freebsd-nq/sys/ufs/ffs
Konstantin Belousov 9316467d05 FFS puts the extended attributes blocks at the negative blocks for the
vnode, from -1 down. When vinvalbuf(vp, V_ALT) is done for the vnode, it
incorrectly does vm_object_page_remove(0, 0), removing all pages from
the underlying vm object, not only the pages that back the extended
attributes data.

Change vinvalbuf() to not remove any pages from the object when
V_NORMAL or V_ALT are specified. Instead, the only in-tree caller
in ffs_inode.c:ffs_truncate() that specifies V_ALT explicitely
removes the corresponding page range. The V_NORMAL caller
does vnode_pager_setsize(vp, 0) immediately after the call to
vinvalbuf(V_NORMAL) already.

Reported by:	csjp
Reviewed by:	ups
MFC after:	3 weeks
2009-01-20 11:27:45 +00:00
..
ffs_alloc.c In ffs_valloc(), ffs_vget() may fail because insmntque() refused to 2008-08-28 09:19:50 +00:00
ffs_balloc.c The ffs_balloc_ufs{1,2} functions call bdwrite() while having several 2008-07-23 14:32:44 +00:00
ffs_extern.h When attempt is made to suspend a filesystem that is already syspended, 2008-09-16 11:51:06 +00:00
ffs_inode.c FFS puts the extended attributes blocks at the negative blocks for the 2009-01-20 11:27:45 +00:00
ffs_rawread.c - Complete part of the unfinished bufobj work by consistently using 2008-03-22 09:15:16 +00:00
ffs_snapshot.c For now on every 10 cyclinder groups flush the buffer cache to free 2008-11-13 17:40:21 +00:00
ffs_softdep.c Improve VFS locking: 2008-11-02 10:15:42 +00:00
ffs_subr.c
ffs_tables.c
ffs_vfsops.c If unmount of the ffs mp failed, reinitialize the extended attributes 2009-01-08 12:48:27 +00:00
ffs_vnops.c Assert that v_holdcnt is non-zero before entering lockmgr in vn_lock 2008-10-20 10:11:33 +00:00
fs.h Fix comments to replace SBSIZE with SBLOCKSIZE, since SBSIZE 2008-05-24 20:44:14 +00:00
README.snapshot
softdep.h - Move softdep from using a global worklist to per-mount worklists. This 2006-03-02 05:50:23 +00:00

$FreeBSD$

Soft Updates Status

As is detailed in the operational information below, snapshots
are definitely alpha-test code and are NOT yet ready for production
use. Much remains to be done to make them really useful, but I
wanted to let folks get a chance to try it out and start reporting
bugs and other shortcomings. Such reports should be sent to
Kirk McKusick <mckusick@mckusick.com>.


Snapshot Copyright Restrictions

Snapshots have been introduced to FreeBSD with a `Berkeley-style'
copyright. The file implementing snapshots resides in the sys/ufs/ffs
directory and is compiled into the generic kernel by default.


Using Snapshots

To create a snapshot of your /var filesystem, run the command:

	mount -u -o snapshot /var/snapshot/snap1 /var

This command will take a snapshot of your /var filesystem and
leave it in the file /var/snapshot/snap1. Note that snapshot
files must be created in the filesystem that is being snapshotted.
I use the convention of putting a `snapshot' directory at the
root of each filesystem into which I can place snapshots.
You may create up to 20 snapshots per filesystem. Active snapshots
are recorded in the superblock, so they persist across unmount
and remount operations and across system reboots. When you
are done with a snapshot, it can be removed with the `rm'
command. Snapshots may be removed in any order, however you
may not get back all the space contained in the snapshot as
another snapshot may claim some of the blocks that it is releasing. 
Note that the `schg' flag is set on snapshots to ensure that
not even the root user can write to them. The unlink command
makes an exception for snapshot files in that it allows them
to be removed even though they have the `schg' flag set, so it
is not necessary to clear the `schg' flag before removing a
snapshot file.

Once you have taken a snapshot, there are three interesting
things that you can do with it:

1) Run fsck on the snapshot file. Assuming that the filesystem
   was clean when it was mounted, you should always get a clean
   (and unchanging) result from running fsck on the snapshot.
   If you are running with soft updates and rebooted after a
   crash without cleaning up the filesystem, then fsck of the
   snapshot may find missing blocks and inodes or inodes with
   link counts that are too high. I have not yet added the
   system calls to allow fsck to add these missing resources
   back to the filesystem - that will be added once the basic
   snapshot code is working properly. So, view those reports
   as informational for now.

2) Run dump on the snapshot. You will get a dump that is
   consistent with the filesystem as of the timestamp of the
   snapshot.

3) Mount the snapshot as a frozen image of the filesystem.
   To mount the snapshot /var/snapshot/snap1:

	mdconfig -a -t vnode -f /var/snapshot/snap1 -u 4
	mount -r /dev/md4 /mnt

   You can now cruise around your frozen /var filesystem
   at /mnt. Everything will be in the same state that it
   was at the time the snapshot was taken. The one exception
   is that any earlier snapshots will appear as zero length
   files. When you are done with the mounted snapshot:

	umount /mnt
	mdconfig -d -u 4

   Note that under some circumstances, the process accessing
   the frozen filesystem may deadlock. I am aware of this
   problem, but the solution is not simple. It requires
   using buffer read locks rather than exclusive locks when
   traversing the inode indirect blocks. Until this problem
   is fixed, you should avoid putting mounted snapshots into
   production.


Performance

It takes about 30 seconds to create a snapshot of an 8Gb filesystem.
Of that time 25 seconds is spent in preparation; filesystem activity
is only suspended for the final 5 seconds of that period. Snapshot
removal of an 8Gb filesystem takes about two minutes. Filesystem
activity is never suspended during snapshot removal.

The suspend time may be expanded by several minutes if a process
is in the midst of removing many files as all the soft updates
backlog must be cleared. Generally snapshots do not slow the system
down appreciably except when removing many small files (i.e., any
file less than 96Kb whose last block is a fragment) that are claimed
by a snapshot. Here, the snapshot code must make a copy of every
released fragment which slows the rate of file removal to about
twenty files per second once the soft updates backlog limit is
reached.


How Snapshots Work

For more general information on snapshots, please see:
	http://www.mckusick.com/softdep/