fe3bcfbda3
This moves dn_cfg and other parameters into per VNET variables. The taskqueue and control state remains global. Reviewed by: kp Differential Revision: https://reviews.freebsd.org/D29274
1234 lines
33 KiB
C
1234 lines
33 KiB
C
/*
|
|
* FQ_PIE - The FlowQueue-PIE scheduler/AQM
|
|
*
|
|
* $FreeBSD$
|
|
*
|
|
* Copyright (C) 2016 Centre for Advanced Internet Architectures,
|
|
* Swinburne University of Technology, Melbourne, Australia.
|
|
* Portions of this code were made possible in part by a gift from
|
|
* The Comcast Innovation Fund.
|
|
* Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* Important note:
|
|
* As there is no an office document for FQ-PIE specification, we used
|
|
* FQ-CoDel algorithm with some modifications to implement FQ-PIE.
|
|
* This FQ-PIE implementation is a beta version and have not been tested
|
|
* extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By
|
|
* default, timestamp is used to calculate queue delay instead of departure
|
|
* rate estimation method. Although departure rate estimation is available
|
|
* as testing option, the results could be incorrect. Moreover, turning PIE on
|
|
* and off option is available but it does not work properly in this version.
|
|
*/
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/malloc.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <net/if.h> /* IFNAMSIZ */
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip_var.h> /* ipfw_rule_ref */
|
|
#include <netinet/ip_fw.h> /* flow_id */
|
|
#include <netinet/ip_dummynet.h>
|
|
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
|
|
#include <netpfil/ipfw/ip_fw_private.h>
|
|
#include <sys/sysctl.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/ip_icmp.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/hash.h>
|
|
|
|
#include <netpfil/ipfw/dn_heap.h>
|
|
#include <netpfil/ipfw/ip_dn_private.h>
|
|
|
|
#include <netpfil/ipfw/dn_aqm.h>
|
|
#include <netpfil/ipfw/dn_aqm_pie.h>
|
|
#include <netpfil/ipfw/dn_sched.h>
|
|
|
|
#else
|
|
#include <dn_test.h>
|
|
#endif
|
|
|
|
#define DN_SCHED_FQ_PIE 7
|
|
|
|
VNET_DECLARE(unsigned long, io_pkt_drop);
|
|
#define V_io_pkt_drop VNET(io_pkt_drop)
|
|
|
|
/* list of queues */
|
|
STAILQ_HEAD(fq_pie_list, fq_pie_flow) ;
|
|
|
|
/* FQ_PIE parameters including PIE */
|
|
struct dn_sch_fq_pie_parms {
|
|
struct dn_aqm_pie_parms pcfg; /* PIE configuration Parameters */
|
|
/* FQ_PIE Parameters */
|
|
uint32_t flows_cnt; /* number of flows */
|
|
uint32_t limit; /* hard limit of FQ_PIE queue size*/
|
|
uint32_t quantum;
|
|
};
|
|
|
|
/* flow (sub-queue) stats */
|
|
struct flow_stats {
|
|
uint64_t tot_pkts; /* statistics counters */
|
|
uint64_t tot_bytes;
|
|
uint32_t length; /* Queue length, in packets */
|
|
uint32_t len_bytes; /* Queue length, in bytes */
|
|
uint32_t drops;
|
|
};
|
|
|
|
/* A flow of packets (sub-queue)*/
|
|
struct fq_pie_flow {
|
|
struct mq mq; /* list of packets */
|
|
struct flow_stats stats; /* statistics */
|
|
int deficit;
|
|
int active; /* 1: flow is active (in a list) */
|
|
struct pie_status pst; /* pie status variables */
|
|
struct fq_pie_si_extra *psi_extra;
|
|
STAILQ_ENTRY(fq_pie_flow) flowchain;
|
|
};
|
|
|
|
/* extra fq_pie scheduler configurations */
|
|
struct fq_pie_schk {
|
|
struct dn_sch_fq_pie_parms cfg;
|
|
};
|
|
|
|
/* fq_pie scheduler instance extra state vars.
|
|
* The purpose of separation this structure is to preserve number of active
|
|
* sub-queues and the flows array pointer even after the scheduler instance
|
|
* is destroyed.
|
|
* Preserving these varaiables allows freeing the allocated memory by
|
|
* fqpie_callout_cleanup() independently from fq_pie_free_sched().
