Jason A. Harmening eb36b1d0bc Clean up MD pollution of bus_dma.h:
--Remove special-case handling of sparc64 bus_dmamap* functions.
  Replace with a more generic mechanism that allows MD busdma
  implementations to generate inline mapping functions by
  defining WANT_INLINE_DMAMAP in <machine/bus_dma.h>.  This
  is currently useful for sparc64, x86, and arm64, which all
  implement non-load dmamap operations as simple wrappers
  around map objects which may be bus- or device-specific.

--Remove NULL-checked bus_dmamap macros.  Implement the
  equivalent NULL checks in the inlined x86 implementation.
  For non-x86 platforms, these checks are a minor pessimization
  as those platforms do not currently allow NULL maps.  NULL
  maps were originally allowed on arm64, which appears to have
  been the motivation behind adding arm[64]-specific barriers
  to bus_dma.h, but that support was removed in r299463.

--Simplify the internal interface used by the bus_dmamap_load*
  variants and move it to bus_dma_internal.h

--Fix some drivers that directly include sys/bus_dma.h
  despite the recommendations of bus_dma(9)

Reviewed by:	kib (previous revision), marius
Differential Revision:	https://reviews.freebsd.org/D10729
2017-07-01 05:35:29 +00:00

3863 lines
102 KiB
C

/*-
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2001 Scott Long
* Copyright (c) 2000 BSDi
* Copyright (c) 2001-2010 Adaptec, Inc.
* Copyright (c) 2010-2012 PMC-Sierra, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for the Adaptec by PMC Series 6,7,8,... families of RAID controllers
*/
#define AAC_DRIVERNAME "aacraid"
#include "opt_aacraid.h"
/* #include <stddef.h> */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/sysctl.h>
#include <sys/poll.h>
#include <sys/ioccom.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/signalvar.h>
#include <sys/time.h>
#include <sys/eventhandler.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/aacraid/aacraid_reg.h>
#include <sys/aac_ioctl.h>
#include <dev/aacraid/aacraid_debug.h>
#include <dev/aacraid/aacraid_var.h>
#ifndef FILTER_HANDLED
#define FILTER_HANDLED 0x02
#endif
static void aac_add_container(struct aac_softc *sc,
struct aac_mntinforesp *mir, int f,
u_int32_t uid);
static void aac_get_bus_info(struct aac_softc *sc);
static void aac_container_bus(struct aac_softc *sc);
static void aac_daemon(void *arg);
static int aac_convert_sgraw2(struct aac_softc *sc, struct aac_raw_io2 *raw,
int pages, int nseg, int nseg_new);
/* Command Processing */
static void aac_timeout(struct aac_softc *sc);
static void aac_command_thread(struct aac_softc *sc);
static int aac_sync_fib(struct aac_softc *sc, u_int32_t command,
u_int32_t xferstate, struct aac_fib *fib,
u_int16_t datasize);
/* Command Buffer Management */
static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static int aac_alloc_commands(struct aac_softc *sc);
static void aac_free_commands(struct aac_softc *sc);
static void aac_unmap_command(struct aac_command *cm);
/* Hardware Interface */
static int aac_alloc(struct aac_softc *sc);
static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
int error);
static int aac_check_firmware(struct aac_softc *sc);
static void aac_define_int_mode(struct aac_softc *sc);
static int aac_init(struct aac_softc *sc);
static int aac_find_pci_capability(struct aac_softc *sc, int cap);
static int aac_setup_intr(struct aac_softc *sc);
static int aac_check_config(struct aac_softc *sc);
/* PMC SRC interface */
static int aac_src_get_fwstatus(struct aac_softc *sc);
static void aac_src_qnotify(struct aac_softc *sc, int qbit);
static int aac_src_get_istatus(struct aac_softc *sc);
static void aac_src_clear_istatus(struct aac_softc *sc, int mask);
static void aac_src_set_mailbox(struct aac_softc *sc, u_int32_t command,
u_int32_t arg0, u_int32_t arg1,
u_int32_t arg2, u_int32_t arg3);
static int aac_src_get_mailbox(struct aac_softc *sc, int mb);
static void aac_src_access_devreg(struct aac_softc *sc, int mode);
static int aac_src_send_command(struct aac_softc *sc, struct aac_command *cm);
static int aac_src_get_outb_queue(struct aac_softc *sc);
static void aac_src_set_outb_queue(struct aac_softc *sc, int index);
struct aac_interface aacraid_src_interface = {
aac_src_get_fwstatus,
aac_src_qnotify,
aac_src_get_istatus,
aac_src_clear_istatus,
aac_src_set_mailbox,
aac_src_get_mailbox,
aac_src_access_devreg,
aac_src_send_command,
aac_src_get_outb_queue,
aac_src_set_outb_queue
};
/* PMC SRCv interface */
static void aac_srcv_set_mailbox(struct aac_softc *sc, u_int32_t command,
u_int32_t arg0, u_int32_t arg1,
u_int32_t arg2, u_int32_t arg3);
static int aac_srcv_get_mailbox(struct aac_softc *sc, int mb);
struct aac_interface aacraid_srcv_interface = {
aac_src_get_fwstatus,
aac_src_qnotify,
aac_src_get_istatus,
aac_src_clear_istatus,
aac_srcv_set_mailbox,
aac_srcv_get_mailbox,
aac_src_access_devreg,
aac_src_send_command,
aac_src_get_outb_queue,
aac_src_set_outb_queue
};
/* Debugging and Diagnostics */
static struct aac_code_lookup aac_cpu_variant[] = {
{"i960JX", CPUI960_JX},
{"i960CX", CPUI960_CX},
{"i960HX", CPUI960_HX},
{"i960RX", CPUI960_RX},
{"i960 80303", CPUI960_80303},
{"StrongARM SA110", CPUARM_SA110},
{"PPC603e", CPUPPC_603e},
{"XScale 80321", CPU_XSCALE_80321},
{"MIPS 4KC", CPU_MIPS_4KC},
{"MIPS 5KC", CPU_MIPS_5KC},
{"Unknown StrongARM", CPUARM_xxx},
{"Unknown PowerPC", CPUPPC_xxx},
{NULL, 0},
{"Unknown processor", 0}
};
static struct aac_code_lookup aac_battery_platform[] = {
{"required battery present", PLATFORM_BAT_REQ_PRESENT},
{"REQUIRED BATTERY NOT PRESENT", PLATFORM_BAT_REQ_NOTPRESENT},
{"optional battery present", PLATFORM_BAT_OPT_PRESENT},
{"optional battery not installed", PLATFORM_BAT_OPT_NOTPRESENT},
{"no battery support", PLATFORM_BAT_NOT_SUPPORTED},
{NULL, 0},
{"unknown battery platform", 0}
};
static void aac_describe_controller(struct aac_softc *sc);
static char *aac_describe_code(struct aac_code_lookup *table,
u_int32_t code);
/* Management Interface */
static d_open_t aac_open;
static d_ioctl_t aac_ioctl;
static d_poll_t aac_poll;
#if __FreeBSD_version >= 702000
static void aac_cdevpriv_dtor(void *arg);
#else
static d_close_t aac_close;
#endif
static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
static int aac_ioctl_send_raw_srb(struct aac_softc *sc, caddr_t arg);
static void aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib);
static void aac_request_aif(struct aac_softc *sc);
static int aac_rev_check(struct aac_softc *sc, caddr_t udata);
static int aac_open_aif(struct aac_softc *sc, caddr_t arg);
static int aac_close_aif(struct aac_softc *sc, caddr_t arg);
static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
static int aac_return_aif(struct aac_softc *sc,
struct aac_fib_context *ctx, caddr_t uptr);
static int aac_query_disk(struct aac_softc *sc, caddr_t uptr);
static int aac_get_pci_info(struct aac_softc *sc, caddr_t uptr);
static int aac_supported_features(struct aac_softc *sc, caddr_t uptr);
static void aac_ioctl_event(struct aac_softc *sc,
struct aac_event *event, void *arg);
static int aac_reset_adapter(struct aac_softc *sc);
static int aac_get_container_info(struct aac_softc *sc,
struct aac_fib *fib, int cid,
struct aac_mntinforesp *mir,
u_int32_t *uid);
static u_int32_t
aac_check_adapter_health(struct aac_softc *sc, u_int8_t *bled);
static struct cdevsw aacraid_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_NEEDGIANT,
.d_open = aac_open,
#if __FreeBSD_version < 702000
.d_close = aac_close,
#endif
.d_ioctl = aac_ioctl,
.d_poll = aac_poll,
.d_name = "aacraid",
};
MALLOC_DEFINE(M_AACRAIDBUF, "aacraid_buf", "Buffers for the AACRAID driver");
/* sysctl node */
SYSCTL_NODE(_hw, OID_AUTO, aacraid, CTLFLAG_RD, 0, "AACRAID driver parameters");
/*
* Device Interface
*/
/*
* Initialize the controller and softc
*/
int
aacraid_attach(struct aac_softc *sc)
{
int error, unit;
struct aac_fib *fib;
struct aac_mntinforesp mir;
int count = 0, i = 0;
u_int32_t uid;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
sc->hint_flags = device_get_flags(sc->aac_dev);
/*
* Initialize per-controller queues.
*/
aac_initq_free(sc);
aac_initq_ready(sc);
aac_initq_busy(sc);
/* mark controller as suspended until we get ourselves organised */
sc->aac_state |= AAC_STATE_SUSPEND;
/*
* Check that the firmware on the card is supported.
*/
sc->msi_enabled = FALSE;
if ((error = aac_check_firmware(sc)) != 0)
return(error);
/*
* Initialize locks
*/
mtx_init(&sc->aac_io_lock, "AACRAID I/O lock", NULL, MTX_DEF);
TAILQ_INIT(&sc->aac_container_tqh);
TAILQ_INIT(&sc->aac_ev_cmfree);
#if __FreeBSD_version >= 800000
/* Initialize the clock daemon callout. */
callout_init_mtx(&sc->aac_daemontime, &sc->aac_io_lock, 0);
#endif
/*
* Initialize the adapter.
*/
if ((error = aac_alloc(sc)) != 0)
return(error);
if (!(sc->flags & AAC_FLAGS_SYNC_MODE)) {
aac_define_int_mode(sc);
if ((error = aac_init(sc)) != 0)
return(error);
}
/*
* Allocate and connect our interrupt.
*/
if ((error = aac_setup_intr(sc)) != 0)
return(error);
/*
* Print a little information about the controller.
*/
aac_describe_controller(sc);
/*
* Make the control device.
