to create the ring */
retry:
if (setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
(void *) &req, sizeof(req))) {
/* try to reduce requested ring size to prevent memory failure */
if ((errno == ENOMEM) && (req.tp_block_nr > 1)) {
req.tp_frame_nr >>= 1;
req.tp_block_nr = req.tp_frame_nr/frames_per_block;
goto retry;
}
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "can't create rx ring on "
"packet socket %d: %d-%s", handle->fd, errno,
pcap_strerror(errno));
return 0;
}
/* memory map the rx ring */
ringsize = req.tp_block_nr * req.tp_block_size;
handle->bp = mmap(0, ringsize, PROT_READ| PROT_WRITE, MAP_SHARED,
handle->fd, 0);
if (handle->bp == MAP_FAILED) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "can't mmap rx ring: %d-%s",
errno, pcap_strerror(errno));
/* clear the allocated ring on error*/
destroy_ring(handle);
return 0;
}
/* allocate a ring for each frame header pointer*/
handle->cc = req.tp_frame_nr;
handle->buffer = malloc(handle->cc * sizeof(union thdr *));
if (!handle->buffer) {
destroy_ring(handle);
return 0;
}
/* fill the header ring with proper frame ptr*/
handle->offset = 0;
for (i=0; i<req.tp_block_nr; ++i) {
void *base = &handle->bp[i*req.tp_block_size];
for (j=0; j<frames_per_block; ++j, ++handle->offset) {
RING_GET_FRAME(handle) = base;
base += req.tp_frame_size;
}
}
handle->bufsize = req.tp_frame_size;
handle->offset = 0;
return 1;
}
/* free all ring related resources*/
static void
destroy_ring(pcap_t *handle)
{
/* tell the kernel to destroy the ring*/
struct tpacket_req req;
memset(&req, 0, sizeof(req));
setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
(void *) &req, sizeof(req));
/* if ring is mapped, unmap it*/
if (handle->bp) {
/* need to re-compute the ring size */
unsigned frames_per_block, block_size;
compute_ring_block(handle->bufsize, &block_size, &frames_per_block);
/* do not perform sanity check here: we can't recover any error */
munmap(handle->bp, block_size * handle->cc / frames_per_block);
handle->bp = 0;
}
}
static void
pcap_cleanup_linux_mmap( pcap_t *handle )
{
destroy_ring(handle);
pcap_cleanup_linux(handle);
}
static int
pcap_getnonblock_mmap(pcap_t *p, char *errbuf)
{
/* use negative value of timeout to indicate non blocking ops */
return (p->md.timeout<0);
}
static int
pcap_setnonblock_mmap(pcap_t *p, int nonblock, char *errbuf)
{
/* map each value to the corresponding 2's complement, to
* preserve the timeout value provided with pcap_set_timeout */
if (nonblock) {
if (p->md.timeout > 0)
p->md.timeout = p->md.timeout*-1 - 1;
} else
if (p->md.timeout < 0)
p->md.timeout = (p->md.timeout+1)*-1;
return 0;
}
static inline union thdr *
pcap_get_ring_frame(pcap_t *handle, int status)
{
union thdr h;
h.raw = RING_GET_FRAME(handle);
switch (handle->md.tp_version) {
case TPACKET_V1:
if (status != (h.h1->tp_status ? TP_STATUS_USER :
TP_STATUS_KERNEL))
return NULL;
break;
#ifdef HAVE_TPACKET2
case TPACKET_V2:
if (status != (h.h2->tp_status ? TP_STATUS_USER :
TP_STATUS_KERNEL))
return NULL;
break;
#endif
}
return h.raw;
}
static int
pcap_read_linux_mmap(pcap_t *handle, int max_packets, pcap_handler callback,
u_char *user)
{
int pkts = 0;
/* wait for frames availability.*/
if ((handle->md.timeout >= 0) &&
!pcap_get_ring_frame(handle, TP_STATUS_USER)) {
struct pollfd pollinfo;
int ret;
pollinfo.fd = handle->fd;
pollinfo.events = POLLIN;
do {
/* poll() requires a negative timeout to wait forever */
ret = poll(&pollinfo, 1, (handle->md.timeout > 0)?