|
|
*/
|
|
struct fq_pie_si_extra {
|
|
uint32_t nr_active_q; /* number of active queues */
|
|
struct fq_pie_flow *flows; /* array of flows (queues) */
|
|
};
|
|
|
|
/* fq_pie scheduler instance */
|
|
struct fq_pie_si {
|
|
struct dn_sch_inst _si; /* standard scheduler instance. SHOULD BE FIRST */
|
|
struct dn_queue main_q; /* main queue is after si directly */
|
|
uint32_t perturbation; /* random value */
|
|
struct fq_pie_list newflows; /* list of new queues */
|
|
struct fq_pie_list oldflows; /* list of old queues */
|
|
struct fq_pie_si_extra *si_extra; /* extra state vars*/
|
|
};
|
|
|
|
static struct dn_alg fq_pie_desc;
|
|
|
|
/* Default FQ-PIE parameters including PIE */
|
|
/* PIE defaults
|
|
* target=15ms, max_burst=150ms, max_ecnth=0.1,
|
|
* alpha=0.125, beta=1.25, tupdate=15ms
|
|
* FQ-
|
|
* flows=1024, limit=10240, quantum =1514
|
|
*/
|
|
struct dn_sch_fq_pie_parms
|
|
fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US,
|
|
150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125,
|
|
PIE_SCALE * 1.25, PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED},
|
|
1024, 10240, 1514};
|
|
|
|
static int
|
|
fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
long value;
|
|
|
|
if (!strcmp(oidp->oid_name,"alpha"))
|
|
value = fq_pie_sysctl.pcfg.alpha;
|
|
else
|
|
value = fq_pie_sysctl.pcfg.beta;
|
|
|
|
value = value * 1000 / PIE_SCALE;
|
|
error = sysctl_handle_long(oidp, &value, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (value < 1 || value > 7 * PIE_SCALE)
|
|
return (EINVAL);
|
|
value = (value * PIE_SCALE) / 1000;
|
|
if (!strcmp(oidp->oid_name,"alpha"))
|
|
fq_pie_sysctl.pcfg.alpha = value;
|
|
else
|
|
fq_pie_sysctl.pcfg.beta = value;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
long value;
|
|
|
|
if (!strcmp(oidp->oid_name,"target"))
|
|
value = fq_pie_sysctl.pcfg.qdelay_ref;
|
|
else if (!strcmp(oidp->oid_name,"tupdate"))
|
|
value = fq_pie_sysctl.pcfg.tupdate;
|
|
else
|
|
value = fq_pie_sysctl.pcfg.max_burst;
|
|
|
|
value = value / AQM_TIME_1US;
|
|
error = sysctl_handle_long(oidp, &value, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (value < 1 || value > 10 * AQM_TIME_1S)
|
|
return (EINVAL);
|
|
value = value * AQM_TIME_1US;
|
|
|
|
if (!strcmp(oidp->oid_name,"target"))
|
|
fq_pie_sysctl.pcfg.qdelay_ref = value;
|
|
else if (!strcmp(oidp->oid_name,"tupdate"))
|
|
fq_pie_sysctl.pcfg.tupdate = value;
|
|
else
|
|
fq_pie_sysctl.pcfg.max_burst = value;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
long value;
|
|
|
|
value = fq_pie_sysctl.pcfg.max_ecnth;
|
|
value = value * 1000 / PIE_SCALE;
|
|
error = sysctl_handle_long(oidp, &value, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (value < 1 || value > PIE_SCALE)
|
|
return (EINVAL);
|
|
value = (value * PIE_SCALE) / 1000;
|
|
fq_pie_sysctl.pcfg.max_ecnth = value;
|
|
return (0);
|
|
}
|
|
|
|
/* define FQ- PIE sysctl variables */
|
|
SYSBEGIN(f4)
|
|
SYSCTL_DECL(_net_inet);
|
|
SYSCTL_DECL(_net_inet_ip);
|
|
SYSCTL_DECL(_net_inet_ip_dummynet);
|
|
static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"FQ_PIE");
|
|
|
|
#ifdef SYSCTL_NODE
|
|
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
fqpie_sysctl_target_tupdate_maxb_handler, "L",
|
|
"queue target in microsecond");
|
|
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
fqpie_sysctl_target_tupdate_maxb_handler, "L",
|
|
"the frequency of drop probability calculation in microsecond");
|
|
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
fqpie_sysctl_target_tupdate_maxb_handler, "L",
|
|
"Burst allowance interval in microsecond");
|
|
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
fqpie_sysctl_max_ecnth_handler, "L",
|
|
"ECN safeguard threshold scaled by 1000");
|
|
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
fqpie_sysctl_alpha_beta_handler, "L",
|
|
"PIE alpha scaled by 1000");
|
|
|
|
SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta,
|
|
CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
|
|
fqpie_sysctl_alpha_beta_handler, "L",
|
|
"beta scaled by 1000");
|
|
|
|
SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum,
|
|
CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE");
|
|
SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows,
|
|
CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE");
|
|
SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit,
|
|
CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE");
|
|
#endif
|
|
|
|
/* Helper function to update queue&main-queue and scheduler statistics.
|
|
* negative len & drop -> drop
|
|
* negative len -> dequeue
|
|
* positive len -> enqueue
|
|
* positive len + drop -> drop during enqueue
|
|
*/
|
|
__inline static void
|
|
fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len,
|
|
int drop)
|
|
{
|
|
int inc = 0;
|
|
|
|
if (len < 0)
|
|
inc = -1;
|
|
else if (len > 0)
|
|
inc = 1;
|
|
|
|
if (drop) {
|
|
si->main_q.ni.drops ++;
|
|
q->stats.drops ++;
|
|
si->_si.ni.drops ++;
|
|
V_dn_cfg.io_pkt_drop ++;
|
|
}
|
|
|
|
if (!drop || (drop && len < 0)) {
|
|
/* Update stats for the main queue */
|
|
si->main_q.ni.length += inc;
|
|
si->main_q.ni.len_bytes += len;
|
|
|
|
/*update sub-queue stats */
|
|
q->stats.length += inc;
|
|
q->stats.len_bytes += len;
|
|
|
|
/*update scheduler instance stats */
|
|
si->_si.ni.length += inc;
|
|
si->_si.ni.len_bytes += len;
|
|
}
|
|
|
|
if (inc > 0) {
|
|
si->main_q.ni.tot_bytes += len;
|
|
si->main_q.ni.tot_pkts ++;
|
|
|
|
q->stats.tot_bytes +=len;
|
|
q->stats.tot_pkts++;
|
|
|
|
si->_si.ni.tot_bytes +=len;
|
|
si->_si.ni.tot_pkts ++;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Extract a packet from the head of sub-queue 'q'
|
|
* Return a packet or NULL if the queue is empty.
