freebsd-nq/sys/x86/x86/mca.c
2014-07-29 14:54:23 +00:00

1032 lines
24 KiB
C

/*-
* Copyright (c) 2009 Advanced Computing Technologies LLC
* Written by: John H. Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Support for x86 machine check architecture.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#ifdef __amd64__
#define DEV_APIC
#else
#include "opt_apic.h"
#endif
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <machine/intr_machdep.h>
#include <x86/apicvar.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <x86/mca.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
/* Modes for mca_scan() */
enum scan_mode {
POLLED,
MCE,
CMCI,
};
#ifdef DEV_APIC
/*
* State maintained for each monitored MCx bank to control the
* corrected machine check interrupt threshold.
*/
struct cmc_state {
int max_threshold;
int last_intr;
};
#endif
struct mca_internal {
struct mca_record rec;
int logged;
STAILQ_ENTRY(mca_internal) link;
};
static MALLOC_DEFINE(M_MCA, "MCA", "Machine Check Architecture");
static volatile int mca_count; /* Number of records stored. */
static int mca_banks; /* Number of per-CPU register banks. */
static SYSCTL_NODE(_hw, OID_AUTO, mca, CTLFLAG_RD, NULL,
"Machine Check Architecture");
static int mca_enabled = 1;
SYSCTL_INT(_hw_mca, OID_AUTO, enabled, CTLFLAG_RDTUN, &mca_enabled, 0,
"Administrative toggle for machine check support");
static int amd10h_L1TP = 1;
SYSCTL_INT(_hw_mca, OID_AUTO, amd10h_L1TP, CTLFLAG_RDTUN, &amd10h_L1TP, 0,
"Administrative toggle for logging of level one TLB parity (L1TP) errors");
static int intel6h_HSD131;
SYSCTL_INT(_hw_mca, OID_AUTO, intel6h_HSD131, CTLFLAG_RDTUN, &intel6h_HSD131, 0,
"Administrative toggle for logging of spurious corrected errors");
int workaround_erratum383;
SYSCTL_INT(_hw_mca, OID_AUTO, erratum383, CTLFLAG_RD, &workaround_erratum383, 0,
"Is the workaround for Erratum 383 on AMD Family 10h processors enabled?");
static STAILQ_HEAD(, mca_internal) mca_freelist;
static int mca_freecount;
static STAILQ_HEAD(, mca_internal) mca_records;
static struct callout mca_timer;
static int mca_ticks = 3600; /* Check hourly by default. */
static struct taskqueue *mca_tq;
static struct task mca_refill_task, mca_scan_task;
static struct mtx mca_lock;
#ifdef DEV_APIC
static struct cmc_state **cmc_state; /* Indexed by cpuid, bank */
static int cmc_throttle = 60; /* Time in seconds to throttle CMCI. */
#endif
static int
sysctl_positive_int(SYSCTL_HANDLER_ARGS)
{
int error, value;
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value <= 0)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_mca_records(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
struct mca_record record;
struct mca_internal *rec;
int i;
if (namelen != 1)
return (EINVAL);
if (name[0] < 0 || name[0] >= mca_count)
return (EINVAL);
mtx_lock_spin(&mca_lock);
if (name[0] >= mca_count) {
mtx_unlock_spin(&mca_lock);
return (EINVAL);
}
i = 0;
STAILQ_FOREACH(rec, &mca_records, link) {
if (i == name[0]) {
record = rec->rec;
break;
}
i++;
}
mtx_unlock_spin(&mca_lock);
return (SYSCTL_OUT(req, &record, sizeof(record)));
}
static const char *
mca_error_ttype(uint16_t mca_error)
{
switch ((mca_error & 0x000c) >> 2) {
case 0:
return ("I");
case 1:
return ("D");
case 2:
return ("G");
}
return ("?");
}
static const char *
mca_error_level(uint16_t mca_error)
{
switch (mca_error & 0x0003) {
case 0:
return ("L0");
case 1:
return ("L1");
case 2:
return ("L2");
case 3:
return ("LG");
}
return ("L?");
}
static const char *
mca_error_request(uint16_t mca_error)
{
switch ((mca_error & 0x00f0) >> 4) {
case 0x0:
return ("ERR");
case 0x1:
return ("RD");
case 0x2:
return ("WR");
case 0x3:
return ("DRD");
case 0x4:
return ("DWR");
case 0x5:
return ("IRD");
case 0x6:
return ("PREFETCH");
case 0x7:
return ("EVICT");
case 0x8:
return ("SNOOP");
}
return ("???");
}
static const char *
mca_error_mmtype(uint16_t mca_error)
{
switch ((mca_error & 0x70) >> 4) {
case 0x0:
return ("GEN");
case 0x1:
return ("RD");
case 0x2:
return ("WR");
case 0x3:
return ("AC");
case 0x4:
return ("MS");
}
return ("???");
}
static int __nonnull(1)
mca_mute(const struct mca_record *rec)
{
/*
* Skip spurious corrected parity errors generated by desktop Haswell
* (see HSD131 erratum) unless reporting is enabled.
