2014-09-19 03:51:26 +00:00

1827 lines
51 KiB
C

/*-
* Copyright (c) 2012-2014 Thomas Skibo <thomasskibo@yahoo.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* A network interface driver for Cadence GEM Gigabit Ethernet
* interface such as the one used in Xilinx Zynq-7000 SoC.
*
* Reference: Zynq-7000 All Programmable SoC Technical Reference Manual.
* (v1.4) November 16, 2012. Xilinx doc UG585. GEM is covered in Ch. 16
* and register definitions are in appendix B.18.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_mib.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/cadence/if_cgem_hw.h>
#include "miibus_if.h"
#define IF_CGEM_NAME "cgem"
#define CGEM_NUM_RX_DESCS 512 /* size of receive descriptor ring */
#define CGEM_NUM_TX_DESCS 512 /* size of transmit descriptor ring */
#define MAX_DESC_RING_SIZE (MAX(CGEM_NUM_RX_DESCS*sizeof(struct cgem_rx_desc),\
CGEM_NUM_TX_DESCS*sizeof(struct cgem_tx_desc)))
/* Default for sysctl rxbufs. Must be < CGEM_NUM_RX_DESCS of course. */
#define DEFAULT_NUM_RX_BUFS 256 /* number of receive bufs to queue. */
#define TX_MAX_DMA_SEGS 8 /* maximum segs in a tx mbuf dma */
#define CGEM_CKSUM_ASSIST (CSUM_IP | CSUM_TCP | CSUM_UDP | \
CSUM_TCP_IPV6 | CSUM_UDP_IPV6)
struct cgem_softc {
struct ifnet *ifp;
struct mtx sc_mtx;
device_t dev;
device_t miibus;
u_int mii_media_active; /* last active media */
int if_old_flags;
struct resource *mem_res;
struct resource *irq_res;
void *intrhand;
struct callout tick_ch;
uint32_t net_ctl_shadow;
int ref_clk_num;
u_char eaddr[6];
bus_dma_tag_t desc_dma_tag;
bus_dma_tag_t mbuf_dma_tag;
/* receive descriptor ring */
struct cgem_rx_desc *rxring;
bus_addr_t rxring_physaddr;
struct mbuf *rxring_m[CGEM_NUM_RX_DESCS];
bus_dmamap_t rxring_m_dmamap[CGEM_NUM_RX_DESCS];
int rxring_hd_ptr; /* where to put rcv bufs */
int rxring_tl_ptr; /* where to get receives */
int rxring_queued; /* how many rcv bufs queued */
bus_dmamap_t rxring_dma_map;
int rxbufs; /* tunable number rcv bufs */
int rxhangwar; /* rx hang work-around */
u_int rxoverruns; /* rx overruns */
u_int rxnobufs; /* rx buf ring empty events */
u_int rxdmamapfails; /* rx dmamap failures */
uint32_t rx_frames_prev;
/* transmit descriptor ring */
struct cgem_tx_desc *txring;
bus_addr_t txring_physaddr;
struct mbuf *txring_m[CGEM_NUM_TX_DESCS];
bus_dmamap_t txring_m_dmamap[CGEM_NUM_TX_DESCS];
int txring_hd_ptr; /* where to put next xmits */
int txring_tl_ptr; /* next xmit mbuf to free */
int txring_queued; /* num xmits segs queued */
bus_dmamap_t txring_dma_map;
u_int txfull; /* tx ring full events */
u_int txdefrags; /* tx calls to m_defrag() */
u_int txdefragfails; /* tx m_defrag() failures */
u_int txdmamapfails; /* tx dmamap failures */
/* hardware provided statistics */
struct cgem_hw_stats {
uint64_t tx_bytes;
uint32_t tx_frames;
uint32_t tx_frames_bcast;
uint32_t tx_frames_multi;
uint32_t tx_frames_pause;
uint32_t tx_frames_64b;
uint32_t tx_frames_65to127b;
uint32_t tx_frames_128to255b;
uint32_t tx_frames_256to511b;
uint32_t tx_frames_512to1023b;
uint32_t tx_frames_1024to1536b;
uint32_t tx_under_runs;
uint32_t tx_single_collisn;
uint32_t tx_multi_collisn;
uint32_t tx_excsv_collisn;
uint32_t tx_late_collisn;
uint32_t tx_deferred_frames;
uint32_t tx_carrier_sense_errs;
uint64_t rx_bytes;
uint32_t rx_frames;
uint32_t rx_frames_bcast;
uint32_t rx_frames_multi;
uint32_t rx_frames_pause;
uint32_t rx_frames_64b;
uint32_t rx_frames_65to127b;
uint32_t rx_frames_128to255b;
uint32_t rx_frames_256to511b;
uint32_t rx_frames_512to1023b;
uint32_t rx_frames_1024to1536b;
uint32_t rx_frames_undersize;
uint32_t rx_frames_oversize;
uint32_t rx_frames_jabber;
uint32_t rx_frames_fcs_errs;
uint32_t rx_frames_length_errs;
uint32_t rx_symbol_errs;
uint32_t rx_align_errs;
uint32_t rx_resource_errs;
uint32_t rx_overrun_errs;
uint32_t rx_ip_hdr_csum_errs;
uint32_t rx_tcp_csum_errs;
uint32_t rx_udp_csum_errs;
} stats;
};
#define RD4(sc, off) (bus_read_4((sc)->mem_res, (off)))
#define WR4(sc, off, val) (bus_write_4((sc)->mem_res, (off), (val)))
#define BARRIER(sc, off, len, flags) \
(bus_barrier((sc)->mem_res, (off), (len), (flags))
#define CGEM_LOCK(sc) mtx_lock(&(sc)->sc_mtx)
#define CGEM_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx)
#define CGEM_LOCK_INIT(sc) \
mtx_init(&(sc)->sc_mtx, device_get_nameunit((sc)->dev), \
MTX_NETWORK_LOCK, MTX_DEF)
#define CGEM_LOCK_DESTROY(sc) mtx_destroy(&(sc)->sc_mtx)
#define CGEM_ASSERT_LOCKED(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED)
/* Allow platforms to optionally provide a way to set the reference clock. */
int cgem_set_ref_clk(int unit, int frequency);
static devclass_t cgem_devclass;
static int cgem_probe(device_t dev);
static int cgem_attach(device_t dev);
static int cgem_detach(device_t dev);
static void cgem_tick(void *);
static void cgem_intr(void *);
static void cgem_mediachange(struct cgem_softc *, struct mii_data *);
static void
cgem_get_mac(struct cgem_softc *sc, u_char eaddr[])
{
int i;
uint32_t rnd;
/* See if boot loader gave us a MAC address already. */
for (i = 0; i < 4; i++) {
uint32_t low = RD4(sc, CGEM_SPEC_ADDR_LOW(i));
uint32_t high = RD4(sc, CGEM_SPEC_ADDR_HI(i)) & 0xffff;
if (low != 0 || high != 0) {
eaddr[0] = low & 0xff;
eaddr[1] = (low >> 8) & 0xff;
eaddr[2] = (low >> 16) & 0xff;
eaddr[3] = (low >> 24) & 0xff;
eaddr[4] = high & 0xff;
eaddr[5] = (high >> 8) & 0xff;
break;
}
}
/* No MAC from boot loader? Assign a random one. */
if (i == 4) {
rnd = arc4random();
eaddr[0] = 'b';
eaddr[1] = 's';
eaddr[2] = 'd';
eaddr[3] = (rnd >> 16) & 0xff;
eaddr[4] = (rnd >> 8) & 0xff;
eaddr[5] = rnd & 0xff;
device_printf(sc->dev, "no mac address found, assigning "
"random: %02x:%02x:%02x:%02x:%02x:%02x\n",
eaddr[0], eaddr[1], eaddr[2],
eaddr[3], eaddr[4], eaddr[5]);
}
/* Move address to first slot and zero out the rest. */
WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) |
(eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]);
WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]);
for (i = 1; i < 4; i++) {
WR4(sc, CGEM_SPEC_ADDR_LOW(i), 0);
WR4(sc, CGEM_SPEC_ADDR_HI(i), 0);
}
}
/* cgem_mac_hash(): map 48-bit address to a 6-bit hash.