|
|
* If getts is set, also extract packet's timestamp from mtag.
|
|
*/
|
|
__inline static struct mbuf *
|
|
fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts,
|
|
struct fq_pie_si *si, int getts)
|
|
{
|
|
struct mbuf *m = q->mq.head;
|
|
|
|
if (m == NULL)
|
|
return m;
|
|
q->mq.head = m->m_nextpkt;
|
|
|
|
fq_update_stats(q, si, -m->m_pkthdr.len, 0);
|
|
|
|
if (si->main_q.ni.length == 0) /* queue is now idle */
|
|
si->main_q.q_time = V_dn_cfg.curr_time;
|
|
|
|
if (getts) {
|
|
/* extract packet timestamp*/
|
|
struct m_tag *mtag;
|
|
mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
|
|
if (mtag == NULL){
|
|
D("PIE timestamp mtag not found!");
|
|
*pkt_ts = 0;
|
|
} else {
|
|
*pkt_ts = *(aqm_time_t *)(mtag + 1);
|
|
m_tag_delete(m,mtag);
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* Callout function for drop probability calculation
|
|
* This function is called over tupdate ms and takes pointer of FQ-PIE
|
|
* flow as an argument
|
|
*/
|
|
static void
|
|
fq_calculate_drop_prob(void *x)
|
|
{
|
|
struct fq_pie_flow *q = (struct fq_pie_flow *) x;
|
|
struct pie_status *pst = &q->pst;
|
|
struct dn_aqm_pie_parms *pprms;
|
|
int64_t p, prob, oldprob;
|
|
aqm_time_t now;
|
|
int p_isneg;
|
|
|
|
now = AQM_UNOW;
|
|
pprms = pst->parms;
|
|
prob = pst->drop_prob;
|
|
|
|
/* calculate current qdelay using DRE method.
|
|
* If TS is used and no data in the queue, reset current_qdelay
|
|
* as it stays at last value during dequeue process.
|
|
*/
|
|
if (pprms->flags & PIE_DEPRATEEST_ENABLED)
|
|
pst->current_qdelay = ((uint64_t)q->stats.len_bytes * pst->avg_dq_time)
|
|
>> PIE_DQ_THRESHOLD_BITS;
|
|
else
|
|
if (!q->stats.len_bytes)
|
|
pst->current_qdelay = 0;
|
|
|
|
/* calculate drop probability */
|
|
p = (int64_t)pprms->alpha *
|
|
((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref);
|
|
p +=(int64_t) pprms->beta *
|
|
((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old);
|
|
|
|
/* take absolute value so right shift result is well defined */
|
|
p_isneg = p < 0;
|
|
if (p_isneg) {
|
|
p = -p;
|
|
}
|
|
|
|
/* We PIE_MAX_PROB shift by 12-bits to increase the division precision */
|
|
p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S;
|
|
|
|
/* auto-tune drop probability */
|
|
if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */
|
|
p >>= 11 + PIE_FIX_POINT_BITS + 12;
|
|
else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */
|
|
p >>= 9 + PIE_FIX_POINT_BITS + 12;
|
|
else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */
|
|
p >>= 7 + PIE_FIX_POINT_BITS + 12;
|
|
else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */
|
|
p >>= 5 + PIE_FIX_POINT_BITS + 12;
|
|
else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */
|
|
p >>= 3 + PIE_FIX_POINT_BITS + 12;
|
|
else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */
|
|
p >>= 1 + PIE_FIX_POINT_BITS + 12;
|
|
else
|
|
p >>= PIE_FIX_POINT_BITS + 12;
|
|
|
|
oldprob = prob;
|
|
|
|
if (p_isneg) {
|
|
prob = prob - p;
|
|
|
|
/* check for multiplication underflow */
|
|
if (prob > oldprob) {
|
|
prob= 0;
|
|
D("underflow");
|
|
}
|
|
} else {
|
|
/* Cap Drop adjustment */
|
|
if ((pprms->flags & PIE_CAPDROP_ENABLED) &&
|
|
prob >= PIE_MAX_PROB / 10 &&
|
|
p > PIE_MAX_PROB / 50 ) {
|
|
p = PIE_MAX_PROB / 50;
|
|
}
|
|
|
|
prob = prob + p;
|
|
|
|
/* check for multiplication overflow */
|
|
if (prob<oldprob) {
|
|
D("overflow");
|
|
prob= PIE_MAX_PROB;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* decay the drop probability exponentially
|
|
* and restrict it to range 0 to PIE_MAX_PROB
|
|
*/
|
|
if (prob < 0) {
|
|
prob = 0;
|
|
} else {
|
|
if (pst->current_qdelay == 0 && pst->qdelay_old == 0) {
|
|
/* 0.98 ~= 1- 1/64 */
|
|
prob = prob - (prob >> 6);
|
|