* Note that these errors also have been observed with D0-stepping,
* while the revision 014 desktop Haswell specification update only
* talks about C0-stepping.
*/
if (rec->mr_cpu_vendor_id == CPU_VENDOR_INTEL &&
rec->mr_cpu_id == 0x306c3 && rec->mr_bank == 0 &&
rec->mr_status == 0x90000040000f0005 && !intel6h_HSD131)
return (1);
return (0);
}
/* Dump details about a single machine check. */
static void __nonnull(1)
mca_log(const struct mca_record *rec)
{
uint16_t mca_error;
if (mca_mute(rec))
return;
printf("MCA: Bank %d, Status 0x%016llx\n", rec->mr_bank,
(long long)rec->mr_status);
printf("MCA: Global Cap 0x%016llx, Status 0x%016llx\n",
(long long)rec->mr_mcg_cap, (long long)rec->mr_mcg_status);
printf("MCA: Vendor \"%s\", ID 0x%x, APIC ID %d\n", cpu_vendor,
rec->mr_cpu_id, rec->mr_apic_id);
printf("MCA: CPU %d ", rec->mr_cpu);
if (rec->mr_status & MC_STATUS_UC)
printf("UNCOR ");
else {
printf("COR ");
if (rec->mr_mcg_cap & MCG_CAP_CMCI_P)
printf("(%lld) ", ((long long)rec->mr_status &
MC_STATUS_COR_COUNT) >> 38);
}
if (rec->mr_status & MC_STATUS_PCC)
printf("PCC ");
if (rec->mr_status & MC_STATUS_OVER)
printf("OVER ");
mca_error = rec->mr_status & MC_STATUS_MCA_ERROR;
switch (mca_error) {
/* Simple error codes. */
case 0x0000:
printf("no error");
break;
case 0x0001:
printf("unclassified error");
break;
case 0x0002:
printf("ucode ROM parity error");
break;
case 0x0003:
printf("external error");
break;
case 0x0004:
printf("FRC error");
break;
case 0x0005:
printf("internal parity error");
break;
case 0x0400:
printf("internal timer error");
break;
default:
if ((mca_error & 0xfc00) == 0x0400) {
printf("internal error %x", mca_error & 0x03ff);
break;
}
/* Compound error codes. */
/* Memory hierarchy error. */
if ((mca_error & 0xeffc) == 0x000c) {
printf("%s memory error", mca_error_level(mca_error));
break;
}
/* TLB error. */
if ((mca_error & 0xeff0) == 0x0010) {
printf("%sTLB %s error", mca_error_ttype(mca_error),
mca_error_level(mca_error));
break;
}
/* Memory controller error. */
if ((mca_error & 0xef80) == 0x0080) {
printf("%s channel ", mca_error_mmtype(mca_error));
if ((mca_error & 0x000f) != 0x000f)
printf("%d", mca_error & 0x000f);
else
printf("??");
printf(" memory error");
break;
}
/* Cache error. */
if ((mca_error & 0xef00) == 0x0100) {
printf("%sCACHE %s %s error",
mca_error_ttype(mca_error),
mca_error_level(mca_error),
mca_error_request(mca_error));
break;
}
/* Bus and/or Interconnect error. */
if ((mca_error & 0xe800) == 0x0800) {
printf("BUS%s ", mca_error_level(mca_error));
switch ((mca_error & 0x0600) >> 9) {
case 0:
printf("Source");
break;
case 1:
printf("Responder");
break;
case 2:
printf("Observer");
break;
default:
printf("???");
break;
}
printf(" %s ", mca_error_request(mca_error));
