freebsd-nq/sys/boot/ficl/words.c
Mike Smith 4ce140ae69 Fix includes; we were still pulling in <stdlib.h> in some places.
Support building a standalone interpreter with 'make testmain', remove
win32 and egregious gets() in testmain.c
1998-11-04 03:42:16 +00:00

4344 lines
121 KiB
C

/*******************************************************************
** w o r d s . c
** Forth Inspired Command Language
** ANS Forth CORE word-set written in C
** Author: John Sadler (john_sadler@alum.mit.edu)
** Created: 19 July 1997
**
*******************************************************************/
#ifdef TESTMAIN
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#else
#include <stand.h>
#endif
#include <string.h>
#include "ficl.h"
#include "math64.h"
static void colonParen(FICL_VM *pVM);
static void literalIm(FICL_VM *pVM);
static void interpWord(FICL_VM *pVM, STRINGINFO si);
/*
** Control structure building words use these
** strings' addresses as markers on the stack to
** check for structure completion.
*/
static char doTag[] = "do";
static char ifTag[] = "if";
static char colonTag[] = "colon";
static char leaveTag[] = "leave";
static char beginTag[] = "begin";
static char whileTag[] = "while";
/*
** Pointers to various words in the dictionary
** -- initialized by ficlCompileCore, below --
** for use by compiling words. Colon definitions
** in ficl are lists of pointers to words. A bit
** simple-minded...
*/
static FICL_WORD *pBranchParen = NULL;
static FICL_WORD *pComma = NULL;
static FICL_WORD *pDoParen = NULL;
static FICL_WORD *pDoesParen = NULL;
static FICL_WORD *pExitParen = NULL;
static FICL_WORD *pIfParen = NULL;
static FICL_WORD *pInterpret = NULL;
static FICL_WORD *pLitParen = NULL;
static FICL_WORD *pLoopParen = NULL;
static FICL_WORD *pPLoopParen = NULL;
static FICL_WORD *pQDoParen = NULL;
static FICL_WORD *pSemiParen = NULL;
static FICL_WORD *pStore = NULL;
static FICL_WORD *pStringLit = NULL;
static FICL_WORD *pType = NULL;
#if FICL_WANT_LOCALS
static FICL_WORD *pGetLocalParen= NULL;
static FICL_WORD *pGetLocal0 = NULL;
static FICL_WORD *pGetLocal1 = NULL;
static FICL_WORD *pToLocalParen = NULL;
static FICL_WORD *pToLocal0 = NULL;
static FICL_WORD *pToLocal1 = NULL;
static FICL_WORD *pLinkParen = NULL;
static FICL_WORD *pUnLinkParen = NULL;
static int nLocals = 0;
#endif
/*
** C O N T R O L S T R U C T U R E B U I L D E R S
**
** Push current dict location for later branch resolution.
** The location may be either a branch target or a patch address...
*/
static void markBranch(FICL_DICT *dp, FICL_VM *pVM, char *tag)
{
stackPushPtr(pVM->pStack, dp->here);
stackPushPtr(pVM->pStack, tag);
return;
}
static void markControlTag(FICL_VM *pVM, char *tag)
{
stackPushPtr(pVM->pStack, tag);
return;
}
static void matchControlTag(FICL_VM *pVM, char *tag)
{
char *cp = (char *)stackPopPtr(pVM->pStack);
if ( strcmp(cp, tag) )
{
vmTextOut(pVM, "Warning -- unmatched control word: ", 0);
vmTextOut(pVM, tag, 1);
}
return;
}
/*
** Expect a branch target address on the param stack,
** compile a literal offset from the current dict location
** to the target address
*/
static void resolveBackBranch(FICL_DICT *dp, FICL_VM *pVM, char *tag)
{
long offset;
CELL *patchAddr;
matchControlTag(pVM, tag);
patchAddr = (CELL *)stackPopPtr(pVM->pStack);
offset = patchAddr - dp->here;
dictAppendCell(dp, LVALUEtoCELL(offset));
return;
}
/*
** Expect a branch patch address on the param stack,
** compile a literal offset from the patch location
** to the current dict location
*/
static void resolveForwardBranch(FICL_DICT *dp, FICL_VM *pVM, char *tag)
{
long offset;
CELL *patchAddr;
matchControlTag(pVM, tag);
patchAddr = (CELL *)stackPopPtr(pVM->pStack);
offset = dp->here - patchAddr;
*patchAddr = LVALUEtoCELL(offset);
return;
}
/*
** Match the tag to the top of the stack. If success,
** sopy "here" address into the cell whose address is next
** on the stack. Used by do..leave..loop.
*/
static void resolveAbsBranch(FICL_DICT *dp, FICL_VM *pVM, char *tag)
{
CELL *patchAddr;
char *cp;
cp = stackPopPtr(pVM->pStack);
if (strcmp(cp, tag))
{
vmTextOut(pVM, "Warning -- Unmatched control word: ", 0);
vmTextOut(pVM, tag, 1);
}
patchAddr = (CELL *)stackPopPtr(pVM->pStack);
*patchAddr = LVALUEtoCELL(dp->here);
return;
}
/**************************************************************************
i s N u m b e r
** Attempts to convert the NULL terminated string in the VM's pad to
** a number using the VM's current base. If successful, pushes the number
** onto the param stack and returns TRUE. Otherwise, returns FALSE.
**************************************************************************/
static int isNumber(FICL_VM *pVM, STRINGINFO si)
{
INT32 accum = 0;
char isNeg = FALSE;
unsigned base = pVM->base;
char *cp = SI_PTR(si);
FICL_COUNT count= (FICL_COUNT)SI_COUNT(si);
unsigned ch;
unsigned digit;
if (*cp == '-')
{
cp++;
count--;
isNeg = TRUE;
}
else if ((cp[0] == '0') && (cp[1] == 'x'))
{ /* detect 0xNNNN format for hex numbers */
cp += 2;
count -= 2;
base = 16;
}
if (count == 0)
return FALSE;
while (count-- && ((ch = *cp++) != '\0'))
{
if (ch < '0')
return FALSE;
digit = ch - '0';
if (digit > 9)
digit = tolower(ch) - 'a' + 10;
/*
** Note: following test also catches chars between 9 and a
** because 'digit' is unsigned!
*/
if (digit >= base)
return FALSE;
accum = accum * base + digit;
}
if (isNeg)
accum = -accum;
stackPushINT32(pVM->pStack, accum);
return TRUE;
}
/**************************************************************************
a d d & f r i e n d s
**
**************************************************************************/
static void add(FICL_VM *pVM)
{
INT32 i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
i = stackPopINT32(pVM->pStack);
i += stackGetTop(pVM->pStack).i;
stackSetTop(pVM->pStack, LVALUEtoCELL(i));
return;
}
static void sub(FICL_VM *pVM)
{
INT32 i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
i = stackPopINT32(pVM->pStack);
i = stackGetTop(pVM->pStack).i - i;
stackSetTop(pVM->pStack, LVALUEtoCELL(i));
return;
}
static void mul(FICL_VM *pVM)
{
INT32 i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
i = stackPopINT32(pVM->pStack);
i *= stackGetTop(pVM->pStack).i;
stackSetTop(pVM->pStack, LVALUEtoCELL(i));
return;
}
static void negate(FICL_VM *pVM)
{
INT32 i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
i = -stackPopINT32(pVM->pStack);
stackPushINT32(pVM->pStack, i);
return;
}
static void ficlDiv(FICL_VM *pVM)
{
INT32 i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
i = stackPopINT32(pVM->pStack);
i = stackGetTop(pVM->pStack).i / i;
stackSetTop(pVM->pStack, LVALUEtoCELL(i));
return;
}
/*
** slash-mod CORE ( n1 n2 -- n3 n4 )
** Divide n1 by n2, giving the single-cell remainder n3 and the single-cell
** quotient n4. An ambiguous condition exists if n2 is zero. If n1 and n2
** differ in sign, the implementation-defined result returned will be the
** same as that returned by either the phrase
** >R S>D R> FM/MOD or the phrase >R S>D R> SM/REM .
** NOTE: Ficl complies with the second phrase (symmetric division)
*/
static void slashMod(FICL_VM *pVM)
{
INT64 n1;
INT32 n2;
INTQR qr;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 2);
#endif
n2 = stackPopINT32(pVM->pStack);
n1.lo = stackPopINT32(pVM->pStack);
i64Extend(n1);
qr = m64SymmetricDivI(n1, n2);
stackPushINT32(pVM->pStack, qr.rem);
stackPushINT32(pVM->pStack, qr.quot);
return;
}
static void onePlus(FICL_VM *pVM)
{
INT32 i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
i = stackGetTop(pVM->pStack).i;
i += 1;
stackSetTop(pVM->pStack, LVALUEtoCELL(i));
return;
}
static void oneMinus(FICL_VM *pVM)
{
INT32 i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
i = stackGetTop(pVM->pStack).i;
i -= 1;
stackSetTop(pVM->pStack, LVALUEtoCELL(i));
return;
}
static void twoMul(FICL_VM *pVM)
{
INT32 i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
i = stackGetTop(pVM->pStack).i;
i *= 2;
stackSetTop(pVM->pStack, LVALUEtoCELL(i));
return;
}
static void twoDiv(FICL_VM *pVM)
{
INT32 i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
i = stackGetTop(pVM->pStack).i;
i >>= 1;
stackSetTop(pVM->pStack, LVALUEtoCELL(i));
return;
}
static void mulDiv(FICL_VM *pVM)
{
INT32 x, y, z;
INT64 prod;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 3, 1);
#endif
z = stackPopINT32(pVM->pStack);
y = stackPopINT32(pVM->pStack);
x = stackPopINT32(pVM->pStack);
prod = m64MulI(x,y);
x = m64SymmetricDivI(prod, z).quot;
stackPushINT32(pVM->pStack, x);
return;
}
static void mulDivRem(FICL_VM *pVM)
{
INT32 x, y, z;
INT64 prod;
INTQR qr;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 3, 2);
#endif
z = stackPopINT32(pVM->pStack);
y = stackPopINT32(pVM->pStack);
x = stackPopINT32(pVM->pStack);
prod = m64MulI(x,y);
qr = m64SymmetricDivI(prod, z);
stackPushINT32(pVM->pStack, qr.rem);
stackPushINT32(pVM->pStack, qr.quot);
return;
}
/**************************************************************************
b y e
** TOOLS
** Signal the system to shut down - this causes ficlExec to return
** VM_USEREXIT. The rest is up to you.
**************************************************************************/
static void bye(FICL_VM *pVM)
{
vmThrow(pVM, VM_USEREXIT);
return;
}
/**************************************************************************
c o l o n d e f i n i t i o n s
** Code to begin compiling a colon definition
** This function sets the state to COMPILE, then creates a
** new word whose name is the next word in the input stream
** and whose code is colonParen.
**************************************************************************/
static void colon(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
STRINGINFO si = vmGetWord(pVM);
pVM->state = COMPILE;
markControlTag(pVM, colonTag);
dictAppendWord2(dp, si, colonParen, FW_DEFAULT | FW_SMUDGE);
#if FICL_WANT_LOCALS
nLocals = 0;
#endif
return;
}
/**************************************************************************
c o l o n P a r e n
** This is the code that executes a colon definition. It assumes that the
** virtual machine is running a "next" loop (See the vm.c
** for its implementation of member function vmExecute()). The colon
** code simply copies the address of the first word in the list of words
** to interpret into IP after saving its old value. When we return to the
** "next" loop, the virtual machine will call the code for each word in
** turn.
**
**************************************************************************/
static void colonParen(FICL_VM *pVM)
{
IPTYPE tempIP = (IPTYPE) (pVM->runningWord->param);
vmPushIP(pVM, tempIP);
return;
}
/**************************************************************************
s e m i c o l o n C o I m
**
** IMMEDIATE code for ";". This function sets the state to INTERPRET and
** terminates a word under compilation by appending code for "(;)" to
** the definition. TO DO: checks for leftover branch target tags on the
** return stack and complains if any are found.
**************************************************************************/
static void semiParen(FICL_VM *pVM)
{
vmPopIP(pVM);
return;
}
static void semicolonCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pSemiParen);
matchControlTag(pVM, colonTag);
#if FICL_WANT_LOCALS
assert(pUnLinkParen);
if (nLocals > 0)
{
FICL_DICT *pLoc = ficlGetLoc();
dictEmpty(pLoc, pLoc->pForthWords->size);
dictAppendCell(dp, LVALUEtoCELL(pUnLinkParen));
}
nLocals = 0;
#endif
dictAppendCell(dp, LVALUEtoCELL(pSemiParen));
pVM->state = INTERPRET;
dictUnsmudge(dp);
return;
}
/**************************************************************************
e x i t
** CORE
** This function simply pops the previous instruction
** pointer and returns to the "next" loop. Used for exiting from within
** a definition. Note that exitParen is identical to semiParen - they
** are in two different functions so that "see" can correctly identify
** the end of a colon definition, even if it uses "exit".
**************************************************************************/
static void exitParen(FICL_VM *pVM)
{
vmPopIP(pVM);
return;
}
static void exitCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pExitParen);
IGNORE(pVM);
#if FICL_WANT_LOCALS
if (nLocals > 0)
{
dictAppendCell(dp, LVALUEtoCELL(pUnLinkParen));
}
#endif
dictAppendCell(dp, LVALUEtoCELL(pExitParen));
return;
}
/**************************************************************************
c o n s t a n t P a r e n
** This is the run-time code for "constant". It simply returns the
** contents of its word's first data cell.
**
**************************************************************************/
void constantParen(FICL_VM *pVM)
{
FICL_WORD *pFW = pVM->runningWord;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 0, 1);
#endif
stackPush(pVM->pStack, pFW->param[0]);
return;
}
void twoConstParen(FICL_VM *pVM)
{
FICL_WORD *pFW = pVM->runningWord;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 0, 2);
#endif
stackPush(pVM->pStack, pFW->param[0]); /* lo */
stackPush(pVM->pStack, pFW->param[1]); /* hi */
return;