handle->md.timeout: -1);
if ((ret < 0) && (errno != EINTR)) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"can't poll on packet socket fd %d: %d-%s",
handle->fd, errno, pcap_strerror(errno));
return -1;
}
/* check for break loop condition on interrupted syscall*/
if (handle->break_loop) {
handle->break_loop = 0;
return -2;
}
} while (ret < 0);
}
/* non-positive values of max_packets are used to require all
* packets currently available in the ring */
while ((pkts < max_packets) || (max_packets <= 0)) {
int run_bpf;
struct sockaddr_ll *sll;
struct pcap_pkthdr pcaphdr;
unsigned char *bp;
union thdr h;
unsigned int tp_len;
unsigned int tp_mac;
unsigned int tp_snaplen;
unsigned int tp_sec;
unsigned int tp_usec;
h.raw = pcap_get_ring_frame(handle, TP_STATUS_USER);
if (!h.raw)
break;
switch (handle->md.tp_version) {
case TPACKET_V1:
tp_len = h.h1->tp_len;
tp_mac = h.h1->tp_mac;
tp_snaplen = h.h1->tp_snaplen;
tp_sec = h.h1->tp_sec;
tp_usec = h.h1->tp_usec;
break;
#ifdef HAVE_TPACKET2
case TPACKET_V2:
tp_len = h.h2->tp_len;
tp_mac = h.h2->tp_mac;
tp_snaplen = h.h2->tp_snaplen;
tp_sec = h.h2->tp_sec;
tp_usec = h.h2->tp_nsec / 1000;
break;
#endif
default:
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"unsupported tpacket version %d",
handle->md.tp_version);
return -1;
}
/* perform sanity check on internal offset. */
if (tp_mac + tp_snaplen > handle->bufsize) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"corrupted frame on kernel ring mac "
"offset %d + caplen %d > frame len %d",
tp_mac, tp_snaplen, handle->bufsize);
return -1;
}
/* run filter on received packet
* If the kernel filtering is enabled we need to run the
* filter until all the frames present into the ring
* at filter creation time are processed.
* In such case md.use_bpf is used as a counter for the
* packet we need to filter.
* Note: alternatively it could be possible to stop applying
* the filter when the ring became empty, but it can possibly
* happen a lot later... */
bp = (unsigned char*)h.raw + tp_mac;
run_bpf = (!handle->md.use_bpf) ||
((handle->md.use_bpf>1) && handle->md.use_bpf--);
if (run_bpf && handle->fcode.bf_insns &&
(bpf_filter(handle->fcode.bf_insns, bp,
tp_len, tp_snaplen) == 0))
goto skip;
/* check direction and interface index */
sll = (void *)h.raw + TPACKET_ALIGN(handle->md.tp_hdrlen);
if ((sll->sll_ifindex == handle->md.lo_ifindex) &&
(sll->sll_pkttype == PACKET_OUTGOING))
goto skip;
/* get required packet info from ring header */
pcaphdr.ts.tv_sec = tp_sec;
pcaphdr.ts.tv_usec = tp_usec;
pcaphdr.caplen = tp_snaplen;
pcaphdr.len = tp_len;
/* if required build in place the sll header*/
if (handle->md.cooked) {
struct sll_header *hdrp;
/*
* The kernel should have left us with enough
* space for an sll header; back up the packet
* data pointer into that space, as that'll be
* the beginning of the packet we pass to the
* callback.
*/
bp -= SLL_HDR_LEN;
/*
* Let's make sure that's past the end of
* the tpacket header, i.e. >=
* ((u_char *)thdr + TPACKET_HDRLEN), so we
* don't step on the header when we construct
* the sll header.
*/
if (bp < (u_char *)h.raw +
TPACKET_ALIGN(handle->md.tp_hdrlen) +
sizeof(struct sockaddr_ll)) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"cooked-mode frame doesn't have room for sll header");
return -1;
}
/*
* OK, that worked; construct the sll header.
*/
hdrp = (struct sll_header *)bp;
hdrp->sll_pkttype = map_packet_type_to_sll_type(
sll->sll_pkttype);
hdrp->sll_hatype = htons(sll->sll_hatype);
hdrp->sll_halen = htons(sll->sll_halen);
memcpy(hdrp->sll_addr, sll->sll_addr, SLL_ADDRLEN);
hdrp->sll_protocol = sll->sll_protocol;
/* update packet len */
pcaphdr.caplen += SLL_HDR_LEN;
pcaphdr.len += SLL_HDR_LEN;
}
#ifdef HAVE_TPACKET2
if (handle->md.tp_version == TPACKET_V2 && h.h2->tp_vlan_tci &&
tp_snaplen >= 2 * ETH_ALEN) {
struct vlan_tag *tag;
bp -= VLAN_TAG_LEN;
memmove(bp, bp + VLAN_TAG_LEN, 2 * ETH_ALEN);
tag = (struct vlan_tag *)(bp + 2 * ETH_ALEN);
tag->vlan_tpid = htons(ETH_P_8021Q);
tag->vlan_tci = htons(h.h2->tp_vlan_tci);
pcaphdr.caplen += VLAN_TAG_LEN;
pcaphdr.len += VLAN_TAG_LEN;
}
#endif
/* pass the packet to the user */
pkts++;
callback(user, &pcaphdr, bp);
handle->md.packets_read++;
skip:
/* next packet */
switch (handle->md.tp_version) {
case TPACKET_V1:
h.h1->tp_status = TP_STATUS_KERNEL;
break;
#ifdef HAVE_TPACKET2
case TPACKET_V2:
h.h2->tp_status = TP_STATUS_KERNEL;
break;
#endif
}
if (++handle->offset >= handle->cc)
handle->offset = 0;
/* check for break loop condition*/
if (handle->break_loop) {
handle->break_loop = 0;
return -2;
}
}
return pkts;
}
static int
pcap_setfilter_linux_mmap(pcap_t *handle, struct bpf_program *filter)
{
int n, offset;
int ret = pcap_setfilter_linux(handle, filter);
if (ret < 0)
return ret;
/* if the kernel filter is enabled, we need to apply the filter on
* all packets present into the ring. Get an upper bound of their number
*/
if (!handle->md.use_bpf)
return ret;
/* walk the ring backward and count the free slot */
offset = handle->offset;
if (--handle->offset < 0)
handle->offset = handle->cc - 1;
for (n=0; n < handle->cc; ++n) {
if (--handle->offset < 0)
handle->offset = handle->cc - 1;
if (!pcap_get_ring_frame(handle, TP_STATUS_KERNEL))
break;
}
/* be careful to not change current ring position */
handle->offset = offset;
/* store the number of packets currently present in the ring */
handle->md.use_bpf = 1 + (handle->cc - n);
return ret;
}
#endif /* HAVE_PACKET_RING */
#ifdef HAVE_PF_PACKET_SOCKETS
/*
* Return the index of the given device name. Fill ebuf and return
* -1 on failure.