* The 6-bit hash corresponds to a bit in a 64-bit hash
* register. Setting that bit in the hash register enables
* reception of all frames with a destination address that hashes
* to that 6-bit value.
*
* The hash function is described in sec. 16.2.3 in the Zynq-7000 Tech
* Reference Manual. Bits 0-5 in the hash are the exclusive-or of
* every sixth bit in the destination address.
*/
static int
cgem_mac_hash(u_char eaddr[])
{
int hash;
int i, j;
hash = 0;
for (i = 0; i < 6; i++)
for (j = i; j < 48; j += 6)
if ((eaddr[j >> 3] & (1 << (j & 7))) != 0)
hash ^= (1 << i);
return hash;
}
/* After any change in rx flags or multi-cast addresses, set up
* hash registers and net config register bits.
*/
static void
cgem_rx_filter(struct cgem_softc *sc)
{
struct ifnet *ifp = sc->ifp;
struct ifmultiaddr *ifma;
int index;
uint32_t hash_hi, hash_lo;
uint32_t net_cfg;
hash_hi = 0;
hash_lo = 0;
net_cfg = RD4(sc, CGEM_NET_CFG);
net_cfg &= ~(CGEM_NET_CFG_MULTI_HASH_EN |
CGEM_NET_CFG_NO_BCAST |
CGEM_NET_CFG_COPY_ALL);
if ((ifp->if_flags & IFF_PROMISC) != 0)
net_cfg |= CGEM_NET_CFG_COPY_ALL;
else {
if ((ifp->if_flags & IFF_BROADCAST) == 0)
net_cfg |= CGEM_NET_CFG_NO_BCAST;
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
hash_hi = 0xffffffff;
hash_lo = 0xffffffff;
} else {
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
index = cgem_mac_hash(
LLADDR((struct sockaddr_dl *)
ifma->ifma_addr));
if (index > 31)
hash_hi |= (1<<(index-32));
else
hash_lo |= (1<<index);
}
if_maddr_runlock(ifp);
}
if (hash_hi != 0 || hash_lo != 0)
net_cfg |= CGEM_NET_CFG_MULTI_HASH_EN;
}
WR4(sc, CGEM_HASH_TOP, hash_hi);
WR4(sc, CGEM_HASH_BOT, hash_lo);
WR4(sc, CGEM_NET_CFG, net_cfg);
}
/* For bus_dmamap_load() callback. */
static void
cgem_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (nsegs != 1 || error != 0)
return;
*(bus_addr_t *)arg = segs[0].ds_addr;
}
/* Create DMA'able descriptor rings. */
static int
cgem_setup_descs(struct cgem_softc *sc)
{
int i, err;
sc->txring = NULL;
sc->rxring = NULL;
/* Allocate non-cached DMA space for RX and TX descriptors.
*/
err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
MAX_DESC_RING_SIZE,
1,
MAX_DESC_RING_SIZE,
0,
busdma_lock_mutex,
&sc->sc_mtx,
&sc->desc_dma_tag);
if (err)
return (err);
/* Set up a bus_dma_tag for mbufs. */
err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR,
NULL, NULL,
MCLBYTES,
TX_MAX_DMA_SEGS,
MCLBYTES,
0,
busdma_lock_mutex,
&sc->sc_mtx,
&sc->mbuf_dma_tag);
if (err)
return (err);
/* Allocate DMA memory in non-cacheable space. */
err = bus_dmamem_alloc(sc->desc_dma_tag,
(void **)&sc->rxring,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&sc->rxring_dma_map);
if (err)
return (err);
/* Load descriptor DMA memory. */
err = bus_dmamap_load(sc->desc_dma_tag, sc->rxring_dma_map,
(void *)sc->rxring,
CGEM_NUM_RX_DESCS*sizeof(struct cgem_rx_desc),
cgem_getaddr, &sc->rxring_physaddr,
BUS_DMA_NOWAIT);
if (err)
return (err);
/* Initialize RX descriptors. */
for (i = 0; i < CGEM_NUM_RX_DESCS; i++) {
sc->rxring[i].addr = CGEM_RXDESC_OWN;
sc->rxring[i].ctl = 0;
sc->rxring_m[i] = NULL;
err = bus_dmamap_create(sc->mbuf_dma_tag, 0,
&sc->rxring_m_dmamap[i]);
if (err)
return (err);
}
sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP;
sc->rxring_hd_ptr = 0;
sc->rxring_tl_ptr = 0;
sc->rxring_queued = 0;
/* Allocate DMA memory for TX descriptors in non-cacheable space. */
err = bus_dmamem_alloc(sc->desc_dma_tag,
(void **)&sc->txring,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&sc->txring_dma_map);
if (err)
return (err);
/* Load TX descriptor DMA memory. */
err = bus_dmamap_load(sc->desc_dma_tag, sc->txring_dma_map,
(void *)sc->txring,
CGEM_NUM_TX_DESCS*sizeof(struct cgem_tx_desc),
cgem_getaddr, &sc->txring_physaddr,
BUS_DMA_NOWAIT);
if (err)
return (err);
/* Initialize TX descriptor ring. */
for (i = 0; i < CGEM_NUM_TX_DESCS; i++) {
sc->txring[i].addr = 0;
sc->txring[i].ctl = CGEM_TXDESC_USED;
sc->txring_m[i] = NULL;
err = bus_dmamap_create(sc->mbuf_dma_tag, 0,
&sc->txring_m_dmamap[i]);
if (err)
return (err);
}
sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP;
sc->txring_hd_ptr = 0;
sc->txring_tl_ptr = 0;
sc->txring_queued = 0;
return (0);
}
/* Fill receive descriptor ring with mbufs. */
static void
cgem_fill_rqueue(struct cgem_softc *sc)
{
struct mbuf *m = NULL;
bus_dma_segment_t segs[TX_MAX_DMA_SEGS];
int nsegs;
CGEM_ASSERT_LOCKED(sc);
while (sc->rxring_queued < sc->rxbufs) {
/* Get a cluster mbuf. */
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
break;
m->m_len = MCLBYTES;
m->m_pkthdr.len = MCLBYTES;
m->m_pkthdr.rcvif = sc->ifp;
/* Load map and plug in physical address. */
if (bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[sc->rxring_hd_ptr], m,
segs, &nsegs, BUS_DMA_NOWAIT)) {
sc->rxdmamapfails++;
m_free(m);
break;
}
sc->rxring_m[sc->rxring_hd_ptr] = m;
/* Sync cache with receive buffer. */
bus_dmamap_sync(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[sc->rxring_hd_ptr],
BUS_DMASYNC_PREREAD);
/* Write rx descriptor and increment head pointer. */
sc->rxring[sc->rxring_hd_ptr].ctl = 0;
if (sc->rxring_hd_ptr == CGEM_NUM_RX_DESCS - 1) {
sc->rxring[sc->rxring_hd_ptr].addr = segs[0].ds_addr |
CGEM_RXDESC_WRAP;
sc->rxring_hd_ptr = 0;
} else
sc->rxring[sc->rxring_hd_ptr++].addr = segs[0].ds_addr;
sc->rxring_queued++;
}
}
/* Pull received packets off of receive descriptor ring. */
static void
cgem_recv(struct cgem_softc *sc)
{
struct ifnet *ifp = sc->ifp;
struct mbuf *m, *m_hd, **m_tl;
uint32_t ctl;
CGEM_ASSERT_LOCKED(sc);
/* Pick up all packets in which the OWN bit is set. */
