freebsd-nq/sys/net/route/nhop_ctl.c
Mark Johnston 26dd427800 Split nhop_ref_object().
Now nhop_ref_object() unconditionally acquires a reference, and the new
nhop_try_ref_object() uses refcount_acquire_if_not_zero() to
conditionally acquire a reference.  Since the former is cheaper, use it
when we know that the initial counter value is non-zero.  No functional
change intended.

Reviewed by:	melifaro
Differential Revision:	https://reviews.freebsd.org/D25535
2020-07-06 21:20:57 +00:00

848 lines
22 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2020 Alexander V. Chernikov
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_route.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/kernel.h>
#include <sys/epoch.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <net/route/route_ctl.h>
#include <net/route/route_var.h>
#include <net/route/nhop_utils.h>
#include <net/route/nhop.h>
#include <net/route/nhop_var.h>
#include <net/route/shared.h>
#include <net/vnet.h>
/*
* This file contains core functionality for the nexthop ("nhop") route subsystem.
* The business logic needed to create nexhop objects is implemented here.
*
* Nexthops in the original sense are the objects containing all the necessary
* information to forward the packet to the selected destination.
* In particular, nexthop is defined by a combination of
* ifp, ifa, aifp, mtu, gw addr(if set), nh_type, nh_family, mask of rt_flags and
* NHF_DEFAULT
*
* Additionally, each nexthop gets assigned its unique index (nexthop index).
* It serves two purposes: first one is to ease the ability of userland programs to
* reference nexthops by their index. The second one allows lookup algorithms to
* to store index instead of pointer (2 bytes vs 8) as a lookup result.
* All nexthops are stored in the resizable hash table.
*
* Basically, this file revolves around supporting 3 functions:
* 1) nhop_create_from_info / nhop_create_from_nhop, which contains all
* business logic on filling the nexthop fields based on the provided request.
* 2) nhop_get(), which gets a usable referenced nexthops.
*
* Conventions:
* 1) non-exported functions start with verb
* 2) exported function starts with the subsystem prefix: "nhop"
*/
static int dump_nhop_entry(struct rib_head *rh, struct nhop_object *nh, struct sysctl_req *w);
static struct nhop_priv *alloc_nhop_structure(void);
static int get_nhop(struct rib_head *rnh, struct rt_addrinfo *info,
struct nhop_priv **pnh_priv);
static int finalize_nhop(struct nh_control *ctl, struct rt_addrinfo *info,
struct nhop_priv *nh_priv);
static struct ifnet *get_aifp(const struct nhop_object *nh, int reference);
static void fill_sdl_from_ifp(struct sockaddr_dl_short *sdl, const struct ifnet *ifp);
static void destroy_nhop_epoch(epoch_context_t ctx);
static void destroy_nhop(struct nhop_priv *nh_priv);
static void print_nhop(const char *prefix, const struct nhop_object *nh);
_Static_assert(__offsetof(struct nhop_object, nh_ifp) == 32,
"nhop_object: wrong nh_ifp offset");
_Static_assert(sizeof(struct nhop_object) <= 128,
"nhop_object: size exceeds 128 bytes");
static uma_zone_t nhops_zone; /* Global zone for each and every nexthop */
#define NHOP_OBJECT_ALIGNED_SIZE roundup2(sizeof(struct nhop_object), \
2 * CACHE_LINE_SIZE)
#define NHOP_PRIV_ALIGNED_SIZE roundup2(sizeof(struct nhop_priv), \
2 * CACHE_LINE_SIZE)
void
nhops_init(void)
{
nhops_zone = uma_zcreate("routing nhops",
NHOP_OBJECT_ALIGNED_SIZE + NHOP_PRIV_ALIGNED_SIZE,
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
}
/*
* Fetches the interface of source address used by the route.
* In all cases except interface-address-route it would be the
* same as the transmit interfaces.
* However, for the interface address this function will return
* this interface ifp instead of loopback. This is needed to support
* link-local IPv6 loopback communications.
*
* If @reference is non-zero, found ifp is referenced.
*
* Returns found ifp.
*/
static struct ifnet *
get_aifp(const struct nhop_object *nh, int reference)
{
struct ifnet *aifp = NULL;
/*
* Adjust the "outgoing" interface. If we're going to loop
* the packet back to ourselves, the ifp would be the loopback
* interface. However, we'd rather know the interface associated
* to the destination address (which should probably be one of
* our own addresses).