switch ((mca_error & 0x000c) >> 2) {
case 0:
printf("Memory");
break;
case 2:
printf("I/O");
break;
case 3:
printf("Other");
break;
default:
printf("???");
break;
}
if (mca_error & 0x0100)
printf(" timed out");
break;
}
printf("unknown error %x", mca_error);
break;
}
printf("\n");
if (rec->mr_status & MC_STATUS_ADDRV)
printf("MCA: Address 0x%llx\n", (long long)rec->mr_addr);
if (rec->mr_status & MC_STATUS_MISCV)
printf("MCA: Misc 0x%llx\n", (long long)rec->mr_misc);
}
static int __nonnull(2)
mca_check_status(int bank, struct mca_record *rec)
{
uint64_t status;
u_int p[4];
status = rdmsr(MSR_MC_STATUS(bank));
if (!(status & MC_STATUS_VAL))
return (0);
/* Save exception information. */
rec->mr_status = status;
rec->mr_bank = bank;
rec->mr_addr = 0;
if (status & MC_STATUS_ADDRV)
rec->mr_addr = rdmsr(MSR_MC_ADDR(bank));
rec->mr_misc = 0;
if (status & MC_STATUS_MISCV)
rec->mr_misc = rdmsr(MSR_MC_MISC(bank));
rec->mr_tsc = rdtsc();
rec->mr_apic_id = PCPU_GET(apic_id);
rec->mr_mcg_cap = rdmsr(MSR_MCG_CAP);
rec->mr_mcg_status = rdmsr(MSR_MCG_STATUS);
rec->mr_cpu_id = cpu_id;
rec->mr_cpu_vendor_id = cpu_vendor_id;
rec->mr_cpu = PCPU_GET(cpuid);
/*
* Clear machine check. Don't do this for uncorrectable
* errors so that the BIOS can see them.
*/
if (!(rec->mr_status & (MC_STATUS_PCC | MC_STATUS_UC))) {
wrmsr(MSR_MC_STATUS(bank), 0);
do_cpuid(0, p);
}
return (1);
}
static void
mca_fill_freelist(void)
{
struct mca_internal *rec;
int desired;
/*
* Ensure we have at least one record for each bank and one
* record per CPU.
*/
desired = imax(mp_ncpus, mca_banks);
mtx_lock_spin(&mca_lock);
while (mca_freecount < desired) {
mtx_unlock_spin(&mca_lock);
rec = malloc(sizeof(*rec), M_MCA, M_WAITOK);
mtx_lock_spin(&mca_lock);
STAILQ_INSERT_TAIL(&mca_freelist, rec, link);
mca_freecount++;
}
mtx_unlock_spin(&mca_lock);
}
static void
mca_refill(void *context, int pending)
{
mca_fill_freelist();
}
static void __nonnull(2)
mca_record_entry(enum scan_mode mode, const struct mca_record *record)
{
struct mca_internal *rec;
if (mode == POLLED) {
rec = malloc(sizeof(*rec), M_MCA, M_WAITOK);
mtx_lock_spin(&mca_lock);
} else {
mtx_lock_spin(&mca_lock);
rec = STAILQ_FIRST(&mca_freelist);
if (rec == NULL) {
printf("MCA: Unable to allocate space for an event.\n");
mca_log(record);
mtx_unlock_spin(&mca_lock);
return;
}
STAILQ_REMOVE_HEAD(&mca_freelist, link);
mca_freecount--;
}
rec->rec = *record;
rec->logged = 0;
STAILQ_INSERT_TAIL(&mca_records, rec, link);
mca_count++;
mtx_unlock_spin(&mca_lock);
if (mode == CMCI)
taskqueue_enqueue_fast(mca_tq, &mca_refill_task);
}
#ifdef DEV_APIC
/*
* Update the interrupt threshold for a CMCI. The strategy is to use
* a low trigger that interrupts as soon as the first event occurs.