*/
static int
iface_get_id(int fd, const char *device, char *ebuf)
{
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"SIOCGIFINDEX: %s", pcap_strerror(errno));
return -1;
}
return ifr.ifr_ifindex;
}
/*
* Bind the socket associated with FD to the given device.
* Return 1 on success, 0 if we should try a SOCK_PACKET socket,
* or a PCAP_ERROR_ value on a hard error.
*/
static int
iface_bind(int fd, int ifindex, char *ebuf)
{
struct sockaddr_ll sll;
int err;
socklen_t errlen = sizeof(err);
memset(&sll, 0, sizeof(sll));
sll.sll_family = AF_PACKET;
sll.sll_ifindex = ifindex;
sll.sll_protocol = htons(ETH_P_ALL);
if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
if (errno == ENETDOWN) {
/*
* Return a "network down" indication, so that
* the application can report that rather than
* saying we had a mysterious failure and
* suggest that they report a problem to the
* libpcap developers.
*/
return PCAP_ERROR_IFACE_NOT_UP;
} else {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"bind: %s", pcap_strerror(errno));
return PCAP_ERROR;
}
}
/* Any pending errors, e.g., network is down? */
if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"getsockopt: %s", pcap_strerror(errno));
return 0;
}
if (err == ENETDOWN) {
/*
* Return a "network down" indication, so that
* the application can report that rather than
* saying we had a mysterious failure and
* suggest that they report a problem to the
* libpcap developers.
*/
return PCAP_ERROR_IFACE_NOT_UP;
} else if (err > 0) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"bind: %s", pcap_strerror(err));
return 0;
}
return 1;
}
/*
* Check whether the device supports the Wireless Extensions.
* Returns 1 if it does, 0 if it doesn't, PCAP_ERROR_NO_SUCH_DEVICE
* if the device doesn't even exist.
*/
static int
has_wext(int sock_fd, const char *device, char *ebuf)
{
#ifdef IW_MODE_MONITOR
struct iwreq ireq;
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
if (ioctl(sock_fd, SIOCGIWNAME, &ireq) >= 0)
return 1; /* yes */
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"%s: SIOCGIWPRIV: %s", device, pcap_strerror(errno));
if (errno == ENODEV)
return PCAP_ERROR_NO_SUCH_DEVICE;
#endif
return 0;
}
/*
* Per me si va ne la citta dolente,
* Per me si va ne l'etterno dolore,
* ...
* Lasciate ogne speranza, voi ch'intrate.
*
* XXX - airmon-ng does special stuff with the Orinoco driver and the
* wlan-ng driver.
*/
typedef enum {
MONITOR_WEXT,
MONITOR_HOSTAP,
MONITOR_PRISM,
MONITOR_PRISM54,
MONITOR_ACX100,
MONITOR_RT2500,
MONITOR_RT2570,
MONITOR_RT73,
MONITOR_RTL8XXX
} monitor_type;
/*
* Use the Wireless Extensions, if we have them, to try to turn monitor mode
* on if it's not already on.
*
* Returns 1 on success, 0 if we don't support the Wireless Extensions
* on this device, or a PCAP_ERROR_ value if we do support them but
* we weren't able to turn monitor mode on.
*/
static int
enter_rfmon_mode_wext(pcap_t *handle, int sock_fd, const char *device)
{
#ifdef IW_MODE_MONITOR
/*
* XXX - at least some adapters require non-Wireless Extensions
* mechanisms to turn monitor mode on.
*
* Atheros cards might require that a separate "monitor virtual access
* point" be created, with later versions of the madwifi driver.
* airmon-ng does "wlanconfig ath create wlandev {if} wlanmode
* monitor -bssid", which apparently spits out a line "athN"
* where "athN" is the monitor mode device. To leave monitor
* mode, it destroys the monitor mode device.
*
* Some Intel Centrino adapters might require private ioctls to get
* radio headers; the ipw2200 and ipw3945 drivers allow you to
* configure a separate "rtapN" interface to capture in monitor
* mode without preventing the adapter from operating normally.