*/
unit = device_get_unit(sc->aac_dev);
sc->aac_dev_t = make_dev(&aacraid_cdevsw, unit, UID_ROOT, GID_OPERATOR,
0640, "aacraid%d", unit);
sc->aac_dev_t->si_drv1 = sc;
/* Create the AIF thread */
if (aac_kthread_create((void(*)(void *))aac_command_thread, sc,
&sc->aifthread, 0, 0, "aacraid%daif", unit))
panic("Could not create AIF thread");
/* Register the shutdown method to only be called post-dump */
if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aacraid_shutdown,
sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
device_printf(sc->aac_dev,
"shutdown event registration failed\n");
/* Find containers */
mtx_lock(&sc->aac_io_lock);
aac_alloc_sync_fib(sc, &fib);
/* loop over possible containers */
do {
if ((aac_get_container_info(sc, fib, i, &mir, &uid)) != 0)
continue;
if (i == 0)
count = mir.MntRespCount;
aac_add_container(sc, &mir, 0, uid);
i++;
} while ((i < count) && (i < AAC_MAX_CONTAINERS));
aac_release_sync_fib(sc);
mtx_unlock(&sc->aac_io_lock);
/* Register with CAM for the containers */
TAILQ_INIT(&sc->aac_sim_tqh);
aac_container_bus(sc);
/* Register with CAM for the non-DASD devices */
if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
aac_get_bus_info(sc);
/* poke the bus to actually attach the child devices */
bus_generic_attach(sc->aac_dev);
/* mark the controller up */
sc->aac_state &= ~AAC_STATE_SUSPEND;
/* enable interrupts now */
AAC_ACCESS_DEVREG(sc, AAC_ENABLE_INTERRUPT);
#if __FreeBSD_version >= 800000
mtx_lock(&sc->aac_io_lock);
callout_reset(&sc->aac_daemontime, 60 * hz, aac_daemon, sc);
mtx_unlock(&sc->aac_io_lock);
#else
{
struct timeval tv;
tv.tv_sec = 60;
tv.tv_usec = 0;
sc->timeout_id = timeout(aac_daemon, (void *)sc, tvtohz(&tv));
}
#endif
return(0);
}
static void
aac_daemon(void *arg)
{
struct aac_softc *sc;
struct timeval tv;
struct aac_command *cm;
struct aac_fib *fib;
sc = arg;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
#if __FreeBSD_version >= 800000
mtx_assert(&sc->aac_io_lock, MA_OWNED);
if (callout_pending(&sc->aac_daemontime) ||
callout_active(&sc->aac_daemontime) == 0)
return;
#else
mtx_lock(&sc->aac_io_lock);
#endif
getmicrotime(&tv);
if (!aacraid_alloc_command(sc, &cm)) {
fib = cm->cm_fib;
cm->cm_timestamp = time_uptime;
cm->cm_datalen = 0;
cm->cm_flags |= AAC_CMD_WAIT;
fib->Header.Size =
sizeof(struct aac_fib_header) + sizeof(u_int32_t);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
fib->Header.Command = SendHostTime;
*(uint32_t *)fib->data = tv.tv_sec;
aacraid_map_command_sg(cm, NULL, 0, 0);
aacraid_release_command(cm);
}
#if __FreeBSD_version >= 800000
callout_schedule(&sc->aac_daemontime, 30 * 60 * hz);
#else
mtx_unlock(&sc->aac_io_lock);
tv.tv_sec = 30 * 60;
tv.tv_usec = 0;
sc->timeout_id = timeout(aac_daemon, (void *)sc, tvtohz(&tv));
#endif
}
void
aacraid_add_event(struct aac_softc *sc, struct aac_event *event)
{
switch (event->ev_type & AAC_EVENT_MASK) {
case AAC_EVENT_CMFREE:
TAILQ_INSERT_TAIL(&sc->aac_ev_cmfree, event, ev_links);
break;
default:
device_printf(sc->aac_dev, "aac_add event: unknown event %d\n",
event->ev_type);
break;
}
return;
}
/*
* Request information of container #cid
*/
static int
aac_get_container_info(struct aac_softc *sc, struct aac_fib *sync_fib, int cid,
struct aac_mntinforesp *mir, u_int32_t *uid)
{
struct aac_command *cm;
struct aac_fib *fib;
struct aac_mntinfo *mi;
struct aac_cnt_config *ccfg;
int rval;
if (sync_fib == NULL) {
if (aacraid_alloc_command(sc, &cm)) {
device_printf(sc->aac_dev,
"Warning, no free command available\n");
return (-1);
}
fib = cm->cm_fib;
} else {
fib = sync_fib;
}
mi = (struct aac_mntinfo *)&fib->data[0];
/* 4KB support?, 64-bit LBA? */
if (sc->aac_support_opt2 & AAC_SUPPORTED_VARIABLE_BLOCK_SIZE)
mi->Command = VM_NameServeAllBlk;
else if (sc->flags & AAC_FLAGS_LBA_64BIT)
mi->Command = VM_NameServe64;
else
mi->Command = VM_NameServe;
mi->MntType = FT_FILESYS;
mi->MntCount = cid;
if (sync_fib) {
if (aac_sync_fib(sc, ContainerCommand, 0, fib,
sizeof(struct aac_mntinfo))) {
device_printf(sc->aac_dev, "Error probing container %d\n", cid);
return (-1);
}
} else {
cm->cm_timestamp = time_uptime;
cm->cm_datalen = 0;
fib->Header.Size =
sizeof(struct aac_fib_header) + sizeof(struct aac_mntinfo);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
fib->Header.Command = ContainerCommand;
if (aacraid_wait_command(cm) != 0) {
device_printf(sc->aac_dev, "Error probing container %d\n", cid);
aacraid_release_command(cm);
return (-1);
}
}
bcopy(&fib->data[0], mir, sizeof(struct aac_mntinforesp));
/* UID */
*uid = cid;
if (mir->MntTable[0].VolType != CT_NONE &&
!(mir->MntTable[0].ContentState & AAC_FSCS_HIDDEN)) {
if (!(sc->aac_support_opt2 & AAC_SUPPORTED_VARIABLE_BLOCK_SIZE)) {
mir->MntTable[0].ObjExtension.BlockDevice.BlockSize = 0x200;
mir->MntTable[0].ObjExtension.BlockDevice.bdLgclPhysMap = 0;
}
ccfg = (struct aac_cnt_config *)&fib->data[0];
bzero(ccfg, sizeof (*ccfg) - CT_PACKET_SIZE);
ccfg->Command = VM_ContainerConfig;
ccfg->CTCommand.command = CT_CID_TO_32BITS_UID;
ccfg->CTCommand.param[0] = cid;
if (sync_fib) {
rval = aac_sync_fib(sc, ContainerCommand, 0, fib,
sizeof(struct aac_cnt_config));
if (rval == 0 && ccfg->Command == ST_OK &&
ccfg->CTCommand.param[0] == CT_OK &&
mir->MntTable[0].VolType != CT_PASSTHRU)
*uid = ccfg->CTCommand.param[1];
} else {
fib->Header.Size =
sizeof(struct aac_fib_header) + sizeof(struct aac_cnt_config);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
fib->Header.Command = ContainerCommand;
rval = aacraid_wait_command(cm);
if (rval == 0 && ccfg->Command == ST_OK &&
ccfg->CTCommand.param[0] == CT_OK &&
mir->MntTable[0].VolType != CT_PASSTHRU)
*uid = ccfg->CTCommand.param[1];
aacraid_release_command(cm);
}
}
return (0);
}
/*
* Create a device to represent a new container
*/
static void
aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f,
u_int32_t uid)
{
struct aac_container *co;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
/*
* Check container volume type for validity. Note that many of
* the possible types may never show up.
*/
if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
co = (struct aac_container *)malloc(sizeof *co, M_AACRAIDBUF,
M_NOWAIT | M_ZERO);
if (co == NULL) {
panic("Out of memory?!");
}
co->co_found = f;
bcopy(&mir->MntTable[0], &co->co_mntobj,
sizeof(struct aac_mntobj));
co->co_uid = uid;
TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
}
}
/*
* Allocate resources associated with (sc)
*/
static int
aac_alloc(struct aac_softc *sc)
{
bus_size_t maxsize;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
/*
* Create DMA tag for mapping buffers into controller-addressable space.
*/
if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
(sc->flags & AAC_FLAGS_SG_64BIT) ?
BUS_SPACE_MAXADDR :
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sc->aac_max_sectors << 9, /* maxsize */
sc->aac_sg_tablesize, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&sc->aac_io_lock, /* lockfuncarg */
&sc->aac_buffer_dmat)) {
device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
return (ENOMEM);
}
/*
* Create DMA tag for mapping FIBs into controller-addressable space..
*/
if (sc->flags & AAC_FLAGS_NEW_COMM_TYPE1)
maxsize = sc->aac_max_fibs_alloc * (sc->aac_max_fib_size +
sizeof(struct aac_fib_xporthdr) + 31);
else
maxsize = sc->aac_max_fibs_alloc * (sc->aac_max_fib_size + 31);
if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
(sc->flags & AAC_FLAGS_4GB_WINDOW) ?
BUS_SPACE_MAXADDR_32BIT :
0x7fffffff, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
maxsize, /* maxsize */
1, /* nsegments */
maxsize, /* maxsize */
0, /* flags */
NULL, NULL, /* No locking needed */
&sc->aac_fib_dmat)) {
device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");
return (ENOMEM);
}
/*
* Create DMA tag for the common structure and allocate it.
*/
maxsize = sizeof(struct aac_common);
maxsize += sc->aac_max_fibs * sizeof(u_int32_t);
if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
(sc->flags & AAC_FLAGS_4GB_WINDOW) ?
BUS_SPACE_MAXADDR_32BIT :
0x7fffffff, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
maxsize, /* maxsize */
1, /* nsegments */
maxsize, /* maxsegsize */
0, /* flags */
NULL, NULL, /* No locking needed */
&sc->aac_common_dmat)) {
device_printf(sc->aac_dev,
"can't allocate common structure DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
device_printf(sc->aac_dev, "can't allocate common structure\n");
return (ENOMEM);
}
(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
sc->aac_common, maxsize,
aac_common_map, sc, 0);
bzero(sc->aac_common, maxsize);
/* Allocate some FIBs and associated command structs */
TAILQ_INIT(&sc->aac_fibmap_tqh);
sc->aac_commands = malloc(sc->aac_max_fibs * sizeof(struct aac_command),
M_AACRAIDBUF, M_WAITOK|M_ZERO);
mtx_lock(&sc->aac_io_lock);
while (sc->total_fibs < sc->aac_max_fibs) {
if (aac_alloc_commands(sc) != 0)
break;
}
mtx_unlock(&sc->aac_io_lock);
if (sc->total_fibs == 0)
return (ENOMEM);
return (0);
}
/*
* Free all of the resources associated with (sc)
*
* Should not be called if the controller is active.
*/
void
aacraid_free(struct aac_softc *sc)
{
int i;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
/* remove the control device */
if (sc->aac_dev_t != NULL)
destroy_dev(sc->aac_dev_t);
/* throw away any FIB buffers, discard the FIB DMA tag */
aac_free_commands(sc);
if (sc->aac_fib_dmat)
bus_dma_tag_destroy(sc->aac_fib_dmat);
free(sc->aac_commands, M_AACRAIDBUF);
/* destroy the common area */
if (sc->aac_common) {
bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
sc->aac_common_dmamap);
}
if (sc->aac_common_dmat)
bus_dma_tag_destroy(sc->aac_common_dmat);
/* disconnect the interrupt handler */
for (i = 0; i < AAC_MAX_MSIX; ++i) {
if (sc->aac_intr[i])
bus_teardown_intr(sc->aac_dev,
sc->aac_irq[i], sc->aac_intr[i]);
if (sc->aac_irq[i])
bus_release_resource(sc->aac_dev, SYS_RES_IRQ,
sc->aac_irq_rid[i], sc->aac_irq[i]);
else
break;
}
if (sc->msi_enabled)
pci_release_msi(sc->aac_dev);
/* destroy data-transfer DMA tag */
if (sc->aac_buffer_dmat)
bus_dma_tag_destroy(sc->aac_buffer_dmat);
/* destroy the parent DMA tag */
if (sc->aac_parent_dmat)
bus_dma_tag_destroy(sc->aac_parent_dmat);
/* release the register window mapping */
if (sc->aac_regs_res0 != NULL)
bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
sc->aac_regs_rid0, sc->aac_regs_res0);
if (sc->aac_regs_res1 != NULL)
bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
sc->aac_regs_rid1, sc->aac_regs_res1);
}
/*
* Disconnect from the controller completely, in preparation for unload.