m_hd = NULL;
m_tl = &m_hd;
while (sc->rxring_queued > 0 &&
(sc->rxring[sc->rxring_tl_ptr].addr & CGEM_RXDESC_OWN) != 0) {
ctl = sc->rxring[sc->rxring_tl_ptr].ctl;
/* Grab filled mbuf. */
m = sc->rxring_m[sc->rxring_tl_ptr];
sc->rxring_m[sc->rxring_tl_ptr] = NULL;
/* Sync cache with receive buffer. */
bus_dmamap_sync(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[sc->rxring_tl_ptr],
BUS_DMASYNC_POSTREAD);
/* Unload dmamap. */
bus_dmamap_unload(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[sc->rxring_tl_ptr]);
/* Increment tail pointer. */
if (++sc->rxring_tl_ptr == CGEM_NUM_RX_DESCS)
sc->rxring_tl_ptr = 0;
sc->rxring_queued--;
/* Check FCS and make sure entire packet landed in one mbuf
* cluster (which is much bigger than the largest ethernet
* packet).
*/
if ((ctl & CGEM_RXDESC_BAD_FCS) != 0 ||
(ctl & (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) !=
(CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) {
/* discard. */
m_free(m);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
continue;
}
/* Ready it to hand off to upper layers. */
m->m_data += ETHER_ALIGN;
m->m_len = (ctl & CGEM_RXDESC_LENGTH_MASK);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len;
/* Are we using hardware checksumming? Check the
* status in the receive descriptor.
*/
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
/* TCP or UDP checks out, IP checks out too. */
if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
CGEM_RXDESC_CKSUM_STAT_TCP_GOOD ||
(ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
CGEM_RXDESC_CKSUM_STAT_UDP_GOOD) {
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
} else if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) ==
CGEM_RXDESC_CKSUM_STAT_IP_GOOD) {
/* Only IP checks out. */
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED | CSUM_IP_VALID;
m->m_pkthdr.csum_data = 0xffff;
}
}
/* Queue it up for delivery below. */
*m_tl = m;
m_tl = &m->m_next;
}
/* Replenish receive buffers. */
cgem_fill_rqueue(sc);
/* Unlock and send up packets. */
CGEM_UNLOCK(sc);
while (m_hd != NULL) {
m = m_hd;
m_hd = m_hd->m_next;
m->m_next = NULL;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
(*ifp->if_input)(ifp, m);
}
CGEM_LOCK(sc);
}
/* Find completed transmits and free their mbufs. */
static void
cgem_clean_tx(struct cgem_softc *sc)
{
struct mbuf *m;
uint32_t ctl;
CGEM_ASSERT_LOCKED(sc);
/* free up finished transmits. */
while (sc->txring_queued > 0 &&
((ctl = sc->txring[sc->txring_tl_ptr].ctl) &
CGEM_TXDESC_USED) != 0) {
/* Sync cache. nop? */
bus_dmamap_sync(sc->mbuf_dma_tag,
sc->txring_m_dmamap[sc->txring_tl_ptr],
BUS_DMASYNC_POSTWRITE);
/* Unload DMA map. */
bus_dmamap_unload(sc->mbuf_dma_tag,
sc->txring_m_dmamap[sc->txring_tl_ptr]);
/* Free up the mbuf. */
m = sc->txring_m[sc->txring_tl_ptr];
sc->txring_m[sc->txring_tl_ptr] = NULL;
m_freem(m);
/* Check the status. */
if ((ctl & CGEM_TXDESC_AHB_ERR) != 0) {
/* Serious bus error. log to console. */
device_printf(sc->dev, "cgem_clean_tx: Whoa! "
"AHB error, addr=0x%x\n",
sc->txring[sc->txring_tl_ptr].addr);
} else if ((ctl & (CGEM_TXDESC_RETRY_ERR |
CGEM_TXDESC_LATE_COLL)) != 0) {
if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1);
} else
if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, 1);
/* If the packet spanned more than one tx descriptor,
* skip descriptors until we find the end so that only
* start-of-frame descriptors are processed.
*/
while ((ctl & CGEM_TXDESC_LAST_BUF) == 0) {
if ((ctl & CGEM_TXDESC_WRAP) != 0)
sc->txring_tl_ptr = 0;
else
sc->txring_tl_ptr++;
sc->txring_queued--;
ctl = sc->txring[sc->txring_tl_ptr].ctl;
sc->txring[sc->txring_tl_ptr].ctl =
ctl | CGEM_TXDESC_USED;
}
/* Next descriptor. */
if ((ctl & CGEM_TXDESC_WRAP) != 0)
sc->txring_tl_ptr = 0;
else
sc->txring_tl_ptr++;
sc->txring_queued--;
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
}
/* Start transmits. */
static void
cgem_start_locked(struct ifnet *ifp)
{
struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc;
struct mbuf *m;
bus_dma_segment_t segs[TX_MAX_DMA_SEGS];
uint32_t ctl;
int i, nsegs, wrap, err;
CGEM_ASSERT_LOCKED(sc);
if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) != 0)
return;
for (;;) {
/* Check that there is room in the descriptor ring. */
if (sc->txring_queued >=
CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) {
/* Try to make room. */
cgem_clean_tx(sc);
/* Still no room? */
if (sc->txring_queued >=
CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
sc->txfull++;
break;
}
}
/* Grab next transmit packet. */
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
/* Load DMA map. */
err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
sc->txring_m_dmamap[sc->txring_hd_ptr],
m, segs, &nsegs, BUS_DMA_NOWAIT);
if (err == EFBIG) {
/* Too many segments! defrag and try again. */
struct mbuf *m2 = m_defrag(m, M_NOWAIT);
if (m2 == NULL) {
sc->txdefragfails++;
m_freem(m);
continue;
}
m = m2;
err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag,
sc->txring_m_dmamap[sc->txring_hd_ptr],
m, segs, &nsegs, BUS_DMA_NOWAIT);
sc->txdefrags++;
}
if (err) {
/* Give up. */
m_freem(m);
sc->txdmamapfails++;
continue;
}
sc->txring_m[sc->txring_hd_ptr] = m;
/* Sync tx buffer with cache. */
bus_dmamap_sync(sc->mbuf_dma_tag,
sc->txring_m_dmamap[sc->txring_hd_ptr],
BUS_DMASYNC_PREWRITE);
/* Set wrap flag if next packet might run off end of ring. */
wrap = sc->txring_hd_ptr + nsegs + TX_MAX_DMA_SEGS >=
CGEM_NUM_TX_DESCS;
/* Fill in the TX descriptors back to front so that USED
* bit in first descriptor is cleared last.