* (airmon-ng doesn't appear to use that, though.)
*
* It would be Truly Wonderful if mac80211 and nl80211 cleaned this
* up, and if all drivers were converted to mac80211 drivers.
*
* If interface {if} is a mac80211 driver, the file
* /sys/class/net/{if}/phy80211 is a symlink to
* /sys/class/ieee80211/{phydev}, for some {phydev}.
*
* On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at
* least, has a "wmaster0" device and a "wlan0" device; the
* latter is the one with the IP address. Both show up in
* "tcpdump -D" output. Capturing on the wmaster0 device
* captures with 802.11 headers.
*
* airmon-ng searches through /sys/class/net for devices named
* monN, starting with mon0; as soon as one *doesn't* exist,
* it chooses that as the monitor device name. If the "iw"
* command exists, it does "iw dev {if} interface add {monif}
* type monitor", where {monif} is the monitor device. It
* then (sigh) sleeps .1 second, and then configures the
* device up. Otherwise, if /sys/class/ieee80211/{phydev}/add_iface
* is a file, it writes {mondev}, without a newline, to that file,
* and again (sigh) sleeps .1 second, and then iwconfig's that
* device into monitor mode and configures it up. Otherwise,
* you can't do monitor mode.
*
* All these devices are "glued" together by having the
* /sys/class/net/{device}/phy80211 links pointing to the same
* place, so, given a wmaster, wlan, or mon device, you can
* find the other devices by looking for devices with
* the same phy80211 link.
*
* To turn monitor mode off, delete the monitor interface,
* either with "iw dev {monif} interface del" or by sending
* {monif}, with no NL, down /sys/class/ieee80211/{phydev}/remove_iface
*
* Note: if you try to create a monitor device named "monN", and
* there's already a "monN" device, it fails, as least with
* the netlink interface (which is what iw uses), with a return
* value of -ENFILE. (Return values are negative errnos.) We
* could probably use that to find an unused device.
*/
int err;
struct iwreq ireq;
struct iw_priv_args *priv;
monitor_type montype;
int i;
__u32 cmd;
int args[2];
int channel;
/*
* Does this device *support* the Wireless Extensions?
*/
err = has_wext(sock_fd, device, handle->errbuf);
if (err <= 0)
return err; /* either it doesn't or the device doesn't even exist */
/*
* Try to get all the Wireless Extensions private ioctls
* supported by this device.
*
* First, get the size of the buffer we need, by supplying no
* buffer and a length of 0. If the device supports private
* ioctls, it should return E2BIG, with ireq.u.data.length set
* to the length we need. If it doesn't support them, it should
* return EOPNOTSUPP.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
ireq.u.data.pointer = args;
ireq.u.data.length = 0;
ireq.u.data.flags = 0;
if (ioctl(sock_fd, SIOCGIWPRIV, &ireq) != -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"%s: SIOCGIWPRIV with a zero-length buffer didn't fail!",
device);
return PCAP_ERROR;
}
if (errno == EOPNOTSUPP) {
/*
* No private ioctls, so we assume that there's only one
* DLT_ for monitor mode.
*/
return 0;
}
if (errno != E2BIG) {
/*
* Failed.
*/
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"%s: SIOCGIWPRIV: %s", device, pcap_strerror(errno));
return PCAP_ERROR;
}
priv = malloc(ireq.u.data.length * sizeof (struct iw_priv_args));
if (priv == NULL) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
return PCAP_ERROR;
}
ireq.u.data.pointer = priv;
if (ioctl(sock_fd, SIOCGIWPRIV, &ireq) == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"%s: SIOCGIWPRIV: %s", device, pcap_strerror(errno));
free(priv);
return PCAP_ERROR;
}
/*
* Look for private ioctls to turn monitor mode on or, if
* monitor mode is on, to set the header type.
*/
montype = MONITOR_WEXT;
cmd = 0;
for (i = 0; i < ireq.u.data.length; i++) {
if (strcmp(priv[i].name, "monitor_type") == 0) {
/*
* Hostap driver, use this one.
* Set monitor mode first.
* You can set it to 0 to get DLT_IEEE80211,
* 1 to get DLT_PRISM, or 2 to get
* DLT_IEEE80211_RADIO_AVS.
*/
if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
break;
if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
break;
if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
break;
montype = MONITOR_HOSTAP;
cmd = priv[i].cmd;
break;
}
if (strcmp(priv[i].name, "set_prismhdr") == 0) {
/*
* Prism54 driver, use this one.
* Set monitor mode first.
* You can set it to 2 to get DLT_IEEE80211
* or 3 or get DLT_PRISM.
*/
if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
break;
if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
break;
if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
break;
montype = MONITOR_PRISM54;
cmd = priv[i].cmd;
break;
}
if (strcmp(priv[i].name, "forceprismheader") == 0) {
/*
* RT2570 driver, use this one.
* Do this after turning monitor mode on.
* You can set it to 1 to get DLT_PRISM or 2
* to get DLT_IEEE80211.