*/
if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) &&
nh->gw_sa.sa_family == AF_LINK) {
if (reference)
aifp = ifnet_byindex_ref(nh->gwl_sa.sdl_index);
else
aifp = ifnet_byindex(nh->gwl_sa.sdl_index);
if (aifp == NULL) {
DPRINTF("unable to get aifp for %s index %d",
if_name(nh->nh_ifp), nh->gwl_sa.sdl_index);
}
}
if (aifp == NULL) {
aifp = nh->nh_ifp;
if (reference)
if_ref(aifp);
}
return (aifp);
}
int
cmp_priv(const struct nhop_priv *_one, const struct nhop_priv *_two)
{
if (memcmp(_one->nh, _two->nh, NHOP_END_CMP) != 0)
return (0);
if ((_one->nh_type != _two->nh_type) ||
(_one->nh_family != _two->nh_family))
return (0);
return (1);
}
/*
* Conditionally sets @nh mtu data based on the @info data.
*/
static void
set_nhop_mtu_from_info(struct nhop_object *nh, const struct rt_addrinfo *info)
{
if (info->rti_mflags & RTV_MTU) {
if (info->rti_rmx->rmx_mtu != 0) {
/*
* MTU was explicitly provided by user.
* Keep it.
*/
nh->nh_priv->rt_flags |= RTF_FIXEDMTU;
} else {
/*
* User explicitly sets MTU to 0.
* Assume rollback to default.
*/
nh->nh_priv->rt_flags &= ~RTF_FIXEDMTU;
}
nh->nh_mtu = info->rti_rmx->rmx_mtu;
}
}
/*
* Fills in shorted link-level sockadd version suitable to be stored inside the
* nexthop gateway buffer.
*/
static void
fill_sdl_from_ifp(struct sockaddr_dl_short *sdl, const struct ifnet *ifp)
{
sdl->sdl_family = AF_LINK;
sdl->sdl_len = sizeof(struct sockaddr_dl_short);
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = ifp->if_type;
}
static int
set_nhop_gw_from_info(struct nhop_object *nh, struct rt_addrinfo *info)
{
struct sockaddr *gw;
gw = info->rti_info[RTAX_GATEWAY];
if (info->rti_flags & RTF_GATEWAY) {
if (gw->sa_len > sizeof(struct sockaddr_in6)) {
DPRINTF("nhop SA size too big: AF %d len %u",
gw->sa_family, gw->sa_len);
return (ENOMEM);
}
memcpy(&nh->gw_sa, gw, gw->sa_len);
} else {
/*
* Interface route. Currently the route.c code adds
* sa of type AF_LINK, which is 56 bytes long. The only
* meaningful data there is the interface index. It is used
* used is the IPv6 loopback output, where we need to preserve
* the original interface to maintain proper scoping.
* Despite the fact that nexthop code stores original interface
* in the separate field (nh_aifp, see below), write AF_LINK
* compatible sa with shorter total length.
*/
fill_sdl_from_ifp(&nh->gwl_sa, nh->nh_ifp);
}
return (0);
}
static int
fill_nhop_from_info(struct nhop_priv *nh_priv, struct rt_addrinfo *info)
{
int error, rt_flags;
struct nhop_object *nh;
nh = nh_priv->nh;
rt_flags = info->rti_flags & NHOP_RT_FLAG_MASK;
nh->nh_priv->rt_flags = rt_flags;
nh_priv->nh_family = info->rti_info[RTAX_DST]->sa_family;
nh_priv->nh_type = 0; // hook responsibility to set nhop type
nh->nh_flags = fib_rte_to_nh_flags(rt_flags);
set_nhop_mtu_from_info(nh, info);
nh->nh_ifp = info->rti_ifa->ifa_ifp;
nh->nh_ifa = info->rti_ifa;
nh->nh_aifp = get_aifp(nh, 0);
if ((error = set_nhop_gw_from_info(nh, info)) != 0)
return (error);
/*
* Note some of the remaining data is set by the
* per-address-family pre-add hook.
*/
return (0);
}
/*
* Creates a new nexthop based on the information in @info.