*/
for (i = nsegs - 1; i >= 0; i--) {
/* Descriptor address. */
sc->txring[sc->txring_hd_ptr + i].addr =
segs[i].ds_addr;
/* Descriptor control word. */
ctl = segs[i].ds_len;
if (i == nsegs - 1) {
ctl |= CGEM_TXDESC_LAST_BUF;
if (wrap)
ctl |= CGEM_TXDESC_WRAP;
}
sc->txring[sc->txring_hd_ptr + i].ctl = ctl;
if (i != 0)
sc->txring_m[sc->txring_hd_ptr + i] = NULL;
}
if (wrap)
sc->txring_hd_ptr = 0;
else
sc->txring_hd_ptr += nsegs;
sc->txring_queued += nsegs;
/* Kick the transmitter. */
WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow |
CGEM_NET_CTRL_START_TX);
/* If there is a BPF listener, bounce a copy to to him. */
ETHER_BPF_MTAP(ifp, m);
}
}
static void
cgem_start(struct ifnet *ifp)
{
struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc;
CGEM_LOCK(sc);
cgem_start_locked(ifp);
CGEM_UNLOCK(sc);
}
static void
cgem_poll_hw_stats(struct cgem_softc *sc)
{
uint32_t n;
CGEM_ASSERT_LOCKED(sc);
sc->stats.tx_bytes += RD4(sc, CGEM_OCTETS_TX_BOT);
sc->stats.tx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_TX_TOP) << 32;
sc->stats.tx_frames += RD4(sc, CGEM_FRAMES_TX);
sc->stats.tx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_TX);
sc->stats.tx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_TX);
sc->stats.tx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_TX);
sc->stats.tx_frames_64b += RD4(sc, CGEM_FRAMES_64B_TX);
sc->stats.tx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_TX);
sc->stats.tx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_TX);
sc->stats.tx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_TX);
sc->stats.tx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_TX);
sc->stats.tx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_TX);
sc->stats.tx_under_runs += RD4(sc, CGEM_TX_UNDERRUNS);
n = RD4(sc, CGEM_SINGLE_COLL_FRAMES);
sc->stats.tx_single_collisn += n;
if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
n = RD4(sc, CGEM_MULTI_COLL_FRAMES);
sc->stats.tx_multi_collisn += n;
if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
n = RD4(sc, CGEM_EXCESSIVE_COLL_FRAMES);
sc->stats.tx_excsv_collisn += n;
if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
n = RD4(sc, CGEM_LATE_COLL);
sc->stats.tx_late_collisn += n;
if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n);
sc->stats.tx_deferred_frames += RD4(sc, CGEM_DEFERRED_TX_FRAMES);
sc->stats.tx_carrier_sense_errs += RD4(sc, CGEM_CARRIER_SENSE_ERRS);
sc->stats.rx_bytes += RD4(sc, CGEM_OCTETS_RX_BOT);
sc->stats.rx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_RX_TOP) << 32;
sc->stats.rx_frames += RD4(sc, CGEM_FRAMES_RX);
sc->stats.rx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_RX);
sc->stats.rx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_RX);
sc->stats.rx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_RX);
sc->stats.rx_frames_64b += RD4(sc, CGEM_FRAMES_64B_RX);
sc->stats.rx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_RX);
sc->stats.rx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_RX);
sc->stats.rx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_RX);
sc->stats.rx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_RX);
sc->stats.rx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_RX);
sc->stats.rx_frames_undersize += RD4(sc, CGEM_UNDERSZ_RX);
sc->stats.rx_frames_oversize += RD4(sc, CGEM_OVERSZ_RX);
sc->stats.rx_frames_jabber += RD4(sc, CGEM_JABBERS_RX);
sc->stats.rx_frames_fcs_errs += RD4(sc, CGEM_FCS_ERRS);
sc->stats.rx_frames_length_errs += RD4(sc, CGEM_LENGTH_FIELD_ERRS);
sc->stats.rx_symbol_errs += RD4(sc, CGEM_RX_SYMBOL_ERRS);
sc->stats.rx_align_errs += RD4(sc, CGEM_ALIGN_ERRS);
sc->stats.rx_resource_errs += RD4(sc, CGEM_RX_RESOURCE_ERRS);
sc->stats.rx_overrun_errs += RD4(sc, CGEM_RX_OVERRUN_ERRS);
sc->stats.rx_ip_hdr_csum_errs += RD4(sc, CGEM_IP_HDR_CKSUM_ERRS);
sc->stats.rx_tcp_csum_errs += RD4(sc, CGEM_TCP_CKSUM_ERRS);
sc->stats.rx_udp_csum_errs += RD4(sc, CGEM_UDP_CKSUM_ERRS);
}
static void
cgem_tick(void *arg)
{
struct cgem_softc *sc = (struct cgem_softc *)arg;
struct mii_data *mii;
CGEM_ASSERT_LOCKED(sc);
/* Poll the phy. */
if (sc->miibus != NULL) {
mii = device_get_softc(sc->miibus);
mii_tick(mii);
}
/* Poll statistics registers. */
cgem_poll_hw_stats(sc);
/* Check for receiver hang. */
if (sc->rxhangwar && sc->rx_frames_prev == sc->stats.rx_frames) {
/*
* Reset receiver logic by toggling RX_EN bit. 1usec
* delay is necessary especially when operating at 100mbps
* and 10mbps speeds.