* However, if a steady stream of events arrive, the threshold is
* increased until the interrupts are throttled to once every
* cmc_throttle seconds or the periodic scan. If a periodic scan
* finds that the threshold is too high, it is lowered.
*/
static void
cmci_update(enum scan_mode mode, int bank, int valid, struct mca_record *rec)
{
struct cmc_state *cc;
uint64_t ctl;
u_int delta;
int count, limit;
/* Fetch the current limit for this bank. */
cc = &cmc_state[PCPU_GET(cpuid)][bank];
ctl = rdmsr(MSR_MC_CTL2(bank));
count = (rec->mr_status & MC_STATUS_COR_COUNT) >> 38;
delta = (u_int)(ticks - cc->last_intr);
/*
* If an interrupt was received less than cmc_throttle seconds
* since the previous interrupt and the count from the current
* event is greater than or equal to the current threshold,
* double the threshold up to the max.
*/
if (mode == CMCI && valid) {
limit = ctl & MC_CTL2_THRESHOLD;
if (delta < cmc_throttle && count >= limit &&
limit < cc->max_threshold) {
limit = min(limit << 1, cc->max_threshold);
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= limit;
wrmsr(MSR_MC_CTL2(bank), limit);
}
cc->last_intr = ticks;
return;
}
/*
* When the banks are polled, check to see if the threshold
* should be lowered.
*/
if (mode != POLLED)
return;
/* If a CMCI occured recently, do nothing for now. */
if (delta < cmc_throttle)
return;
/*
* Compute a new limit based on the average rate of events per
* cmc_throttle seconds since the last interrupt.
*/
if (valid) {
count = (rec->mr_status & MC_STATUS_COR_COUNT) >> 38;
limit = count * cmc_throttle / delta;
if (limit <= 0)
limit = 1;
else if (limit > cc->max_threshold)
limit = cc->max_threshold;
} else
limit = 1;
if ((ctl & MC_CTL2_THRESHOLD) != limit) {
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= limit;
wrmsr(MSR_MC_CTL2(bank), limit);
}
}
#endif
/*
* This scans all the machine check banks of the current CPU to see if
* there are any machine checks. Any non-recoverable errors are
* reported immediately via mca_log(). The current thread must be
* pinned when this is called. The 'mode' parameter indicates if we
* are being called from the MC exception handler, the CMCI handler,
* or the periodic poller. In the MC exception case this function
* returns true if the system is restartable. Otherwise, it returns a
* count of the number of valid MC records found.
*/
static int
mca_scan(enum scan_mode mode)
{
struct mca_record rec;
uint64_t mcg_cap, ucmask;
int count, i, recoverable, valid;
count = 0;
recoverable = 1;
ucmask = MC_STATUS_UC | MC_STATUS_PCC;
/* When handling a MCE#, treat the OVER flag as non-restartable. */
if (mode == MCE)
ucmask |= MC_STATUS_OVER;
mcg_cap = rdmsr(MSR_MCG_CAP);
for (i = 0; i < (mcg_cap & MCG_CAP_COUNT); i++) {
#ifdef DEV_APIC
/*
* For a CMCI, only check banks this CPU is
* responsible for.
*/
if (mode == CMCI && !(PCPU_GET(cmci_mask) & 1 << i))
continue;
#endif
valid = mca_check_status(i, &rec);
if (valid) {
count++;
if (rec.mr_status & ucmask) {
recoverable = 0;
mtx_lock_spin(&mca_lock);
mca_log(&rec);
mtx_unlock_spin(&mca_lock);
}
mca_record_entry(mode, &rec);
}
#ifdef DEV_APIC
/*
* If this is a bank this CPU monitors via CMCI,
* update the threshold.