}
/**************************************************************************
c o n s t a n t
** IMMEDIATE
** Compiles a constant into the dictionary. Constants return their
** value when invoked. Expects a value on top of the parm stack.
**************************************************************************/
static void constant(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
STRINGINFO si = vmGetWord(pVM);
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 0);
#endif
dictAppendWord2(dp, si, constantParen, FW_DEFAULT);
dictAppendCell(dp, stackPop(pVM->pStack));
return;
}
static void twoConstant(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
STRINGINFO si = vmGetWord(pVM);
CELL c;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 0);
#endif
c = stackPop(pVM->pStack);
dictAppendWord2(dp, si, twoConstParen, FW_DEFAULT);
dictAppendCell(dp, stackPop(pVM->pStack));
dictAppendCell(dp, c);
return;
}
/**************************************************************************
d i s p l a y C e l l
** Drop and print the contents of the cell at the top of the param
** stack
**************************************************************************/
static void displayCell(FICL_VM *pVM)
{
CELL c;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 0);
#endif
c = stackPop(pVM->pStack);
ltoa((c).i, pVM->pad, pVM->base);
strcat(pVM->pad, " ");
vmTextOut(pVM, pVM->pad, 0);
return;
}
static void uDot(FICL_VM *pVM)
{
UNS32 u;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 0);
#endif
u = stackPopUNS32(pVM->pStack);
ultoa(u, pVM->pad, pVM->base);
strcat(pVM->pad, " ");
vmTextOut(pVM, pVM->pad, 0);
return;
}
static void hexDot(FICL_VM *pVM)
{
UNS32 u;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 0);
#endif
u = stackPopUNS32(pVM->pStack);
ultoa(u, pVM->pad, 16);
strcat(pVM->pad, " ");
vmTextOut(pVM, pVM->pad, 0);
return;
}
/**************************************************************************
d i s p l a y S t a c k
** Display the parameter stack (code for ".s")
**************************************************************************/
static void displayStack(FICL_VM *pVM)
{
int d = stackDepth(pVM->pStack);
int i;
CELL *pCell;
vmCheckStack(pVM, 0, 0);
if (d == 0)
vmTextOut(pVM, "(Stack Empty)", 1);
else
{
pCell = pVM->pStack->sp;
for (i = 0; i < d; i++)
{
vmTextOut(pVM, ltoa((*--pCell).i, pVM->pad, pVM->base), 1);
}
}
}
/**************************************************************************
d u p & f r i e n d s
**
**************************************************************************/
static void depth(FICL_VM *pVM)
{
int i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 0, 1);
#endif
i = stackDepth(pVM->pStack);
stackPushINT32(pVM->pStack, i);
return;
}
static void drop(FICL_VM *pVM)
{
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 0);
#endif
stackDrop(pVM->pStack, 1);
return;
}
static void twoDrop(FICL_VM *pVM)
{
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 0);
#endif
stackDrop(pVM->pStack, 2);
return;
}
static void dup(FICL_VM *pVM)
{
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 2);
#endif
stackPick(pVM->pStack, 0);
return;
}
static void twoDup(FICL_VM *pVM)
{
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 4);
#endif
stackPick(pVM->pStack, 1);
stackPick(pVM->pStack, 1);
return;
}
static void over(FICL_VM *pVM)
{
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 3);
#endif
stackPick(pVM->pStack, 1);
return;
}
static void twoOver(FICL_VM *pVM)
{
#if FICL_ROBUST > 1
vmCheckStack(pVM, 4, 6);
#endif
stackPick(pVM->pStack, 3);
stackPick(pVM->pStack, 3);
return;
}
static void pick(FICL_VM *pVM)
{
CELL c = stackPop(pVM->pStack);
#if FICL_ROBUST > 1
vmCheckStack(pVM, c.i+1, c.i+2);
#endif
stackPick(pVM->pStack, c.i);
return;
}
static void questionDup(FICL_VM *pVM)
{
CELL c;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 2);
#endif
c = stackGetTop(pVM->pStack);
if (c.i != 0)
stackPick(pVM->pStack, 0);
return;
}
static void roll(FICL_VM *pVM)
{
int i = stackPop(pVM->pStack).i;
i = (i > 0) ? i : 0;
#if FICL_ROBUST > 1
vmCheckStack(pVM, i+1, i+1);
#endif
stackRoll(pVM->pStack, i);
return;
}
static void minusRoll(FICL_VM *pVM)
{
int i = stackPop(pVM->pStack).i;
i = (i > 0) ? i : 0;
#if FICL_ROBUST > 1
vmCheckStack(pVM, i+1, i+1);
#endif
stackRoll(pVM->pStack, -i);
return;
}
static void rot(FICL_VM *pVM)
{
#if FICL_ROBUST > 1
vmCheckStack(pVM, 3, 3);
#endif
stackRoll(pVM->pStack, 2);
return;
}
static void swap(FICL_VM *pVM)
{
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 2);
#endif
stackRoll(pVM->pStack, 1);
return;
}
static void twoSwap(FICL_VM *pVM)
{
#if FICL_ROBUST > 1
vmCheckStack(pVM, 4, 4);
#endif
stackRoll(pVM->pStack, 3);
stackRoll(pVM->pStack, 3);
return;
}
/**************************************************************************
e m i t & f r i e n d s
**
**************************************************************************/
static void emit(FICL_VM *pVM)
{
char *cp = pVM->pad;
int i;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 0);
#endif
i = stackPopINT32(pVM->pStack);
cp[0] = (char)i;
cp[1] = '\0';
vmTextOut(pVM, cp, 0);
return;
}
static void cr(FICL_VM *pVM)
{
vmTextOut(pVM, "", 1);
return;
}
static void commentLine(FICL_VM *pVM)
{
char *cp = vmGetInBuf(pVM);
char ch = *cp;
while ((ch != '\0') && (ch != '\r') && (ch != '\n'))
{
ch = *++cp;
}
/*
** Cope with DOS or UNIX-style EOLs -
** Check for /r, /n, /r/n, or /n/r end-of-line sequences,
** and point cp to next char. If EOL is \0, we're done.
*/
if (ch != '\0')
{
cp++;
if ( (ch != *cp)
&& ((*cp == '\r') || (*cp == '\n')) )
cp++;
}
vmUpdateTib(pVM, cp);
return;
}
/*
** paren CORE
** Compilation: Perform the execution semantics given below.
** Execution: ( "ccc<paren>" -- )
** Parse ccc delimited by ) (right parenthesis). ( is an immediate word.
** The number of characters in ccc may be zero to the number of characters
** in the parse area.
**
*/
static void commentHang(FICL_VM *pVM)
{
vmParseString(pVM, ')');
return;
}
/**************************************************************************
F E T C H & S T O R E
**
**************************************************************************/
static void fetch(FICL_VM *pVM)
{
CELL *pCell;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
pCell = (CELL *)stackPopPtr(pVM->pStack);
stackPush(pVM->pStack, *pCell);
return;
}
/*
** two-fetch CORE ( a-addr -- x1 x2 )
** Fetch the cell pair x1 x2 stored at a-addr. x2 is stored at a-addr and
** x1 at the next consecutive cell. It is equivalent to the sequence
** DUP CELL+ @ SWAP @ .
*/
static void twoFetch(FICL_VM *pVM)
{
CELL *pCell;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 2);
#endif
pCell = (CELL *)stackPopPtr(pVM->pStack);
stackPush(pVM->pStack, *pCell++);
stackPush(pVM->pStack, *pCell);
swap(pVM);
return;
}
/*
** store CORE ( x a-addr -- )
** Store x at a-addr.
*/
static void store(FICL_VM *pVM)
{
CELL *pCell;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 0);
#endif
pCell = (CELL *)stackPopPtr(pVM->pStack);
*pCell = stackPop(pVM->pStack);
}
/*
** two-store CORE ( x1 x2 a-addr -- )
** Store the cell pair x1 x2 at a-addr, with x2 at a-addr and x1 at the
** next consecutive cell. It is equivalent to the sequence
** SWAP OVER ! CELL+ ! .
*/
static void twoStore(FICL_VM *pVM)
{
CELL *pCell;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 3, 0);
#endif
pCell = (CELL *)stackPopPtr(pVM->pStack);
*pCell++ = stackPop(pVM->pStack);
*pCell = stackPop(pVM->pStack);
}
static void plusStore(FICL_VM *pVM)
{
CELL *pCell;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 0);
#endif
pCell = (CELL *)stackPopPtr(pVM->pStack);
pCell->i += stackPop(pVM->pStack).i;
}
static void wFetch(FICL_VM *pVM)
{
UNS16 *pw;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
pw = (UNS16 *)stackPopPtr(pVM->pStack);
stackPushUNS32(pVM->pStack, (UNS32)*pw);
return;
}
static void wStore(FICL_VM *pVM)
{
UNS16 *pw;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 0);
#endif
pw = (UNS16 *)stackPopPtr(pVM->pStack);
*pw = (UNS16)(stackPop(pVM->pStack).u);
}
static void cFetch(FICL_VM *pVM)
{
UNS8 *pc;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
pc = (UNS8 *)stackPopPtr(pVM->pStack);
stackPushUNS32(pVM->pStack, (UNS32)*pc);
return;
}
static void cStore(FICL_VM *pVM)
{
UNS8 *pc;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 0);
#endif
pc = (UNS8 *)stackPopPtr(pVM->pStack);
*pc = (UNS8)(stackPop(pVM->pStack).u);
}
/**************************************************************************
i f C o I m
** IMMEDIATE
** Compiles code for a conditional branch into the dictionary
** and pushes the branch patch address on the stack for later
** patching by ELSE or THEN/ENDIF.
**************************************************************************/
static void ifCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pIfParen);
dictAppendCell(dp, LVALUEtoCELL(pIfParen));
markBranch(dp, pVM, ifTag);
dictAppendUNS32(dp, 1);
return;
}
/**************************************************************************
i f P a r e n
** Runtime code to do "if" or "until": pop a flag from the stack,
** fall through if true, branch if false. Probably ought to be
** called (not?branch) since it does "branch if false".
**************************************************************************/
static void ifParen(FICL_VM *pVM)
{
UNS32 flag;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 0);
#endif
flag = stackPopUNS32(pVM->pStack);
if (flag)
{ /* fall through */
vmBranchRelative(pVM, 1);
}
else
{ /* take branch (to else/endif/begin) */
vmBranchRelative(pVM, (int)(*pVM->ip));
}
return;
}
/**************************************************************************
e l s e C o I m
**
** IMMEDIATE -- compiles an "else"...
** 1) Compile a branch and a patch address; the address gets patched
** by "endif" to point past the "else" code.
** 2) Pop the the "if" patch address
** 3) Patch the "if" branch to point to the current compile address.
** 4) Push the "else" patch address. ("endif" patches this to jump past
** the "else" code.
**************************************************************************/
static void elseCoIm(FICL_VM *pVM)
{
CELL *patchAddr;
int offset;
FICL_DICT *dp = ficlGetDict();
assert(pBranchParen);
/* (1) compile branch runtime */
dictAppendCell(dp, LVALUEtoCELL(pBranchParen));
matchControlTag(pVM, ifTag);
patchAddr =
(CELL *)stackPopPtr(pVM->pStack); /* (2) pop "if" patch addr */
markBranch(dp, pVM, ifTag); /* (4) push "else" patch addr */
dictAppendUNS32(dp, 1); /* (1) compile patch placeholder */
offset = dp->here - patchAddr;
*patchAddr = LVALUEtoCELL(offset); /* (3) Patch "if" */
return;
}
/**************************************************************************
b r a n c h P a r e n
**
** Runtime for "(branch)" -- expects a literal offset in the next
** compilation address, and branches to that location.
**************************************************************************/
static void branchParen(FICL_VM *pVM)
{
vmBranchRelative(pVM, *(int *)(pVM->ip));
return;
}
/**************************************************************************
e n d i f C o I m
**
**************************************************************************/
static void endifCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
resolveForwardBranch(dp, pVM, ifTag);
return;
}
/**************************************************************************
i n t e r p r e t
** This is the "user interface" of a Forth. It does the following:
** while there are words in the VM's Text Input Buffer
** Copy next word into the pad (vmGetWord)
** Attempt to find the word in the dictionary (dictLookup)
** If successful, execute the word.
** Otherwise, attempt to convert the word to a number (isNumber)
** If successful, push the number onto the parameter stack.
** Otherwise, print an error message and exit loop...
** End Loop
**
** From the standard, section 3.4
** Text interpretation (see 6.1.1360 EVALUATE and 6.1.2050 QUIT) shall
** repeat the following steps until either the parse area is empty or an
** ambiguous condition exists:
** a) Skip leading spaces and parse a name (see 3.4.1);
**************************************************************************/
static void interpret(FICL_VM *pVM)
{
STRINGINFO si = vmGetWord0(pVM);
assert(pVM);
vmBranchRelative(pVM, -1);
/*
// Get next word...if out of text, we're done.
*/
if (si.count == 0)
{
vmThrow(pVM, VM_OUTOFTEXT);
}
interpWord(pVM, si);
return; /* back to inner interpreter */
}
/**************************************************************************
** From the standard, section 3.4
** b) Search the dictionary name space (see 3.4.2). If a definition name
** matching the string is found:
** 1.if interpreting, perform the interpretation semantics of the definition
** (see 3.4.3.2), and continue at a);
** 2.if compiling, perform the compilation semantics of the definition
** (see 3.4.3.3), and continue at a).
**
** c) If a definition name matching the string is not found, attempt to
** convert the string to a number (see 3.4.1.3). If successful:
** 1.if interpreting, place the number on the data stack, and continue at a);
** 2.if compiling, compile code that when executed will place the number on
** the stack (see 6.1.1780 LITERAL), and continue at a);
**
** d) If unsuccessful, an ambiguous condition exists (see 3.4.4).
**************************************************************************/
static void interpWord(FICL_VM *pVM, STRINGINFO si)
{
FICL_DICT *dp = ficlGetDict();
FICL_WORD *tempFW;
#if FICL_ROBUST
dictCheck(dp, pVM, 0);
vmCheckStack(pVM, 0, 0);
#endif
#if FICL_WANT_LOCALS
if (nLocals > 0)
{
tempFW = dictLookupLoc(dp, si);
}
else
#endif
tempFW = dictLookup(dp, si);
if (pVM->state == INTERPRET)
{
if (tempFW != NULL)
{
if (wordIsCompileOnly(tempFW))
{
vmThrowErr(pVM, "Error: Compile only!");
}
vmExecute(pVM, tempFW);
}
else if (!isNumber(pVM, si))
{
int i = SI_COUNT(si);
vmThrowErr(pVM, "%.*s not found", i, SI_PTR(si));
}
}
else /* (pVM->state == COMPILE) */
{
if (tempFW != NULL)
{
if (wordIsImmediate(tempFW))
{
vmExecute(pVM, tempFW);
}
else
{
dictAppendCell(dp, LVALUEtoCELL(tempFW));
}
}
else if (isNumber(pVM, si))
{
literalIm(pVM);
}
else
{
int i = SI_COUNT(si);
vmThrowErr(pVM, "%.*s not found", i, SI_PTR(si));
}
}
return;
}
/**************************************************************************
l i t e r a l P a r e n
**
** This is the runtime for (literal). It assumes that it is part of a colon
** definition, and that the next CELL contains a value to be pushed on the
** parameter stack at runtime. This code is compiled by "literal".
**
**************************************************************************/
static void literalParen(FICL_VM *pVM)
{
#if FICL_ROBUST > 1
vmCheckStack(pVM, 0, 1);
#endif
stackPushINT32(pVM->pStack, *(INT32 *)(pVM->ip));
vmBranchRelative(pVM, 1);
return;