*
* Returns:
* 0 on success, filling @nh_ret with the desired nexthop object ptr
* errno otherwise
*/
int
nhop_create_from_info(struct rib_head *rnh, struct rt_addrinfo *info,
struct nhop_object **nh_ret)
{
struct nhop_priv *nh_priv;
int error;
NET_EPOCH_ASSERT();
nh_priv = alloc_nhop_structure();
error = fill_nhop_from_info(nh_priv, info);
if (error != 0) {
uma_zfree(nhops_zone, nh_priv->nh);
return (error);
}
error = get_nhop(rnh, info, &nh_priv);
if (error == 0)
*nh_ret = nh_priv->nh;
return (error);
}
/*
* Gets linked nhop using the provided @pnh_priv nexhop data.
* If linked nhop is found, returns it, freeing the provided one.
* If there is no such nexthop, attaches the remaining data to the
* provided nexthop and links it.
*
* Returns 0 on success, storing referenced nexthop in @pnh_priv.
* Otherwise, errno is returned.
*/
static int
get_nhop(struct rib_head *rnh, struct rt_addrinfo *info,
struct nhop_priv **pnh_priv)
{
const struct sockaddr *dst, *gateway, *netmask;
struct nhop_priv *nh_priv, *tmp_priv;
int error;
nh_priv = *pnh_priv;
/* Give the protocols chance to augment the request data */
dst = info->rti_info[RTAX_DST];
netmask = info->rti_info[RTAX_NETMASK];
gateway = info->rti_info[RTAX_GATEWAY];
error = rnh->rnh_preadd(rnh->rib_fibnum, dst, netmask, nh_priv->nh);
if (error != 0) {
uma_zfree(nhops_zone, nh_priv->nh);
return (error);
}
tmp_priv = find_nhop(rnh->nh_control, nh_priv);
if (tmp_priv != NULL) {
uma_zfree(nhops_zone, nh_priv->nh);
*pnh_priv = tmp_priv;
return (0);
}
/*
* Existing nexthop not found, need to create new one.
* Note: multiple simultaneous get_nhop() requests
* can result in multiple equal nexhops existing in the
* nexthop table. This is not a not a problem until the
* relative number of such nexthops is significant, which
* is extremely unlikely.
*/
error = finalize_nhop(rnh->nh_control, info, nh_priv);
if (error != 0)
return (error);
return (0);
}
/*
* Update @nh with data supplied in @info.
* This is a helper function to support route changes.
*
* It limits the changes that can be done to the route to the following:
* 1) all combination of gateway changes (gw, interface, blackhole/reject)
* 2) route flags (FLAG[123],STATIC,BLACKHOLE,REJECT)
* 3) route MTU
*
* Returns:
* 0 on success
*/
static int
alter_nhop_from_info(struct nhop_object *nh, struct rt_addrinfo *info)
{
struct sockaddr *info_gw;
int error;
/* Update MTU if set in the request*/
set_nhop_mtu_from_info(nh, info);
/* XXX: allow only one of BLACKHOLE,REJECT,GATEWAY */
/* Allow some flags (FLAG1,STATIC,BLACKHOLE,REJECT) to be toggled on change. */
nh->nh_priv->rt_flags &= ~RTF_FMASK;
nh->nh_priv->rt_flags |= info->rti_flags & RTF_FMASK;
/* Consider gateway change */
info_gw = info->rti_info[RTAX_GATEWAY];
if (info_gw != NULL) {
error = set_nhop_gw_from_info(nh, info);
if (error != 0)
return (error);
/* Update RTF_GATEWAY flag status */
nh->nh_priv->rt_flags &= ~RTF_GATEWAY;
nh->nh_priv->rt_flags |= (RTF_GATEWAY & info->rti_flags);
}
/* Update datapath flags */
nh->nh_flags = fib_rte_to_nh_flags(nh->nh_priv->rt_flags);
if (info->rti_ifa != NULL)
nh->nh_ifa = info->rti_ifa;
if (info->rti_ifp != NULL)
nh->nh_ifp = info->rti_ifp;
nh->nh_aifp = get_aifp(nh, 0);
return (0);
}
/*
* Creates new nexthop based on @nh_orig and augmentation data from @info.
* Helper function used in the route changes, please see
* alter_nhop_from_info() comments for more details.