*/
WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow &
~CGEM_NET_CTRL_RX_EN);
DELAY(1);
WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
}
sc->rx_frames_prev = sc->stats.rx_frames;
/* Next callout in one second. */
callout_reset(&sc->tick_ch, hz, cgem_tick, sc);
}
/* Interrupt handler. */
static void
cgem_intr(void *arg)
{
struct cgem_softc *sc = (struct cgem_softc *)arg;
uint32_t istatus;
CGEM_LOCK(sc);
if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
CGEM_UNLOCK(sc);
return;
}
/* Read interrupt status and immediately clear the bits. */
istatus = RD4(sc, CGEM_INTR_STAT);
WR4(sc, CGEM_INTR_STAT, istatus);
/* Packets received. */
if ((istatus & CGEM_INTR_RX_COMPLETE) != 0)
cgem_recv(sc);
/* Free up any completed transmit buffers. */
cgem_clean_tx(sc);
/* Hresp not ok. Something is very bad with DMA. Try to clear. */
if ((istatus & CGEM_INTR_HRESP_NOT_OK) != 0) {
device_printf(sc->dev, "cgem_intr: hresp not okay! "
"rx_status=0x%x\n", RD4(sc, CGEM_RX_STAT));
WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_HRESP_NOT_OK);
}
/* Receiver overrun. */
if ((istatus & CGEM_INTR_RX_OVERRUN) != 0) {
/* Clear status bit. */
WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_OVERRUN);
sc->rxoverruns++;
}
/* Receiver ran out of bufs. */
if ((istatus & CGEM_INTR_RX_USED_READ) != 0) {
WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow |
CGEM_NET_CTRL_FLUSH_DPRAM_PKT);
cgem_fill_rqueue(sc);
sc->rxnobufs++;
}
/* Restart transmitter if needed. */
if (!IFQ_DRV_IS_EMPTY(&sc->ifp->if_snd))
cgem_start_locked(sc->ifp);
CGEM_UNLOCK(sc);
}
/* Reset hardware. */
static void
cgem_reset(struct cgem_softc *sc)
{
CGEM_ASSERT_LOCKED(sc);
WR4(sc, CGEM_NET_CTRL, 0);
WR4(sc, CGEM_NET_CFG, 0);
WR4(sc, CGEM_NET_CTRL, CGEM_NET_CTRL_CLR_STAT_REGS);
WR4(sc, CGEM_TX_STAT, CGEM_TX_STAT_ALL);
WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_ALL);
WR4(sc, CGEM_INTR_DIS, CGEM_INTR_ALL);
WR4(sc, CGEM_HASH_BOT, 0);
WR4(sc, CGEM_HASH_TOP, 0);
WR4(sc, CGEM_TX_QBAR, 0); /* manual says do this. */
WR4(sc, CGEM_RX_QBAR, 0);
/* Get management port running even if interface is down. */
WR4(sc, CGEM_NET_CFG,
CGEM_NET_CFG_DBUS_WIDTH_32 |
CGEM_NET_CFG_MDC_CLK_DIV_64);
sc->net_ctl_shadow = CGEM_NET_CTRL_MGMT_PORT_EN;
WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
}
/* Bring up the hardware. */
static void
cgem_config(struct cgem_softc *sc)
{
uint32_t net_cfg;
uint32_t dma_cfg;
u_char *eaddr = IF_LLADDR(sc->ifp);
CGEM_ASSERT_LOCKED(sc);
/* Program Net Config Register. */
net_cfg = CGEM_NET_CFG_DBUS_WIDTH_32 |
CGEM_NET_CFG_MDC_CLK_DIV_64 |
CGEM_NET_CFG_FCS_REMOVE |
CGEM_NET_CFG_RX_BUF_OFFSET(ETHER_ALIGN) |
CGEM_NET_CFG_GIGE_EN |
CGEM_NET_CFG_1536RXEN |
CGEM_NET_CFG_FULL_DUPLEX |
CGEM_NET_CFG_SPEED100;
/* Enable receive checksum offloading? */
if ((sc->ifp->if_capenable & IFCAP_RXCSUM) != 0)
net_cfg |= CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN;
WR4(sc, CGEM_NET_CFG, net_cfg);
/* Program DMA Config Register. */
dma_cfg = CGEM_DMA_CFG_RX_BUF_SIZE(MCLBYTES) |
CGEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL_8K |
CGEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
CGEM_DMA_CFG_AHB_FIXED_BURST_LEN_16 |
CGEM_DMA_CFG_DISC_WHEN_NO_AHB;
/* Enable transmit checksum offloading? */
if ((sc->ifp->if_capenable & IFCAP_TXCSUM) != 0)
dma_cfg |= CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
WR4(sc, CGEM_DMA_CFG, dma_cfg);
/* Write the rx and tx descriptor ring addresses to the QBAR regs. */
WR4(sc, CGEM_RX_QBAR, (uint32_t) sc->rxring_physaddr);
WR4(sc, CGEM_TX_QBAR, (uint32_t) sc->txring_physaddr);
/* Enable rx and tx. */
sc->net_ctl_shadow |= (CGEM_NET_CTRL_TX_EN | CGEM_NET_CTRL_RX_EN);
WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow);
/* Set receive address in case it changed. */
WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) |
(eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]);
WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]);
/* Set up interrupts. */
WR4(sc, CGEM_INTR_EN,
CGEM_INTR_RX_COMPLETE | CGEM_INTR_RX_OVERRUN |
CGEM_INTR_TX_USED_READ | CGEM_INTR_RX_USED_READ |
CGEM_INTR_HRESP_NOT_OK);
}
/* Turn on interface and load up receive ring with buffers. */
static void
cgem_init_locked(struct cgem_softc *sc)
{
struct mii_data *mii;
CGEM_ASSERT_LOCKED(sc);
if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
cgem_config(sc);
cgem_fill_rqueue(sc);
sc->ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
mii = device_get_softc(sc->miibus);
mii_mediachg(mii);
callout_reset(&sc->tick_ch, hz, cgem_tick, sc);
}
static void
cgem_init(void *arg)
{
struct cgem_softc *sc = (struct cgem_softc *)arg;
CGEM_LOCK(sc);
cgem_init_locked(sc);
CGEM_UNLOCK(sc);
}
/* Turn off interface. Free up any buffers in transmit or receive queues. */
static void
cgem_stop(struct cgem_softc *sc)
{
int i;
CGEM_ASSERT_LOCKED(sc);
callout_stop(&sc->tick_ch);
/* Shut down hardware. */
cgem_reset(sc);
/* Clear out transmit queue. */
for (i = 0; i < CGEM_NUM_TX_DESCS; i++) {
sc->txring[i].ctl = CGEM_TXDESC_USED;
sc->txring[i].addr = 0;
if (sc->txring_m[i]) {
bus_dmamap_unload(sc->mbuf_dma_tag,
sc->txring_m_dmamap[i]);
m_freem(sc->txring_m[i]);
sc->txring_m[i] = NULL;
}
}
sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP;
sc->txring_hd_ptr = 0;
sc->txring_tl_ptr = 0;
sc->txring_queued = 0;
/* Clear out receive queue. */
for (i = 0; i < CGEM_NUM_RX_DESCS; i++) {
sc->rxring[i].addr = CGEM_RXDESC_OWN;