}
/**************************************************************************
l i t e r a l I m
**
** IMMEDIATE code for "literal". This function gets a value from the stack
** and compiles it into the dictionary preceded by the code for "(literal)".
** IMMEDIATE
**************************************************************************/
static void literalIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pLitParen);
dictAppendCell(dp, LVALUEtoCELL(pLitParen));
dictAppendCell(dp, stackPop(pVM->pStack));
return;
}
/**************************************************************************
l i s t W o r d s
**
**************************************************************************/
#define nCOLWIDTH 8
static void listWords(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
FICL_HASH *pHash = dp->pSearch[dp->nLists - 1];
FICL_WORD *wp;
int nChars = 0;
int len;
unsigned i;
int nWords = 0;
char *cp;
char *pPad = pVM->pad;
for (i = 0; i < pHash->size; i++)
{
for (wp = pHash->table[i]; wp != NULL; wp = wp->link, nWords++)
{
if (wp->nName == 0) /* ignore :noname defs */
continue;
cp = wp->name;
nChars += sprintf(pPad + nChars, "%s", cp);
if (nChars > 70)
{
pPad[nChars] = '\0';
nChars = 0;
vmTextOut(pVM, pPad, 1);
}
else
{
len = nCOLWIDTH - nChars % nCOLWIDTH;
while (len-- > 0)
pPad[nChars++] = ' ';
}
if (nChars > 70)
{
pPad[nChars] = '\0';
nChars = 0;
vmTextOut(pVM, pPad, 1);
}
}
}
if (nChars > 0)
{
pPad[nChars] = '\0';
nChars = 0;
vmTextOut(pVM, pPad, 1);
}
sprintf(pVM->pad, "Dictionary: %d words, %ld cells used of %lu total",
nWords, dp->here - dp->dict, dp->size);
vmTextOut(pVM, pVM->pad, 1);
return;
}
static void listEnv(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetEnv();
FICL_HASH *pHash = dp->pForthWords;
FICL_WORD *wp;
unsigned i;
int nWords = 0;
for (i = 0; i < pHash->size; i++)
{
for (wp = pHash->table[i]; wp != NULL; wp = wp->link, nWords++)
{
vmTextOut(pVM, wp->name, 1);
}
}
sprintf(pVM->pad, "Environment: %d words, %ld cells used of %lu total",
nWords, dp->here - dp->dict, dp->size);
vmTextOut(pVM, pVM->pad, 1);
return;
}
/**************************************************************************
l o g i c a n d c o m p a r i s o n s
**
**************************************************************************/
static void zeroEquals(FICL_VM *pVM)
{
CELL c;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
c.i = FICL_BOOL(stackPopINT32(pVM->pStack) == 0);
stackPush(pVM->pStack, c);
return;
}
static void zeroLess(FICL_VM *pVM)
{
CELL c;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
c.i = FICL_BOOL(stackPopINT32(pVM->pStack) < 0);
stackPush(pVM->pStack, c);
return;
}
static void zeroGreater(FICL_VM *pVM)
{
CELL c;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
c.i = FICL_BOOL(stackPopINT32(pVM->pStack) > 0);
stackPush(pVM->pStack, c);
return;
}
static void isEqual(FICL_VM *pVM)
{
CELL x, y;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
x = stackPop(pVM->pStack);
y = stackPop(pVM->pStack);
stackPushINT32(pVM->pStack, FICL_BOOL(x.i == y.i));
return;
}
static void isLess(FICL_VM *pVM)
{
CELL x, y;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
y = stackPop(pVM->pStack);
x = stackPop(pVM->pStack);
stackPushINT32(pVM->pStack, FICL_BOOL(x.i < y.i));
return;
}
static void uIsLess(FICL_VM *pVM)
{
UNS32 u1, u2;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
u2 = stackPopUNS32(pVM->pStack);
u1 = stackPopUNS32(pVM->pStack);
stackPushINT32(pVM->pStack, FICL_BOOL(u1 < u2));
return;
}
static void isGreater(FICL_VM *pVM)
{
CELL x, y;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
y = stackPop(pVM->pStack);
x = stackPop(pVM->pStack);
stackPushINT32(pVM->pStack, FICL_BOOL(x.i > y.i));
return;
}
static void bitwiseAnd(FICL_VM *pVM)
{
CELL x, y;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
x = stackPop(pVM->pStack);
y = stackPop(pVM->pStack);
stackPushINT32(pVM->pStack, x.i & y.i);
return;
}
static void bitwiseOr(FICL_VM *pVM)
{
CELL x, y;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
x = stackPop(pVM->pStack);
y = stackPop(pVM->pStack);
stackPushINT32(pVM->pStack, x.i | y.i);
return;
}
static void bitwiseXor(FICL_VM *pVM)
{
CELL x, y;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 1);
#endif
x = stackPop(pVM->pStack);
y = stackPop(pVM->pStack);
stackPushINT32(pVM->pStack, x.i ^ y.i);
return;
}
static void bitwiseNot(FICL_VM *pVM)
{
CELL x;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
x = stackPop(pVM->pStack);
stackPushINT32(pVM->pStack, ~x.i);
return;
}
/**************************************************************************
D o / L o o p
** do -- IMMEDIATE COMPILE ONLY
** Compiles code to initialize a loop: compile (do),
** allot space to hold the "leave" address, push a branch
** target address for the loop.
** (do) -- runtime for "do"
** pops index and limit from the p stack and moves them
** to the r stack, then skips to the loop body.
** loop -- IMMEDIATE COMPILE ONLY
** +loop
** Compiles code for the test part of a loop:
** compile (loop), resolve forward branch from "do", and
** copy "here" address to the "leave" address allotted by "do"
** i,j,k -- COMPILE ONLY
** Runtime: Push loop indices on param stack (i is innermost loop...)
** Note: each loop has three values on the return stack:
** ( R: leave limit index )
** "leave" is the absolute address of the next cell after the loop
** limit and index are the loop control variables.
** leave -- COMPILE ONLY
** Runtime: pop the loop control variables, then pop the
** "leave" address and jump (absolute) there.
**************************************************************************/
static void doCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pDoParen);
dictAppendCell(dp, LVALUEtoCELL(pDoParen));
/*
** Allot space for a pointer to the end
** of the loop - "leave" uses this...
*/
markBranch(dp, pVM, leaveTag);
dictAppendUNS32(dp, 0);
/*
** Mark location of head of loop...
*/
markBranch(dp, pVM, doTag);
return;
}
static void doParen(FICL_VM *pVM)
{
CELL index, limit;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 0);
#endif
index = stackPop(pVM->pStack);
limit = stackPop(pVM->pStack);
/* copy "leave" target addr to stack */
stackPushPtr(pVM->rStack, *(pVM->ip++));
stackPush(pVM->rStack, limit);
stackPush(pVM->rStack, index);
return;
}
static void qDoCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pQDoParen);
dictAppendCell(dp, LVALUEtoCELL(pQDoParen));
/*
** Allot space for a pointer to the end
** of the loop - "leave" uses this...
*/
markBranch(dp, pVM, leaveTag);
dictAppendUNS32(dp, 0);
/*
** Mark location of head of loop...
*/
markBranch(dp, pVM, doTag);
return;
}
static void qDoParen(FICL_VM *pVM)
{
CELL index, limit;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 0);
#endif
index = stackPop(pVM->pStack);
limit = stackPop(pVM->pStack);
/* copy "leave" target addr to stack */
stackPushPtr(pVM->rStack, *(pVM->ip++));
if (limit.u == index.u)
{
vmPopIP(pVM);
}
else
{
stackPush(pVM->rStack, limit);
stackPush(pVM->rStack, index);
}
return;
}
/*
** Runtime code to break out of a do..loop construct
** Drop the loop control variables; the branch address
** past "loop" is next on the return stack.
*/
static void leaveCo(FICL_VM *pVM)
{
/* almost unloop */
stackDrop(pVM->rStack, 2);
/* exit */
vmPopIP(pVM);
return;
}
static void unloopCo(FICL_VM *pVM)
{
stackDrop(pVM->rStack, 3);
return;
}
static void loopCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pLoopParen);
dictAppendCell(dp, LVALUEtoCELL(pLoopParen));
resolveBackBranch(dp, pVM, doTag);
resolveAbsBranch(dp, pVM, leaveTag);
return;
}
static void plusLoopCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pPLoopParen);
dictAppendCell(dp, LVALUEtoCELL(pPLoopParen));
resolveBackBranch(dp, pVM, doTag);
resolveAbsBranch(dp, pVM, leaveTag);
return;
}
static void loopParen(FICL_VM *pVM)
{
INT32 index = stackGetTop(pVM->rStack).i;
INT32 limit = stackFetch(pVM->rStack, 1).i;
index++;
if (index >= limit)
{
stackDrop(pVM->rStack, 3); /* nuke the loop indices & "leave" addr */
vmBranchRelative(pVM, 1); /* fall through the loop */
}
else
{ /* update index, branch to loop head */
stackSetTop(pVM->rStack, LVALUEtoCELL(index));
vmBranchRelative(pVM, *(int *)(pVM->ip));
}
return;
}
static void plusLoopParen(FICL_VM *pVM)
{
INT32 index = stackGetTop(pVM->rStack).i;
INT32 limit = stackFetch(pVM->rStack, 1).i;
INT32 increment = stackPop(pVM->pStack).i;
int flag;
index += increment;
if (increment < 0)
flag = (index < limit);
else
flag = (index >= limit);
if (flag)
{
stackDrop(pVM->rStack, 3); /* nuke the loop indices & "leave" addr */
vmBranchRelative(pVM, 1); /* fall through the loop */
}
else
{ /* update index, branch to loop head */
stackSetTop(pVM->rStack, LVALUEtoCELL(index));
vmBranchRelative(pVM, *(int *)(pVM->ip));
}
return;
}
static void loopICo(FICL_VM *pVM)
{
CELL index = stackGetTop(pVM->rStack);
stackPush(pVM->pStack, index);
return;
}
static void loopJCo(FICL_VM *pVM)
{
CELL index = stackFetch(pVM->rStack, 3);
stackPush(pVM->pStack, index);
return;
}
static void loopKCo(FICL_VM *pVM)
{
CELL index = stackFetch(pVM->rStack, 6);
stackPush(pVM->pStack, index);
return;
}
/**************************************************************************
r e t u r n s t a c k
**
**************************************************************************/
static void toRStack(FICL_VM *pVM)
{
stackPush(pVM->rStack, stackPop(pVM->pStack));
return;
}
static void fromRStack(FICL_VM *pVM)
{
stackPush(pVM->pStack, stackPop(pVM->rStack));
return;
}
static void fetchRStack(FICL_VM *pVM)
{
stackPush(pVM->pStack, stackGetTop(pVM->rStack));
return;
}
/**************************************************************************
v a r i a b l e
**
**************************************************************************/
static void variableParen(FICL_VM *pVM)
{
FICL_WORD *fw = pVM->runningWord;
stackPushPtr(pVM->pStack, fw->param);
return;
}
static void variable(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
STRINGINFO si = vmGetWord(pVM);
dictAppendWord2(dp, si, variableParen, FW_DEFAULT);
dictAllotCells(dp, 1);
return;
}
/**************************************************************************
b a s e & f r i e n d s
**
**************************************************************************/
static void base(FICL_VM *pVM)
{
CELL *pBase = (CELL *)(&pVM->base);
stackPush(pVM->pStack, LVALUEtoCELL(pBase));
return;
}
static void decimal(FICL_VM *pVM)
{
pVM->base = 10;
return;
}
static void hex(FICL_VM *pVM)
{
pVM->base = 16;
return;
}
/**************************************************************************
a l l o t & f r i e n d s
**
**************************************************************************/
static void allot(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
INT32 i = stackPopINT32(pVM->pStack);
#if FICL_ROBUST
dictCheck(dp, pVM, i);
#endif
dictAllot(dp, i);
return;
}
static void here(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
stackPushPtr(pVM->pStack, dp->here);
return;
}
static void comma(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
CELL c = stackPop(pVM->pStack);
dictAppendCell(dp, c);
return;
}
static void cComma(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
char c = (char)stackPopINT32(pVM->pStack);
dictAppendChar(dp, c);
return;
}
static void cells(FICL_VM *pVM)
{
INT32 i = stackPopINT32(pVM->pStack);
stackPushINT32(pVM->pStack, i * (INT32)sizeof (CELL));
return;
}
static void cellPlus(FICL_VM *pVM)
{
char *cp = stackPopPtr(pVM->pStack);
stackPushPtr(pVM->pStack, cp + sizeof (CELL));
return;
}
/**************************************************************************
t i c k
** tick CORE ( "<spaces>name" -- xt )
** Skip leading space delimiters. Parse name delimited by a space. Find
** name and return xt, the execution token for name. An ambiguous condition
** exists if name is not found.
**************************************************************************/
static void tick(FICL_VM *pVM)
{
FICL_WORD *pFW = NULL;
STRINGINFO si = vmGetWord(pVM);
pFW = dictLookup(ficlGetDict(), si);
if (!pFW)
{
int i = SI_COUNT(si);
vmThrowErr(pVM, "%.*s not found", i, SI_PTR(si));
}
stackPushPtr(pVM->pStack, pFW);
return;
}
static void bracketTickCoIm(FICL_VM *pVM)
{
tick(pVM);
literalIm(pVM);
return;
}
/**************************************************************************
p o s t p o n e
** Lookup the next word in the input stream and compile code to
** insert it into definitions created by the resulting word
** (defers compilation, even of immediate words)
**************************************************************************/
static void postponeCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
FICL_WORD *pFW;
assert(pComma);
tick(pVM);
pFW = stackGetTop(pVM->pStack).p;
if (wordIsImmediate(pFW))
{
dictAppendCell(dp, stackPop(pVM->pStack));
}
else
{
literalIm(pVM);
dictAppendCell(dp, LVALUEtoCELL(pComma));
}
return;
}
/**************************************************************************
e x e c u t e
** Pop an execution token (pointer to a word) off the stack and
** run it
**************************************************************************/
static void execute(FICL_VM *pVM)
{
FICL_WORD *pFW;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 0);
#endif
pFW = stackPopPtr(pVM->pStack);
vmExecute(pVM, pFW);
return;
}
/**************************************************************************
i m m e d i a t e
** Make the most recently compiled word IMMEDIATE -- it executes even
** in compile state (most often used for control compiling words
** such as IF, THEN, etc)
**************************************************************************/
static void immediate(FICL_VM *pVM)
{
IGNORE(pVM);
dictSetImmediate(ficlGetDict());
return;
}
static void compileOnly(FICL_VM *pVM)
{
IGNORE(pVM);
dictSetFlags(ficlGetDict(), FW_COMPILE, 0);
return;