*/
int
aacraid_detach(device_t dev)
{
struct aac_softc *sc;
struct aac_container *co;
struct aac_sim *sim;
int error;
sc = device_get_softc(dev);
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
#if __FreeBSD_version >= 800000
callout_drain(&sc->aac_daemontime);
#else
untimeout(aac_daemon, (void *)sc, sc->timeout_id);
#endif
/* Remove the child containers */
while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
free(co, M_AACRAIDBUF);
}
/* Remove the CAM SIMs */
while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
error = device_delete_child(dev, sim->sim_dev);
if (error)
return (error);
free(sim, M_AACRAIDBUF);
}
if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
sc->aifflags |= AAC_AIFFLAGS_EXIT;
wakeup(sc->aifthread);
tsleep(sc->aac_dev, PUSER | PCATCH, "aac_dch", 30 * hz);
}
if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
panic("Cannot shutdown AIF thread");
if ((error = aacraid_shutdown(dev)))
return(error);
EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
aacraid_free(sc);
mtx_destroy(&sc->aac_io_lock);
return(0);
}
/*
* Bring the controller down to a dormant state and detach all child devices.
*
* This function is called before detach or system shutdown.
*
* Note that we can assume that the bioq on the controller is empty, as we won't
* allow shutdown if any device is open.
*/
int
aacraid_shutdown(device_t dev)
{
struct aac_softc *sc;
struct aac_fib *fib;
struct aac_close_command *cc;
sc = device_get_softc(dev);
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
sc->aac_state |= AAC_STATE_SUSPEND;
/*
* Send a Container shutdown followed by a HostShutdown FIB to the
* controller to convince it that we don't want to talk to it anymore.
* We've been closed and all I/O completed already
*/
device_printf(sc->aac_dev, "shutting down controller...");
mtx_lock(&sc->aac_io_lock);
aac_alloc_sync_fib(sc, &fib);
cc = (struct aac_close_command *)&fib->data[0];
bzero(cc, sizeof(struct aac_close_command));
cc->Command = VM_CloseAll;
cc->ContainerId = 0xfffffffe;
if (aac_sync_fib(sc, ContainerCommand, 0, fib,
sizeof(struct aac_close_command)))
printf("FAILED.\n");
else
printf("done\n");
AAC_ACCESS_DEVREG(sc, AAC_DISABLE_INTERRUPT);
aac_release_sync_fib(sc);
mtx_unlock(&sc->aac_io_lock);
return(0);
}
/*
* Bring the controller to a quiescent state, ready for system suspend.
*/
int
aacraid_suspend(device_t dev)
{
struct aac_softc *sc;
sc = device_get_softc(dev);
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
sc->aac_state |= AAC_STATE_SUSPEND;
AAC_ACCESS_DEVREG(sc, AAC_DISABLE_INTERRUPT);
return(0);
}
/*
* Bring the controller back to a state ready for operation.
*/
int
aacraid_resume(device_t dev)
{
struct aac_softc *sc;
sc = device_get_softc(dev);
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
sc->aac_state &= ~AAC_STATE_SUSPEND;
AAC_ACCESS_DEVREG(sc, AAC_ENABLE_INTERRUPT);
return(0);
}
/*
* Interrupt handler for NEW_COMM_TYPE1, NEW_COMM_TYPE2, NEW_COMM_TYPE34 interface.
*/
void
aacraid_new_intr_type1(void *arg)
{
struct aac_msix_ctx *ctx;
struct aac_softc *sc;
int vector_no;
struct aac_command *cm;
struct aac_fib *fib;
u_int32_t bellbits, bellbits_shifted, index, handle;
int isFastResponse, isAif, noMoreAif, mode;
ctx = (struct aac_msix_ctx *)arg;
sc = ctx->sc;
vector_no = ctx->vector_no;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_lock(&sc->aac_io_lock);
if (sc->msi_enabled) {
mode = AAC_INT_MODE_MSI;
if (vector_no == 0) {
bellbits = AAC_MEM0_GETREG4(sc, AAC_SRC_ODBR_MSI);
if (bellbits & 0x40000)
mode |= AAC_INT_MODE_AIF;
else if (bellbits & 0x1000)
mode |= AAC_INT_MODE_SYNC;
}
} else {
mode = AAC_INT_MODE_INTX;
bellbits = AAC_MEM0_GETREG4(sc, AAC_SRC_ODBR_R);
if (bellbits & AAC_DB_RESPONSE_SENT_NS) {
bellbits = AAC_DB_RESPONSE_SENT_NS;
AAC_MEM0_SETREG4(sc, AAC_SRC_ODBR_C, bellbits);
} else {
bellbits_shifted = (bellbits >> AAC_SRC_ODR_SHIFT);
AAC_MEM0_SETREG4(sc, AAC_SRC_ODBR_C, bellbits);
if (bellbits_shifted & AAC_DB_AIF_PENDING)
mode |= AAC_INT_MODE_AIF;
else if (bellbits_shifted & AAC_DB_SYNC_COMMAND)
mode |= AAC_INT_MODE_SYNC;
}
/* ODR readback, Prep #238630 */
AAC_MEM0_GETREG4(sc, AAC_SRC_ODBR_R);
}
if (mode & AAC_INT_MODE_SYNC) {
if (sc->aac_sync_cm) {
cm = sc->aac_sync_cm;
cm->cm_flags |= AAC_CMD_COMPLETED;
/* is there a completion handler? */
if (cm->cm_complete != NULL) {
cm->cm_complete(cm);
} else {
/* assume that someone is sleeping on this command */
wakeup(cm);
}
sc->flags &= ~AAC_QUEUE_FRZN;
sc->aac_sync_cm = NULL;
}
mode = 0;
}
if (mode & AAC_INT_MODE_AIF) {
if (mode & AAC_INT_MODE_INTX) {
aac_request_aif(sc);
mode = 0;
}
}
if (mode) {
/* handle async. status */
index = sc->aac_host_rrq_idx[vector_no];
for (;;) {
isFastResponse = isAif = noMoreAif = 0;
/* remove toggle bit (31) */
handle = (sc->aac_common->ac_host_rrq[index] & 0x7fffffff);
/* check fast response bit (30) */
if (handle & 0x40000000)
isFastResponse = 1;
/* check AIF bit (23) */
else if (handle & 0x00800000)
isAif = TRUE;
handle &= 0x0000ffff;
if (handle == 0)
break;
cm = sc->aac_commands + (handle - 1);
fib = cm->cm_fib;
sc->aac_rrq_outstanding[vector_no]--;
if (isAif) {
noMoreAif = (fib->Header.XferState & AAC_FIBSTATE_NOMOREAIF) ? 1:0;
if (!noMoreAif)
aac_handle_aif(sc, fib);
aac_remove_busy(cm);
aacraid_release_command(cm);
} else {
if (isFastResponse) {
fib->Header.XferState |= AAC_FIBSTATE_DONEADAP;
*((u_int32_t *)(fib->data)) = ST_OK;
cm->cm_flags |= AAC_CMD_FASTRESP;
}
aac_remove_busy(cm);
aac_unmap_command(cm);
cm->cm_flags |= AAC_CMD_COMPLETED;
/* is there a completion handler? */
if (cm->cm_complete != NULL) {
cm->cm_complete(cm);
} else {
/* assume that someone is sleeping on this command */
wakeup(cm);
}
sc->flags &= ~AAC_QUEUE_FRZN;
}
sc->aac_common->ac_host_rrq[index++] = 0;
if (index == (vector_no + 1) * sc->aac_vector_cap)
index = vector_no * sc->aac_vector_cap;
sc->aac_host_rrq_idx[vector_no] = index;
if ((isAif && !noMoreAif) || sc->aif_pending)
aac_request_aif(sc);
}
}
if (mode & AAC_INT_MODE_AIF) {
aac_request_aif(sc);
AAC_ACCESS_DEVREG(sc, AAC_CLEAR_AIF_BIT);
mode = 0;
}
/* see if we can start some more I/O */
if ((sc->flags & AAC_QUEUE_FRZN) == 0)
aacraid_startio(sc);
mtx_unlock(&sc->aac_io_lock);
}
/*
* Handle notification of one or more FIBs coming from the controller.
*/
static void
aac_command_thread(struct aac_softc *sc)
{
int retval;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_lock(&sc->aac_io_lock);
sc->aifflags = AAC_AIFFLAGS_RUNNING;
while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
retval = 0;
if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
"aacraid_aifthd", AAC_PERIODIC_INTERVAL * hz);
/*
* First see if any FIBs need to be allocated. This needs
* to be called without the driver lock because contigmalloc
* will grab Giant, and would result in an LOR.
*/
if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
aac_alloc_commands(sc);
sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
aacraid_startio(sc);
}
/*
* While we're here, check to see if any commands are stuck.
* This is pretty low-priority, so it's ok if it doesn't
* always fire.
*/
if (retval == EWOULDBLOCK)
aac_timeout(sc);
/* Check the hardware printf message buffer */
if (sc->aac_common->ac_printf[0] != 0)
aac_print_printf(sc);
}
sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
mtx_unlock(&sc->aac_io_lock);
wakeup(sc->aac_dev);
aac_kthread_exit(0);
}
/*
* Submit a command to the controller, return when it completes.
* XXX This is very dangerous! If the card has gone out to lunch, we could
* be stuck here forever. At the same time, signals are not caught
* because there is a risk that a signal could wakeup the sleep before
* the card has a chance to complete the command. Since there is no way
* to cancel a command that is in progress, we can't protect against the
* card completing a command late and spamming the command and data
* memory. So, we are held hostage until the command completes.
*/
int
aacraid_wait_command(struct aac_command *cm)
{
struct aac_softc *sc;
int error;
sc = cm->cm_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_assert(&sc->aac_io_lock, MA_OWNED);
/* Put the command on the ready queue and get things going */
aac_enqueue_ready(cm);
aacraid_startio(sc);
error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacraid_wait", 0);
return(error);
}
/*
*Command Buffer Management
*/
/*
* Allocate a command.
*/
int
aacraid_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
{
struct aac_command *cm;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
if ((cm = aac_dequeue_free(sc)) == NULL) {
if (sc->total_fibs < sc->aac_max_fibs) {
sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
wakeup(sc->aifthread);
}
return (EBUSY);
}
*cmp = cm;
return(0);
}
/*
* Release a command back to the freelist.