}
|
|
|
|
if (prob > PIE_MAX_PROB) {
|
|
prob = PIE_MAX_PROB;
|
|
}
|
|
}
|
|
|
|
pst->drop_prob = prob;
|
|
|
|
/* store current delay value */
|
|
pst->qdelay_old = pst->current_qdelay;
|
|
|
|
/* update burst allowance */
|
|
if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) {
|
|
if (pst->burst_allowance > pprms->tupdate)
|
|
pst->burst_allowance -= pprms->tupdate;
|
|
else
|
|
pst->burst_allowance = 0;
|
|
}
|
|
|
|
if (pst->sflags & PIE_ACTIVE)
|
|
callout_reset_sbt(&pst->aqm_pie_callout,
|
|
(uint64_t)pprms->tupdate * SBT_1US,
|
|
0, fq_calculate_drop_prob, q, 0);
|
|
|
|
mtx_unlock(&pst->lock_mtx);
|
|
}
|
|
|
|
/*
|
|
* Reset PIE variables & activate the queue
|
|
*/
|
|
__inline static void
|
|
fq_activate_pie(struct fq_pie_flow *q)
|
|
{
|
|
struct pie_status *pst = &q->pst;
|
|
struct dn_aqm_pie_parms *pprms;
|
|
|
|
mtx_lock(&pst->lock_mtx);
|
|
pprms = pst->parms;
|
|
|
|
pprms = pst->parms;
|
|
pst->drop_prob = 0;
|
|
pst->qdelay_old = 0;
|
|
pst->burst_allowance = pprms->max_burst;
|
|
pst->accu_prob = 0;
|
|
pst->dq_count = 0;
|
|
pst->avg_dq_time = 0;
|
|
pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE;
|
|
pst->measurement_start = AQM_UNOW;
|
|
|
|
callout_reset_sbt(&pst->aqm_pie_callout,
|
|
(uint64_t)pprms->tupdate * SBT_1US,
|
|
0, fq_calculate_drop_prob, q, 0);
|
|
|
|
mtx_unlock(&pst->lock_mtx);
|
|
}
|
|
|
|
/*
|
|
* Deactivate PIE and stop probe update callout
|
|
*/
|
|
__inline static void
|
|
fq_deactivate_pie(struct pie_status *pst)
|
|
{
|
|
mtx_lock(&pst->lock_mtx);
|
|
pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT);
|
|
callout_stop(&pst->aqm_pie_callout);
|
|
//D("PIE Deactivated");
|
|
mtx_unlock(&pst->lock_mtx);
|
|
}
|
|
|
|
/*
|
|
* Initialize PIE for sub-queue 'q'
|
|
*/
|
|
static int
|
|
pie_init(struct fq_pie_flow *q, struct fq_pie_schk *fqpie_schk)
|
|
{
|
|
struct pie_status *pst=&q->pst;
|
|
struct dn_aqm_pie_parms *pprms = pst->parms;
|
|
|
|
int err = 0;
|
|
if (!pprms){
|
|
D("AQM_PIE is not configured");
|
|
err = EINVAL;
|
|
} else {
|
|
q->psi_extra->nr_active_q++;
|
|
|
|
/* For speed optimization, we caculate 1/3 queue size once here */
|
|
// XXX limit divided by number of queues divided by 3 ???
|
|
pst->one_third_q_size = (fqpie_schk->cfg.limit /
|
|
fqpie_schk->cfg.flows_cnt) / 3;
|
|
|
|
mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF);
|
|
callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx,
|
|
CALLOUT_RETURNUNLOCKED);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* callout function to destroy PIE lock, and free fq_pie flows and fq_pie si
|
|
* extra memory when number of active sub-queues reaches zero.
|
|
* 'x' is a fq_pie_flow to be destroyed
|
|
*/
|
|
static void
|
|
fqpie_callout_cleanup(void *x)
|
|
{
|
|
struct fq_pie_flow *q = x;
|
|
struct pie_status *pst = &q->pst;
|
|
struct fq_pie_si_extra *psi_extra;
|
|
|
|
mtx_unlock(&pst->lock_mtx);
|
|
mtx_destroy(&pst->lock_mtx);
|
|
psi_extra = q->psi_extra;
|
|
|
|
DN_BH_WLOCK();
|
|
psi_extra->nr_active_q--;
|
|
|
|
/* when all sub-queues are destroyed, free flows fq_pie extra vars memory */
|
|
if (!psi_extra->nr_active_q) {
|
|
free(psi_extra->flows, M_DUMMYNET);
|
|
free(psi_extra, M_DUMMYNET);
|
|
fq_pie_desc.ref_count--;
|
|
}
|
|
DN_BH_WUNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Clean up PIE status for sub-queue 'q'
|
|
* Stop callout timer and destroy mtx using fqpie_callout_cleanup() callout.
|
|
*/
|
|
static int
|
|
pie_cleanup(struct fq_pie_flow *q)
|
|
{
|
|
struct pie_status *pst = &q->pst;
|
|
|
|
mtx_lock(&pst->lock_mtx);
|
|
callout_reset_sbt(&pst->aqm_pie_callout,
|
|
SBT_1US, 0, fqpie_callout_cleanup, q, 0);
|
|
mtx_unlock(&pst->lock_mtx);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty.