*/
if (PCPU_GET(cmci_mask) & 1 << i)
cmci_update(mode, i, valid, &rec);
#endif
}
if (mode == POLLED)
mca_fill_freelist();
return (mode == MCE ? recoverable : count);
}
/*
* Scan the machine check banks on all CPUs by binding to each CPU in
* turn. If any of the CPUs contained new machine check records, log
* them to the console.
*/
static void
mca_scan_cpus(void *context, int pending)
{
struct mca_internal *mca;
struct thread *td;
int count, cpu;
mca_fill_freelist();
td = curthread;
count = 0;
thread_lock(td);
CPU_FOREACH(cpu) {
sched_bind(td, cpu);
thread_unlock(td);
count += mca_scan(POLLED);
thread_lock(td);
sched_unbind(td);
}
thread_unlock(td);
if (count != 0) {
mtx_lock_spin(&mca_lock);
STAILQ_FOREACH(mca, &mca_records, link) {
if (!mca->logged) {
mca->logged = 1;
mca_log(&mca->rec);
}
}
mtx_unlock_spin(&mca_lock);
}
}
static void
mca_periodic_scan(void *arg)
{
taskqueue_enqueue_fast(mca_tq, &mca_scan_task);
callout_reset(&mca_timer, mca_ticks * hz, mca_periodic_scan, NULL);
}
static int
sysctl_mca_scan(SYSCTL_HANDLER_ARGS)
{
int error, i;
i = 0;
error = sysctl_handle_int(oidp, &i, 0, req);
if (error)
return (error);
if (i)
taskqueue_enqueue_fast(mca_tq, &mca_scan_task);
return (0);
}
static void
mca_createtq(void *dummy)
{
if (mca_banks <= 0)
return;
mca_tq = taskqueue_create_fast("mca", M_WAITOK,
taskqueue_thread_enqueue, &mca_tq);
taskqueue_start_threads(&mca_tq, 1, PI_SWI(SWI_TQ), "mca taskq");
}
SYSINIT(mca_createtq, SI_SUB_CONFIGURE, SI_ORDER_ANY, mca_createtq, NULL);
static void
mca_startup(void *dummy)
{
if (mca_banks <= 0)
return;
callout_reset(&mca_timer, mca_ticks * hz, mca_periodic_scan, NULL);
}
SYSINIT(mca_startup, SI_SUB_SMP, SI_ORDER_ANY, mca_startup, NULL);
#ifdef DEV_APIC
static void
cmci_setup(void)
{
int i;
cmc_state = malloc((mp_maxid + 1) * sizeof(struct cmc_state *), M_MCA,
M_WAITOK);
for (i = 0; i <= mp_maxid; i++)
cmc_state[i] = malloc(sizeof(struct cmc_state) * mca_banks,
M_MCA, M_WAITOK | M_ZERO);
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"cmc_throttle", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
&cmc_throttle, 0, sysctl_positive_int, "I",
"Interval in seconds to throttle corrected MC interrupts");
}
#endif
static void
mca_setup(uint64_t mcg_cap)
{
/*
* On AMD Family 10h processors, unless logging of level one TLB
* parity (L1TP) errors is disabled, enable the recommended workaround
* for Erratum 383.
*/
if (cpu_vendor_id == CPU_VENDOR_AMD &&
CPUID_TO_FAMILY(cpu_id) == 0x10 && amd10h_L1TP)
workaround_erratum383 = 1;
mca_banks = mcg_cap & MCG_CAP_COUNT;
mtx_init(&mca_lock, "mca", NULL, MTX_SPIN);
STAILQ_INIT(&mca_records);
TASK_INIT(&mca_scan_task, 0, mca_scan_cpus, NULL);
callout_init(&mca_timer, CALLOUT_MPSAFE);
STAILQ_INIT(&mca_freelist);
TASK_INIT(&mca_refill_task, 0, mca_refill, NULL);
mca_fill_freelist();
SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"count", CTLFLAG_RD, (int *)(uintptr_t)&mca_count, 0,
"Record count");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"interval", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &mca_ticks,
0, sysctl_positive_int, "I",
"Periodic interval in seconds to scan for machine checks");
SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"records", CTLFLAG_RD, sysctl_mca_records, "Machine check records");
SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_mca), OID_AUTO,
"force_scan", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
sysctl_mca_scan, "I", "Force an immediate scan for machine checks");
#ifdef DEV_APIC
if (mcg_cap & MCG_CAP_CMCI_P)
cmci_setup();
#endif
}
#ifdef DEV_APIC
/*
* See if we should monitor CMCI for this bank. If CMCI_EN is already
* set in MC_CTL2, then another CPU is responsible for this bank, so
* ignore it. If CMCI_EN returns zero after being set, then this bank
* does not support CMCI_EN. If this CPU sets CMCI_EN, then it should
* now monitor this bank.