*/
if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
break;
if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
break;
if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
break;
montype = MONITOR_RT2570;
cmd = priv[i].cmd;
break;
}
if (strcmp(priv[i].name, "forceprism") == 0) {
/*
* RT73 driver, use this one.
* Do this after turning monitor mode on.
* Its argument is a *string*; you can
* set it to "1" to get DLT_PRISM or "2"
* to get DLT_IEEE80211.
*/
if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_CHAR)
break;
if (priv[i].set_args & IW_PRIV_SIZE_FIXED)
break;
montype = MONITOR_RT73;
cmd = priv[i].cmd;
break;
}
if (strcmp(priv[i].name, "prismhdr") == 0) {
/*
* One of the RTL8xxx drivers, use this one.
* It can only be done after monitor mode
* has been turned on. You can set it to 1
* to get DLT_PRISM or 0 to get DLT_IEEE80211.
*/
if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
break;
if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
break;
if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
break;
montype = MONITOR_RTL8XXX;
cmd = priv[i].cmd;
break;
}
if (strcmp(priv[i].name, "rfmontx") == 0) {
/*
* RT2500 or RT61 driver, use this one.
* It has one one-byte parameter; set
* u.data.length to 1 and u.data.pointer to
* point to the parameter.
* It doesn't itself turn monitor mode on.
* You can set it to 1 to allow transmitting
* in monitor mode(?) and get DLT_IEEE80211,
* or set it to 0 to disallow transmitting in
* monitor mode(?) and get DLT_PRISM.
*/
if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
break;
if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 2)
break;
montype = MONITOR_RT2500;
cmd = priv[i].cmd;
break;
}
if (strcmp(priv[i].name, "monitor") == 0) {
/*
* Either ACX100 or hostap, use this one.
* It turns monitor mode on.
* If it takes two arguments, it's ACX100;
* the first argument is 1 for DLT_PRISM
* or 2 for DLT_IEEE80211, and the second
* argument is the channel on which to
* run. If it takes one argument, it's
* HostAP, and the argument is 2 for
* DLT_IEEE80211 and 3 for DLT_PRISM.
*
* If we see this, we don't quit, as this
* might be a version of the hostap driver
* that also supports "monitor_type".
*/
if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
break;
if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
break;
switch (priv[i].set_args & IW_PRIV_SIZE_MASK) {
case 1:
montype = MONITOR_PRISM;
cmd = priv[i].cmd;
break;
case 2:
montype = MONITOR_ACX100;
cmd = priv[i].cmd;
break;
default:
break;
}
}
}
free(priv);
/*
* XXX - ipw3945? islism?
*/
/*
* Get the old mode.
*/
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
if (ioctl(sock_fd, SIOCGIWMODE, &ireq) == -1) {
/*
* We probably won't be able to set the mode, either.
*/
return PCAP_ERROR_RFMON_NOTSUP;
}
/*
* Is it currently in monitor mode?
*/
if (ireq.u.mode == IW_MODE_MONITOR) {
/*
* Yes. Just leave things as they are.
* We don't offer multiple link-layer types, as
* changing the link-layer type out from under
* somebody else capturing in monitor mode would
* be considered rude.
*/
return 1;
}
/*
* No. We have to put the adapter into rfmon mode.
*/
/*
* If we haven't already done so, arrange to have
* "pcap_close_all()" called when we exit.
*/
if (!pcap_do_addexit(handle)) {
/*
* "atexit()" failed; don't put the interface
* in rfmon mode, just give up.
*/
return PCAP_ERROR_RFMON_NOTSUP;
}
/*
* Save the old mode.
*/
handle->md.oldmode = ireq.u.mode;
/*
* Put the adapter in rfmon mode. How we do this depends
* on whether we have a special private ioctl or not.
*/
if (montype == MONITOR_PRISM) {
/*
* We have the "monitor" private ioctl, but none of
* the other private ioctls. Use this, and select
* the Prism header.
*
* If it fails, just fall back on SIOCSIWMODE.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
ireq.u.data.length = 1; /* 1 argument */
args[0] = 3; /* request Prism header */
memcpy(ireq.u.name, args, IFNAMSIZ);
if (ioctl(sock_fd, cmd, &ireq) != -1) {
/*
* Success.
* Note that we have to put the old mode back
* when we close the device.
*/
handle->md.must_clear |= MUST_CLEAR_RFMON;
/*
* Add this to the list of pcaps to close
* when we exit.
*/
pcap_add_to_pcaps_to_close(handle);
return 1;
}
/*
* Failure. Fall back on SIOCSIWMODE.
*/
}
/*
* First, turn monitor mode on.
*/
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
ireq.u.mode = IW_MODE_MONITOR;
if (ioctl(sock_fd, SIOCSIWMODE, &ireq) == -1) {
/*
* Scientist, you've failed.
*/
return PCAP_ERROR_RFMON_NOTSUP;
}
/*
* XXX - airmon-ng does "iwconfig {if} key off" after setting
* monitor mode and setting the channel, and then does
* "iwconfig up".
*/
/*
* Now select the appropriate radio header.