}
/**************************************************************************
d o t Q u o t e
** IMMEDIATE word that compiles a string literal for later display
** Compile stringLit, then copy the bytes of the string from the TIB
** to the dictionary. Backpatch the count byte and align the dictionary.
**
** stringlit: Fetch the count from the dictionary, then push the address
** and count on the stack. Finally, update ip to point to the first
** aligned address after the string text.
**************************************************************************/
static void stringLit(FICL_VM *pVM)
{
FICL_STRING *sp = (FICL_STRING *)(pVM->ip);
FICL_COUNT count = sp->count;
char *cp = sp->text;
stackPushPtr(pVM->pStack, cp);
stackPushUNS32(pVM->pStack, count);
cp += count + 1;
cp = alignPtr(cp);
pVM->ip = (IPTYPE)(void *)cp;
return;
}
static void dotQuoteCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
dictAppendCell(dp, LVALUEtoCELL(pStringLit));
dp->here = PTRtoCELL vmGetString(pVM, (FICL_STRING *)dp->here, '\"');
dictAlign(dp);
dictAppendCell(dp, LVALUEtoCELL(pType));
return;
}
static void dotParen(FICL_VM *pVM)
{
char *pSrc = vmGetInBuf(pVM);
char *pDest = pVM->pad;
char ch;
pSrc = skipSpace(pSrc);
for (ch = *pSrc; (ch != '\0') && (ch != ')'); ch = *++pSrc)
*pDest++ = ch;
*pDest = '\0';
if (ch == ')')
pSrc++;
vmTextOut(pVM, pVM->pad, 0);
vmUpdateTib(pVM, pSrc);
return;
}
/**************************************************************************
s l i t e r a l
** STRING
** Interpretation: Interpretation semantics for this word are undefined.
** Compilation: ( c-addr1 u -- )
** Append the run-time semantics given below to the current definition.
** Run-time: ( -- c-addr2 u )
** Return c-addr2 u describing a string consisting of the characters
** specified by c-addr1 u during compilation. A program shall not alter
** the returned string.
**************************************************************************/
static void sLiteralCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
char *cp, *cpDest;
UNS32 u;
u = stackPopUNS32(pVM->pStack);
cp = stackPopPtr(pVM->pStack);
dictAppendCell(dp, LVALUEtoCELL(pStringLit));
cpDest = (char *) dp->here;
*cpDest++ = (char) u;
for (; u > 0; --u)
{
*cpDest++ = *cp++;
}
*cpDest++ = 0;
dp->here = PTRtoCELL alignPtr(cpDest);
return;
}
/**************************************************************************
s t a t e
** Return the address of the VM's state member (must be sized the
** same as a CELL for this reason)
**************************************************************************/
static void state(FICL_VM *pVM)
{
stackPushPtr(pVM->pStack, &pVM->state);
return;
}
/**************************************************************************
c r e a t e . . . d o e s >
** Make a new word in the dictionary with the run-time effect of
** a variable (push my address), but with extra space allotted
** for use by does> .
**************************************************************************/
static void createParen(FICL_VM *pVM)
{
CELL *pCell = pVM->runningWord->param;
stackPushPtr(pVM->pStack, pCell+1);
return;
}
static void create(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
STRINGINFO si = vmGetWord(pVM);
dictAppendWord2(dp, si, createParen, FW_DEFAULT);
dictAllotCells(dp, 1);
return;
}
static void doDoes(FICL_VM *pVM)
{
CELL *pCell = pVM->runningWord->param;
IPTYPE tempIP = (IPTYPE)((*pCell).p);
stackPushPtr(pVM->pStack, pCell+1);
vmPushIP(pVM, tempIP);
return;
}
static void doesParen(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
dp->smudge->code = doDoes;
dp->smudge->param[0] = LVALUEtoCELL(pVM->ip);
vmPopIP(pVM);
return;
}
static void doesCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
#if FICL_WANT_LOCALS
assert(pUnLinkParen);
if (nLocals > 0)
{
FICL_DICT *pLoc = ficlGetLoc();
dictEmpty(pLoc, pLoc->pForthWords->size);
dictAppendCell(dp, LVALUEtoCELL(pUnLinkParen));
}
nLocals = 0;
#endif
IGNORE(pVM);
dictAppendCell(dp, LVALUEtoCELL(pDoesParen));
return;
}
/**************************************************************************
t o b o d y
** to-body CORE ( xt -- a-addr )
** a-addr is the data-field address corresponding to xt. An ambiguous
** condition exists if xt is not for a word defined via CREATE.
**************************************************************************/
static void toBody(FICL_VM *pVM)
{
FICL_WORD *pFW = stackPopPtr(pVM->pStack);
stackPushPtr(pVM->pStack, pFW->param + 1);
return;
}
/*
** from-body ficl ( a-addr -- xt )
** Reverse effect of >body
*/
static void fromBody(FICL_VM *pVM)
{
char *ptr = (char *) stackPopPtr(pVM->pStack) - sizeof (FICL_WORD);
stackPushPtr(pVM->pStack, ptr);
return;
}
/*
** >name ficl ( xt -- c-addr u )
** Push the address and length of a word's name given its address
** xt.
*/
static void toName(FICL_VM *pVM)
{
FICL_WORD *pFW = stackPopPtr(pVM->pStack);
stackPushPtr(pVM->pStack, pFW->name);
stackPushUNS32(pVM->pStack, pFW->nName);
return;
}
/**************************************************************************
l b r a c k e t e t c
**
**************************************************************************/
static void lbracketCoIm(FICL_VM *pVM)
{
pVM->state = INTERPRET;
return;
}
static void rbracket(FICL_VM *pVM)
{
pVM->state = COMPILE;
return;
}
/**************************************************************************
p i c t u r e d n u m e r i c w o r d s
**
** less-number-sign CORE ( -- )
** Initialize the pictured numeric output conversion process.
** (clear the pad)
**************************************************************************/
static void lessNumberSign(FICL_VM *pVM)
{
FICL_STRING *sp = PTRtoSTRING pVM->pad;
sp->count = 0;
return;
}
/*
** number-sign CORE ( ud1 -- ud2 )
** Divide ud1 by the number in BASE giving the quotient ud2 and the remainder
** n. (n is the least-significant digit of ud1.) Convert n to external form
** and add the resulting character to the beginning of the pictured numeric
** output string. An ambiguous condition exists if # executes outside of a
** <# #> delimited number conversion.
*/
static void numberSign(FICL_VM *pVM)
{
FICL_STRING *sp = PTRtoSTRING pVM->pad;
UNS64 u;
UNS16 rem;
u = u64Pop(pVM->pStack);
rem = m64UMod(&u, (UNS16)(pVM->base));
sp->text[sp->count++] = digit_to_char(rem);
u64Push(pVM->pStack, u);
return;
}
/*
** number-sign-greater CORE ( xd -- c-addr u )
** Drop xd. Make the pictured numeric output string available as a character
** string. c-addr and u specify the resulting character string. A program
** may replace characters within the string.
*/
static void numberSignGreater(FICL_VM *pVM)
{
FICL_STRING *sp = PTRtoSTRING pVM->pad;
sp->text[sp->count] = '\0';
strrev(sp->text);
stackDrop(pVM->pStack, 2);
stackPushPtr(pVM->pStack, sp->text);
stackPushUNS32(pVM->pStack, sp->count);
return;
}
/*
** number-sign-s CORE ( ud1 -- ud2 )
** Convert one digit of ud1 according to the rule for #. Continue conversion
** until the quotient is zero. ud2 is zero. An ambiguous condition exists if
** #S executes outside of a <# #> delimited number conversion.
** TO DO: presently does not use ud1 hi cell - use it!
*/
static void numberSignS(FICL_VM *pVM)
{
FICL_STRING *sp = PTRtoSTRING pVM->pad;
UNS64 u;
UNS16 rem;
u = u64Pop(pVM->pStack);
do
{
rem = m64UMod(&u, (UNS16)(pVM->base));
sp->text[sp->count++] = digit_to_char(rem);
}
while (u.hi || u.lo);
u64Push(pVM->pStack, u);
return;
}
/*
** HOLD CORE ( char -- )
** Add char to the beginning of the pictured numeric output string. An ambiguous
** condition exists if HOLD executes outside of a <# #> delimited number conversion.
*/
static void hold(FICL_VM *pVM)
{
FICL_STRING *sp = PTRtoSTRING pVM->pad;
int i = stackPopINT32(pVM->pStack);
sp->text[sp->count++] = (char) i;
return;
}
/*
** SIGN CORE ( n -- )
** If n is negative, add a minus sign to the beginning of the pictured
** numeric output string. An ambiguous condition exists if SIGN
** executes outside of a <# #> delimited number conversion.
*/
static void sign(FICL_VM *pVM)
{
FICL_STRING *sp = PTRtoSTRING pVM->pad;
int i = stackPopINT32(pVM->pStack);
if (i < 0)
sp->text[sp->count++] = '-';
return;
}
/**************************************************************************
t o N u m b e r
** to-number CORE ( ud1 c-addr1 u1 -- ud2 c-addr2 u2 )
** ud2 is the unsigned result of converting the characters within the
** string specified by c-addr1 u1 into digits, using the number in BASE,
** and adding each into ud1 after multiplying ud1 by the number in BASE.
** Conversion continues left-to-right until a character that is not
** convertible, including any + or -, is encountered or the string is
** entirely converted. c-addr2 is the location of the first unconverted
** character or the first character past the end of the string if the string
** was entirely converted. u2 is the number of unconverted characters in the
** string. An ambiguous condition exists if ud2 overflows during the
** conversion.
** TO DO: presently does not use ud1 hi cell - use it!
**************************************************************************/
static void toNumber(FICL_VM *pVM)
{
UNS32 count = stackPopUNS32(pVM->pStack);
char *cp = (char *)stackPopPtr(pVM->pStack);
UNS64 accum;
UNS32 base = pVM->base;
UNS32 ch;
UNS32 digit;
accum = u64Pop(pVM->pStack);
for (ch = *cp; count > 0; ch = *++cp, count--)
{
if (ch < '0')
break;
digit = ch - '0';
if (digit > 9)
digit = tolower(ch) - 'a' + 10;
/*
** Note: following test also catches chars between 9 and a
** because 'digit' is unsigned!
*/
if (digit >= base)
break;
accum = m64Mac(accum, base, digit);
}
u64Push(pVM->pStack, accum);
stackPushPtr (pVM->pStack, cp);
stackPushUNS32(pVM->pStack, count);
return;
}
/**************************************************************************
q u i t & a b o r t
** quit CORE ( -- ) ( R: i*x -- )
** Empty the return stack, store zero in SOURCE-ID if it is present, make
** the user input device the input source, and enter interpretation state.
** Do not display a message. Repeat the following:
**
** Accept a line from the input source into the input buffer, set >IN to
** zero, and interpret.
** Display the implementation-defined system prompt if in
** interpretation state, all processing has been completed, and no
** ambiguous condition exists.
**************************************************************************/
static void quit(FICL_VM *pVM)
{
vmThrow(pVM, VM_QUIT);
return;
}
static void ficlAbort(FICL_VM *pVM)
{
vmThrow(pVM, VM_ERREXIT);
return;
}
/**************************************************************************
a c c e p t
** accept CORE ( c-addr +n1 -- +n2 )
** Receive a string of at most +n1 characters. An ambiguous condition
** exists if +n1 is zero or greater than 32,767. Display graphic characters
** as they are received. A program that depends on the presence or absence
** of non-graphic characters in the string has an environmental dependency.
** The editing functions, if any, that the system performs in order to
** construct the string are implementation-defined.
**
** (Although the standard text doesn't say so, I assume that the intent
** of 'accept' is to store the string at the address specified on
** the stack.)
** Implementation: if there's more text in the TIB, use it. Otherwise
** throw out for more text. Copy characters up to the max count into the
** address given, and return the number of actual characters copied.
**************************************************************************/
static void accept(FICL_VM *pVM)
{
UNS32 count, len;
char *cp;
char *pBuf = vmGetInBuf(pVM);
len = strlen(pBuf);
if (len == 0)
vmThrow(pVM, VM_RESTART);
/* OK - now we have something in the text buffer - use it */
count = stackPopUNS32(pVM->pStack);
cp = stackPopPtr(pVM->pStack);
strncpy(cp, vmGetInBuf(pVM), count);
len = (count < len) ? count : len;
pBuf += len;
vmUpdateTib(pVM, pBuf);
stackPushUNS32(pVM->pStack, len);
return;
}
/**************************************************************************
a l i g n
** 6.1.0705 ALIGN CORE ( -- )
** If the data-space pointer is not aligned, reserve enough space to
** align it.
**************************************************************************/
static void align(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
IGNORE(pVM);
dictAlign(dp);
return;
}
/**************************************************************************
a l i g n e d
**
**************************************************************************/
static void aligned(FICL_VM *pVM)
{
void *addr = stackPopPtr(pVM->pStack);
stackPushPtr(pVM->pStack, alignPtr(addr));
return;
}
/**************************************************************************
b e g i n & f r i e n d s
** Indefinite loop control structures
** A.6.1.0760 BEGIN
** Typical use:
** : X ... BEGIN ... test UNTIL ;
** or
** : X ... BEGIN ... test WHILE ... REPEAT ;
**************************************************************************/
static void beginCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
markBranch(dp, pVM, beginTag);
return;
}
static void untilCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pIfParen);
dictAppendCell(dp, LVALUEtoCELL(pIfParen));
resolveBackBranch(dp, pVM, beginTag);
return;
}
static void whileCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pIfParen);
dictAppendCell(dp, LVALUEtoCELL(pIfParen));
markBranch(dp, pVM, whileTag);
twoSwap(pVM);
dictAppendUNS32(dp, 1);
return;
}
static void repeatCoIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
assert(pBranchParen);
dictAppendCell(dp, LVALUEtoCELL(pBranchParen));
/* expect "begin" branch marker */
resolveBackBranch(dp, pVM, beginTag);
/* expect "while" branch marker */
resolveForwardBranch(dp, pVM, whileTag);
return;
}
/**************************************************************************
c h a r & f r i e n d s
** 6.1.0895 CHAR CORE ( "<spaces>name" -- char )
** Skip leading space delimiters. Parse name delimited by a space.
** Put the value of its first character onto the stack.
**
** bracket-char CORE
** Interpretation: Interpretation semantics for this word are undefined.
** Compilation: ( "<spaces>name" -- )
** Skip leading space delimiters. Parse name delimited by a space.
** Append the run-time semantics given below to the current definition.
** Run-time: ( -- char )
** Place char, the value of the first character of name, on the stack.
**************************************************************************/
static void ficlChar(FICL_VM *pVM)
{
STRINGINFO si = vmGetWord(pVM);
stackPushUNS32(pVM->pStack, (UNS32)(si.cp[0]));
return;
}
static void charCoIm(FICL_VM *pVM)
{
ficlChar(pVM);
literalIm(pVM);
return;
}
/**************************************************************************
c h a r P l u s
** char-plus CORE ( c-addr1 -- c-addr2 )
** Add the size in address units of a character to c-addr1, giving c-addr2.
**************************************************************************/
static void charPlus(FICL_VM *pVM)
{
char *cp = stackPopPtr(pVM->pStack);
stackPushPtr(pVM->pStack, cp + 1);
return;
}
/**************************************************************************
c h a r s
** chars CORE ( n1 -- n2 )
** n2 is the size in address units of n1 characters.
** For most processors, this function can be a no-op. To guarantee
** portability, we'll multiply by sizeof (char).
**************************************************************************/
#if defined (_M_IX86)
#pragma warning(disable: 4127)
#endif
static void ficlChars(FICL_VM *pVM)
{
if (sizeof (char) > 1)
{
INT32 i = stackPopINT32(pVM->pStack);
stackPushINT32(pVM->pStack, i * sizeof (char));
}
/* otherwise no-op! */
return;
}
#if defined (_M_IX86)
#pragma warning(default: 4127)
#endif
/**************************************************************************
c o u n t
** COUNT CORE ( c-addr1 -- c-addr2 u )
** Return the character string specification for the counted string stored
** at c-addr1. c-addr2 is the address of the first character after c-addr1.
** u is the contents of the character at c-addr1, which is the length in
** characters of the string at c-addr2.
**************************************************************************/
static void count(FICL_VM *pVM)
{
FICL_STRING *sp = stackPopPtr(pVM->pStack);
stackPushPtr(pVM->pStack, sp->text);
stackPushUNS32(pVM->pStack, sp->count);
return;
}
/**************************************************************************
e n v i r o n m e n t ?