*
* Returns:
* 0 on success, filling @nh_ret with the desired nexthop object
* errno otherwise
*/
int
nhop_create_from_nhop(struct rib_head *rnh, const struct nhop_object *nh_orig,
struct rt_addrinfo *info, struct nhop_object **pnh)
{
struct nhop_priv *nh_priv;
struct nhop_object *nh;
int error;
NET_EPOCH_ASSERT();
nh_priv = alloc_nhop_structure();
nh = nh_priv->nh;
/* Start with copying data from original nexthop */
nh_priv->nh_family = nh_orig->nh_priv->nh_family;
nh_priv->rt_flags = nh_orig->nh_priv->rt_flags;
nh_priv->nh_type = nh_orig->nh_priv->nh_type;
nh->nh_ifp = nh_orig->nh_ifp;
nh->nh_ifa = nh_orig->nh_ifa;
nh->nh_aifp = nh_orig->nh_aifp;
nh->nh_mtu = nh_orig->nh_mtu;
nh->nh_flags = nh_orig->nh_flags;
memcpy(&nh->gw_sa, &nh_orig->gw_sa, nh_orig->gw_sa.sa_len);
error = alter_nhop_from_info(nh, info);
if (error != 0) {
uma_zfree(nhops_zone, nh_priv->nh);
return (error);
}
error = get_nhop(rnh, info, &nh_priv);
if (error == 0)
*pnh = nh_priv->nh;
return (error);
}
/*
* Allocates memory for public/private nexthop structures.
*
* Returns pointer to nhop_priv or NULL.
*/
static struct nhop_priv *
alloc_nhop_structure()
{
struct nhop_object *nh;
struct nhop_priv *nh_priv;
nh = (struct nhop_object *)uma_zalloc(nhops_zone, M_NOWAIT | M_ZERO);
if (nh == NULL)
return (NULL);
nh_priv = (struct nhop_priv *)((char *)nh + NHOP_OBJECT_ALIGNED_SIZE);
nh->nh_priv = nh_priv;
nh_priv->nh = nh;
return (nh_priv);
}
/*
* Alocates/references the remaining bits of nexthop data and links
* it to the hash table.
* Returns 0 if successful,
* errno otherwise. @nh_priv is freed in case of error.
*/
static int
finalize_nhop(struct nh_control *ctl, struct rt_addrinfo *info,
struct nhop_priv *nh_priv)
{
struct nhop_object *nh;
nh = nh_priv->nh;
/* Allocate per-cpu packet counter */
nh->nh_pksent = counter_u64_alloc(M_NOWAIT);
if (nh->nh_pksent == NULL) {
uma_zfree(nhops_zone, nh);
RTSTAT_INC(rts_nh_alloc_failure);
DPRINTF("nh_alloc_finalize failed");
return (ENOMEM);
}
/* Save vnet to ease destruction */
nh_priv->nh_vnet = curvnet;
/* Reference external objects and calculate (referenced) ifa */
if_ref(nh->nh_ifp);
ifa_ref(nh->nh_ifa);
nh->nh_aifp = get_aifp(nh, 1);
DPRINTF("AIFP: %p nh_ifp %p", nh->nh_aifp, nh->nh_ifp);
refcount_init(&nh_priv->nh_refcnt, 1);
/* Please see nhop_free() comments on the initial value */
refcount_init(&nh_priv->nh_linked, 2);
print_nhop("FINALIZE", nh);
if (link_nhop(ctl, nh_priv) == 0) {
/*
* Adding nexthop to the datastructures
* failed. Call destructor w/o waiting for
* the epoch end, as nexthop is not used
* and return.