|
|
* Also, caculate depature time or queue delay using timestamp
|
|
*/
|
|
static struct mbuf *
|
|
pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si)
|
|
{
|
|
struct mbuf *m;
|
|
struct dn_aqm_pie_parms *pprms;
|
|
struct pie_status *pst;
|
|
aqm_time_t now;
|
|
aqm_time_t pkt_ts, dq_time;
|
|
int32_t w;
|
|
|
|
pst = &q->pst;
|
|
pprms = q->pst.parms;
|
|
|
|
/*we extarct packet ts only when Departure Rate Estimation dis not used*/
|
|
m = fq_pie_extract_head(q, &pkt_ts, si,
|
|
!(pprms->flags & PIE_DEPRATEEST_ENABLED));
|
|
|
|
if (!m || !(pst->sflags & PIE_ACTIVE))
|
|
return m;
|
|
|
|
now = AQM_UNOW;
|
|
if (pprms->flags & PIE_DEPRATEEST_ENABLED) {
|
|
/* calculate average depature time */
|
|
if(pst->sflags & PIE_INMEASUREMENT) {
|
|
pst->dq_count += m->m_pkthdr.len;
|
|
|
|
if (pst->dq_count >= PIE_DQ_THRESHOLD) {
|
|
dq_time = now - pst->measurement_start;
|
|
|
|
/*
|
|
* if we don't have old avg dq_time i.e PIE is (re)initialized,
|
|
* don't use weight to calculate new avg_dq_time
|
|
*/
|
|
if(pst->avg_dq_time == 0)
|
|
pst->avg_dq_time = dq_time;
|
|
else {
|
|
/*
|
|
* weight = PIE_DQ_THRESHOLD/2^6, but we scaled
|
|
* weight by 2^8. Thus, scaled
|
|
* weight = PIE_DQ_THRESHOLD /2^8
|
|
* */
|
|
w = PIE_DQ_THRESHOLD >> 8;
|
|
pst->avg_dq_time = (dq_time* w
|
|
+ (pst->avg_dq_time * ((1L << 8) - w))) >> 8;
|
|
pst->sflags &= ~PIE_INMEASUREMENT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start new measurment cycle when the queue has
|
|
* PIE_DQ_THRESHOLD worth of bytes.
|
|
*/
|
|
if(!(pst->sflags & PIE_INMEASUREMENT) &&
|
|
q->stats.len_bytes >= PIE_DQ_THRESHOLD) {
|
|
pst->sflags |= PIE_INMEASUREMENT;
|
|
pst->measurement_start = now;
|
|
pst->dq_count = 0;
|
|
}
|
|
}
|
|
/* Optionally, use packet timestamp to estimate queue delay */
|
|
else
|
|
pst->current_qdelay = now - pkt_ts;
|
|
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* Enqueue a packet in q, subject to space and FQ-PIE queue management policy
|
|
* (whose parameters are in q->fs).
|
|
* Update stats for the queue and the scheduler.
|
|
* Return 0 on success, 1 on drop. The packet is consumed anyways.
|
|
*/
|
|
static int
|
|
pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si)
|
|
{
|
|
uint64_t len;
|
|
struct pie_status *pst;
|
|
struct dn_aqm_pie_parms *pprms;
|
|
int t;
|
|
|
|
len = m->m_pkthdr.len;
|
|
pst = &q->pst;
|
|
pprms = pst->parms;
|
|
t = ENQUE;
|
|
|
|
/* drop/mark the packet when PIE is active and burst time elapsed */
|
|
if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0
|
|
&& drop_early(pst, q->stats.len_bytes) == DROP) {
|
|
/*
|
|
* if drop_prob over ECN threshold, drop the packet
|
|
* otherwise mark and enqueue it.
|
|
*/
|
|
if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob <
|
|
(pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS))
|
|
&& ecn_mark(m))
|
|
t = ENQUE;
|
|
else
|
|
t = DROP;
|
|
}
|
|
|
|
/* Turn PIE on when 1/3 of the queue is full */
|
|
if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >=
|
|
pst->one_third_q_size) {
|
|
fq_activate_pie(q);
|
|
}
|
|
|
|
/* reset burst tolerance and optinally turn PIE off*/
|
|
if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1)
|
|
&& pst->qdelay_old < (pprms->qdelay_ref >> 1)) {
|
|
|
|
pst->burst_allowance = pprms->max_burst;
|
|
if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0)
|
|
fq_deactivate_pie(pst);
|
|
}
|
|
|
|
/* Use timestamp if Departure Rate Estimation mode is disabled */
|
|
if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) {
|
|
/* Add TS to mbuf as a TAG */
|
|
struct m_tag *mtag;
|
|
mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL);
|
|
if (mtag == NULL)
|
|
mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS,
|
|
sizeof(aqm_time_t), M_NOWAIT);
|
|
if (mtag == NULL) {
|
|
t = DROP;
|
|
} else {
|
|
*(aqm_time_t *)(mtag + 1) = AQM_UNOW;
|
|
m_tag_prepend(m, mtag);
|
|
}
|
|
}
|
|
|
|
if (t != DROP) {
|
|
mq_append(&q->mq, m);
|
|
fq_update_stats(q, si, len, 0);
|
|
return 0;
|
|
} else {
|
|
fq_update_stats(q, si, len, 1);
|
|
pst->accu_prob = 0;
|
|
FREE_PKT(m);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Drop a packet form the head of FQ-PIE sub-queue */
|
|
static void
|
|
pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si)
|
|
{
|
|
struct mbuf *m = q->mq.head;
|
|
|
|
if (m == NULL)
|
|
return;
|
|
q->mq.head = m->m_nextpkt;
|
|
|
|
fq_update_stats(q, si, -m->m_pkthdr.len, 1);
|
|
|
|
if (si->main_q.ni.length == 0) /* queue is now idle */
|
|
si->main_q.q_time = V_dn_cfg.curr_time;
|
|
/* reset accu_prob after packet drop */
|
|
q->pst.accu_prob = 0;
|
|
|
|
FREE_PKT(m);
|
|
}
|
|
|
|
/*
|
|
* Classify a packet to queue number using Jenkins hash function.