*/
static void
cmci_monitor(int i)
{
struct cmc_state *cc;
uint64_t ctl;
KASSERT(i < mca_banks, ("CPU %d has more MC banks", PCPU_GET(cpuid)));
ctl = rdmsr(MSR_MC_CTL2(i));
if (ctl & MC_CTL2_CMCI_EN)
/* Already monitored by another CPU. */
return;
/* Set the threshold to one event for now. */
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= MC_CTL2_CMCI_EN | 1;
wrmsr(MSR_MC_CTL2(i), ctl);
ctl = rdmsr(MSR_MC_CTL2(i));
if (!(ctl & MC_CTL2_CMCI_EN))
/* This bank does not support CMCI. */
return;
cc = &cmc_state[PCPU_GET(cpuid)][i];
/* Determine maximum threshold. */
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= 0x7fff;
wrmsr(MSR_MC_CTL2(i), ctl);
ctl = rdmsr(MSR_MC_CTL2(i));
cc->max_threshold = ctl & MC_CTL2_THRESHOLD;
/* Start off with a threshold of 1. */
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= 1;
wrmsr(MSR_MC_CTL2(i), ctl);
/* Mark this bank as monitored. */
PCPU_SET(cmci_mask, PCPU_GET(cmci_mask) | 1 << i);
}
/*
* For resume, reset the threshold for any banks we monitor back to
* one and throw away the timestamp of the last interrupt.
*/
static void
cmci_resume(int i)
{
struct cmc_state *cc;
uint64_t ctl;
KASSERT(i < mca_banks, ("CPU %d has more MC banks", PCPU_GET(cpuid)));
/* Ignore banks not monitored by this CPU. */
if (!(PCPU_GET(cmci_mask) & 1 << i))
return;
cc = &cmc_state[PCPU_GET(cpuid)][i];
cc->last_intr = -ticks;
ctl = rdmsr(MSR_MC_CTL2(i));
ctl &= ~MC_CTL2_THRESHOLD;
ctl |= MC_CTL2_CMCI_EN | 1;
wrmsr(MSR_MC_CTL2(i), ctl);
}
#endif
/*
* Initializes per-CPU machine check registers and enables corrected
* machine check interrupts.
*/
static void
_mca_init(int boot)
{
uint64_t mcg_cap;
uint64_t ctl, mask;
int i, skip;
/* MCE is required. */
if (!mca_enabled || !(cpu_feature & CPUID_MCE))
return;
if (cpu_feature & CPUID_MCA) {
if (boot)
PCPU_SET(cmci_mask, 0);
mcg_cap = rdmsr(MSR_MCG_CAP);
if (mcg_cap & MCG_CAP_CTL_P)
/* Enable MCA features. */
wrmsr(MSR_MCG_CTL, MCG_CTL_ENABLE);
if (PCPU_GET(cpuid) == 0 && boot)
mca_setup(mcg_cap);
/*
* Disable logging of level one TLB parity (L1TP) errors by
* the data cache as an alternative workaround for AMD Family
* 10h Erratum 383. Unlike the recommended workaround, there
* is no performance penalty to this workaround. However,
* L1TP errors will go unreported.