*/
DPRINTF("link_nhop failed!");
destroy_nhop(nh_priv);
return (ENOBUFS);
}
return (0);
}
static void
print_nhop_sa(char *buf, size_t buflen, const struct sockaddr *sa)
{
if (sa->sa_family == AF_INET) {
const struct sockaddr_in *sin4;
sin4 = (const struct sockaddr_in *)sa;
inet_ntop(AF_INET, &sin4->sin_addr, buf, buflen);
} else if (sa->sa_family == AF_INET6) {
const struct sockaddr_in6 *sin6;
sin6 = (const struct sockaddr_in6 *)sa;
inet_ntop(AF_INET6, &sin6->sin6_addr, buf, buflen);
} else if (sa->sa_family == AF_LINK) {
const struct sockaddr_dl *sdl;
sdl = (const struct sockaddr_dl *)sa;
snprintf(buf, buflen, "if#%d", sdl->sdl_index);
} else
snprintf(buf, buflen, "af:%d", sa->sa_family);
}
static void
print_nhop(const char *prefix, const struct nhop_object *nh)
{
char src_buf[INET6_ADDRSTRLEN], addr_buf[INET6_ADDRSTRLEN];
print_nhop_sa(src_buf, sizeof(src_buf), nh->nh_ifa->ifa_addr);
print_nhop_sa(addr_buf, sizeof(addr_buf), &nh->gw_sa);
DPRINTF("%s nhop priv %p: AF %d ifp %p %s addr %s src %p %s aifp %p %s mtu %d nh_flags %X",
prefix, nh->nh_priv, nh->nh_priv->nh_family, nh->nh_ifp,
if_name(nh->nh_ifp), addr_buf, nh->nh_ifa, src_buf, nh->nh_aifp,
if_name(nh->nh_aifp), nh->nh_mtu, nh->nh_flags);
}
static void
destroy_nhop(struct nhop_priv *nh_priv)
{
struct nhop_object *nh;
nh = nh_priv->nh;
print_nhop("DEL", nh);
if_rele(nh->nh_ifp);
if_rele(nh->nh_aifp);
ifa_free(nh->nh_ifa);
counter_u64_free(nh->nh_pksent);
uma_zfree(nhops_zone, nh);
}
/*
* Epoch callback indicating nhop is safe to destroy
*/
static void
destroy_nhop_epoch(epoch_context_t ctx)
{
struct nhop_priv *nh_priv;
nh_priv = __containerof(ctx, struct nhop_priv, nh_epoch_ctx);
destroy_nhop(nh_priv);
}
void
nhop_ref_object(struct nhop_object *nh)
{
u_int old;
old = refcount_acquire(&nh->nh_priv->nh_refcnt);
KASSERT(old > 0, ("%s: nhop object %p has 0 refs", __func__, nh));
}
int
nhop_try_ref_object(struct nhop_object *nh)
{
return (refcount_acquire_if_not_zero(&nh->nh_priv->nh_refcnt));
}
void
nhop_free(struct nhop_object *nh)
{
struct nh_control *ctl;
struct nhop_priv *nh_priv = nh->nh_priv;
struct epoch_tracker et;
if (!refcount_release(&nh_priv->nh_refcnt))
return;
/*
* There are only 2 places, where nh_linked can be decreased:
* rib destroy (nhops_destroy_rib) and this function.
* nh_link can never be increased.
*
* Hence, use initial value of 2 to make use of
* refcount_release_if_not_last().
*
* There can be two scenarious when calling this function:
*
* 1) nh_linked value is 2. This means that either
* nhops_destroy_rib() has not been called OR it is running,
* but we are guaranteed that nh_control won't be freed in
* this epoch. Hence, nexthop can be safely unlinked.
*
* 2) nh_linked value is 1. In that case, nhops_destroy_rib()
* has been called and nhop unlink can be skipped.
*/
NET_EPOCH_ENTER(et);
if (refcount_release_if_not_last(&nh_priv->nh_linked)) {
ctl = nh_priv->nh_control;
if (unlink_nhop(ctl, nh_priv) == NULL) {
/* Do not try to reclaim */
DPRINTF("Failed to unlink nexhop %p", nh_priv);
NET_EPOCH_EXIT(et);
return;
}
}
NET_EPOCH_EXIT(et);
epoch_call(net_epoch_preempt, destroy_nhop_epoch,
&nh_priv->nh_epoch_ctx);
}
int
nhop_ref_any(struct nhop_object *nh)
{
return (nhop_try_ref_object(nh));
}
void
nhop_free_any(struct nhop_object *nh)
{
nhop_free(nh);
}
/* Helper functions */
uint32_t
nhop_get_idx(const struct nhop_object *nh)
{
return (nh->nh_priv->nh_idx);
}
enum nhop_type
nhop_get_type(const struct nhop_object *nh)
{
return (nh->nh_priv->nh_type);
}
void
nhop_set_type(struct nhop_object *nh, enum nhop_type nh_type)
{
nh->nh_priv->nh_type = nh_type;
}
int
nhop_get_rtflags(const struct nhop_object *nh)
{
return (nh->nh_priv->rt_flags);
}
void
nhop_set_rtflags(struct nhop_object *nh, int rt_flags)
{
nh->nh_priv->rt_flags = rt_flags;
}
struct vnet *
nhop_get_vnet(const struct nhop_object *nh)
{
return (nh->nh_priv->nh_vnet);
}
void
nhops_update_ifmtu(struct rib_head *rh, struct ifnet *ifp, uint32_t mtu)
{
struct nh_control *ctl;
struct nhop_priv *nh_priv;
struct nhop_object *nh;
ctl = rh->nh_control;
NHOPS_WLOCK(ctl);
CHT_SLIST_FOREACH(&ctl->nh_head, nhops, nh_priv) {
nh = nh_priv->nh;
if (nh->nh_ifp == ifp) {
if ((nh_priv->rt_flags & RTF_FIXEDMTU) == 0 ||
nh->nh_mtu > mtu) {
/* Update MTU directly */
nh->nh_mtu = mtu;
}
}
} CHT_SLIST_FOREACH_END;
NHOPS_WUNLOCK(ctl);
}
/*
* Dumps a single entry to sysctl buffer.