*/
switch (montype) {
case MONITOR_WEXT:
/*
* We don't have any private ioctl to set the header.
*/
break;
case MONITOR_HOSTAP:
/*
* Select the AVS header if we can, otherwise
* select the Prism header.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
args[0] = 2; /* request AVS header */
memcpy(ireq.u.name, args, sizeof (int));
if (ioctl(sock_fd, cmd, &ireq) == -1) {
/*
* Failure - try the Prism header.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
args[0] = 1; /* request Prism header */
memcpy(ireq.u.name, args, sizeof (int));
ioctl(sock_fd, cmd, &ireq);
}
break;
case MONITOR_PRISM:
/*
* The private ioctl failed.
*/
break;
case MONITOR_PRISM54:
/*
* Select the Prism header.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
args[0] = 3; /* request Prism header */
memcpy(ireq.u.name, args, sizeof (int));
ioctl(sock_fd, cmd, &ireq);
break;
case MONITOR_ACX100:
/*
* Get the current channel.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
if (ioctl(sock_fd, SIOCGIWFREQ, &ireq) == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"%s: SIOCGIWFREQ: %s", device,
pcap_strerror(errno));
return PCAP_ERROR;
}
channel = ireq.u.freq.m;
/*
* Select the Prism header, and set the channel to the
* current value.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
args[0] = 1; /* request Prism header */
args[1] = channel; /* set channel */
memcpy(ireq.u.name, args, 2*sizeof (int));
ioctl(sock_fd, cmd, &ireq);
break;
case MONITOR_RT2500:
/*
* Disallow transmission - that turns on the
* Prism header.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
args[0] = 0; /* disallow transmitting */
memcpy(ireq.u.name, args, sizeof (int));
ioctl(sock_fd, cmd, &ireq);
break;
case MONITOR_RT2570:
/*
* Force the Prism header.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
args[0] = 1; /* request Prism header */
memcpy(ireq.u.name, args, sizeof (int));
ioctl(sock_fd, cmd, &ireq);
break;
case MONITOR_RT73:
/*
* Force the Prism header.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
ireq.u.data.length = 1; /* 1 argument */
ireq.u.data.pointer = "1";
ireq.u.data.flags = 0;
ioctl(sock_fd, cmd, &ireq);
break;
case MONITOR_RTL8XXX:
/*
* Force the Prism header.
*/
memset(&ireq, 0, sizeof ireq);
strncpy(ireq.ifr_ifrn.ifrn_name, device,
sizeof ireq.ifr_ifrn.ifrn_name);
ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
args[0] = 1; /* request Prism header */
memcpy(ireq.u.name, args, sizeof (int));
ioctl(sock_fd, cmd, &ireq);
break;
}
/*
* Note that we have to put the old mode back when we
* close the device.
*/
handle->md.must_clear |= MUST_CLEAR_RFMON;
/*
* Add this to the list of pcaps to close when we exit.
*/
pcap_add_to_pcaps_to_close(handle);
return 1;
#else
/*
* We don't have the Wireless Extensions available, so we can't
* do monitor mode.
*/
return 0;
#endif
}
#endif /* HAVE_PF_PACKET_SOCKETS */
/* ===== Functions to interface to the older kernels ================== */
/*
* Try to open a packet socket using the old kernel interface.
* Returns 1 on success and a PCAP_ERROR_ value on an error.
*/
static int
activate_old(pcap_t *handle)
{
int arptype;
struct ifreq ifr;
const char *device = handle->opt.source;
struct utsname utsname;
int mtu;
/* Open the socket */
handle->fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL));
if (handle->fd == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"socket: %s", pcap_strerror(errno));
return PCAP_ERROR_PERM_DENIED;
}
/* It worked - we are using the old interface */
handle->md.sock_packet = 1;
/* ...which means we get the link-layer header. */
handle->md.cooked = 0;
/* Bind to the given device */
if (!device) {
strncpy(handle->errbuf, "pcap_activate: The \"any\" device isn't supported on 2.0[.x]-kernel systems",
PCAP_ERRBUF_SIZE);
return PCAP_ERROR;
}
if (iface_bind_old(handle->fd, device, handle->errbuf) == -1)
return PCAP_ERROR;
/*
* Try to get the link-layer type.
*/
arptype = iface_get_arptype(handle->fd, device, handle->errbuf);
if (arptype < 0)
return PCAP_ERROR;
/*
* Try to find the DLT_ type corresponding to that
* link-layer type.
*/
map_arphrd_to_dlt(handle, arptype, 0);
if (handle->linktype == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"unknown arptype %d", arptype);
return PCAP_ERROR;
}
/* Go to promisc mode if requested */
if (handle->opt.promisc) {
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"SIOCGIFFLAGS: %s", pcap_strerror(errno));
return PCAP_ERROR;
}
if ((ifr.ifr_flags & IFF_PROMISC) == 0) {
/*
* Promiscuous mode isn't currently on,
* so turn it on, and remember that
* we should turn it off when the
* pcap_t is closed.