*/
void
aacraid_release_command(struct aac_command *cm)
{
struct aac_event *event;
struct aac_softc *sc;
sc = cm->cm_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_assert(&sc->aac_io_lock, MA_OWNED);
/* (re)initialize the command/FIB */
cm->cm_sgtable = NULL;
cm->cm_flags = 0;
cm->cm_complete = NULL;
cm->cm_ccb = NULL;
cm->cm_passthr_dmat = 0;
cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
cm->cm_fib->Header.Unused = 0;
cm->cm_fib->Header.SenderSize = cm->cm_sc->aac_max_fib_size;
/*
* These are duplicated in aac_start to cover the case where an
* intermediate stage may have destroyed them. They're left
* initialized here for debugging purposes only.
*/
cm->cm_fib->Header.u.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
cm->cm_fib->Header.Handle = 0;
aac_enqueue_free(cm);
/*
* Dequeue all events so that there's no risk of events getting
* stranded.
*/
while ((event = TAILQ_FIRST(&sc->aac_ev_cmfree)) != NULL) {
TAILQ_REMOVE(&sc->aac_ev_cmfree, event, ev_links);
event->ev_callback(sc, event, event->ev_arg);
}
}
/*
* Map helper for command/FIB allocation.
*/
static void
aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
uint64_t *fibphys;
fibphys = (uint64_t *)arg;
*fibphys = segs[0].ds_addr;
}
/*
* Allocate and initialize commands/FIBs for this adapter.
*/
static int
aac_alloc_commands(struct aac_softc *sc)
{
struct aac_command *cm;
struct aac_fibmap *fm;
uint64_t fibphys;
int i, error;
u_int32_t maxsize;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_assert(&sc->aac_io_lock, MA_OWNED);
if (sc->total_fibs + sc->aac_max_fibs_alloc > sc->aac_max_fibs)
return (ENOMEM);
fm = malloc(sizeof(struct aac_fibmap), M_AACRAIDBUF, M_NOWAIT|M_ZERO);
if (fm == NULL)
return (ENOMEM);
mtx_unlock(&sc->aac_io_lock);
/* allocate the FIBs in DMAable memory and load them */
if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
device_printf(sc->aac_dev,
"Not enough contiguous memory available.\n");
free(fm, M_AACRAIDBUF);
mtx_lock(&sc->aac_io_lock);
return (ENOMEM);
}
maxsize = sc->aac_max_fib_size + 31;
if (sc->flags & AAC_FLAGS_NEW_COMM_TYPE1)
maxsize += sizeof(struct aac_fib_xporthdr);
/* Ignore errors since this doesn't bounce */
(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
sc->aac_max_fibs_alloc * maxsize,
aac_map_command_helper, &fibphys, 0);
mtx_lock(&sc->aac_io_lock);
/* initialize constant fields in the command structure */
bzero(fm->aac_fibs, sc->aac_max_fibs_alloc * maxsize);
for (i = 0; i < sc->aac_max_fibs_alloc; i++) {
cm = sc->aac_commands + sc->total_fibs;
fm->aac_commands = cm;
cm->cm_sc = sc;
cm->cm_fib = (struct aac_fib *)
((u_int8_t *)fm->aac_fibs + i * maxsize);
cm->cm_fibphys = fibphys + i * maxsize;
if (sc->flags & AAC_FLAGS_NEW_COMM_TYPE1) {
u_int64_t fibphys_aligned;
fibphys_aligned =
(cm->cm_fibphys + sizeof(struct aac_fib_xporthdr) + 31) & ~31;
cm->cm_fib = (struct aac_fib *)
((u_int8_t *)cm->cm_fib + (fibphys_aligned - cm->cm_fibphys));
cm->cm_fibphys = fibphys_aligned;
} else {
u_int64_t fibphys_aligned;
fibphys_aligned = (cm->cm_fibphys + 31) & ~31;
cm->cm_fib = (struct aac_fib *)
((u_int8_t *)cm->cm_fib + (fibphys_aligned - cm->cm_fibphys));
cm->cm_fibphys = fibphys_aligned;
}
cm->cm_index = sc->total_fibs;
if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
&cm->cm_datamap)) != 0)
break;
if (sc->aac_max_fibs <= 1 || sc->aac_max_fibs - sc->total_fibs > 1)
aacraid_release_command(cm);
sc->total_fibs++;
}
if (i > 0) {
TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
fwprintf(sc, HBA_FLAGS_DBG_COMM_B, "total_fibs= %d\n", sc->total_fibs);
return (0);
}
bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
free(fm, M_AACRAIDBUF);
return (ENOMEM);
}
/*
* Free FIBs owned by this adapter.
*/
static void
aac_free_commands(struct aac_softc *sc)
{
struct aac_fibmap *fm;
struct aac_command *cm;
int i;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
/*
* We check against total_fibs to handle partially
* allocated blocks.
*/
for (i = 0; i < sc->aac_max_fibs_alloc && sc->total_fibs--; i++) {
cm = fm->aac_commands + i;
bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
}
bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
free(fm, M_AACRAIDBUF);
}
}
/*
* Command-mapping helper function - populate this command's s/g table.
*/
void
aacraid_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct aac_softc *sc;
struct aac_command *cm;
struct aac_fib *fib;
int i;
cm = (struct aac_command *)arg;
sc = cm->cm_sc;
fib = cm->cm_fib;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "nseg %d", nseg);
mtx_assert(&sc->aac_io_lock, MA_OWNED);
/* copy into the FIB */
if (cm->cm_sgtable != NULL) {
if (fib->Header.Command == RawIo2) {
struct aac_raw_io2 *raw;
struct aac_sge_ieee1212 *sg;
u_int32_t min_size = PAGE_SIZE, cur_size;
int conformable = TRUE;
raw = (struct aac_raw_io2 *)&fib->data[0];
sg = (struct aac_sge_ieee1212 *)cm->cm_sgtable;
raw->sgeCnt = nseg;
for (i = 0; i < nseg; i++) {
cur_size = segs[i].ds_len;
sg[i].addrHigh = 0;
*(bus_addr_t *)&sg[i].addrLow = segs[i].ds_addr;
sg[i].length = cur_size;
sg[i].flags = 0;
if (i == 0) {
raw->sgeFirstSize = cur_size;
} else if (i == 1) {
raw->sgeNominalSize = cur_size;
min_size = cur_size;
} else if ((i+1) < nseg &&
cur_size != raw->sgeNominalSize) {
conformable = FALSE;
if (cur_size < min_size)
min_size = cur_size;
}
}
/* not conformable: evaluate required sg elements */
if (!conformable) {
int j, err_found, nseg_new = nseg;
for (i = min_size / PAGE_SIZE; i >= 1; --i) {
err_found = FALSE;
nseg_new = 2;
for (j = 1; j < nseg - 1; ++j) {
if (sg[j].length % (i*PAGE_SIZE)) {
err_found = TRUE;
break;
}
nseg_new += (sg[j].length / (i*PAGE_SIZE));
}
if (!err_found)
break;
}
if (i>0 && nseg_new<=sc->aac_sg_tablesize &&
!(sc->hint_flags & 4))
nseg = aac_convert_sgraw2(sc,
raw, i, nseg, nseg_new);
} else {
raw->flags |= RIO2_SGL_CONFORMANT;
}
/* update the FIB size for the s/g count */
fib->Header.Size += nseg *
sizeof(struct aac_sge_ieee1212);
} else if (fib->Header.Command == RawIo) {
struct aac_sg_tableraw *sg;
sg = (struct aac_sg_tableraw *)cm->cm_sgtable;
sg->SgCount = nseg;
for (i = 0; i < nseg; i++) {
sg->SgEntryRaw[i].SgAddress = segs[i].ds_addr;
sg->SgEntryRaw[i].SgByteCount = segs[i].ds_len;
sg->SgEntryRaw[i].Next = 0;
sg->SgEntryRaw[i].Prev = 0;
sg->SgEntryRaw[i].Flags = 0;
}
/* update the FIB size for the s/g count */
fib->Header.Size += nseg*sizeof(struct aac_sg_entryraw);
} else if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
struct aac_sg_table *sg;
sg = cm->cm_sgtable;
sg->SgCount = nseg;
for (i = 0; i < nseg; i++) {
sg->SgEntry[i].SgAddress = segs[i].ds_addr;
sg->SgEntry[i].SgByteCount = segs[i].ds_len;
}
/* update the FIB size for the s/g count */
fib->Header.Size += nseg*sizeof(struct aac_sg_entry);
} else {
struct aac_sg_table64 *sg;
sg = (struct aac_sg_table64 *)cm->cm_sgtable;
sg->SgCount = nseg;
for (i = 0; i < nseg; i++) {
sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
}
/* update the FIB size for the s/g count */
fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
}
}
/* Fix up the address values in the FIB. Use the command array index
* instead of a pointer since these fields are only 32 bits. Shift
* the SenderFibAddress over to make room for the fast response bit
* and for the AIF bit
*/
cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 2);
cm->cm_fib->Header.u.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
/* save a pointer to the command for speedy reverse-lookup */
cm->cm_fib->Header.Handle += cm->cm_index + 1;
if (cm->cm_passthr_dmat == 0) {
if (cm->cm_flags & AAC_CMD_DATAIN)
bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
BUS_DMASYNC_PREREAD);
if (cm->cm_flags & AAC_CMD_DATAOUT)
bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
BUS_DMASYNC_PREWRITE);
}
cm->cm_flags |= AAC_CMD_MAPPED;
if (sc->flags & AAC_FLAGS_SYNC_MODE) {
u_int32_t wait = 0;
aacraid_sync_command(sc, AAC_MONKER_SYNCFIB, cm->cm_fibphys, 0, 0, 0, &wait, NULL);
} else if (cm->cm_flags & AAC_CMD_WAIT) {
aacraid_sync_command(sc, AAC_MONKER_SYNCFIB, cm->cm_fibphys, 0, 0, 0, NULL, NULL);
} else {
int count = 10000000L;
while (AAC_SEND_COMMAND(sc, cm) != 0) {
if (--count == 0) {
aac_unmap_command(cm);
sc->flags |= AAC_QUEUE_FRZN;
aac_requeue_ready(cm);
}
DELAY(5); /* wait 5 usec. */
}
}
}
static int
aac_convert_sgraw2(struct aac_softc *sc, struct aac_raw_io2 *raw,
int pages, int nseg, int nseg_new)
{
struct aac_sge_ieee1212 *sge;
int i, j, pos;
u_int32_t addr_low;
sge = malloc(nseg_new * sizeof(struct aac_sge_ieee1212),
M_AACRAIDBUF, M_NOWAIT|M_ZERO);
if (sge == NULL)
return nseg;
for (i = 1, pos = 1; i < nseg - 1; ++i) {
for (j = 0; j < raw->sge[i].length / (pages*PAGE_SIZE); ++j) {
addr_low = raw->sge[i].addrLow + j * pages * PAGE_SIZE;
sge[pos].addrLow = addr_low;
sge[pos].addrHigh = raw->sge[i].addrHigh;
if (addr_low < raw->sge[i].addrLow)
sge[pos].addrHigh++;
sge[pos].length = pages * PAGE_SIZE;
sge[pos].flags = 0;
pos++;
}
}
sge[pos] = raw->sge[nseg-1];
for (i = 1; i < nseg_new; ++i)
raw->sge[i] = sge[i];
free(sge, M_AACRAIDBUF);
raw->sgeCnt = nseg_new;
raw->flags |= RIO2_SGL_CONFORMANT;
raw->sgeNominalSize = pages * PAGE_SIZE;
return nseg_new;
}
/*
* Unmap a command from controller-visible space.