** environment-query CORE ( c-addr u -- false | i*x true )
** c-addr is the address of a character string and u is the string's
** character count. u may have a value in the range from zero to an
** implementation-defined maximum which shall not be less than 31. The
** character string should contain a keyword from 3.2.6 Environmental
** queries or the optional word sets to be checked for correspondence
** with an attribute of the present environment. If the system treats the
** attribute as unknown, the returned flag is false; otherwise, the flag
** is true and the i*x returned is of the type specified in the table for
** the attribute queried.
**************************************************************************/
static void environmentQ(FICL_VM *pVM)
{
FICL_DICT *envp = ficlGetEnv();
FICL_COUNT len = (FICL_COUNT)stackPopUNS32(pVM->pStack);
char *cp = stackPopPtr(pVM->pStack);
FICL_WORD *pFW;
STRINGINFO si;
SI_PSZ(si, cp);
pFW = dictLookup(envp, si);
if (pFW != NULL)
{
vmExecute(pVM, pFW);
stackPushINT32(pVM->pStack, FICL_TRUE);
}
else
{
stackPushINT32(pVM->pStack, FICL_FALSE);
}
return;
}
/**************************************************************************
e v a l u a t e
** EVALUATE CORE ( i*x c-addr u -- j*x )
** Save the current input source specification. Store minus-one (-1) in
** SOURCE-ID if it is present. Make the string described by c-addr and u
** both the input source and input buffer, set >IN to zero, and interpret.
** When the parse area is empty, restore the prior input source
** specification. Other stack effects are due to the words EVALUATEd.
**
** DEFICIENCY: this version does not handle errors or restarts.
**************************************************************************/
static void evaluate(FICL_VM *pVM)
{
UNS32 count = stackPopUNS32(pVM->pStack);
char *cp = stackPopPtr(pVM->pStack);
CELL id;
IGNORE(count);
id = pVM->sourceID;
pVM->sourceID.i = -1;
vmPushIP(pVM, &pInterpret);
ficlExec(pVM, cp);
vmPopIP(pVM);
pVM->sourceID = id;
return;
}
/**************************************************************************
s t r i n g q u o t e
** Intrpreting: get string delimited by a quote from the input stream,
** copy to a scratch area, and put its count and address on the stack.
** Compiling: compile code to push the address and count of a string
** literal, compile the string from the input stream, and align the dict
** pointer.
**************************************************************************/
static void stringQuoteIm(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
if (pVM->state == INTERPRET)
{
FICL_STRING *sp = (FICL_STRING *) dp->here;
vmGetString(pVM, sp, '\"');
stackPushPtr(pVM->pStack, sp->text);
stackPushUNS32(pVM->pStack, sp->count);
}
else /* COMPILE state */
{
dictAppendCell(dp, LVALUEtoCELL(pStringLit));
dp->here = PTRtoCELL vmGetString(pVM, (FICL_STRING *)dp->here, '\"');
dictAlign(dp);
}
return;
}
/**************************************************************************
t y p e
** Pop count and char address from stack and print the designated string.
**************************************************************************/
static void type(FICL_VM *pVM)
{
UNS32 count = stackPopUNS32(pVM->pStack);
char *cp = stackPopPtr(pVM->pStack);
/*
** Since we don't have an output primitive for a counted string
** (oops), make sure the string is null terminated. If not, copy
** and terminate it.
*/
if (cp[count] != '\0')
{
char *pDest = (char *)ficlGetDict()->here;
if (cp != pDest)
strncpy(pDest, cp, count);
pDest[count] = '\0';
cp = pDest;
}
vmTextOut(pVM, cp, 0);
return;
}
/**************************************************************************
w o r d
** word CORE ( char "<chars>ccc<char>" -- c-addr )
** Skip leading delimiters. Parse characters ccc delimited by char. An
** ambiguous condition exists if the length of the parsed string is greater
** than the implementation-defined length of a counted string.
**
** c-addr is the address of a transient region containing the parsed word
** as a counted string. If the parse area was empty or contained no
** characters other than the delimiter, the resulting string has a zero
** length. A space, not included in the length, follows the string. A
** program may replace characters within the string.
** NOTE! Ficl also NULL-terminates the dest string.
**************************************************************************/
static void ficlWord(FICL_VM *pVM)
{
FICL_STRING *sp = (FICL_STRING *)pVM->pad;
char delim = (char)stackPopINT32(pVM->pStack);
STRINGINFO si;
si = vmParseString(pVM, delim);
if (SI_COUNT(si) > nPAD-1)
SI_SETLEN(si, nPAD-1);
sp->count = (FICL_COUNT)SI_COUNT(si);
strncpy(sp->text, SI_PTR(si), SI_COUNT(si));
strcat(sp->text, " ");
stackPushPtr(pVM->pStack, sp);
return;
}
/**************************************************************************
p a r s e - w o r d
** ficl PARSE-WORD ( <spaces>name -- c-addr u )
** Skip leading spaces and parse name delimited by a space. c-addr is the
** address within the input buffer and u is the length of the selected
** string. If the parse area is empty, the resulting string has a zero length.
**************************************************************************/
static void parseNoCopy(FICL_VM *pVM)
{
STRINGINFO si = vmGetWord0(pVM);
stackPushPtr(pVM->pStack, SI_PTR(si));
stackPushUNS32(pVM->pStack, SI_COUNT(si));
return;
}
/**************************************************************************
p a r s e
** CORE EXT ( char "ccc<char>" -- c-addr u )
** Parse ccc delimited by the delimiter char.
** c-addr is the address (within the input buffer) and u is the length of
** the parsed string. If the parse area was empty, the resulting string has
** a zero length.
** NOTE! PARSE differs from WORD: it does not skip leading delimiters.
**************************************************************************/
static void parse(FICL_VM *pVM)
{
char *pSrc = vmGetInBuf(pVM);
char *cp;
UNS32 count;
char delim = (char)stackPopINT32(pVM->pStack);
cp = pSrc; /* mark start of text */
while ((*pSrc != delim) && (*pSrc != '\0'))
pSrc++; /* find next delimiter or end */
count = pSrc - cp; /* set length of result */
if (*pSrc == delim) /* gobble trailing delimiter */
pSrc++;
vmUpdateTib(pVM, pSrc);
stackPushPtr(pVM->pStack, cp);
stackPushUNS32(pVM->pStack, count);
return;
}
/**************************************************************************
f i l l
** CORE ( c-addr u char -- )
** If u is greater than zero, store char in each of u consecutive
** characters of memory beginning at c-addr.
**************************************************************************/
static void fill(FICL_VM *pVM)
{
char ch = (char)stackPopINT32(pVM->pStack);
UNS32 u = stackPopUNS32(pVM->pStack);
char *cp = (char *)stackPopPtr(pVM->pStack);
while (u > 0)
{
*cp++ = ch;
u--;
}
return;
}
/**************************************************************************
f i n d
** FIND CORE ( c-addr -- c-addr 0 | xt 1 | xt -1 )
** Find the definition named in the counted string at c-addr. If the
** definition is not found, return c-addr and zero. If the definition is
** found, return its execution token xt. If the definition is immediate,
** also return one (1), otherwise also return minus-one (-1). For a given
** string, the values returned by FIND while compiling may differ from
** those returned while not compiling.
**************************************************************************/
static void find(FICL_VM *pVM)
{
FICL_STRING *sp = stackPopPtr(pVM->pStack);
FICL_WORD *pFW;
STRINGINFO si;
SI_PFS(si, sp);
pFW = dictLookup(ficlGetDict(), si);
if (pFW)
{
stackPushPtr(pVM->pStack, pFW);
stackPushINT32(pVM->pStack, (wordIsImmediate(pFW) ? 1 : -1));
}
else
{
stackPushPtr(pVM->pStack, sp);
stackPushUNS32(pVM->pStack, 0);
}
return;
}
/**************************************************************************
f m S l a s h M o d
** f-m-slash-mod CORE ( d1 n1 -- n2 n3 )
** Divide d1 by n1, giving the floored quotient n3 and the remainder n2.
** Input and output stack arguments are signed. An ambiguous condition
** exists if n1 is zero or if the quotient lies outside the range of a
** single-cell signed integer.
**************************************************************************/
static void fmSlashMod(FICL_VM *pVM)
{
INT64 d1;
INT32 n1;
INTQR qr;
n1 = stackPopINT32(pVM->pStack);
d1 = i64Pop(pVM->pStack);
qr = m64FlooredDivI(d1, n1);
stackPushINT32(pVM->pStack, qr.rem);
stackPushINT32(pVM->pStack, qr.quot);
return;
}
/**************************************************************************
s m S l a s h R e m
** s-m-slash-rem CORE ( d1 n1 -- n2 n3 )
** Divide d1 by n1, giving the symmetric quotient n3 and the remainder n2.
** Input and output stack arguments are signed. An ambiguous condition
** exists if n1 is zero or if the quotient lies outside the range of a
** single-cell signed integer.
**************************************************************************/
static void smSlashRem(FICL_VM *pVM)
{
INT64 d1;
INT32 n1;
INTQR qr;
n1 = stackPopINT32(pVM->pStack);
d1 = i64Pop(pVM->pStack);
qr = m64SymmetricDivI(d1, n1);
stackPushINT32(pVM->pStack, qr.rem);
stackPushINT32(pVM->pStack, qr.quot);
return;
}
static void ficlMod(FICL_VM *pVM)
{
INT64 d1;
INT32 n1;
INTQR qr;
n1 = stackPopINT32(pVM->pStack);
d1.lo = stackPopINT32(pVM->pStack);
i64Extend(d1);
qr = m64SymmetricDivI(d1, n1);
stackPushINT32(pVM->pStack, qr.rem);
return;
}
/**************************************************************************
u m S l a s h M o d
** u-m-slash-mod CORE ( ud u1 -- u2 u3 )
** Divide ud by u1, giving the quotient u3 and the remainder u2.
** All values and arithmetic are unsigned. An ambiguous condition
** exists if u1 is zero or if the quotient lies outside the range of a
** single-cell unsigned integer.
*************************************************************************/
static void umSlashMod(FICL_VM *pVM)
{
UNS64 ud;
UNS32 u1;
UNSQR qr;
u1 = stackPopUNS32(pVM->pStack);
ud = u64Pop(pVM->pStack);
qr = ficlLongDiv(ud, u1);
stackPushUNS32(pVM->pStack, qr.rem);
stackPushUNS32(pVM->pStack, qr.quot);
return;
}
/**************************************************************************
l s h i f t
** l-shift CORE ( x1 u -- x2 )
** Perform a logical left shift of u bit-places on x1, giving x2.
** Put zeroes into the least significant bits vacated by the shift.
** An ambiguous condition exists if u is greater than or equal to the
** number of bits in a cell.
**
** r-shift CORE ( x1 u -- x2 )
** Perform a logical right shift of u bit-places on x1, giving x2.
** Put zeroes into the most significant bits vacated by the shift. An
** ambiguous condition exists if u is greater than or equal to the
** number of bits in a cell.
**************************************************************************/
static void lshift(FICL_VM *pVM)
{
UNS32 nBits = stackPopUNS32(pVM->pStack);
UNS32 x1 = stackPopUNS32(pVM->pStack);
stackPushUNS32(pVM->pStack, x1 << nBits);
return;
}
static void rshift(FICL_VM *pVM)
{
UNS32 nBits = stackPopUNS32(pVM->pStack);
UNS32 x1 = stackPopUNS32(pVM->pStack);
stackPushUNS32(pVM->pStack, x1 >> nBits);
return;
}
/**************************************************************************
m S t a r
** m-star CORE ( n1 n2 -- d )
** d is the signed product of n1 times n2.
**************************************************************************/
static void mStar(FICL_VM *pVM)
{
INT32 n2 = stackPopINT32(pVM->pStack);
INT32 n1 = stackPopINT32(pVM->pStack);
INT64 d;
d = m64MulI(n1, n2);
i64Push(pVM->pStack, d);
return;
}
static void umStar(FICL_VM *pVM)
{
UNS32 u2 = stackPopUNS32(pVM->pStack);
UNS32 u1 = stackPopUNS32(pVM->pStack);
UNS64 ud;
ud = ficlLongMul(u1, u2);
u64Push(pVM->pStack, ud);
return;
}
/**************************************************************************
m a x & m i n
**
**************************************************************************/
static void ficlMax(FICL_VM *pVM)
{
INT32 n2 = stackPopINT32(pVM->pStack);
INT32 n1 = stackPopINT32(pVM->pStack);
stackPushINT32(pVM->pStack, (n1 > n2) ? n1 : n2);
return;
}
static void ficlMin(FICL_VM *pVM)
{
INT32 n2 = stackPopINT32(pVM->pStack);
INT32 n1 = stackPopINT32(pVM->pStack);
stackPushINT32(pVM->pStack, (n1 < n2) ? n1 : n2);
return;