*/
/*
* If we haven't already done so, arrange
* to have "pcap_close_all()" called when
* we exit.
*/
if (!pcap_do_addexit(handle)) {
/*
* "atexit()" failed; don't put
* the interface in promiscuous
* mode, just give up.
*/
return PCAP_ERROR;
}
ifr.ifr_flags |= IFF_PROMISC;
if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"SIOCSIFFLAGS: %s",
pcap_strerror(errno));
return PCAP_ERROR;
}
handle->md.must_clear |= MUST_CLEAR_PROMISC;
/*
* Add this to the list of pcaps
* to close when we exit.
*/
pcap_add_to_pcaps_to_close(handle);
}
}
/*
* Compute the buffer size.
*
* We're using SOCK_PACKET, so this might be a 2.0[.x]
* kernel, and might require special handling - check.
*/
if (uname(&utsname) < 0 ||
strncmp(utsname.release, "2.0", 3) == 0) {
/*
* Either we couldn't find out what kernel release
* this is, or it's a 2.0[.x] kernel.
*
* In the 2.0[.x] kernel, a "recvfrom()" on
* a SOCK_PACKET socket, with MSG_TRUNC set, will
* return the number of bytes read, so if we pass
* a length based on the snapshot length, it'll
* return the number of bytes from the packet
* copied to userland, not the actual length
* of the packet.
*
* This means that, for example, the IP dissector
* in tcpdump will get handed a packet length less
* than the length in the IP header, and will
* complain about "truncated-ip".
*
* So we don't bother trying to copy from the
* kernel only the bytes in which we're interested,
* but instead copy them all, just as the older
* versions of libpcap for Linux did.
*
* The buffer therefore needs to be big enough to
* hold the largest packet we can get from this
* device. Unfortunately, we can't get the MRU
* of the network; we can only get the MTU. The
* MTU may be too small, in which case a packet larger
* than the buffer size will be truncated *and* we
* won't get the actual packet size.
*
* However, if the snapshot length is larger than
* the buffer size based on the MTU, we use the
* snapshot length as the buffer size, instead;
* this means that with a sufficiently large snapshot
* length we won't artificially truncate packets
* to the MTU-based size.
*
* This mess just one of many problems with packet
* capture on 2.0[.x] kernels; you really want a
* 2.2[.x] or later kernel if you want packet capture
* to work well.
*/
mtu = iface_get_mtu(handle->fd, device, handle->errbuf);
if (mtu == -1)
return PCAP_ERROR;
handle->bufsize = MAX_LINKHEADER_SIZE + mtu;
if (handle->bufsize < handle->snapshot)
handle->bufsize = handle->snapshot;
} else {
/*
* This is a 2.2[.x] or later kernel.
*
* We can safely pass "recvfrom()" a byte count
* based on the snapshot length.
*/
handle->bufsize = handle->snapshot;
}
/*
* Default value for offset to align link-layer payload
* on a 4-byte boundary.
*/
handle->offset = 0;
return 1;
}
/*
* Bind the socket associated with FD to the given device using the
* interface of the old kernels.
*/
static int
iface_bind_old(int fd, const char *device, char *ebuf)
{
struct sockaddr saddr;
int err;
socklen_t errlen = sizeof(err);
memset(&saddr, 0, sizeof(saddr));
strncpy(saddr.sa_data, device, sizeof(saddr.sa_data));
if (bind(fd, &saddr, sizeof(saddr)) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"bind: %s", pcap_strerror(errno));
return -1;
}
/* Any pending errors, e.g., network is down? */
if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"getsockopt: %s", pcap_strerror(errno));
return -1;
}
if (err > 0) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"bind: %s", pcap_strerror(err));
return -1;
}
return 0;
}
/* ===== System calls available on all supported kernels ============== */
/*
* Query the kernel for the MTU of the given interface.
*/
static int
iface_get_mtu(int fd, const char *device, char *ebuf)
{
struct ifreq ifr;
if (!device)
return BIGGER_THAN_ALL_MTUS;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"SIOCGIFMTU: %s", pcap_strerror(errno));
return -1;
}
return ifr.ifr_mtu;
}
/*
* Get the hardware type of the given interface as ARPHRD_xxx constant.
*/
static int
iface_get_arptype(int fd, const char *device, char *ebuf)
{
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"SIOCGIFHWADDR: %s", pcap_strerror(errno));
if (errno == ENODEV) {
/*
* No such device.
*/
return PCAP_ERROR_NO_SUCH_DEVICE;
}
return PCAP_ERROR;
}
return ifr.ifr_hwaddr.sa_family;
}
#ifdef SO_ATTACH_FILTER
static int
fix_program(pcap_t *handle, struct sock_fprog *fcode)
{
size_t prog_size;
register int i;
register struct bpf_insn *p;
struct bpf_insn *f;
int len;
/*
* Make a copy of the filter, and modify that copy if
* necessary.