*/
static void
aac_unmap_command(struct aac_command *cm)
{
struct aac_softc *sc;
sc = cm->cm_sc;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
if (!(cm->cm_flags & AAC_CMD_MAPPED))
return;
if (cm->cm_datalen != 0 && cm->cm_passthr_dmat == 0) {
if (cm->cm_flags & AAC_CMD_DATAIN)
bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
BUS_DMASYNC_POSTREAD);
if (cm->cm_flags & AAC_CMD_DATAOUT)
bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
}
cm->cm_flags &= ~AAC_CMD_MAPPED;
}
/*
* Hardware Interface
*/
/*
* Initialize the adapter.
*/
static void
aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct aac_softc *sc;
sc = (struct aac_softc *)arg;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
sc->aac_common_busaddr = segs[0].ds_addr;
}
static int
aac_check_firmware(struct aac_softc *sc)
{
u_int32_t code, major, minor, maxsize;
u_int32_t options = 0, atu_size = 0, status, waitCount;
time_t then;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
/* check if flash update is running */
if (AAC_GET_FWSTATUS(sc) & AAC_FLASH_UPD_PENDING) {
then = time_uptime;
do {
code = AAC_GET_FWSTATUS(sc);
if (time_uptime > (then + AAC_FWUPD_TIMEOUT)) {
device_printf(sc->aac_dev,
"FATAL: controller not coming ready, "
"status %x\n", code);
return(ENXIO);
}
} while (!(code & AAC_FLASH_UPD_SUCCESS) && !(code & AAC_FLASH_UPD_FAILED));
/*
* Delay 10 seconds. Because right now FW is doing a soft reset,
* do not read scratch pad register at this time
*/
waitCount = 10 * 10000;
while (waitCount) {
DELAY(100); /* delay 100 microseconds */
waitCount--;
}
}
/*
* Wait for the adapter to come ready.
*/
then = time_uptime;
do {
code = AAC_GET_FWSTATUS(sc);
if (time_uptime > (then + AAC_BOOT_TIMEOUT)) {
device_printf(sc->aac_dev,
"FATAL: controller not coming ready, "
"status %x\n", code);
return(ENXIO);
}
} while (!(code & AAC_UP_AND_RUNNING) || code == 0xffffffff);
/*
* Retrieve the firmware version numbers. Dell PERC2/QC cards with
* firmware version 1.x are not compatible with this driver.
*/
if (sc->flags & AAC_FLAGS_PERC2QC) {
if (aacraid_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
NULL, NULL)) {
device_printf(sc->aac_dev,
"Error reading firmware version\n");
return (EIO);
}
/* These numbers are stored as ASCII! */
major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
if (major == 1) {
device_printf(sc->aac_dev,
"Firmware version %d.%d is not supported.\n",
major, minor);
return (EINVAL);
}
}
/*
* Retrieve the capabilities/supported options word so we know what
* work-arounds to enable. Some firmware revs don't support this
* command.
*/
if (aacraid_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, &status, NULL)) {
if (status != AAC_SRB_STS_INVALID_REQUEST) {
device_printf(sc->aac_dev,
"RequestAdapterInfo failed\n");
return (EIO);
}
} else {
options = AAC_GET_MAILBOX(sc, 1);
atu_size = AAC_GET_MAILBOX(sc, 2);
sc->supported_options = options;
if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
(sc->flags & AAC_FLAGS_NO4GB) == 0)
sc->flags |= AAC_FLAGS_4GB_WINDOW;
if (options & AAC_SUPPORTED_NONDASD)
sc->flags |= AAC_FLAGS_ENABLE_CAM;
if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
&& (sizeof(bus_addr_t) > 4)
&& (sc->hint_flags & 0x1)) {
device_printf(sc->aac_dev,
"Enabling 64-bit address support\n");
sc->flags |= AAC_FLAGS_SG_64BIT;
}
if (sc->aac_if.aif_send_command) {
if ((options & AAC_SUPPORTED_NEW_COMM_TYPE3) ||
(options & AAC_SUPPORTED_NEW_COMM_TYPE4))
sc->flags |= AAC_FLAGS_NEW_COMM | AAC_FLAGS_NEW_COMM_TYPE34;
else if (options & AAC_SUPPORTED_NEW_COMM_TYPE1)
sc->flags |= AAC_FLAGS_NEW_COMM | AAC_FLAGS_NEW_COMM_TYPE1;
else if (options & AAC_SUPPORTED_NEW_COMM_TYPE2)
sc->flags |= AAC_FLAGS_NEW_COMM | AAC_FLAGS_NEW_COMM_TYPE2;
}
if (options & AAC_SUPPORTED_64BIT_ARRAYSIZE)
sc->flags |= AAC_FLAGS_ARRAY_64BIT;
}
if (!(sc->flags & AAC_FLAGS_NEW_COMM)) {
device_printf(sc->aac_dev, "Communication interface not supported!\n");
return (ENXIO);
}
if (sc->hint_flags & 2) {
device_printf(sc->aac_dev,
"Sync. mode enforced by driver parameter. This will cause a significant performance decrease!\n");
sc->flags |= AAC_FLAGS_SYNC_MODE;
} else if (sc->flags & AAC_FLAGS_NEW_COMM_TYPE34) {
device_printf(sc->aac_dev,
"Async. mode not supported by current driver, sync. mode enforced.\nPlease update driver to get full performance.\n");
sc->flags |= AAC_FLAGS_SYNC_MODE;
}
/* Check for broken hardware that does a lower number of commands */
sc->aac_max_fibs = (sc->flags & AAC_FLAGS_256FIBS ? 256:512);
/* Remap mem. resource, if required */
if (atu_size > rman_get_size(sc->aac_regs_res0)) {
bus_release_resource(
sc->aac_dev, SYS_RES_MEMORY,
sc->aac_regs_rid0, sc->aac_regs_res0);
sc->aac_regs_res0 = bus_alloc_resource_anywhere(
sc->aac_dev, SYS_RES_MEMORY, &sc->aac_regs_rid0,
atu_size, RF_ACTIVE);
if (sc->aac_regs_res0 == NULL) {
sc->aac_regs_res0 = bus_alloc_resource_any(
sc->aac_dev, SYS_RES_MEMORY,
&sc->aac_regs_rid0, RF_ACTIVE);
if (sc->aac_regs_res0 == NULL) {
device_printf(sc->aac_dev,
"couldn't allocate register window\n");
return (ENXIO);
}
}
sc->aac_btag0 = rman_get_bustag(sc->aac_regs_res0);
sc->aac_bhandle0 = rman_get_bushandle(sc->aac_regs_res0);
}
/* Read preferred settings */
sc->aac_max_fib_size = sizeof(struct aac_fib);
sc->aac_max_sectors = 128; /* 64KB */
sc->aac_max_aif = 1;
if (sc->flags & AAC_FLAGS_SG_64BIT)
sc->aac_sg_tablesize = (AAC_FIB_DATASIZE
- sizeof(struct aac_blockwrite64))
/ sizeof(struct aac_sg_entry64);
else
sc->aac_sg_tablesize = (AAC_FIB_DATASIZE
- sizeof(struct aac_blockwrite))
/ sizeof(struct aac_sg_entry);
if (!aacraid_sync_command(sc, AAC_MONKER_GETCOMMPREF, 0, 0, 0, 0, NULL, NULL)) {
options = AAC_GET_MAILBOX(sc, 1);
sc->aac_max_fib_size = (options & 0xFFFF);
sc->aac_max_sectors = (options >> 16) << 1;
options = AAC_GET_MAILBOX(sc, 2);
sc->aac_sg_tablesize = (options >> 16);
options = AAC_GET_MAILBOX(sc, 3);
sc->aac_max_fibs = ((options >> 16) & 0xFFFF);
if (sc->aac_max_fibs == 0 || sc->aac_hwif != AAC_HWIF_SRCV)
sc->aac_max_fibs = (options & 0xFFFF);
options = AAC_GET_MAILBOX(sc, 4);
sc->aac_max_aif = (options & 0xFFFF);
options = AAC_GET_MAILBOX(sc, 5);
sc->aac_max_msix =(sc->flags & AAC_FLAGS_NEW_COMM_TYPE2) ? options : 0;
}
maxsize = sc->aac_max_fib_size + 31;
if (sc->flags & AAC_FLAGS_NEW_COMM_TYPE1)
maxsize += sizeof(struct aac_fib_xporthdr);
if (maxsize > PAGE_SIZE) {
sc->aac_max_fib_size -= (maxsize - PAGE_SIZE);
maxsize = PAGE_SIZE;
}
sc->aac_max_fibs_alloc = PAGE_SIZE / maxsize;
if (sc->aac_max_fib_size > sizeof(struct aac_fib)) {
sc->flags |= AAC_FLAGS_RAW_IO;
device_printf(sc->aac_dev, "Enable Raw I/O\n");
}
if ((sc->flags & AAC_FLAGS_RAW_IO) &&
(sc->flags & AAC_FLAGS_ARRAY_64BIT)) {
sc->flags |= AAC_FLAGS_LBA_64BIT;
device_printf(sc->aac_dev, "Enable 64-bit array\n");
}
#ifdef AACRAID_DEBUG
aacraid_get_fw_debug_buffer(sc);
#endif
return (0);
}
static int
aac_init(struct aac_softc *sc)
{
struct aac_adapter_init *ip;
int i, error;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
/* reset rrq index */
sc->aac_fibs_pushed_no = 0;
for (i = 0; i < sc->aac_max_msix; i++)
sc->aac_host_rrq_idx[i] = i * sc->aac_vector_cap;
/*
* Fill in the init structure. This tells the adapter about the
* physical location of various important shared data structures.
*/
ip = &sc->aac_common->ac_init;
ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
if (sc->aac_max_fib_size > sizeof(struct aac_fib)) {
ip->InitStructRevision = AAC_INIT_STRUCT_REVISION_4;
sc->flags |= AAC_FLAGS_RAW_IO;
}
ip->NoOfMSIXVectors = sc->aac_max_msix;
ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
offsetof(struct aac_common, ac_fibs);
ip->AdapterFibsVirtualAddress = 0;
ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
ip->AdapterFibAlign = sizeof(struct aac_fib);
ip->PrintfBufferAddress = sc->aac_common_busaddr +
offsetof(struct aac_common, ac_printf);
ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
/*
* The adapter assumes that pages are 4K in size, except on some
* broken firmware versions that do the page->byte conversion twice,
* therefore 'assuming' that this value is in 16MB units (2^24).
* Round up since the granularity is so high.