sc->rxring[i].ctl = 0;
if (sc->rxring_m[i]) {
/* Unload dmamap. */
bus_dmamap_unload(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[sc->rxring_tl_ptr]);
m_freem(sc->rxring_m[i]);
sc->rxring_m[i] = NULL;
}
}
sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP;
sc->rxring_hd_ptr = 0;
sc->rxring_tl_ptr = 0;
sc->rxring_queued = 0;
/* Force next statchg or linkchg to program net config register. */
sc->mii_media_active = 0;
}
static int
cgem_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct cgem_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct mii_data *mii;
int error = 0, mask;
switch (cmd) {
case SIOCSIFFLAGS:
CGEM_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->if_old_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) != 0) {
cgem_rx_filter(sc);
}
} else {
cgem_init_locked(sc);
}
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
cgem_stop(sc);
}
sc->if_old_flags = ifp->if_flags;
CGEM_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Set up multi-cast filters. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
CGEM_LOCK(sc);
cgem_rx_filter(sc);
CGEM_UNLOCK(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
CGEM_LOCK(sc);
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if ((mask & IFCAP_TXCSUM) != 0) {
if ((ifr->ifr_reqcap & IFCAP_TXCSUM) != 0) {
/* Turn on TX checksumming. */
ifp->if_capenable |= (IFCAP_TXCSUM |
IFCAP_TXCSUM_IPV6);
ifp->if_hwassist |= CGEM_CKSUM_ASSIST;
WR4(sc, CGEM_DMA_CFG,
RD4(sc, CGEM_DMA_CFG) |
CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN);
} else {
/* Turn off TX checksumming. */
ifp->if_capenable &= ~(IFCAP_TXCSUM |
IFCAP_TXCSUM_IPV6);
ifp->if_hwassist &= ~CGEM_CKSUM_ASSIST;
WR4(sc, CGEM_DMA_CFG,
RD4(sc, CGEM_DMA_CFG) &
~CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN);
}
}
if ((mask & IFCAP_RXCSUM) != 0) {
if ((ifr->ifr_reqcap & IFCAP_RXCSUM) != 0) {
/* Turn on RX checksumming. */
ifp->if_capenable |= (IFCAP_RXCSUM |
IFCAP_RXCSUM_IPV6);
WR4(sc, CGEM_NET_CFG,
RD4(sc, CGEM_NET_CFG) |
CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN);
} else {
/* Turn off RX checksumming. */
ifp->if_capenable &= ~(IFCAP_RXCSUM |
IFCAP_RXCSUM_IPV6);
WR4(sc, CGEM_NET_CFG,
RD4(sc, CGEM_NET_CFG) &
~CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN);
}
}
if ((ifp->if_capenable & (IFCAP_RXCSUM | IFCAP_TXCSUM)) ==
(IFCAP_RXCSUM | IFCAP_TXCSUM))
ifp->if_capenable |= IFCAP_VLAN_HWCSUM;
else
ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
CGEM_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
/* MII bus support routines.
*/
static void
cgem_child_detached(device_t dev, device_t child)
{
struct cgem_softc *sc = device_get_softc(dev);
if (child == sc->miibus)
sc->miibus = NULL;
}
static int
cgem_ifmedia_upd(struct ifnet *ifp)
{
struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc;
struct mii_data *mii;
struct mii_softc *miisc;
int error = 0;
mii = device_get_softc(sc->miibus);
CGEM_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
}
CGEM_UNLOCK(sc);
return (error);
}
static void
cgem_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct cgem_softc *sc = (struct cgem_softc *) ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
CGEM_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
CGEM_UNLOCK(sc);
}
static int
cgem_miibus_readreg(device_t dev, int phy, int reg)
{
struct cgem_softc *sc = device_get_softc(dev);
int tries, val;
WR4(sc, CGEM_PHY_MAINT,
CGEM_PHY_MAINT_CLAUSE_22 | CGEM_PHY_MAINT_MUST_10 |
CGEM_PHY_MAINT_OP_READ |
(phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) |
(reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT));
/* Wait for completion. */
tries=0;
while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) {
DELAY(5);
if (++tries > 200) {
device_printf(dev, "phy read timeout: %d\n", reg);
return (-1);
}
}
val = RD4(sc, CGEM_PHY_MAINT) & CGEM_PHY_MAINT_DATA_MASK;
if (reg == MII_EXTSR)
/*
* MAC does not support half-duplex at gig speeds.
* Let mii(4) exclude the capability.
*/
val &= ~(EXTSR_1000XHDX | EXTSR_1000THDX);
return (val);
}
static int
cgem_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct cgem_softc *sc = device_get_softc(dev);
int tries;
WR4(sc, CGEM_PHY_MAINT,
CGEM_PHY_MAINT_CLAUSE_22 | CGEM_PHY_MAINT_MUST_10 |
CGEM_PHY_MAINT_OP_WRITE |
(phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) |
(reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT) |
(data & CGEM_PHY_MAINT_DATA_MASK));
/* Wait for completion. */
tries = 0;
while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) {
DELAY(5);
if (++tries > 200) {
device_printf(dev, "phy write timeout: %d\n", reg);
return (-1);
}
}
return (0);
}
static void
cgem_miibus_statchg(device_t dev)
{
struct cgem_softc *sc = device_get_softc(dev);
struct mii_data *mii = device_get_softc(sc->miibus);
CGEM_ASSERT_LOCKED(sc);
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID) &&
sc->mii_media_active != mii->mii_media_active)
cgem_mediachange(sc, mii);
}
static void
cgem_miibus_linkchg(device_t dev)
{
struct cgem_softc *sc = device_get_softc(dev);
struct mii_data *mii = device_get_softc(sc->miibus);
CGEM_ASSERT_LOCKED(sc);
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID) &&
sc->mii_media_active != mii->mii_media_active)
cgem_mediachange(sc, mii);
}
/*
* Overridable weak symbol cgem_set_ref_clk(). This allows platforms to
* provide a function to set the cgem's reference clock.