*/
prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
len = handle->fcode.bf_len;
f = (struct bpf_insn *)malloc(prog_size);
if (f == NULL) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
return -1;
}
memcpy(f, handle->fcode.bf_insns, prog_size);
fcode->len = len;
fcode->filter = (struct sock_filter *) f;
for (i = 0; i < len; ++i) {
p = &f[i];
/*
* What type of instruction is this?
*/
switch (BPF_CLASS(p->code)) {
case BPF_RET:
/*
* It's a return instruction; is the snapshot
* length a constant, rather than the contents
* of the accumulator?
*/
if (BPF_MODE(p->code) == BPF_K) {
/*
* Yes - if the value to be returned,
* i.e. the snapshot length, is anything
* other than 0, make it 65535, so that
* the packet is truncated by "recvfrom()",
* not by the filter.
*
* XXX - there's nothing we can easily do
* if it's getting the value from the
* accumulator; we'd have to insert
* code to force non-zero values to be
* 65535.
*/
if (p->k != 0)
p->k = 65535;
}
break;
case BPF_LD:
case BPF_LDX:
/*
* It's a load instruction; is it loading
* from the packet?
*/
switch (BPF_MODE(p->code)) {
case BPF_ABS:
case BPF_IND:
case BPF_MSH:
/*
* Yes; are we in cooked mode?
*/
if (handle->md.cooked) {
/*
* Yes, so we need to fix this
* instruction.
*/
if (fix_offset(p) < 0) {
/*
* We failed to do so.
* Return 0, so our caller
* knows to punt to userland.
*/
return 0;
}
}
break;
}
break;
}
}
return 1; /* we succeeded */
}
static int
fix_offset(struct bpf_insn *p)
{
/*
* What's the offset?
*/
if (p->k >= SLL_HDR_LEN) {
/*
* It's within the link-layer payload; that starts at an
* offset of 0, as far as the kernel packet filter is
* concerned, so subtract the length of the link-layer
* header.
*/
p->k -= SLL_HDR_LEN;
} else if (p->k == 14) {
/*
* It's the protocol field; map it to the special magic
* kernel offset for that field.
*/
p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
} else {
/*
* It's within the header, but it's not one of those
* fields; we can't do that in the kernel, so punt
* to userland.
*/
return -1;
}
return 0;
}
static int
set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
{
int total_filter_on = 0;
int save_mode;
int ret;
int save_errno;
/*
* The socket filter code doesn't discard all packets queued
* up on the socket when the filter is changed; this means
* that packets that don't match the new filter may show up
* after the new filter is put onto the socket, if those
* packets haven't yet been read.
*
* This means, for example, that if you do a tcpdump capture
* with a filter, the first few packets in the capture might
* be packets that wouldn't have passed the filter.
*
* We therefore discard all packets queued up on the socket
* when setting a kernel filter. (This isn't an issue for
* userland filters, as the userland filtering is done after
* packets are queued up.)
*
* To flush those packets, we put the socket in read-only mode,
* and read packets from the socket until there are no more to
* read.
*
* In order to keep that from being an infinite loop - i.e.,
* to keep more packets from arriving while we're draining
* the queue - we put the "total filter", which is a filter
* that rejects all packets, onto the socket before draining
* the queue.
*
* This code deliberately ignores any errors, so that you may
* get bogus packets if an error occurs, rather than having
* the filtering done in userland even if it could have been
* done in the kernel.
*/
if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
&total_fcode, sizeof(total_fcode)) == 0) {
char drain[1];
/*
* Note that we've put the total filter onto the socket.
*/
total_filter_on = 1;
/*
* Save the socket's current mode, and put it in
* non-blocking mode; we drain it by reading packets
* until we get an error (which is normally a
* "nothing more to be read" error).
*/
save_mode = fcntl(handle->fd, F_GETFL, 0);
if (save_mode != -1 &&
fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) >= 0) {
while (recv(handle->fd, &drain, sizeof drain,
MSG_TRUNC) >= 0)
;
save_errno = errno;
fcntl(handle->fd, F_SETFL, save_mode);
if (save_errno != EAGAIN) {
/* Fatal error */
reset_kernel_filter(handle);
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"recv: %s", pcap_strerror(save_errno));
return -2;
}
}
}
/*
* Now attach the new filter.
*/
ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
fcode, sizeof(*fcode));
if (ret == -1 && total_filter_on) {
/*
* Well, we couldn't set that filter on the socket,
* but we could set the total filter on the socket.
*
* This could, for example, mean that the filter was
* too big to put into the kernel, so we'll have to
* filter in userland; in any case, we'll be doing
* filtering in userland, so we need to remove the
* total filter so we see packets.
*/
save_errno = errno;
/*
* XXX - if this fails, we're really screwed;
* we have the total filter on the socket,
* and it won't come off. What do we do then?
*/
reset_kernel_filter(handle);
errno = save_errno;
}
return ret;
}
static int
reset_kernel_filter(pcap_t *handle)
{
/*
* setsockopt() barfs unless it get a dummy parameter.
* valgrind whines unless the value is initialized,
* as it has no idea that setsockopt() ignores its
* parameter.
*/
int dummy = 0;
return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
&dummy, sizeof(dummy));
}
#endif