*/
ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
ip->HostPhysMemPages =
(ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
}
ip->HostElapsedSeconds = time_uptime; /* reset later if invalid */
ip->InitFlags = AAC_INITFLAGS_NEW_COMM_SUPPORTED;
if (sc->flags & AAC_FLAGS_NEW_COMM_TYPE1) {
ip->InitStructRevision = AAC_INIT_STRUCT_REVISION_6;
ip->InitFlags |= (AAC_INITFLAGS_NEW_COMM_TYPE1_SUPPORTED |
AAC_INITFLAGS_FAST_JBOD_SUPPORTED);
device_printf(sc->aac_dev, "New comm. interface type1 enabled\n");
} else if (sc->flags & AAC_FLAGS_NEW_COMM_TYPE2) {
ip->InitStructRevision = AAC_INIT_STRUCT_REVISION_7;
ip->InitFlags |= (AAC_INITFLAGS_NEW_COMM_TYPE2_SUPPORTED |
AAC_INITFLAGS_FAST_JBOD_SUPPORTED);
device_printf(sc->aac_dev, "New comm. interface type2 enabled\n");
}
ip->MaxNumAif = sc->aac_max_aif;
ip->HostRRQ_AddrLow =
sc->aac_common_busaddr + offsetof(struct aac_common, ac_host_rrq);
/* always 32-bit address */
ip->HostRRQ_AddrHigh = 0;
if (sc->aac_support_opt2 & AAC_SUPPORTED_POWER_MANAGEMENT) {
ip->InitFlags |= AAC_INITFLAGS_DRIVER_SUPPORTS_PM;
ip->InitFlags |= AAC_INITFLAGS_DRIVER_USES_UTC_TIME;
device_printf(sc->aac_dev, "Power Management enabled\n");
}
ip->MaxIoCommands = sc->aac_max_fibs;
ip->MaxIoSize = sc->aac_max_sectors << 9;
ip->MaxFibSize = sc->aac_max_fib_size;
/*
* Do controller-type-specific initialisation
*/
AAC_MEM0_SETREG4(sc, AAC_SRC_ODBR_C, ~0);
/*
* Give the init structure to the controller.
*/
if (aacraid_sync_command(sc, AAC_MONKER_INITSTRUCT,
sc->aac_common_busaddr +
offsetof(struct aac_common, ac_init), 0, 0, 0,
NULL, NULL)) {
device_printf(sc->aac_dev,
"error establishing init structure\n");
error = EIO;
goto out;
}
/*
* Check configuration issues
*/
if ((error = aac_check_config(sc)) != 0)
goto out;
error = 0;
out:
return(error);
}
static void
aac_define_int_mode(struct aac_softc *sc)
{
device_t dev;
int cap, msi_count, error = 0;
uint32_t val;
dev = sc->aac_dev;
/* max. vectors from AAC_MONKER_GETCOMMPREF */
if (sc->aac_max_msix == 0) {
sc->aac_max_msix = 1;
sc->aac_vector_cap = sc->aac_max_fibs;
return;
}
/* OS capability */
msi_count = pci_msix_count(dev);
if (msi_count > AAC_MAX_MSIX)
msi_count = AAC_MAX_MSIX;
if (msi_count > sc->aac_max_msix)
msi_count = sc->aac_max_msix;
if (msi_count == 0 || (error = pci_alloc_msix(dev, &msi_count)) != 0) {
device_printf(dev, "alloc msix failed - msi_count=%d, err=%d; "
"will try MSI\n", msi_count, error);
pci_release_msi(dev);
} else {
sc->msi_enabled = TRUE;
device_printf(dev, "using MSI-X interrupts (%u vectors)\n",
msi_count);
}
if (!sc->msi_enabled) {
msi_count = 1;
if ((error = pci_alloc_msi(dev, &msi_count)) != 0) {
device_printf(dev, "alloc msi failed - err=%d; "
"will use INTx\n", error);
pci_release_msi(dev);
} else {
sc->msi_enabled = TRUE;
device_printf(dev, "using MSI interrupts\n");
}
}
if (sc->msi_enabled) {
/* now read controller capability from PCI config. space */
cap = aac_find_pci_capability(sc, PCIY_MSIX);
val = (cap != 0 ? pci_read_config(dev, cap + 2, 2) : 0);
if (!(val & AAC_PCI_MSI_ENABLE)) {
pci_release_msi(dev);
sc->msi_enabled = FALSE;
}
}
if (!sc->msi_enabled) {
device_printf(dev, "using legacy interrupts\n");
sc->aac_max_msix = 1;
} else {
AAC_ACCESS_DEVREG(sc, AAC_ENABLE_MSIX);
if (sc->aac_max_msix > msi_count)
sc->aac_max_msix = msi_count;
}
sc->aac_vector_cap = sc->aac_max_fibs / sc->aac_max_msix;
fwprintf(sc, HBA_FLAGS_DBG_DEBUG_B, "msi_enabled %d vector_cap %d max_fibs %d max_msix %d",
sc->msi_enabled,sc->aac_vector_cap, sc->aac_max_fibs, sc->aac_max_msix);
}
static int
aac_find_pci_capability(struct aac_softc *sc, int cap)
{
device_t dev;
uint32_t status;
uint8_t ptr;
dev = sc->aac_dev;
status = pci_read_config(dev, PCIR_STATUS, 2);
if (!(status & PCIM_STATUS_CAPPRESENT))
return (0);
status = pci_read_config(dev, PCIR_HDRTYPE, 1);
switch (status & PCIM_HDRTYPE) {
case 0:
case 1:
ptr = PCIR_CAP_PTR;
break;
case 2:
ptr = PCIR_CAP_PTR_2;
break;
default:
return (0);
break;
}
ptr = pci_read_config(dev, ptr, 1);
while (ptr != 0) {
int next, val;
next = pci_read_config(dev, ptr + PCICAP_NEXTPTR, 1);
val = pci_read_config(dev, ptr + PCICAP_ID, 1);
if (val == cap)
return (ptr);
ptr = next;
}
return (0);
}
static int
aac_setup_intr(struct aac_softc *sc)
{
int i, msi_count, rid;
struct resource *res;
void *tag;
msi_count = sc->aac_max_msix;
rid = (sc->msi_enabled ? 1:0);
for (i = 0; i < msi_count; i++, rid++) {
if ((res = bus_alloc_resource_any(sc->aac_dev,SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE)) == NULL) {
device_printf(sc->aac_dev,"can't allocate interrupt\n");
return (EINVAL);
}
sc->aac_irq_rid[i] = rid;
sc->aac_irq[i] = res;
if (aac_bus_setup_intr(sc->aac_dev, res,
INTR_MPSAFE | INTR_TYPE_BIO, NULL,
aacraid_new_intr_type1, &sc->aac_msix[i], &tag)) {
device_printf(sc->aac_dev, "can't set up interrupt\n");
return (EINVAL);
}
sc->aac_msix[i].vector_no = i;
sc->aac_msix[i].sc = sc;
sc->aac_intr[i] = tag;
}
return (0);
}
static int
aac_check_config(struct aac_softc *sc)
{
struct aac_fib *fib;
struct aac_cnt_config *ccfg;
struct aac_cf_status_hdr *cf_shdr;
int rval;
mtx_lock(&sc->aac_io_lock);
aac_alloc_sync_fib(sc, &fib);
ccfg = (struct aac_cnt_config *)&fib->data[0];
bzero(ccfg, sizeof (*ccfg) - CT_PACKET_SIZE);
ccfg->Command = VM_ContainerConfig;
ccfg->CTCommand.command = CT_GET_CONFIG_STATUS;
ccfg->CTCommand.param[CNT_SIZE] = sizeof(struct aac_cf_status_hdr);
rval = aac_sync_fib(sc, ContainerCommand, 0, fib,
sizeof (struct aac_cnt_config));
cf_shdr = (struct aac_cf_status_hdr *)ccfg->CTCommand.data;
if (rval == 0 && ccfg->Command == ST_OK &&
ccfg->CTCommand.param[0] == CT_OK) {
if (cf_shdr->action <= CFACT_PAUSE) {
bzero(ccfg, sizeof (*ccfg) - CT_PACKET_SIZE);
ccfg->Command = VM_ContainerConfig;
ccfg->CTCommand.command = CT_COMMIT_CONFIG;
rval = aac_sync_fib(sc, ContainerCommand, 0, fib,
sizeof (struct aac_cnt_config));
if (rval == 0 && ccfg->Command == ST_OK &&
ccfg->CTCommand.param[0] == CT_OK) {
/* successful completion */
rval = 0;
} else {
/* auto commit aborted due to error(s) */
rval = -2;
}
} else {
/* auto commit aborted due to adapter indicating
config. issues too dangerous to auto commit */
rval = -3;
}
} else {
/* error */
rval = -1;
}
aac_release_sync_fib(sc);
mtx_unlock(&sc->aac_io_lock);
return(rval);
}
/*
* Send a synchronous command to the controller and wait for a result.
* Indicate if the controller completed the command with an error status.
*/
int
aacraid_sync_command(struct aac_softc *sc, u_int32_t command,
u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
u_int32_t *sp, u_int32_t *r1)
{
time_t then;
u_int32_t status;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
/* populate the mailbox */
AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
/* ensure the sync command doorbell flag is cleared */
if (!sc->msi_enabled)
AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
/* then set it to signal the adapter */
AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
if ((command != AAC_MONKER_SYNCFIB) || (sp == NULL) || (*sp != 0)) {
/* spin waiting for the command to complete */
then = time_uptime;
do {
if (time_uptime > (then + AAC_SYNC_TIMEOUT)) {
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "timed out");
return(EIO);
}
} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
/* clear the completion flag */
AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
/* get the command status */
status = AAC_GET_MAILBOX(sc, 0);
if (sp != NULL)
*sp = status;
/* return parameter */
if (r1 != NULL)
*r1 = AAC_GET_MAILBOX(sc, 1);
if (status != AAC_SRB_STS_SUCCESS)
return (-1);
}
return(0);
}
static int
aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
struct aac_fib *fib, u_int16_t datasize)
{
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_assert(&sc->aac_io_lock, MA_OWNED);
if (datasize > AAC_FIB_DATASIZE)
return(EINVAL);
/*
* Set up the sync FIB
*/
fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY;
fib->Header.XferState |= xferstate;
fib->Header.Command = command;
fib->Header.StructType = AAC_FIBTYPE_TFIB;
fib->Header.Size = sizeof(struct aac_fib_header) + datasize;
fib->Header.SenderSize = sizeof(struct aac_fib);
fib->Header.SenderFibAddress = 0; /* Not needed */
fib->Header.u.ReceiverFibAddress = sc->aac_common_busaddr +
offsetof(struct aac_common, ac_sync_fib);
/*
* Give the FIB to the controller, wait for a response.
*/
if (aacraid_sync_command(sc, AAC_MONKER_SYNCFIB,
fib->Header.u.ReceiverFibAddress, 0, 0, 0, NULL, NULL)) {
fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "IO error");
return(EIO);
}
return (0);
}
/*
* Check for commands that have been outstanding for a suspiciously long time,
* and complain about them.
*/
static void
aac_timeout(struct aac_softc *sc)
{
struct aac_command *cm;
time_t deadline;
int timedout;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
/*
* Traverse the busy command list, bitch about late commands once
* only.