*/
if (cpu_vendor_id == CPU_VENDOR_AMD &&
CPUID_TO_FAMILY(cpu_id) == 0x10 && !amd10h_L1TP) {
mask = rdmsr(MSR_MC0_CTL_MASK);
if ((mask & (1UL << 5)) == 0)
wrmsr(MSR_MC0_CTL_MASK, mask | (1UL << 5));
}
for (i = 0; i < (mcg_cap & MCG_CAP_COUNT); i++) {
/* By default enable logging of all errors. */
ctl = 0xffffffffffffffffUL;
skip = 0;
if (cpu_vendor_id == CPU_VENDOR_INTEL) {
/*
* For P6 models before Nehalem MC0_CTL is
* always enabled and reserved.
*/
if (i == 0 && CPUID_TO_FAMILY(cpu_id) == 0x6
&& CPUID_TO_MODEL(cpu_id) < 0x1a)
skip = 1;
} else if (cpu_vendor_id == CPU_VENDOR_AMD) {
/* BKDG for Family 10h: unset GartTblWkEn. */
if (i == 4 && CPUID_TO_FAMILY(cpu_id) >= 0xf)
ctl &= ~(1UL << 10);
}
if (!skip)
wrmsr(MSR_MC_CTL(i), ctl);
#ifdef DEV_APIC
if (mcg_cap & MCG_CAP_CMCI_P) {
if (boot)
cmci_monitor(i);
else
cmci_resume(i);
}
#endif
/* Clear all errors. */
wrmsr(MSR_MC_STATUS(i), 0);
}
#ifdef DEV_APIC
if (PCPU_GET(cmci_mask) != 0 && boot)
lapic_enable_cmc();
#endif
}
load_cr4(rcr4() | CR4_MCE);
}
/* Must be executed on each CPU during boot. */
void
mca_init(void)
{
_mca_init(1);
}
/* Must be executed on each CPU during resume. */
void
mca_resume(void)
{
_mca_init(0);
}
/*
* The machine check registers for the BSP cannot be initialized until
* the local APIC is initialized. This happens at SI_SUB_CPU,
* SI_ORDER_SECOND.
*/
static void
mca_init_bsp(void *arg __unused)
{
mca_init();
}
SYSINIT(mca_init_bsp, SI_SUB_CPU, SI_ORDER_ANY, mca_init_bsp, NULL);
/* Called when a machine check exception fires. */
void
mca_intr(void)
{
uint64_t mcg_status;
int old_count, recoverable;
if (!(cpu_feature & CPUID_MCA)) {
/*
* Just print the values of the old Pentium registers
* and panic.
*/
printf("MC Type: 0x%jx Address: 0x%jx\n",
(uintmax_t)rdmsr(MSR_P5_MC_TYPE),
(uintmax_t)rdmsr(MSR_P5_MC_ADDR));
panic("Machine check");
}
/* Scan the banks and check for any non-recoverable errors. */
old_count = mca_count;
recoverable = mca_scan(MCE);
mcg_status = rdmsr(MSR_MCG_STATUS);
if (!(mcg_status & MCG_STATUS_RIPV))
recoverable = 0;
if (!recoverable) {
/*
* Wait for at least one error to be logged before
* panic'ing. Some errors will assert a machine check
* on all CPUs, but only certain CPUs will find a valid
* bank to log.
*/
while (mca_count == old_count)
cpu_spinwait();
panic("Unrecoverable machine check exception");
}
/* Clear MCIP. */
wrmsr(MSR_MCG_STATUS, mcg_status & ~MCG_STATUS_MCIP);
}
#ifdef DEV_APIC
/* Called for a CMCI (correctable machine check interrupt). */
void
cmc_intr(void)
{
struct mca_internal *mca;
int count;
/*
* Serialize MCA bank scanning to prevent collisions from
* sibling threads.
*/
count = mca_scan(CMCI);
/* If we found anything, log them to the console. */
if (count != 0) {
mtx_lock_spin(&mca_lock);
STAILQ_FOREACH(mca, &mca_records, link) {
if (!mca->logged) {
mca->logged = 1;
mca_log(&mca->rec);
}
}
mtx_unlock_spin(&mca_lock);
}
}
#endif