*
* Layout:
* rt_msghdr - generic RTM header to allow users to skip non-understood messages
* nhop_external - nexhop description structure (with length)
* nhop_addrs - structure encapsulating GW/SRC sockaddrs
*/
static int
dump_nhop_entry(struct rib_head *rh, struct nhop_object *nh, struct sysctl_req *w)
{
struct {
struct rt_msghdr rtm;
struct nhop_external nhe;
struct nhop_addrs na;
} arpc;
struct nhop_external *pnhe;
struct sockaddr *gw_sa, *src_sa;
struct sockaddr_storage ss;
size_t addrs_len;
int error;
//DPRINTF("Dumping: head %p nh %p flags %X req %p\n", rh, nh, nh->nh_flags, w);
memset(&arpc, 0, sizeof(arpc));
arpc.rtm.rtm_msglen = sizeof(arpc);
arpc.rtm.rtm_version = RTM_VERSION;
arpc.rtm.rtm_type = RTM_GET;
//arpc.rtm.rtm_flags = RTF_UP;
arpc.rtm.rtm_flags = nh->nh_priv->rt_flags;
/* nhop_external */
pnhe = &arpc.nhe;
pnhe->nh_len = sizeof(struct nhop_external);
pnhe->nh_idx = nh->nh_priv->nh_idx;
pnhe->nh_fib = rh->rib_fibnum;
pnhe->ifindex = nh->nh_ifp->if_index;
pnhe->aifindex = nh->nh_aifp->if_index;
pnhe->nh_family = nh->nh_priv->nh_family;
pnhe->nh_type = nh->nh_priv->nh_type;
pnhe->nh_mtu = nh->nh_mtu;
pnhe->nh_flags = nh->nh_flags;
memcpy(pnhe->nh_prepend, nh->nh_prepend, sizeof(nh->nh_prepend));
pnhe->prepend_len = nh->nh_prepend_len;
pnhe->nh_refcount = nh->nh_priv->nh_refcnt;
pnhe->nh_pksent = counter_u64_fetch(nh->nh_pksent);
/* sockaddr container */
addrs_len = sizeof(struct nhop_addrs);
arpc.na.gw_sa_off = addrs_len;
gw_sa = (struct sockaddr *)&nh->gw4_sa;
addrs_len += gw_sa->sa_len;
src_sa = nh->nh_ifa->ifa_addr;
if (src_sa->sa_family == AF_LINK) {
/* Shorten structure */
memset(&ss, 0, sizeof(struct sockaddr_storage));
fill_sdl_from_ifp((struct sockaddr_dl_short *)&ss,
nh->nh_ifa->ifa_ifp);
src_sa = (struct sockaddr *)&ss;
}
arpc.na.src_sa_off = addrs_len;
addrs_len += src_sa->sa_len;
/* Write total container length */
arpc.na.na_len = addrs_len;
arpc.rtm.rtm_msglen += arpc.na.na_len - sizeof(struct nhop_addrs);
error = SYSCTL_OUT(w, &arpc, sizeof(arpc));
if (error == 0)
error = SYSCTL_OUT(w, gw_sa, gw_sa->sa_len);
if (error == 0)
error = SYSCTL_OUT(w, src_sa, src_sa->sa_len);
return (error);
}
int
nhops_dump_sysctl(struct rib_head *rh, struct sysctl_req *w)
{
struct nh_control *ctl;
struct nhop_priv *nh_priv;
int error;
ctl = rh->nh_control;
NHOPS_RLOCK(ctl);
DPRINTF("NHDUMP: count=%u", ctl->nh_head.items_count);
CHT_SLIST_FOREACH(&ctl->nh_head, nhops, nh_priv) {
error = dump_nhop_entry(rh, nh_priv->nh, w);
if (error != 0) {
NHOPS_RUNLOCK(ctl);
return (error);
}
} CHT_SLIST_FOREACH_END;
NHOPS_RUNLOCK(ctl);
return (0);
}