}
/**************************************************************************
m o v e
** CORE ( addr1 addr2 u -- )
** If u is greater than zero, copy the contents of u consecutive address
** units at addr1 to the u consecutive address units at addr2. After MOVE
** completes, the u consecutive address units at addr2 contain exactly
** what the u consecutive address units at addr1 contained before the move.
** NOTE! This implementation assumes that a char is the same size as
** an address unit.
**************************************************************************/
static void move(FICL_VM *pVM)
{
UNS32 u = stackPopUNS32(pVM->pStack);
char *addr2 = stackPopPtr(pVM->pStack);
char *addr1 = stackPopPtr(pVM->pStack);
if (u == 0)
return;
/*
** Do the copy carefully, so as to be
** correct even if the two ranges overlap
*/
if (addr1 >= addr2)
{
for (; u > 0; u--)
*addr2++ = *addr1++;
}
else
{
addr2 += u-1;
addr1 += u-1;
for (; u > 0; u--)
*addr2-- = *addr1--;
}
return;
}
/**************************************************************************
r e c u r s e
**
**************************************************************************/
static void recurseCoIm(FICL_VM *pVM)
{
FICL_DICT *pDict = ficlGetDict();
IGNORE(pVM);
dictAppendCell(pDict, LVALUEtoCELL(pDict->smudge));
return;
}
/**************************************************************************
s t o d
** s-to-d CORE ( n -- d )
** Convert the number n to the double-cell number d with the same
** numerical value.
**************************************************************************/
static void sToD(FICL_VM *pVM)
{
INT32 s = stackPopINT32(pVM->pStack);
/* sign extend to 64 bits.. */
stackPushINT32(pVM->pStack, s);
stackPushINT32(pVM->pStack, (s < 0) ? -1 : 0);
return;
}
/**************************************************************************
s o u r c e
** CORE ( -- c-addr u )
** c-addr is the address of, and u is the number of characters in, the
** input buffer.
**************************************************************************/
static void source(FICL_VM *pVM)
{
stackPushPtr(pVM->pStack, pVM->tib.cp);
stackPushINT32(pVM->pStack, strlen(pVM->tib.cp));
return;
}
/**************************************************************************
v e r s i o n
** non-standard...
**************************************************************************/
static void ficlVersion(FICL_VM *pVM)
{
vmTextOut(pVM, "ficl Version " FICL_VER, 1);
return;
}
/**************************************************************************
t o I n
** to-in CORE
**************************************************************************/
static void toIn(FICL_VM *pVM)
{
stackPushPtr(pVM->pStack, &pVM->tib.index);
return;
}
/**************************************************************************
d e f i n i t i o n s
** SEARCH ( -- )
** Make the compilation word list the same as the first word list in the
** search order. Specifies that the names of subsequent definitions will
** be placed in the compilation word list. Subsequent changes in the search
** order will not affect the compilation word list.
**************************************************************************/
static void definitions(FICL_VM *pVM)
{
FICL_DICT *pDict = ficlGetDict();
assert(pDict);
if (pDict->nLists < 1)
{
vmThrowErr(pVM, "DEFINITIONS error - empty search order");
}
pDict->pCompile = pDict->pSearch[pDict->nLists-1];
return;
}
/**************************************************************************
f o r t h - w o r d l i s t
** SEARCH ( -- wid )
** Return wid, the identifier of the word list that includes all standard
** words provided by the implementation. This word list is initially the
** compilation word list and is part of the initial search order.
**************************************************************************/
static void forthWordlist(FICL_VM *pVM)
{
FICL_HASH *pHash = ficlGetDict()->pForthWords;
stackPushPtr(pVM->pStack, pHash);
return;
}
/**************************************************************************
g e t - c u r r e n t
** SEARCH ( -- wid )
** Return wid, the identifier of the compilation word list.
**************************************************************************/
static void getCurrent(FICL_VM *pVM)
{
ficlLockDictionary(TRUE);
stackPushPtr(pVM->pStack, ficlGetDict()->pCompile);
ficlLockDictionary(FALSE);
return;
}
/**************************************************************************
g e t - o r d e r
** SEARCH ( -- widn ... wid1 n )
** Returns the number of word lists n in the search order and the word list
** identifiers widn ... wid1 identifying these word lists. wid1 identifies
** the word list that is searched first, and widn the word list that is
** searched last. The search order is unaffected.
**************************************************************************/
static void getOrder(FICL_VM *pVM)
{
FICL_DICT *pDict = ficlGetDict();
int nLists = pDict->nLists;
int i;
ficlLockDictionary(TRUE);
for (i = 0; i < nLists; i++)
{
stackPushPtr(pVM->pStack, pDict->pSearch[i]);
}
stackPushUNS32(pVM->pStack, nLists);
ficlLockDictionary(FALSE);
return;
}
/**************************************************************************
s e a r c h - w o r d l i s t
** SEARCH ( c-addr u wid -- 0 | xt 1 | xt -1 )
** Find the definition identified by the string c-addr u in the word list
** identified by wid. If the definition is not found, return zero. If the
** definition is found, return its execution token xt and one (1) if the
** definition is immediate, minus-one (-1) otherwise.
**************************************************************************/
static void searchWordlist(FICL_VM *pVM)
{
STRINGINFO si;
UNS16 hashCode;
FICL_WORD *pFW;
FICL_HASH *pHash = stackPopPtr(pVM->pStack);
si.count = (FICL_COUNT)stackPopUNS32(pVM->pStack);
si.cp = stackPopPtr(pVM->pStack);
hashCode = hashHashCode(si);
ficlLockDictionary(TRUE);
pFW = hashLookup(pHash, si, hashCode);
ficlLockDictionary(FALSE);
if (pFW)
{
stackPushPtr(pVM->pStack, pFW);
stackPushINT32(pVM->pStack, (wordIsImmediate(pFW) ? 1 : -1));
}
else
{
stackPushUNS32(pVM->pStack, 0);
}
return;
}
/**************************************************************************
s e t - c u r r e n t
** SEARCH ( wid -- )
** Set the compilation word list to the word list identified by wid.
**************************************************************************/
static void setCurrent(FICL_VM *pVM)
{
FICL_HASH *pHash = stackPopPtr(pVM->pStack);
FICL_DICT *pDict = ficlGetDict();
ficlLockDictionary(TRUE);
pDict->pCompile = pHash;
ficlLockDictionary(FALSE);
return;
}
/**************************************************************************
s e t - o r d e r
** SEARCH ( widn ... wid1 n -- )
** Set the search order to the word lists identified by widn ... wid1.
** Subsequently, word list wid1 will be searched first, and word list
** widn searched last. If n is zero, empty the search order. If n is minus
** one, set the search order to the implementation-defined minimum
** search order. The minimum search order shall include the words
** FORTH-WORDLIST and SET-ORDER. A system shall allow n to
** be at least eight.
**************************************************************************/
static void setOrder(FICL_VM *pVM)
{
int i;
int nLists = stackPopINT32(pVM->pStack);
FICL_DICT *dp = ficlGetDict();
if (nLists > FICL_DEFAULT_VOCS)
{
vmThrowErr(pVM, "set-order error: list would be too large");
}
ficlLockDictionary(TRUE);
if (nLists >= 0)
{
dp->nLists = nLists;
for (i = nLists-1; i >= 0; --i)
{
dp->pSearch[i] = stackPopPtr(pVM->pStack);
}
}
else
{
dictResetSearchOrder(dp);
}
ficlLockDictionary(FALSE);
return;
}
/**************************************************************************
w o r d l i s t
** SEARCH ( -- wid )
** Create a new empty word list, returning its word list identifier wid.
** The new word list may be returned from a pool of preallocated word
** lists or may be dynamically allocated in data space. A system shall
** allow the creation of at least 8 new word lists in addition to any
** provided as part of the system.
** Notes:
** 1. ficl creates a new single-list hash in the dictionary and returns
** its address.
** 2. ficl-wordlist takes an arg off the stack indicating the number of
** hash entries in the wordlist. Ficl 2.02 and later define WORDLIST as
** : wordlist 1 ficl-wordlist ;
**************************************************************************/
static void wordlist(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
FICL_HASH *pHash;
UNS32 nBuckets;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 1, 1);
#endif
nBuckets = stackPopUNS32(pVM->pStack);
dictAlign(dp);
pHash = (FICL_HASH *)dp->here;
dictAllot(dp, sizeof (FICL_HASH)
+ (nBuckets-1) * sizeof (FICL_WORD *));
pHash->size = nBuckets;
hashReset(pHash);
stackPushPtr(pVM->pStack, pHash);
return;
}
/**************************************************************************
S E A R C H >
** ficl ( -- wid )
** Pop wid off the search order. Error if the search order is empty
**************************************************************************/
static void searchPop(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
int nLists;
ficlLockDictionary(TRUE);
nLists = dp->nLists;
if (nLists == 0)
{
vmThrowErr(pVM, "search> error: empty search order");
}
stackPushPtr(pVM->pStack, dp->pSearch[--dp->nLists]);
ficlLockDictionary(FALSE);
return;
}
/**************************************************************************
> S E A R C H
** ficl ( wid -- )
** Push wid onto the search order. Error if the search order is full.
**************************************************************************/
static void searchPush(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
ficlLockDictionary(TRUE);
if (dp->nLists > FICL_DEFAULT_VOCS)
{
vmThrowErr(pVM, ">search error: search order overflow");
}
dp->pSearch[dp->nLists++] = stackPopPtr(pVM->pStack);
ficlLockDictionary(FALSE);
return;
}
/**************************************************************************
c o l o n N o N a m e
** CORE EXT ( C: -- colon-sys ) ( S: -- xt )
** Create an unnamed colon definition and push its address.
** Change state to compile.
**************************************************************************/
static void colonNoName(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
FICL_WORD *pFW;
STRINGINFO si;
SI_SETLEN(si, 0);
SI_SETPTR(si, NULL);
pVM->state = COMPILE;
pFW = dictAppendWord2(dp, si, colonParen, FW_DEFAULT | FW_SMUDGE);
stackPushPtr(pVM->pStack, pFW);
markControlTag(pVM, colonTag);
return;
}
/**************************************************************************
u s e r V a r i a b l e
** user ( u -- ) "<spaces>name"
** Get a name from the input stream and create a user variable
** with the name and the index supplied. The run-time effect
** of a user variable is to push the address of the indexed cell
** in the running vm's user array.
**
** User variables are vm local cells. Each vm has an array of
** FICL_USER_CELLS of them when FICL_WANT_USER is nonzero.
** Ficl's user facility is implemented with two primitives,
** "user" and "(user)", a variable ("nUser") (in softcore.c) that
** holds the index of the next free user cell, and a redefinition
** (also in softcore) of "user" that defines a user word and increments
** nUser.
**************************************************************************/
#if FICL_WANT_USER
static void userParen(FICL_VM *pVM)
{
INT32 i = pVM->runningWord->param[0].i;
stackPushPtr(pVM->pStack, &pVM->user[i]);
return;
}
static void userVariable(FICL_VM *pVM)
{
FICL_DICT *dp = ficlGetDict();
STRINGINFO si = vmGetWord(pVM);
CELL c;
c = stackPop(pVM->pStack);
if (c.i >= FICL_USER_CELLS)
{
vmThrowErr(pVM, "Error - out of user space");
}
dictAppendWord2(dp, si, userParen, FW_DEFAULT);
dictAppendCell(dp, c);
return;
}
#endif
/**************************************************************************
t o V a l u e
** CORE EXT
** Interpretation: ( x "<spaces>name" -- )
** Skip leading spaces and parse name delimited by a space. Store x in
** name. An ambiguous condition exists if name was not defined by VALUE.
** NOTE: In ficl, VALUE is an alias of CONSTANT
**************************************************************************/
static void toValue(FICL_VM *pVM)
{
STRINGINFO si = vmGetWord(pVM);
FICL_DICT *dp = ficlGetDict();
FICL_WORD *pFW;
#if FICL_WANT_LOCALS
FICL_DICT *pLoc = ficlGetLoc();
if ((nLocals > 0) && (pVM->state == COMPILE))
{
pFW = dictLookup(pLoc, si);
if (pFW)
{
dictAppendCell(dp, LVALUEtoCELL(pToLocalParen));
dictAppendCell(dp, LVALUEtoCELL(pFW->param[0]));
return;
}
}
#endif
assert(pStore);
pFW = dictLookup(dp, si);
if (!pFW)
{
int i = SI_COUNT(si);
vmThrowErr(pVM, "%.*s not found", i, SI_PTR(si));
}
if (pVM->state == INTERPRET)
pFW->param[0] = stackPop(pVM->pStack);
else /* compile code to store to word's param */
{
stackPushPtr(pVM->pStack, &pFW->param[0]);
literalIm(pVM);
dictAppendCell(dp, LVALUEtoCELL(pStore));
}
return;
}
#if FICL_WANT_LOCALS
/**************************************************************************
l i n k P a r e n
** ( -- )
** Link a frame on the return stack, reserving nCells of space for
** locals - the value of nCells is the next cell in the instruction
** stream.
**************************************************************************/
static void linkParen(FICL_VM *pVM)
{
INT32 nLink = *(INT32 *)(pVM->ip);
vmBranchRelative(pVM, 1);
stackLink(pVM->rStack, nLink);
return;
}
static void unlinkParen(FICL_VM *pVM)
{
stackUnlink(pVM->rStack);
return;
}
/**************************************************************************
d o L o c a l I m
** Immediate - cfa of a local while compiling - when executed, compiles
** code to fetch the value of a local given the local's index in the
** word's pfa
**************************************************************************/
static void getLocalParen(FICL_VM *pVM)
{
INT32 nLocal = *(INT32 *)(pVM->ip++);
stackPush(pVM->pStack, pVM->rStack->pFrame[nLocal]);
return;
}
static void toLocalParen(FICL_VM *pVM)
{
INT32 nLocal = *(INT32 *)(pVM->ip++);
pVM->rStack->pFrame[nLocal] = stackPop(pVM->pStack);
return;
}
static void getLocal0(FICL_VM *pVM)
{
stackPush(pVM->pStack, pVM->rStack->pFrame[0]);
return;
}
static void toLocal0(FICL_VM *pVM)
{
pVM->rStack->pFrame[0] = stackPop(pVM->pStack);
return;
}
static void getLocal1(FICL_VM *pVM)
{
stackPush(pVM->pStack, pVM->rStack->pFrame[1]);
return;
}
static void toLocal1(FICL_VM *pVM)
{
pVM->rStack->pFrame[1] = stackPop(pVM->pStack);
return;
}
/*
** Each local is recorded in a private locals dictionary as a
** word that does doLocalIm at runtime. DoLocalIm compiles code
** into the client definition to fetch the value of the
** corresponding local variable from the return stack.
** The private dictionary gets initialized at the end of each block
** that uses locals (in ; and does> for example).
*/
static void doLocalIm(FICL_VM *pVM)
{
FICL_DICT *pDict = ficlGetDict();
int nLocal = pVM->runningWord->param[0].i;
if (pVM->state == INTERPRET)
{
stackPush(pVM->pStack, pVM->rStack->pFrame[nLocal]);
}
else
{
if (nLocal == 0)
{
dictAppendCell(pDict, LVALUEtoCELL(pGetLocal0));
}
else if (nLocal == 1)
{
dictAppendCell(pDict, LVALUEtoCELL(pGetLocal1));
}
else
{
dictAppendCell(pDict, LVALUEtoCELL(pGetLocalParen));
dictAppendCell(pDict, LVALUEtoCELL(nLocal));
}
}
return;