*/
static int __used
cgem_default_set_ref_clk(int unit, int frequency)
{
return 0;
}
__weak_reference(cgem_default_set_ref_clk, cgem_set_ref_clk);
/* Call to set reference clock and network config bits according to media. */
static void
cgem_mediachange(struct cgem_softc *sc, struct mii_data *mii)
{
uint32_t net_cfg;
int ref_clk_freq;
CGEM_ASSERT_LOCKED(sc);
/* Update hardware to reflect media. */
net_cfg = RD4(sc, CGEM_NET_CFG);
net_cfg &= ~(CGEM_NET_CFG_SPEED100 | CGEM_NET_CFG_GIGE_EN |
CGEM_NET_CFG_FULL_DUPLEX);
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T:
net_cfg |= (CGEM_NET_CFG_SPEED100 |
CGEM_NET_CFG_GIGE_EN);
ref_clk_freq = 125000000;
break;
case IFM_100_TX:
net_cfg |= CGEM_NET_CFG_SPEED100;
ref_clk_freq = 25000000;
break;
default:
ref_clk_freq = 2500000;
}
if ((mii->mii_media_active & IFM_FDX) != 0)
net_cfg |= CGEM_NET_CFG_FULL_DUPLEX;
WR4(sc, CGEM_NET_CFG, net_cfg);
/* Set the reference clock if necessary. */
if (cgem_set_ref_clk(sc->ref_clk_num, ref_clk_freq))
device_printf(sc->dev, "cgem_mediachange: "
"could not set ref clk%d to %d.\n",
sc->ref_clk_num, ref_clk_freq);
sc->mii_media_active = mii->mii_media_active;
}
static void
cgem_add_sysctls(device_t dev)
{
struct cgem_softc *sc = device_get_softc(dev);
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child;
struct sysctl_oid *tree;
ctx = device_get_sysctl_ctx(dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxbufs", CTLFLAG_RW,
&sc->rxbufs, 0,
"Number receive buffers to provide");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxhangwar", CTLFLAG_RW,
&sc->rxhangwar, 0,
"Enable receive hang work-around");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxoverruns", CTLFLAG_RD,
&sc->rxoverruns, 0,
"Receive overrun events");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxnobufs", CTLFLAG_RD,
&sc->rxnobufs, 0,
"Receive buf queue empty events");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxdmamapfails", CTLFLAG_RD,
&sc->rxdmamapfails, 0,
"Receive DMA map failures");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txfull", CTLFLAG_RD,
&sc->txfull, 0,
"Transmit ring full events");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdmamapfails", CTLFLAG_RD,
&sc->txdmamapfails, 0,
"Transmit DMA map failures");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefrags", CTLFLAG_RD,
&sc->txdefrags, 0,
"Transmit m_defrag() calls");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefragfails", CTLFLAG_RD,
&sc->txdefragfails, 0,
"Transmit m_defrag() failures");
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "GEM statistics");
child = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_bytes", CTLFLAG_RD,
&sc->stats.tx_bytes, "Total bytes transmitted");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames", CTLFLAG_RD,
&sc->stats.tx_frames, 0, "Total frames transmitted");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_bcast", CTLFLAG_RD,
&sc->stats.tx_frames_bcast, 0,
"Number broadcast frames transmitted");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_multi", CTLFLAG_RD,
&sc->stats.tx_frames_multi, 0,
"Number multicast frames transmitted");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_pause",
CTLFLAG_RD, &sc->stats.tx_frames_pause, 0,
"Number pause frames transmitted");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_64b", CTLFLAG_RD,
&sc->stats.tx_frames_64b, 0,
"Number frames transmitted of size 64 bytes or less");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_65to127b", CTLFLAG_RD,
&sc->stats.tx_frames_65to127b, 0,
"Number frames transmitted of size 65-127 bytes");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_128to255b",
CTLFLAG_RD, &sc->stats.tx_frames_128to255b, 0,
"Number frames transmitted of size 128-255 bytes");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_256to511b",
CTLFLAG_RD, &sc->stats.tx_frames_256to511b, 0,
"Number frames transmitted of size 256-511 bytes");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_512to1023b",
CTLFLAG_RD, &sc->stats.tx_frames_512to1023b, 0,
"Number frames transmitted of size 512-1023 bytes");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_1024to1536b",
CTLFLAG_RD, &sc->stats.tx_frames_1024to1536b, 0,
"Number frames transmitted of size 1024-1536 bytes");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_under_runs",
CTLFLAG_RD, &sc->stats.tx_under_runs, 0,
"Number transmit under-run events");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_single_collisn",
CTLFLAG_RD, &sc->stats.tx_single_collisn, 0,
"Number single-collision transmit frames");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_multi_collisn",
CTLFLAG_RD, &sc->stats.tx_multi_collisn, 0,
"Number multi-collision transmit frames");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_excsv_collisn",
CTLFLAG_RD, &sc->stats.tx_excsv_collisn, 0,
"Number excessive collision transmit frames");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_late_collisn",
CTLFLAG_RD, &sc->stats.tx_late_collisn, 0,
"Number late-collision transmit frames");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_deferred_frames",
CTLFLAG_RD, &sc->stats.tx_deferred_frames, 0,
"Number deferred transmit frames");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_carrier_sense_errs",
CTLFLAG_RD, &sc->stats.tx_carrier_sense_errs, 0,
"Number carrier sense errors on transmit");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_bytes", CTLFLAG_RD,
&sc->stats.rx_bytes, "Total bytes received");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames", CTLFLAG_RD,
&sc->stats.rx_frames, 0, "Total frames received");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_bcast",
CTLFLAG_RD, &sc->stats.rx_frames_bcast, 0,
"Number broadcast frames received");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_multi",
CTLFLAG_RD, &sc->stats.rx_frames_multi, 0,
"Number multicast frames received");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_pause",
CTLFLAG_RD, &sc->stats.rx_frames_pause, 0,
"Number pause frames received");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_64b",
CTLFLAG_RD, &sc->stats.rx_frames_64b, 0,
"Number frames received of size 64 bytes or less");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_65to127b",
CTLFLAG_RD, &sc->stats.rx_frames_65to127b, 0,
"Number frames received of size 65-127 bytes");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_128to255b",
CTLFLAG_RD, &sc->stats.rx_frames_128to255b, 0,
"Number frames received of size 128-255 bytes");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_256to511b",
CTLFLAG_RD, &sc->stats.rx_frames_256to511b, 0,
"Number frames received of size 256-511 bytes");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_512to1023b",
CTLFLAG_RD, &sc->stats.rx_frames_512to1023b, 0,
"Number frames received of size 512-1023 bytes");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_1024to1536b",
CTLFLAG_RD, &sc->stats.rx_frames_1024to1536b, 0,
"Number frames received of size 1024-1536 bytes");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_undersize",
CTLFLAG_RD, &sc->stats.rx_frames_undersize, 0,