|
|
* Return: queue number
|
|
* the input of the hash are protocol no, perturbation, src IP, dst IP,
|
|
* src port, dst port,
|
|
*/
|
|
static inline int
|
|
fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si)
|
|
{
|
|
struct ip *ip;
|
|
struct tcphdr *th;
|
|
struct udphdr *uh;
|
|
uint8_t tuple[41];
|
|
uint16_t hash=0;
|
|
|
|
ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off);
|
|
//#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
int isip6;
|
|
isip6 = (ip->ip_v == 6);
|
|
|
|
if(isip6) {
|
|
ip6 = (struct ip6_hdr *)ip;
|
|
*((uint8_t *) &tuple[0]) = ip6->ip6_nxt;
|
|
*((uint32_t *) &tuple[1]) = si->perturbation;
|
|
memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16);
|
|
memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16);
|
|
|
|
switch (ip6->ip6_nxt) {
|
|
case IPPROTO_TCP:
|
|
th = (struct tcphdr *)(ip6 + 1);
|
|
*((uint16_t *) &tuple[37]) = th->th_dport;
|
|
*((uint16_t *) &tuple[39]) = th->th_sport;
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
uh = (struct udphdr *)(ip6 + 1);
|
|
*((uint16_t *) &tuple[37]) = uh->uh_dport;
|
|
*((uint16_t *) &tuple[39]) = uh->uh_sport;
|
|
break;
|
|
default:
|
|
memset(&tuple[37], 0, 4);
|
|
}
|
|
|
|
hash = jenkins_hash(tuple, 41, HASHINIT) % fcount;
|
|
return hash;
|
|
}
|
|
//#endif
|
|
|
|
/* IPv4 */
|
|
*((uint8_t *) &tuple[0]) = ip->ip_p;
|
|
*((uint32_t *) &tuple[1]) = si->perturbation;
|
|
*((uint32_t *) &tuple[5]) = ip->ip_src.s_addr;
|
|
*((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr;
|
|
|
|
switch (ip->ip_p) {
|
|
case IPPROTO_TCP:
|
|
th = (struct tcphdr *)(ip + 1);
|
|
*((uint16_t *) &tuple[13]) = th->th_dport;
|
|
*((uint16_t *) &tuple[15]) = th->th_sport;
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
uh = (struct udphdr *)(ip + 1);
|
|
*((uint16_t *) &tuple[13]) = uh->uh_dport;
|
|
*((uint16_t *) &tuple[15]) = uh->uh_sport;
|
|
break;
|
|
default:
|
|
memset(&tuple[13], 0, 4);
|
|
}
|
|
hash = jenkins_hash(tuple, 17, HASHINIT) % fcount;
|
|
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
* Enqueue a packet into an appropriate queue according to
|
|
* FQ-CoDe; algorithm.
|
|
*/
|
|
static int
|
|
fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q,
|
|
struct mbuf *m)
|
|
{
|
|
struct fq_pie_si *si;
|
|
struct fq_pie_schk *schk;
|
|
struct dn_sch_fq_pie_parms *param;
|
|
struct dn_queue *mainq;
|
|
struct fq_pie_flow *flows;
|
|
int idx, drop, i, maxidx;
|
|
|
|
mainq = (struct dn_queue *)(_si + 1);
|
|
si = (struct fq_pie_si *)_si;
|
|
flows = si->si_extra->flows;
|
|
schk = (struct fq_pie_schk *)(si->_si.sched+1);
|
|
param = &schk->cfg;
|
|
|
|
/* classify a packet to queue number*/
|
|
idx = fq_pie_classify_flow(m, param->flows_cnt, si);
|
|
|
|
/* enqueue packet into appropriate queue using PIE AQM.
|
|
* Note: 'pie_enqueue' function returns 1 only when it unable to
|
|
* add timestamp to packet (no limit check)*/
|
|
drop = pie_enqueue(&flows[idx], m, si);
|
|
|
|
/* pie unable to timestamp a packet */
|
|
if (drop)
|
|
return 1;
|
|
|
|
/* If the flow (sub-queue) is not active ,then add it to tail of
|
|
* new flows list, initialize and activate it.
|
|
*/
|
|
if (!flows[idx].active) {
|
|
STAILQ_INSERT_TAIL(&si->newflows, &flows[idx], flowchain);
|
|
flows[idx].deficit = param->quantum;
|
|
fq_activate_pie(&flows[idx]);
|
|
flows[idx].active = 1;
|
|
}
|
|
|
|
/* check the limit for all queues and remove a packet from the
|
|
* largest one
|
|
*/
|
|
if (mainq->ni.length > schk->cfg.limit) {
|
|
/* find first active flow */
|
|
for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++)
|
|
if (flows[maxidx].active)
|
|
break;
|
|
if (maxidx < schk->cfg.flows_cnt) {
|
|
/* find the largest sub- queue */
|
|
for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++)
|
|
if (flows[i].active && flows[i].stats.length >
|
|
flows[maxidx].stats.length)
|
|
maxidx = i;
|
|
pie_drop_head(&flows[maxidx], si);
|
|
drop = 1;
|
|
}
|
|
}
|
|
|
|
return drop;
|
|
}
|
|
|
|
/*
|
|
* Dequeue a packet from an appropriate queue according to
|
|
* FQ-CoDel algorithm.
|
|
*/
|
|
static struct mbuf *
|
|
fq_pie_dequeue(struct dn_sch_inst *_si)
|
|
{
|
|
struct fq_pie_si *si;
|
|
struct fq_pie_schk *schk;
|
|
struct dn_sch_fq_pie_parms *param;
|
|
struct fq_pie_flow *f;
|
|
struct mbuf *mbuf;
|
|
struct fq_pie_list *fq_pie_flowlist;
|
|
|
|
si = (struct fq_pie_si *)_si;
|
|
schk = (struct fq_pie_schk *)(si->_si.sched+1);
|
|
param = &schk->cfg;
|
|
|
|
do {
|
|
/* select a list to start with */
|
|
if (STAILQ_EMPTY(&si->newflows))
|
|
fq_pie_flowlist = &si->oldflows;
|
|
else
|
|
fq_pie_flowlist = &si->newflows;
|
|
|
|
/* Both new and old queue lists are empty, return NULL */
|
|
if (STAILQ_EMPTY(fq_pie_flowlist))
|
|
return NULL;
|
|
|
|
f = STAILQ_FIRST(fq_pie_flowlist);
|
|
while (f != NULL) {
|
|
/* if there is no flow(sub-queue) deficit, increase deficit
|
|
* by quantum, move the flow to the tail of old flows list
|
|
* and try another flow.