}
/**************************************************************************
l o c a l P a r e n
** paren-local-paren LOCAL
** Interpretation: Interpretation semantics for this word are undefined.
** Execution: ( c-addr u -- )
** When executed during compilation, (LOCAL) passes a message to the
** system that has one of two meanings. If u is non-zero,
** the message identifies a new local whose definition name is given by
** the string of characters identified by c-addr u. If u is zero,
** the message is last local and c-addr has no significance.
**
** The result of executing (LOCAL) during compilation of a definition is
** to create a set of named local identifiers, each of which is
** a definition name, that only have execution semantics within the scope
** of that definition's source.
**
** local Execution: ( -- x )
**
** Push the local's value, x, onto the stack. The local's value is
** initialized as described in 13.3.3 Processing locals and may be
** changed by preceding the local's name with TO. An ambiguous condition
** exists when local is executed while in interpretation state.
**************************************************************************/
static void localParen(FICL_VM *pVM)
{
static CELL *pMark = NULL;
FICL_DICT *pDict = ficlGetDict();
STRINGINFO si;
SI_SETLEN(si, stackPopUNS32(pVM->pStack));
SI_SETPTR(si, (char *)stackPopPtr(pVM->pStack));
if (SI_COUNT(si) > 0)
{ /* add a local to the dict and update nLocals */
FICL_DICT *pLoc = ficlGetLoc();
if (nLocals >= FICL_MAX_LOCALS)
{
vmThrowErr(pVM, "Error: out of local space");
}
dictAppendWord2(pLoc, si, doLocalIm, FW_COMPIMMED);
dictAppendCell(pLoc, LVALUEtoCELL(nLocals));
if (nLocals == 0)
{ /* compile code to create a local stack frame */
dictAppendCell(pDict, LVALUEtoCELL(pLinkParen));
/* save location in dictionary for #locals */
pMark = pDict->here;
dictAppendCell(pDict, LVALUEtoCELL(nLocals));
/* compile code to initialize first local */
dictAppendCell(pDict, LVALUEtoCELL(pToLocal0));
}
else if (nLocals == 1)
{
dictAppendCell(pDict, LVALUEtoCELL(pToLocal1));
}
else
{
dictAppendCell(pDict, LVALUEtoCELL(pToLocalParen));
dictAppendCell(pDict, LVALUEtoCELL(nLocals));
}
nLocals++;
}
else if (nLocals > 0)
{ /* write nLocals to (link) param area in dictionary */
*(INT32 *)pMark = nLocals;
}
return;
}
#endif
/**************************************************************************
setParentWid
** FICL
** setparentwid ( parent-wid wid -- )
** Set WID's link field to the parent-wid. search-wordlist will
** iterate through all the links when finding words in the child wid.
**************************************************************************/
static void setParentWid(FICL_VM *pVM)
{
FICL_HASH *parent, *child;
#if FICL_ROBUST > 1
vmCheckStack(pVM, 2, 0);
#endif
child = (FICL_HASH *)stackPopPtr(pVM->pStack);
parent = (FICL_HASH *)stackPopPtr(pVM->pStack);
child->link = parent;
return;
}
/**************************************************************************
s e e
** TOOLS ( "<spaces>name" -- )
** Display a human-readable representation of the named word's definition.
** The source of the representation (object-code decompilation, source
** block, etc.) and the particular form of the display is implementation
** defined.
** NOTE: these funcs come late in the file because they reference all
** of the word-builder funcs without declaring them again. Call me lazy.
**************************************************************************/
/*
** isAFiclWord
** Vet a candidate pointer carefully to make sure
** it's not some chunk o' inline data...
** It has to have a name, and it has to look
** like it's in the dictionary address range.
** NOTE: this excludes :noname words!
*/
static int isAFiclWord(FICL_WORD *pFW)
{
void *pv = (void *)pFW;
FICL_DICT *pd = ficlGetDict();
if (!dictIncludes(pd, pFW))
return 0;
if (!dictIncludes(pd, pFW->name))
return 0;
return ((pFW->nName > 0) && (pFW->name[pFW->nName] == '\0'));
}
/*
** seeColon (for proctologists only)
** Walks a colon definition, decompiling
** on the fly. Knows about primitive control structures.
*/
static void seeColon(FICL_VM *pVM, CELL *pc)
{
for (; pc->p != pSemiParen; pc++)
{
FICL_WORD *pFW = (FICL_WORD *)(pc->p);
if (isAFiclWord(pFW))
{
if (pFW->code == literalParen)
{
CELL v = *++pc;
if (isAFiclWord(v.p))
{
FICL_WORD *pLit = (FICL_WORD *)v.p;
sprintf(pVM->pad, " literal %.*s (%#lx)",
pLit->nName, pLit->name, v.u);
}
else
sprintf(pVM->pad, " literal %ld (%#lx)", v.i, v.u);
}
else if (pFW->code == stringLit)
{
FICL_STRING *sp = (FICL_STRING *)(void *)++pc;
pc = (CELL *)alignPtr(sp->text + sp->count + 1) - 1;
sprintf(pVM->pad, " s\" %.*s\"", sp->count, sp->text);
}
else if (pFW->code == ifParen)
{
CELL c = *++pc;
if (c.i > 0)
sprintf(pVM->pad, " if / while (branch rel %ld)", c.i);
else
sprintf(pVM->pad, " until (branch rel %ld)", c.i);
}
else if (pFW->code == branchParen)
{
CELL c = *++pc;
if (c.i > 0)
sprintf(pVM->pad, " else (branch rel %ld)", c.i);
else
sprintf(pVM->pad, " repeat (branch rel %ld)", c.i);
}
else if (pFW->code == qDoParen)
{
CELL c = *++pc;
sprintf(pVM->pad, " ?do (leave abs %#lx)", c.u);
}
else if (pFW->code == doParen)
{
CELL c = *++pc;
sprintf(pVM->pad, " do (leave abs %#lx)", c.u);
}
else if (pFW->code == loopParen)
{
CELL c = *++pc;
sprintf(pVM->pad, " loop (branch rel %#ld)", c.i);
}
else if (pFW->code == plusLoopParen)
{
CELL c = *++pc;
sprintf(pVM->pad, " +loop (branch rel %#ld)", c.i);
}
else /* default: print word's name */
{
sprintf(pVM->pad, " %.*s", pFW->nName, pFW->name);
}
vmTextOut(pVM, pVM->pad, 1);
}
else /* probably not a word - punt and print value */
{
sprintf(pVM->pad, " %ld (%#lx)", pc->i, pc->u);
vmTextOut(pVM, pVM->pad, 1);
}
}
vmTextOut(pVM, ";", 1);
}
/*
** Here's the outer part of the decompiler. It's
** just a big nested conditional that checks the
** CFA of the word to decompile for each kind of
** known word-builder code, and tries to do
** something appropriate. If the CFA is not recognized,
** just indicate that it is a primitive.
*/
static void see(FICL_VM *pVM)
{
FICL_DICT *pd = ficlGetDict();
FICL_WORD *pFW;
tick(pVM);
pFW = (FICL_WORD *)stackPopPtr(pVM->pStack);
if (pFW->code == colonParen)
{
sprintf(pVM->pad, ": %.*s", pFW->nName, pFW->name);
vmTextOut(pVM, pVM->pad, 1);
seeColon(pVM, pFW->param);
}
else if (pFW->code == doDoes)
{
vmTextOut(pVM, "does>", 1);
seeColon(pVM, (CELL *)pFW->param->p);
}
else if (pFW->code == createParen)
{
vmTextOut(pVM, "create", 1);
}
else if (pFW->code == variableParen)
{
sprintf(pVM->pad, "variable = %ld (%#lx)",
pFW->param->i, pFW->param->u);
vmTextOut(pVM, pVM->pad, 1);
}
else if (pFW->code == userParen)
{
sprintf(pVM->pad, "user variable %ld (%#lx)",
pFW->param->i, pFW->param->u);
vmTextOut(pVM, pVM->pad, 1);
}
else if (pFW->code == constantParen)
{
sprintf(pVM->pad, "constant = %ld (%#lx)",
pFW->param->i, pFW->param->u);
vmTextOut(pVM, pVM->pad, 1);
}
else
{
vmTextOut(pVM, "primitive", 1);
}
if (pFW->flags & FW_IMMEDIATE)
{
vmTextOut(pVM, "immediate", 1);
}
return;
}
/**************************************************************************
c o m p a r e
** STRING ( c-addr1 u1 c-addr2 u2 -- n )
** Compare the string specified by c-addr1 u1 to the string specified by
** c-addr2 u2. The strings are compared, beginning at the given addresses,
** character by character, up to the length of the shorter string or until a
** difference is found. If the two strings are identical, n is zero. If the two
** strings are identical up to the length of the shorter string, n is minus-one
** (-1) if u1 is less than u2 and one (1) otherwise. If the two strings are not
** identical up to the length of the shorter string, n is minus-one (-1) if the
** first non-matching character in the string specified by c-addr1 u1 has a
** lesser numeric value than the corresponding character in the string specified
** by c-addr2 u2 and one (1) otherwise.
**************************************************************************/
static void compareString(FICL_VM *pVM)
{
char *cp1, *cp2;
UNS32 u1, u2, uMin;
int n = 0;
vmCheckStack(pVM, 4, 1);
u2 = stackPopUNS32(pVM->pStack);
cp2 = (char *)stackPopPtr(pVM->pStack);
u1 = stackPopUNS32(pVM->pStack);
cp1 = (char *)stackPopPtr(pVM->pStack);
uMin = (u1 < u2)? u1 : u2;
for ( ; (uMin > 0) && (n == 0); uMin--)
{
n = (int)(*cp1++ - *cp2++);
}
if (n == 0)
n = (int)(u1 - u2);
if (n < 0)
n = -1;
else if (n > 0)
n = 1;
stackPushINT32(pVM->pStack, n);
return;
}
/**************************************************************************
r e f i l l
** CORE EXT ( -- flag )
** Attempt to fill the input buffer from the input source, returning a true
** flag if successful.
** When the input source is the user input device, attempt to receive input
** into the terminal input buffer. If successful, make the result the input
** buffer, set >IN to zero, and return true. Receipt of a line containing no
** characters is considered successful. If there is no input available from
** the current input source, return false.
** When the input source is a string from EVALUATE, return false and
** perform no other action.
**************************************************************************/
static void refill(FICL_VM *pVM)
{
INT32 ret = (pVM->sourceID.i == -1) ? FICL_FALSE : FICL_TRUE;
stackPushINT32(pVM->pStack, ret);
if (ret)
vmThrow(pVM, VM_OUTOFTEXT);
return;
}
/**************************************************************************
f o r g e t
** TOOLS EXT ( "<spaces>name" -- )
** Skip leading space delimiters. Parse name delimited by a space.
** Find name, then delete name from the dictionary along with all
** words added to the dictionary after name. An ambiguous
** condition exists if name cannot be found.
**
** If the Search-Order word set is present, FORGET searches the
** compilation word list. An ambiguous condition exists if the
** compilation word list is deleted.
**************************************************************************/
static void forgetWid(FICL_VM *pVM)
{
FICL_DICT *pDict = ficlGetDict();
FICL_HASH *pHash;
pHash = (FICL_HASH *)stackPopPtr(pVM->pStack);
hashForget(pHash, pDict->here);
return;
}
static void forget(FICL_VM *pVM)
{
void *where;
FICL_DICT *pDict = ficlGetDict();
FICL_HASH *pHash = pDict->pCompile;
tick(pVM);
where = ((FICL_WORD *)stackPopPtr(pVM->pStack))->name;
hashForget(pHash, where);
pDict->here = PTRtoCELL where;
return;
}
#if 0
/**************************************************************************
**
**************************************************************************/
static void funcname(FICL_VM *pVM)
{
IGNORE(pVM);
return;