"Number undersize frames received");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_oversize",
CTLFLAG_RD, &sc->stats.rx_frames_oversize, 0,
"Number oversize frames received");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_jabber",
CTLFLAG_RD, &sc->stats.rx_frames_jabber, 0,
"Number jabber frames received");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_fcs_errs",
CTLFLAG_RD, &sc->stats.rx_frames_fcs_errs, 0,
"Number frames received with FCS errors");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_length_errs",
CTLFLAG_RD, &sc->stats.rx_frames_length_errs, 0,
"Number frames received with length errors");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_symbol_errs",
CTLFLAG_RD, &sc->stats.rx_symbol_errs, 0,
"Number receive symbol errors");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_align_errs",
CTLFLAG_RD, &sc->stats.rx_align_errs, 0,
"Number receive alignment errors");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_resource_errs",
CTLFLAG_RD, &sc->stats.rx_resource_errs, 0,
"Number frames received when no rx buffer available");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_overrun_errs",
CTLFLAG_RD, &sc->stats.rx_overrun_errs, 0,
"Number frames received but not copied due to "
"receive overrun");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_ip_hdr_csum_errs",
CTLFLAG_RD, &sc->stats.rx_ip_hdr_csum_errs, 0,
"Number frames received with IP header checksum "
"errors");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_tcp_csum_errs",
CTLFLAG_RD, &sc->stats.rx_tcp_csum_errs, 0,
"Number frames received with TCP checksum errors");
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_udp_csum_errs",
CTLFLAG_RD, &sc->stats.rx_udp_csum_errs, 0,
"Number frames received with UDP checksum errors");
}
static int
cgem_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "cadence,gem"))
return (ENXIO);
device_set_desc(dev, "Cadence CGEM Gigabit Ethernet Interface");
return (0);
}
static int
cgem_attach(device_t dev)
{
struct cgem_softc *sc = device_get_softc(dev);
struct ifnet *ifp = NULL;
phandle_t node;
pcell_t cell;
int rid, err;
u_char eaddr[ETHER_ADDR_LEN];
sc->dev = dev;
CGEM_LOCK_INIT(sc);
/* Get reference clock number and base divider from fdt. */
node = ofw_bus_get_node(dev);
sc->ref_clk_num = 0;
if (OF_getprop(node, "ref-clock-num", &cell, sizeof(cell)) > 0)
sc->ref_clk_num = fdt32_to_cpu(cell);
/* Get memory resource. */
rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->mem_res == NULL) {
device_printf(dev, "could not allocate memory resources.\n");
return (ENOMEM);
}
/* Get IRQ resource. */
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res == NULL) {
device_printf(dev, "could not allocate interrupt resource.\n");
cgem_detach(dev);
return (ENOMEM);
}
/* Set up ifnet structure. */
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "could not allocate ifnet structure\n");
cgem_detach(dev);
return (ENOMEM);
}
ifp->if_softc = sc;
if_initname(ifp, IF_CGEM_NAME, device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = cgem_start;
ifp->if_ioctl = cgem_ioctl;
ifp->if_init = cgem_init;
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 |
IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM;
/* Disable hardware checksumming by default. */
ifp->if_hwassist = 0;
ifp->if_capenable = ifp->if_capabilities &
~(IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWCSUM);
ifp->if_snd.ifq_drv_maxlen = CGEM_NUM_TX_DESCS;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
sc->if_old_flags = ifp->if_flags;
sc->rxbufs = DEFAULT_NUM_RX_BUFS;
sc->rxhangwar = 1;
/* Reset hardware. */
CGEM_LOCK(sc);
cgem_reset(sc);
CGEM_UNLOCK(sc);
/* Attach phy to mii bus. */
err = mii_attach(dev, &sc->miibus, ifp,
cgem_ifmedia_upd, cgem_ifmedia_sts,
BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (err) {
device_printf(dev, "attaching PHYs failed\n");
cgem_detach(dev);
return (err);
}
/* Set up TX and RX descriptor area. */
err = cgem_setup_descs(sc);
if (err) {
device_printf(dev, "could not set up dma mem for descs.\n");
cgem_detach(dev);
return (ENOMEM);
}
/* Get a MAC address. */
cgem_get_mac(sc, eaddr);
/* Start ticks. */
callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0);
ether_ifattach(ifp, eaddr);
err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE |
INTR_EXCL, NULL, cgem_intr, sc, &sc->intrhand);
if (err) {
device_printf(dev, "could not set interrupt handler.\n");
ether_ifdetach(ifp);
cgem_detach(dev);
return (err);
}
cgem_add_sysctls(dev);
return (0);
}
static int
cgem_detach(device_t dev)
{
struct cgem_softc *sc = device_get_softc(dev);
int i;
if (sc == NULL)
return (ENODEV);
if (device_is_attached(dev)) {
CGEM_LOCK(sc);
cgem_stop(sc);
CGEM_UNLOCK(sc);
callout_drain(&sc->tick_ch);
sc->ifp->if_flags &= ~IFF_UP;
ether_ifdetach(sc->ifp);
}
if (sc->miibus != NULL) {
device_delete_child(dev, sc->miibus);
sc->miibus = NULL;
}
/* Release resources. */
if (sc->mem_res != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY,
rman_get_rid(sc->mem_res), sc->mem_res);
sc->mem_res = NULL;
}
if (sc->irq_res != NULL) {
if (sc->intrhand)
bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->irq_res), sc->irq_res);
sc->irq_res = NULL;
}
/* Release DMA resources. */
if (sc->rxring != NULL) {
if (sc->rxring_physaddr != 0) {
bus_dmamap_unload(sc->desc_dma_tag, sc->rxring_dma_map);
sc->rxring_physaddr = 0;
}
bus_dmamem_free(sc->desc_dma_tag, sc->rxring,
sc->rxring_dma_map);
sc->rxring = NULL;
for (i = 0; i < CGEM_NUM_RX_DESCS; i++)
if (sc->rxring_m_dmamap[i] != NULL) {
bus_dmamap_destroy(sc->mbuf_dma_tag,
sc->rxring_m_dmamap[i]);
sc->rxring_m_dmamap[i] = NULL;
}
}
if (sc->txring != NULL) {
if (sc->txring_physaddr != 0) {
bus_dmamap_unload(sc->desc_dma_tag, sc->txring_dma_map);
sc->txring_physaddr = 0;
}
bus_dmamem_free(sc->desc_dma_tag, sc->txring,
sc->txring_dma_map);
sc->txring = NULL;
for (i = 0; i < CGEM_NUM_TX_DESCS; i++)
if (sc->txring_m_dmamap[i] != NULL) {
bus_dmamap_destroy(sc->mbuf_dma_tag,
sc->txring_m_dmamap[i]);
sc->txring_m_dmamap[i] = NULL;
}
}
if (sc->desc_dma_tag != NULL) {
bus_dma_tag_destroy(sc->desc_dma_tag);
sc->desc_dma_tag = NULL;
}
if (sc->mbuf_dma_tag != NULL) {
bus_dma_tag_destroy(sc->mbuf_dma_tag);
sc->mbuf_dma_tag = NULL;
}
bus_generic_detach(dev);
CGEM_LOCK_DESTROY(sc);
return (0);
}
static device_method_t cgem_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cgem_probe),
DEVMETHOD(device_attach, cgem_attach),
DEVMETHOD(device_detach, cgem_detach),
/* Bus interface */
DEVMETHOD(bus_child_detached, cgem_child_detached),
/* MII interface */
DEVMETHOD(miibus_readreg, cgem_miibus_readreg),
DEVMETHOD(miibus_writereg, cgem_miibus_writereg),
DEVMETHOD(miibus_statchg, cgem_miibus_statchg),
DEVMETHOD(miibus_linkchg, cgem_miibus_linkchg),
DEVMETHOD_END
};
static driver_t cgem_driver = {
"cgem",
cgem_methods,
sizeof(struct cgem_softc),
};
DRIVER_MODULE(cgem, simplebus, cgem_driver, cgem_devclass, NULL, NULL);
DRIVER_MODULE(miibus, cgem, miibus_driver, miibus_devclass, NULL, NULL);
MODULE_DEPEND(cgem, miibus, 1, 1, 1);
MODULE_DEPEND(cgem, ether, 1, 1, 1);