*/
timedout = 0;
deadline = time_uptime - AAC_CMD_TIMEOUT;
TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
if (cm->cm_timestamp < deadline) {
device_printf(sc->aac_dev,
"COMMAND %p TIMEOUT AFTER %d SECONDS\n",
cm, (int)(time_uptime-cm->cm_timestamp));
AAC_PRINT_FIB(sc, cm->cm_fib);
timedout++;
}
}
if (timedout)
aac_reset_adapter(sc);
aacraid_print_queues(sc);
}
/*
* Interface Function Vectors
*/
/*
* Read the current firmware status word.
*/
static int
aac_src_get_fwstatus(struct aac_softc *sc)
{
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
return(AAC_MEM0_GETREG4(sc, AAC_SRC_OMR));
}
/*
* Notify the controller of a change in a given queue
*/
static void
aac_src_qnotify(struct aac_softc *sc, int qbit)
{
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
AAC_MEM0_SETREG4(sc, AAC_SRC_IDBR, qbit << AAC_SRC_IDR_SHIFT);
}
/*
* Get the interrupt reason bits
*/
static int
aac_src_get_istatus(struct aac_softc *sc)
{
int val;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
if (sc->msi_enabled) {
val = AAC_MEM0_GETREG4(sc, AAC_SRC_ODBR_MSI);
if (val & AAC_MSI_SYNC_STATUS)
val = AAC_DB_SYNC_COMMAND;
else
val = 0;
} else {
val = AAC_MEM0_GETREG4(sc, AAC_SRC_ODBR_R) >> AAC_SRC_ODR_SHIFT;
}
return(val);
}
/*
* Clear some interrupt reason bits
*/
static void
aac_src_clear_istatus(struct aac_softc *sc, int mask)
{
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
if (sc->msi_enabled) {
if (mask == AAC_DB_SYNC_COMMAND)
AAC_ACCESS_DEVREG(sc, AAC_CLEAR_SYNC_BIT);
} else {
AAC_MEM0_SETREG4(sc, AAC_SRC_ODBR_C, mask << AAC_SRC_ODR_SHIFT);
}
}
/*
* Populate the mailbox and set the command word
*/
static void
aac_src_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
{
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
AAC_MEM0_SETREG4(sc, AAC_SRC_MAILBOX, command);
AAC_MEM0_SETREG4(sc, AAC_SRC_MAILBOX + 4, arg0);
AAC_MEM0_SETREG4(sc, AAC_SRC_MAILBOX + 8, arg1);
AAC_MEM0_SETREG4(sc, AAC_SRC_MAILBOX + 12, arg2);
AAC_MEM0_SETREG4(sc, AAC_SRC_MAILBOX + 16, arg3);
}
static void
aac_srcv_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
{
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
AAC_MEM0_SETREG4(sc, AAC_SRCV_MAILBOX, command);
AAC_MEM0_SETREG4(sc, AAC_SRCV_MAILBOX + 4, arg0);
AAC_MEM0_SETREG4(sc, AAC_SRCV_MAILBOX + 8, arg1);
AAC_MEM0_SETREG4(sc, AAC_SRCV_MAILBOX + 12, arg2);
AAC_MEM0_SETREG4(sc, AAC_SRCV_MAILBOX + 16, arg3);
}
/*
* Fetch the immediate command status word
*/
static int
aac_src_get_mailbox(struct aac_softc *sc, int mb)
{
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
return(AAC_MEM0_GETREG4(sc, AAC_SRC_MAILBOX + (mb * 4)));
}
static int
aac_srcv_get_mailbox(struct aac_softc *sc, int mb)
{
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
return(AAC_MEM0_GETREG4(sc, AAC_SRCV_MAILBOX + (mb * 4)));
}
/*
* Set/clear interrupt masks
*/
static void
aac_src_access_devreg(struct aac_softc *sc, int mode)
{
u_int32_t val;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
switch (mode) {
case AAC_ENABLE_INTERRUPT:
AAC_MEM0_SETREG4(sc, AAC_SRC_OIMR,
(sc->msi_enabled ? AAC_INT_ENABLE_TYPE1_MSIX :
AAC_INT_ENABLE_TYPE1_INTX));
break;
case AAC_DISABLE_INTERRUPT:
AAC_MEM0_SETREG4(sc, AAC_SRC_OIMR, AAC_INT_DISABLE_ALL);
break;
case AAC_ENABLE_MSIX:
/* set bit 6 */
val = AAC_MEM0_GETREG4(sc, AAC_SRC_IDBR);
val |= 0x40;
AAC_MEM0_SETREG4(sc, AAC_SRC_IDBR, val);
AAC_MEM0_GETREG4(sc, AAC_SRC_IDBR);
/* unmask int. */
val = PMC_ALL_INTERRUPT_BITS;
AAC_MEM0_SETREG4(sc, AAC_SRC_IOAR, val);
val = AAC_MEM0_GETREG4(sc, AAC_SRC_OIMR);
AAC_MEM0_SETREG4(sc, AAC_SRC_OIMR,
val & (~(PMC_GLOBAL_INT_BIT2 | PMC_GLOBAL_INT_BIT0)));
break;
case AAC_DISABLE_MSIX:
/* reset bit 6 */
val = AAC_MEM0_GETREG4(sc, AAC_SRC_IDBR);
val &= ~0x40;
AAC_MEM0_SETREG4(sc, AAC_SRC_IDBR, val);
AAC_MEM0_GETREG4(sc, AAC_SRC_IDBR);
break;
case AAC_CLEAR_AIF_BIT:
/* set bit 5 */
val = AAC_MEM0_GETREG4(sc, AAC_SRC_IDBR);
val |= 0x20;
AAC_MEM0_SETREG4(sc, AAC_SRC_IDBR, val);
AAC_MEM0_GETREG4(sc, AAC_SRC_IDBR);
break;
case AAC_CLEAR_SYNC_BIT:
/* set bit 4 */
val = AAC_MEM0_GETREG4(sc, AAC_SRC_IDBR);
val |= 0x10;
AAC_MEM0_SETREG4(sc, AAC_SRC_IDBR, val);
AAC_MEM0_GETREG4(sc, AAC_SRC_IDBR);
break;
case AAC_ENABLE_INTX:
/* set bit 7 */
val = AAC_MEM0_GETREG4(sc, AAC_SRC_IDBR);
val |= 0x80;
AAC_MEM0_SETREG4(sc, AAC_SRC_IDBR, val);
AAC_MEM0_GETREG4(sc, AAC_SRC_IDBR);
/* unmask int. */
val = PMC_ALL_INTERRUPT_BITS;
AAC_MEM0_SETREG4(sc, AAC_SRC_IOAR, val);
val = AAC_MEM0_GETREG4(sc, AAC_SRC_OIMR);
AAC_MEM0_SETREG4(sc, AAC_SRC_OIMR,
val & (~(PMC_GLOBAL_INT_BIT2)));
break;
default:
break;
}
}
/*
* New comm. interface: Send command functions
*/
static int
aac_src_send_command(struct aac_softc *sc, struct aac_command *cm)
{
struct aac_fib_xporthdr *pFibX;
u_int32_t fibsize, high_addr;
u_int64_t address;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "send command (new comm. type1)");
if (sc->msi_enabled && cm->cm_fib->Header.Command != AifRequest &&
sc->aac_max_msix > 1) {
u_int16_t vector_no, first_choice = 0xffff;
vector_no = sc->aac_fibs_pushed_no % sc->aac_max_msix;
do {
vector_no += 1;
if (vector_no == sc->aac_max_msix)
vector_no = 1;
if (sc->aac_rrq_outstanding[vector_no] <
sc->aac_vector_cap)
break;
if (0xffff == first_choice)
first_choice = vector_no;
else if (vector_no == first_choice)
break;
} while (1);
if (vector_no == first_choice)
vector_no = 0;
sc->aac_rrq_outstanding[vector_no]++;
if (sc->aac_fibs_pushed_no == 0xffffffff)
sc->aac_fibs_pushed_no = 0;
else
sc->aac_fibs_pushed_no++;
cm->cm_fib->Header.Handle += (vector_no << 16);
}
if (sc->flags & AAC_FLAGS_NEW_COMM_TYPE2) {
/* Calculate the amount to the fibsize bits */
fibsize = (cm->cm_fib->Header.Size + 127) / 128 - 1;
/* Fill new FIB header */
address = cm->cm_fibphys;
high_addr = (u_int32_t)(address >> 32);
if (high_addr == 0L) {
cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB2;
cm->cm_fib->Header.u.TimeStamp = 0L;
} else {
cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB2_64;
cm->cm_fib->Header.u.SenderFibAddressHigh = high_addr;
}
cm->cm_fib->Header.SenderFibAddress = (u_int32_t)address;
} else {
/* Calculate the amount to the fibsize bits */
fibsize = (sizeof(struct aac_fib_xporthdr) +
cm->cm_fib->Header.Size + 127) / 128 - 1;
/* Fill XPORT header */
pFibX = (struct aac_fib_xporthdr *)
((unsigned char *)cm->cm_fib - sizeof(struct aac_fib_xporthdr));
pFibX->Handle = cm->cm_fib->Header.Handle;
pFibX->HostAddress = cm->cm_fibphys;
pFibX->Size = cm->cm_fib->Header.Size;
address = cm->cm_fibphys - sizeof(struct aac_fib_xporthdr);
high_addr = (u_int32_t)(address >> 32);
}
if (fibsize > 31)
fibsize = 31;
aac_enqueue_busy(cm);
if (high_addr) {
AAC_MEM0_SETREG4(sc, AAC_SRC_IQUE64_H, high_addr);
AAC_MEM0_SETREG4(sc, AAC_SRC_IQUE64_L, (u_int32_t)address + fibsize);
} else {
AAC_MEM0_SETREG4(sc, AAC_SRC_IQUE32, (u_int32_t)address + fibsize);
}
return 0;
}
/*
* New comm. interface: get, set outbound queue index
*/
static int
aac_src_get_outb_queue(struct aac_softc *sc)
{
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
return(-1);
}
static void
aac_src_set_outb_queue(struct aac_softc *sc, int index)
{
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
}
/*
* Debugging and Diagnostics
*/
/*
* Print some information about the controller.