}
#endif
/**************************************************************************
f i c l C o m p i l e C o r e
** Builds the primitive wordset and the environment-query namespace.
**************************************************************************/
void ficlCompileCore(FICL_DICT *dp)
{
assert (dp);
/*
** CORE word set
** see softcore.c for definitions of: abs bl space spaces abort"
*/
pStore =
dictAppendWord(dp, "!", store, FW_DEFAULT);
dictAppendWord(dp, "#", numberSign, FW_DEFAULT);
dictAppendWord(dp, "#>", numberSignGreater,FW_DEFAULT);
dictAppendWord(dp, "#s", numberSignS, FW_DEFAULT);
dictAppendWord(dp, "\'", tick, FW_DEFAULT);
dictAppendWord(dp, "(", commentHang, FW_IMMEDIATE);
dictAppendWord(dp, "*", mul, FW_DEFAULT);
dictAppendWord(dp, "*/", mulDiv, FW_DEFAULT);
dictAppendWord(dp, "*/mod", mulDivRem, FW_DEFAULT);
dictAppendWord(dp, "+", add, FW_DEFAULT);
dictAppendWord(dp, "+!", plusStore, FW_DEFAULT);
dictAppendWord(dp, "+loop", plusLoopCoIm, FW_COMPIMMED);
pComma =
dictAppendWord(dp, ",", comma, FW_DEFAULT);
dictAppendWord(dp, "-", sub, FW_DEFAULT);
dictAppendWord(dp, ".", displayCell, FW_DEFAULT);
dictAppendWord(dp, ".\"", dotQuoteCoIm, FW_COMPIMMED);
dictAppendWord(dp, "/", ficlDiv, FW_DEFAULT);
dictAppendWord(dp, "/mod", slashMod, FW_DEFAULT);
dictAppendWord(dp, "0<", zeroLess, FW_DEFAULT);
dictAppendWord(dp, "0=", zeroEquals, FW_DEFAULT);
dictAppendWord(dp, "0>", zeroGreater, FW_DEFAULT);
dictAppendWord(dp, "1+", onePlus, FW_DEFAULT);
dictAppendWord(dp, "1-", oneMinus, FW_DEFAULT);
dictAppendWord(dp, "2!", twoStore, FW_DEFAULT);
dictAppendWord(dp, "2*", twoMul, FW_DEFAULT);
dictAppendWord(dp, "2/", twoDiv, FW_DEFAULT);
dictAppendWord(dp, "2@", twoFetch, FW_DEFAULT);
dictAppendWord(dp, "2drop", twoDrop, FW_DEFAULT);
dictAppendWord(dp, "2dup", twoDup, FW_DEFAULT);
dictAppendWord(dp, "2over", twoOver, FW_DEFAULT);
dictAppendWord(dp, "2swap", twoSwap, FW_DEFAULT);
dictAppendWord(dp, ":", colon, FW_DEFAULT);
dictAppendWord(dp, ";", semicolonCoIm, FW_COMPIMMED);
dictAppendWord(dp, "<", isLess, FW_DEFAULT);
dictAppendWord(dp, "<#", lessNumberSign, FW_DEFAULT);
dictAppendWord(dp, "=", isEqual, FW_DEFAULT);
dictAppendWord(dp, ">", isGreater, FW_DEFAULT);
dictAppendWord(dp, ">body", toBody, FW_DEFAULT);
dictAppendWord(dp, ">in", toIn, FW_DEFAULT);
dictAppendWord(dp, ">number", toNumber, FW_DEFAULT);
dictAppendWord(dp, ">r", toRStack, FW_DEFAULT);
dictAppendWord(dp, "?dup", questionDup, FW_DEFAULT);
dictAppendWord(dp, "@", fetch, FW_DEFAULT);
dictAppendWord(dp, "abort", ficlAbort, FW_DEFAULT);
dictAppendWord(dp, "accept", accept, FW_DEFAULT);
dictAppendWord(dp, "align", align, FW_DEFAULT);
dictAppendWord(dp, "aligned", aligned, FW_DEFAULT);
dictAppendWord(dp, "allot", allot, FW_DEFAULT);
dictAppendWord(dp, "and", bitwiseAnd, FW_DEFAULT);
dictAppendWord(dp, "base", base, FW_DEFAULT);
dictAppendWord(dp, "begin", beginCoIm, FW_COMPIMMED);
dictAppendWord(dp, "c!", cStore, FW_DEFAULT);
dictAppendWord(dp, "c,", cComma, FW_DEFAULT);
dictAppendWord(dp, "c@", cFetch, FW_DEFAULT);
dictAppendWord(dp, "cell+", cellPlus, FW_DEFAULT);
dictAppendWord(dp, "cells", cells, FW_DEFAULT);
dictAppendWord(dp, "char", ficlChar, FW_DEFAULT);
dictAppendWord(dp, "char+", charPlus, FW_DEFAULT);
dictAppendWord(dp, "chars", ficlChars, FW_DEFAULT);
dictAppendWord(dp, "constant", constant, FW_DEFAULT);
dictAppendWord(dp, "count", count, FW_DEFAULT);
dictAppendWord(dp, "cr", cr, FW_DEFAULT);
dictAppendWord(dp, "create", create, FW_DEFAULT);
dictAppendWord(dp, "decimal", decimal, FW_DEFAULT);
dictAppendWord(dp, "depth", depth, FW_DEFAULT);
dictAppendWord(dp, "do", doCoIm, FW_COMPIMMED);
dictAppendWord(dp, "does>", doesCoIm, FW_COMPIMMED);
dictAppendWord(dp, "drop", drop, FW_DEFAULT);
dictAppendWord(dp, "dup", dup, FW_DEFAULT);
dictAppendWord(dp, "else", elseCoIm, FW_COMPIMMED);
dictAppendWord(dp, "emit", emit, FW_DEFAULT);
dictAppendWord(dp, "environment?", environmentQ,FW_DEFAULT);
dictAppendWord(dp, "evaluate", evaluate, FW_DEFAULT);
dictAppendWord(dp, "execute", execute, FW_DEFAULT);
dictAppendWord(dp, "exit", exitCoIm, FW_COMPIMMED);
dictAppendWord(dp, "fill", fill, FW_DEFAULT);
dictAppendWord(dp, "find", find, FW_DEFAULT);
dictAppendWord(dp, "fm/mod", fmSlashMod, FW_DEFAULT);
dictAppendWord(dp, "here", here, FW_DEFAULT);
dictAppendWord(dp, "hex", hex, FW_DEFAULT);
dictAppendWord(dp, "hold", hold, FW_DEFAULT);
dictAppendWord(dp, "i", loopICo, FW_COMPILE);
dictAppendWord(dp, "if", ifCoIm, FW_COMPIMMED);
dictAppendWord(dp, "immediate", immediate, FW_DEFAULT);
dictAppendWord(dp, "invert", bitwiseNot, FW_DEFAULT);
dictAppendWord(dp, "j", loopJCo, FW_COMPILE);
dictAppendWord(dp, "k", loopKCo, FW_COMPILE);
dictAppendWord(dp, "leave", leaveCo, FW_COMPILE);
dictAppendWord(dp, "literal", literalIm, FW_IMMEDIATE);
dictAppendWord(dp, "loop", loopCoIm, FW_COMPIMMED);
dictAppendWord(dp, "lshift", lshift, FW_DEFAULT);
dictAppendWord(dp, "m*", mStar, FW_DEFAULT);
dictAppendWord(dp, "max", ficlMax, FW_DEFAULT);
dictAppendWord(dp, "min", ficlMin, FW_DEFAULT);
dictAppendWord(dp, "mod", ficlMod, FW_DEFAULT);
dictAppendWord(dp, "move", move, FW_DEFAULT);
dictAppendWord(dp, "negate", negate, FW_DEFAULT);
dictAppendWord(dp, "or", bitwiseOr, FW_DEFAULT);
dictAppendWord(dp, "over", over, FW_DEFAULT);
dictAppendWord(dp, "postpone", postponeCoIm, FW_COMPIMMED);
dictAppendWord(dp, "quit", quit, FW_DEFAULT);
dictAppendWord(dp, "r>", fromRStack, FW_DEFAULT);
dictAppendWord(dp, "r@", fetchRStack, FW_DEFAULT);
dictAppendWord(dp, "recurse", recurseCoIm, FW_COMPIMMED);
dictAppendWord(dp, "repeat", repeatCoIm, FW_COMPIMMED);
dictAppendWord(dp, "rot", rot, FW_DEFAULT);
dictAppendWord(dp, "rshift", rshift, FW_DEFAULT);
dictAppendWord(dp, "s\"", stringQuoteIm, FW_IMMEDIATE);
dictAppendWord(dp, "s>d", sToD, FW_DEFAULT);
dictAppendWord(dp, "sign", sign, FW_DEFAULT);
dictAppendWord(dp, "sm/rem", smSlashRem, FW_DEFAULT);
dictAppendWord(dp, "source", source, FW_DEFAULT);
dictAppendWord(dp, "state", state, FW_DEFAULT);
dictAppendWord(dp, "swap", swap, FW_DEFAULT);
dictAppendWord(dp, "then", endifCoIm, FW_COMPIMMED);
pType =
dictAppendWord(dp, "type", type, FW_DEFAULT);
dictAppendWord(dp, "u.", uDot, FW_DEFAULT);
dictAppendWord(dp, "u<", uIsLess, FW_DEFAULT);
dictAppendWord(dp, "um*", umStar, FW_DEFAULT);
dictAppendWord(dp, "um/mod", umSlashMod, FW_DEFAULT);
dictAppendWord(dp, "unloop", unloopCo, FW_COMPILE);
dictAppendWord(dp, "until", untilCoIm, FW_COMPIMMED);
dictAppendWord(dp, "variable", variable, FW_DEFAULT);
dictAppendWord(dp, "while", whileCoIm, FW_COMPIMMED);
dictAppendWord(dp, "word", ficlWord, FW_DEFAULT);
dictAppendWord(dp, "xor", bitwiseXor, FW_DEFAULT);
dictAppendWord(dp, "[", lbracketCoIm, FW_COMPIMMED);
dictAppendWord(dp, "[\']", bracketTickCoIm,FW_COMPIMMED);
dictAppendWord(dp, "[char]", charCoIm, FW_COMPIMMED);
dictAppendWord(dp, "]", rbracket, FW_DEFAULT);
/*
** CORE EXT word set...
** see softcore.c for other definitions
*/
dictAppendWord(dp, ".(", dotParen, FW_DEFAULT);
dictAppendWord(dp, ":noname", colonNoName, FW_DEFAULT);
dictAppendWord(dp, "?do", qDoCoIm, FW_COMPIMMED);
dictAppendWord(dp, "parse", parse, FW_DEFAULT);
dictAppendWord(dp, "pick", pick, FW_DEFAULT);
dictAppendWord(dp, "roll", roll, FW_DEFAULT);
dictAppendWord(dp, "refill", refill, FW_DEFAULT);
dictAppendWord(dp, "to", toValue, FW_IMMEDIATE);
dictAppendWord(dp, "value", constant, FW_DEFAULT);
dictAppendWord(dp, "\\", commentLine, FW_IMMEDIATE);
/*
** Set CORE environment query values
*/
ficlSetEnv("/counted-string", FICL_STRING_MAX);
ficlSetEnv("/hold", nPAD);
ficlSetEnv("/pad", nPAD);
ficlSetEnv("address-unit-bits", 8);
ficlSetEnv("core", FICL_TRUE);
ficlSetEnv("core-ext", FICL_FALSE);
ficlSetEnv("floored", FICL_FALSE);
ficlSetEnv("max-char", UCHAR_MAX);
ficlSetEnvD("max-d", 0x7fffffff, 0xffffffff );
ficlSetEnv("max-n", 0x7fffffff);
ficlSetEnv("max-u", 0xffffffff);
ficlSetEnvD("max-ud", 0xffffffff, 0xffffffff);
ficlSetEnv("return-stack-cells",FICL_DEFAULT_STACK);
ficlSetEnv("stack-cells", FICL_DEFAULT_STACK);
/*
** LOCAL and LOCAL EXT
** see softcore.c for implementation of locals|
*/
#if FICL_WANT_LOCALS
pLinkParen =
dictAppendWord(dp, "(link)", linkParen, FW_COMPILE);
pUnLinkParen =
dictAppendWord(dp, "(unlink)", unlinkParen, FW_COMPILE);
dictAppendWord(dp, "doLocal", doLocalIm, FW_COMPIMMED);
pGetLocalParen =
dictAppendWord(dp, "(@local)", getLocalParen, FW_COMPILE);
pToLocalParen =
dictAppendWord(dp, "(toLocal)", toLocalParen, FW_COMPILE);
pGetLocal0 =
dictAppendWord(dp, "(@local0)", getLocal0, FW_COMPILE);
pToLocal0 =
dictAppendWord(dp, "(toLocal0)",toLocal0, FW_COMPILE);
pGetLocal1 =
dictAppendWord(dp, "(@local1)", getLocal1, FW_COMPILE);
pToLocal1 =
dictAppendWord(dp, "(toLocal1)",toLocal1, FW_COMPILE);
dictAppendWord(dp, "(local)", localParen, FW_COMPILE);
ficlSetEnv("locals", FICL_TRUE);
ficlSetEnv("locals-ext", FICL_TRUE);
ficlSetEnv("#locals", FICL_MAX_LOCALS);
#endif
/*
** optional SEARCH-ORDER word set
*/
dictAppendWord(dp, ">search", searchPush, FW_DEFAULT);
dictAppendWord(dp, "search>", searchPop, FW_DEFAULT);
dictAppendWord(dp, "definitions",
definitions, FW_DEFAULT);
dictAppendWord(dp, "forth-wordlist",
forthWordlist, FW_DEFAULT);
dictAppendWord(dp, "get-current",
getCurrent, FW_DEFAULT);
dictAppendWord(dp, "get-order", getOrder, FW_DEFAULT);
dictAppendWord(dp, "search-wordlist",
searchWordlist, FW_DEFAULT);
dictAppendWord(dp, "set-current",
setCurrent, FW_DEFAULT);
dictAppendWord(dp, "set-order", setOrder, FW_DEFAULT);
dictAppendWord(dp, "ficl-wordlist", wordlist, FW_DEFAULT);
/*
** Set SEARCH environment query values
*/
ficlSetEnv("search-order", FICL_TRUE);
ficlSetEnv("search-order-ext", FICL_TRUE);
ficlSetEnv("wordlists", FICL_DEFAULT_VOCS);
/*
** TOOLS and TOOLS EXT
*/
dictAppendWord(dp, ".s", displayStack, FW_DEFAULT);
dictAppendWord(dp, "bye", bye, FW_DEFAULT);
dictAppendWord(dp, "forget", forget, FW_DEFAULT);
dictAppendWord(dp, "see", see, FW_DEFAULT);
dictAppendWord(dp, "words", listWords, FW_DEFAULT);
/*
** Set TOOLS environment query values
*/
ficlSetEnv("tools", FICL_TRUE);
ficlSetEnv("tools-ext", FICL_FALSE);
/*
** Ficl extras
*/
dictAppendWord(dp, ".env", listEnv, FW_DEFAULT);
dictAppendWord(dp, ".hash", dictHashSummary,FW_DEFAULT);
dictAppendWord(dp, ".ver", ficlVersion, FW_DEFAULT);
dictAppendWord(dp, "-roll", minusRoll, FW_DEFAULT);
dictAppendWord(dp, "2constant", twoConstant, FW_IMMEDIATE); /* DOUBLE */
dictAppendWord(dp, ">name", toName, FW_DEFAULT);
dictAppendWord(dp, "body>", fromBody, FW_DEFAULT);
dictAppendWord(dp, "compare", compareString, FW_DEFAULT); /* STRING */
dictAppendWord(dp, "compile-only",
compileOnly, FW_DEFAULT);
dictAppendWord(dp, "endif", endifCoIm, FW_COMPIMMED);
dictAppendWord(dp, "forget-wid",forgetWid, FW_DEFAULT);
dictAppendWord(dp, "parse-word",parseNoCopy, FW_DEFAULT);
dictAppendWord(dp, "sliteral", sLiteralCoIm, FW_COMPIMMED); /* STRING */
dictAppendWord(dp, "wid-set-super",
setParentWid, FW_DEFAULT);
dictAppendWord(dp, "w@", wFetch, FW_DEFAULT);
dictAppendWord(dp, "w!", wStore, FW_DEFAULT);
dictAppendWord(dp, "x.", hexDot, FW_DEFAULT);
#if FICL_WANT_USER
dictAppendWord(dp, "(user)", userParen, FW_DEFAULT);
dictAppendWord(dp, "user", userVariable, FW_DEFAULT);
#endif
/*
** internal support words
*/
pExitParen =
dictAppendWord(dp, "(exit)", exitParen, FW_COMPILE);
pSemiParen =
dictAppendWord(dp, "(;)", semiParen, FW_COMPILE);
pLitParen =
dictAppendWord(dp, "(literal)", literalParen, FW_COMPILE);
pStringLit =
dictAppendWord(dp, "(.\")", stringLit, FW_COMPILE);
pIfParen =
dictAppendWord(dp, "(if)", ifParen, FW_COMPILE);
pBranchParen =
dictAppendWord(dp, "(branch)", branchParen, FW_COMPILE);
pDoParen =
dictAppendWord(dp, "(do)", doParen, FW_COMPILE);
pDoesParen =
dictAppendWord(dp, "(does>)", doesParen, FW_COMPILE);
pQDoParen =
dictAppendWord(dp, "(?do)", qDoParen, FW_COMPILE);
pLoopParen =
dictAppendWord(dp, "(loop)", loopParen, FW_COMPILE);
pPLoopParen =
dictAppendWord(dp, "(+loop)", plusLoopParen, FW_COMPILE);
pInterpret =
dictAppendWord(dp, "interpret", interpret, FW_DEFAULT);
dictAppendWord(dp, "(variable)",variableParen, FW_COMPILE);
dictAppendWord(dp, "(constant)",constantParen, FW_COMPILE);
return;
}