|
|
* Otherwise, the flow will be used for dequeue.
|
|
*/
|
|
if (f->deficit < 0) {
|
|
f->deficit += param->quantum;
|
|
STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain);
|
|
STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain);
|
|
} else
|
|
break;
|
|
|
|
f = STAILQ_FIRST(fq_pie_flowlist);
|
|
}
|
|
|
|
/* the new flows list is empty, try old flows list */
|
|
if (STAILQ_EMPTY(fq_pie_flowlist))
|
|
continue;
|
|
|
|
/* Dequeue a packet from the selected flow */
|
|
mbuf = pie_dequeue(f, si);
|
|
|
|
/* pie did not return a packet */
|
|
if (!mbuf) {
|
|
/* If the selected flow belongs to new flows list, then move
|
|
* it to the tail of old flows list. Otherwise, deactivate it and
|
|
* remove it from the old list and
|
|
*/
|
|
if (fq_pie_flowlist == &si->newflows) {
|
|
STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain);
|
|
STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain);
|
|
} else {
|
|
f->active = 0;
|
|
fq_deactivate_pie(&f->pst);
|
|
STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain);
|
|
}
|
|
/* start again */
|
|
continue;
|
|
}
|
|
|
|
/* we have a packet to return,
|
|
* update flow deficit and return the packet*/
|
|
f->deficit -= mbuf->m_pkthdr.len;
|
|
return mbuf;
|
|
|
|
} while (1);
|
|
|
|
/* unreachable point */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize fq_pie scheduler instance.
|
|
* also, allocate memory for flows array.
|
|
*/
|
|
static int
|
|
fq_pie_new_sched(struct dn_sch_inst *_si)
|
|
{
|
|
struct fq_pie_si *si;
|
|
struct dn_queue *q;
|
|
struct fq_pie_schk *schk;
|
|
struct fq_pie_flow *flows;
|
|
int i;
|
|
|
|
si = (struct fq_pie_si *)_si;
|
|
schk = (struct fq_pie_schk *)(_si->sched+1);
|
|
|
|
if(si->si_extra) {
|
|
D("si already configured!");
|
|
return 0;
|
|
}
|
|
|
|
/* init the main queue */
|
|
q = &si->main_q;
|
|
set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q));
|
|
q->_si = _si;
|
|
q->fs = _si->sched->fs;
|
|
|
|
/* allocate memory for scheduler instance extra vars */
|
|
si->si_extra = malloc(sizeof(struct fq_pie_si_extra),
|
|
M_DUMMYNET, M_NOWAIT | M_ZERO);
|
|
if (si->si_extra == NULL) {
|
|
D("cannot allocate memory for fq_pie si extra vars");
|
|
return ENOMEM ;
|
|
}
|
|
/* allocate memory for flows array */
|
|
si->si_extra->flows = mallocarray(schk->cfg.flows_cnt,
|
|
sizeof(struct fq_pie_flow), M_DUMMYNET, M_NOWAIT | M_ZERO);
|
|
flows = si->si_extra->flows;
|
|
if (flows == NULL) {
|
|
free(si->si_extra, M_DUMMYNET);
|
|
si->si_extra = NULL;
|
|
D("cannot allocate memory for fq_pie flows");
|
|
return ENOMEM ;
|
|
}
|
|
|
|
/* init perturbation for this si */
|
|
si->perturbation = random();
|
|
si->si_extra->nr_active_q = 0;
|
|
|
|
/* init the old and new flows lists */
|
|
STAILQ_INIT(&si->newflows);
|
|
STAILQ_INIT(&si->oldflows);
|
|
|
|
/* init the flows (sub-queues) */
|
|
for (i = 0; i < schk->cfg.flows_cnt; i++) {
|
|
flows[i].pst.parms = &schk->cfg.pcfg;
|
|
flows[i].psi_extra = si->si_extra;
|
|
pie_init(&flows[i], schk);
|
|
}
|
|
|
|
fq_pie_desc.ref_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free fq_pie scheduler instance.
|
|
*/
|
|
static int
|
|
fq_pie_free_sched(struct dn_sch_inst *_si)
|
|
{
|
|
struct fq_pie_si *si;
|
|
struct fq_pie_schk *schk;
|
|
struct fq_pie_flow *flows;
|
|
int i;
|
|
|
|
si = (struct fq_pie_si *)_si;
|
|
schk = (struct fq_pie_schk *)(_si->sched+1);
|
|
flows = si->si_extra->flows;
|
|
for (i = 0; i < schk->cfg.flows_cnt; i++) {
|
|
pie_cleanup(&flows[i]);
|
|
}
|
|
si->si_extra = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Configure FQ-PIE scheduler.
|
|
* the configurations for the scheduler is passed fromipfw userland.
|
|
*/
|
|
static int
|
|
fq_pie_config(struct dn_schk *_schk)
|
|
{
|
|
struct fq_pie_schk *schk;
|
|
struct dn_extra_parms *ep;
|
|
struct dn_sch_fq_pie_parms *fqp_cfg;
|
|
|
|
schk = (struct fq_pie_schk *)(_schk+1);
|
|
ep = (struct dn_extra_parms *) _schk->cfg;
|
|
|
|
/* par array contains fq_pie configuration as follow
|
|
* PIE: 0- qdelay_ref,1- tupdate, 2- max_burst
|
|
* 3- max_ecnth, 4- alpha, 5- beta, 6- flags
|
|
* FQ_PIE: 7- quantum, 8- limit, 9- flows
|
|
*/
|
|
if (ep && ep->oid.len ==sizeof(*ep) &&
|
|
ep->oid.subtype == DN_SCH_PARAMS) {
|
|
fqp_cfg = &schk->cfg;
|
|
if (ep->par[0] < 0)
|
|
fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref;
|
|
else
|
|
fqp_cfg->pcfg.qdelay_ref = ep->par[0];
|
|
if (ep->par[1] < 0)
|
|
fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate;
|
|
else
|
|
fqp_cfg->pcfg.tupdate = ep->par[1];
|
|
if (ep->par[2] < 0)
|
|
fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst;
|
|
else
|
|
fqp_cfg->pcfg.max_burst = ep->par[2];
|
|
if (ep->par[3] < 0)
|
|
fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth;
|
|
else
|
|
fqp_cfg->pcfg.max_ecnth = ep->par[3];
|
|
if (ep->par[4] < 0)
|
|
fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha;
|
|
else
|
|
fqp_cfg->pcfg.alpha = ep->par[4];
|
|
if (ep->par[5] < 0)
|
|
fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta;
|
|
else
|
|
fqp_cfg->pcfg.beta = ep->par[5];
|
|
if (ep->par[6] < 0)
|
|
fqp_cfg->pcfg.flags = 0;
|
|
else
|
|
fqp_cfg->pcfg.flags = ep->par[6];
|
|
|
|
/* FQ configurations */
|
|
if (ep->par[7] < 0)
|
|
fqp_cfg->quantum = fq_pie_sysctl.quantum;
|
|
else
|
|
fqp_cfg->quantum = ep->par[7];
|
|
if (ep->par[8] < 0)
|
|
fqp_cfg->limit = fq_pie_sysctl.limit;
|
|
else
|
|
fqp_cfg->limit = ep->par[8];
|
|
if (ep->par[9] < 0)
|
|
fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt;
|
|
else
|
|
fqp_cfg->flows_cnt = ep->par[9];
|
|
|
|
/* Bound the configurations */
|
|
fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref,
|
|
1, 5 * AQM_TIME_1S);
|
|
fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate,
|
|
1, 5 * AQM_TIME_1S);
|
|
fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst,
|
|
0, 5 * AQM_TIME_1S);
|
|
fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth,
|
|
0, PIE_SCALE);
|
|
fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE);
|
|
fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE);
|
|
|
|
fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000);
|
|
fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480);
|
|
fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536);
|
|
}
|
|
else {
|
|
D("Wrong parameters for fq_pie scheduler");
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return FQ-PIE scheduler configurations
|
|
* the configurations for the scheduler is passed to userland.
|
|
*/
|
|
static int
|
|
fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) {
|
|
struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1);
|
|
struct dn_sch_fq_pie_parms *fqp_cfg;
|
|
|
|
fqp_cfg = &schk->cfg;
|
|
|
|
strcpy(ep->name, fq_pie_desc.name);
|
|
ep->par[0] = fqp_cfg->pcfg.qdelay_ref;
|
|
ep->par[1] = fqp_cfg->pcfg.tupdate;
|
|
ep->par[2] = fqp_cfg->pcfg.max_burst;
|
|
ep->par[3] = fqp_cfg->pcfg.max_ecnth;
|
|
ep->par[4] = fqp_cfg->pcfg.alpha;
|
|
ep->par[5] = fqp_cfg->pcfg.beta;
|
|
ep->par[6] = fqp_cfg->pcfg.flags;
|
|
|
|
ep->par[7] = fqp_cfg->quantum;
|
|
ep->par[8] = fqp_cfg->limit;
|
|
ep->par[9] = fqp_cfg->flows_cnt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* FQ-PIE scheduler descriptor
|
|
* contains the type of the scheduler, the name, the size of extra
|
|
* data structures, and function pointers.
|
|
*/
|
|
static struct dn_alg fq_pie_desc = {
|
|
_SI( .type = ) DN_SCHED_FQ_PIE,
|
|
_SI( .name = ) "FQ_PIE",
|
|
_SI( .flags = ) 0,
|
|
|
|
_SI( .schk_datalen = ) sizeof(struct fq_pie_schk),
|
|
_SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst),
|
|
_SI( .q_datalen = ) 0,
|
|
|
|
_SI( .enqueue = ) fq_pie_enqueue,
|
|
_SI( .dequeue = ) fq_pie_dequeue,
|
|
_SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/
|
|
_SI( .destroy = ) NULL, /*sched x delete */
|
|
_SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */
|
|
_SI( .free_sched = ) fq_pie_free_sched, /* delete schd instance */
|
|
_SI( .new_fsk = ) NULL,
|
|
_SI( .free_fsk = ) NULL,
|
|
_SI( .new_queue = ) NULL,
|
|
_SI( .free_queue = ) NULL,
|
|
_SI( .getconfig = ) fq_pie_getconfig,
|
|
_SI( .ref_count = ) 0
|
|
};
|
|
|
|
DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc);
|