*/
static void
aac_describe_controller(struct aac_softc *sc)
{
struct aac_fib *fib;
struct aac_adapter_info *info;
char *adapter_type = "Adaptec RAID controller";
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_lock(&sc->aac_io_lock);
aac_alloc_sync_fib(sc, &fib);
if (sc->supported_options & AAC_SUPPORTED_SUPPLEMENT_ADAPTER_INFO) {
fib->data[0] = 0;
if (aac_sync_fib(sc, RequestSupplementAdapterInfo, 0, fib, 1))
device_printf(sc->aac_dev, "RequestSupplementAdapterInfo failed\n");
else {
struct aac_supplement_adapter_info *supp_info;
supp_info = ((struct aac_supplement_adapter_info *)&fib->data[0]);
adapter_type = (char *)supp_info->AdapterTypeText;
sc->aac_feature_bits = supp_info->FeatureBits;
sc->aac_support_opt2 = supp_info->SupportedOptions2;
}
}
device_printf(sc->aac_dev, "%s, aacraid driver %d.%d.%d-%d\n",
adapter_type,
AAC_DRIVER_MAJOR_VERSION, AAC_DRIVER_MINOR_VERSION,
AAC_DRIVER_BUGFIX_LEVEL, AAC_DRIVER_BUILD);
fib->data[0] = 0;
if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
aac_release_sync_fib(sc);
mtx_unlock(&sc->aac_io_lock);
return;
}
/* save the kernel revision structure for later use */
info = (struct aac_adapter_info *)&fib->data[0];
sc->aac_revision = info->KernelRevision;
if (bootverbose) {
device_printf(sc->aac_dev, "%s %dMHz, %dMB memory "
"(%dMB cache, %dMB execution), %s\n",
aac_describe_code(aac_cpu_variant, info->CpuVariant),
info->ClockSpeed, info->TotalMem / (1024 * 1024),
info->BufferMem / (1024 * 1024),
info->ExecutionMem / (1024 * 1024),
aac_describe_code(aac_battery_platform,
info->batteryPlatform));
device_printf(sc->aac_dev,
"Kernel %d.%d-%d, Build %d, S/N %6X\n",
info->KernelRevision.external.comp.major,
info->KernelRevision.external.comp.minor,
info->KernelRevision.external.comp.dash,
info->KernelRevision.buildNumber,
(u_int32_t)(info->SerialNumber & 0xffffff));
device_printf(sc->aac_dev, "Supported Options=%b\n",
sc->supported_options,
"\20"
"\1SNAPSHOT"
"\2CLUSTERS"
"\3WCACHE"
"\4DATA64"
"\5HOSTTIME"
"\6RAID50"
"\7WINDOW4GB"
"\10SCSIUPGD"
"\11SOFTERR"
"\12NORECOND"
"\13SGMAP64"
"\14ALARM"
"\15NONDASD"
"\16SCSIMGT"
"\17RAIDSCSI"
"\21ADPTINFO"
"\22NEWCOMM"
"\23ARRAY64BIT"
"\24HEATSENSOR");
}
aac_release_sync_fib(sc);
mtx_unlock(&sc->aac_io_lock);
}
/*
* Look up a text description of a numeric error code and return a pointer to
* same.
*/
static char *
aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
{
int i;
for (i = 0; table[i].string != NULL; i++)
if (table[i].code == code)
return(table[i].string);
return(table[i + 1].string);
}
/*
* Management Interface
*/
static int
aac_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct aac_softc *sc;
sc = dev->si_drv1;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
#if __FreeBSD_version >= 702000
device_busy(sc->aac_dev);
devfs_set_cdevpriv(sc, aac_cdevpriv_dtor);
#endif
return 0;
}
static int
aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td)
{
union aac_statrequest *as;
struct aac_softc *sc;
int error = 0;
as = (union aac_statrequest *)arg;
sc = dev->si_drv1;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
switch (cmd) {
case AACIO_STATS:
switch (as->as_item) {
case AACQ_FREE:
case AACQ_READY:
case AACQ_BUSY:
bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
sizeof(struct aac_qstat));
break;
default:
error = ENOENT;
break;
}
break;
case FSACTL_SENDFIB:
case FSACTL_SEND_LARGE_FIB:
arg = *(caddr_t*)arg;
case FSACTL_LNX_SENDFIB:
case FSACTL_LNX_SEND_LARGE_FIB:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_SENDFIB");
error = aac_ioctl_sendfib(sc, arg);
break;
case FSACTL_SEND_RAW_SRB:
arg = *(caddr_t*)arg;
case FSACTL_LNX_SEND_RAW_SRB:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_SEND_RAW_SRB");
error = aac_ioctl_send_raw_srb(sc, arg);
break;
case FSACTL_AIF_THREAD:
case FSACTL_LNX_AIF_THREAD:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_AIF_THREAD");
error = EINVAL;
break;
case FSACTL_OPEN_GET_ADAPTER_FIB:
arg = *(caddr_t*)arg;
case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_OPEN_GET_ADAPTER_FIB");
error = aac_open_aif(sc, arg);
break;
case FSACTL_GET_NEXT_ADAPTER_FIB:
arg = *(caddr_t*)arg;
case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_NEXT_ADAPTER_FIB");
error = aac_getnext_aif(sc, arg);
break;
case FSACTL_CLOSE_GET_ADAPTER_FIB:
arg = *(caddr_t*)arg;
case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_CLOSE_GET_ADAPTER_FIB");
error = aac_close_aif(sc, arg);
break;
case FSACTL_MINIPORT_REV_CHECK:
arg = *(caddr_t*)arg;
case FSACTL_LNX_MINIPORT_REV_CHECK:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_MINIPORT_REV_CHECK");
error = aac_rev_check(sc, arg);
break;
case FSACTL_QUERY_DISK:
arg = *(caddr_t*)arg;
case FSACTL_LNX_QUERY_DISK:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_QUERY_DISK");
error = aac_query_disk(sc, arg);
break;
case FSACTL_DELETE_DISK:
case FSACTL_LNX_DELETE_DISK:
/*
* We don't trust the underland to tell us when to delete a
* container, rather we rely on an AIF coming from the
* controller
*/
error = 0;
break;
case FSACTL_GET_PCI_INFO:
arg = *(caddr_t*)arg;
case FSACTL_LNX_GET_PCI_INFO:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_PCI_INFO");
error = aac_get_pci_info(sc, arg);
break;
case FSACTL_GET_FEATURES:
arg = *(caddr_t*)arg;
case FSACTL_LNX_GET_FEATURES:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_FEATURES");
error = aac_supported_features(sc, arg);
break;
default:
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "unsupported cmd 0x%lx\n", cmd);
error = EINVAL;
break;
}
return(error);
}
static int
aac_poll(struct cdev *dev, int poll_events, struct thread *td)
{
struct aac_softc *sc;
struct aac_fib_context *ctx;
int revents;
sc = dev->si_drv1;
revents = 0;
mtx_lock(&sc->aac_io_lock);
if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
if (ctx->ctx_idx != sc->aifq_idx || ctx->ctx_wrap) {
revents |= poll_events & (POLLIN | POLLRDNORM);
break;
}
}
}
mtx_unlock(&sc->aac_io_lock);
if (revents == 0) {
if (poll_events & (POLLIN | POLLRDNORM))
selrecord(td, &sc->rcv_select);
}
return (revents);
}
static void
aac_ioctl_event(struct aac_softc *sc, struct aac_event *event, void *arg)
{
switch (event->ev_type) {
case AAC_EVENT_CMFREE:
mtx_assert(&sc->aac_io_lock, MA_OWNED);
if (aacraid_alloc_command(sc, (struct aac_command **)arg)) {
aacraid_add_event(sc, event);
return;
}
free(event, M_AACRAIDBUF);
wakeup(arg);
break;
default:
break;
}
}
/*
* Send a FIB supplied from userspace
*/
static int
aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
{
struct aac_command *cm;
int size, error;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
cm = NULL;
/*
* Get a command
*/
mtx_lock(&sc->aac_io_lock);
if (aacraid_alloc_command(sc, &cm)) {
struct aac_event *event;
event = malloc(sizeof(struct aac_event), M_AACRAIDBUF,
M_NOWAIT | M_ZERO);
if (event == NULL) {
error = EBUSY;
mtx_unlock(&sc->aac_io_lock);
goto out;
}
event->ev_type = AAC_EVENT_CMFREE;
event->ev_callback = aac_ioctl_event;
event->ev_arg = &cm;
aacraid_add_event(sc, event);
msleep(cm, &sc->aac_io_lock, 0, "aacraid_ctlsfib", 0);
}
mtx_unlock(&sc->aac_io_lock);
/*
* Fetch the FIB header, then re-copy to get data as well.
*/
if ((error = copyin(ufib, cm->cm_fib,
sizeof(struct aac_fib_header))) != 0)
goto out;
size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
if (size > sc->aac_max_fib_size) {
device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
size, sc->aac_max_fib_size);
size = sc->aac_max_fib_size;
}
if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
goto out;
cm->cm_fib->Header.Size = size;
cm->cm_timestamp = time_uptime;
cm->cm_datalen = 0;
/*
* Pass the FIB to the controller, wait for it to complete.
*/
mtx_lock(&sc->aac_io_lock);
error = aacraid_wait_command(cm);
mtx_unlock(&sc->aac_io_lock);
if (error != 0) {
device_printf(sc->aac_dev,
"aacraid_wait_command return %d\n", error);
goto out;
}
/*
* Copy the FIB and data back out to the caller.
*/
size = cm->cm_fib->Header.Size;
if (size > sc->aac_max_fib_size) {
device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
size, sc->aac_max_fib_size);
size = sc->aac_max_fib_size;
}
error = copyout(cm->cm_fib, ufib, size);
out:
if (cm != NULL) {
mtx_lock(&sc->aac_io_lock);
aacraid_release_command(cm);
mtx_unlock(&sc->aac_io_lock);
}
return(error);
}
/*
* Send a passthrough FIB supplied from userspace
*/
static int
aac_ioctl_send_raw_srb(struct aac_softc *sc, caddr_t arg)
{
struct aac_command *cm;
struct aac_fib *fib;
struct aac_srb *srbcmd;
struct aac_srb *user_srb = (struct aac_srb *)arg;
void *user_reply;
int error, transfer_data = 0;
bus_dmamap_t orig_map = 0;
u_int32_t fibsize = 0;
u_int64_t srb_sg_address;
u_int32_t srb_sg_bytecount;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
cm = NULL;
mtx_lock(&sc->aac_io_lock);
if (aacraid_alloc_command(sc, &cm)) {
struct aac_event *event;
event = malloc(sizeof(struct aac_event), M_AACRAIDBUF,
M_NOWAIT | M_ZERO);
if (event == NULL) {
error = EBUSY;
mtx_unlock(&sc->aac_io_lock);
goto out;
}
event->ev_type = AAC_EVENT_CMFREE;
event->ev_callback = aac_ioctl_event;
event->ev_arg = &cm;
aacraid_add_event(sc, event);
msleep(cm, &sc->aac_io_lock, 0, "aacraid_ctlsraw", 0);
}
mtx_unlock(&sc->aac_io_lock);
cm->cm_data = NULL;
/* save original dma map */
orig_map = cm->cm_datamap;
fib = cm->cm_fib;
srbcmd = (struct aac_srb *)fib->data;
if ((error = copyin((void *)&user_srb->data_len, &fibsize,
sizeof (u_int32_t)) != 0))
goto out;
if (fibsize > (sc->aac_max_fib_size-sizeof(struct aac_fib_header))) {
error = EINVAL;
goto out;
}
if ((error = copyin((void *)user_srb, srbcmd, fibsize) != 0))
goto out;
srbcmd->function = 0; /* SRBF_ExecuteScsi */
srbcmd->retry_limit = 0; /* obsolete */
/* only one sg element from userspace supported */
if (srbcmd->sg_map.SgCount > 1) {
error = EINVAL;
goto out;
}
/* check fibsize */
if (fibsize == (sizeof(struct aac_srb) +
srbcmd->sg_map.SgCount * sizeof(struct aac_sg_entry))) {
struct aac_sg_entry *sgp = srbcmd->sg_map.SgEntry;
struct aac_sg_entry sg;
if ((error = copyin(sgp, &sg, sizeof(sg))) != 0)
goto out;
srb_sg_bytecount = sg.SgByteCount;
srb_sg_address = (u_int64_t)sg.SgAddress;
} else if (fibsize == (sizeof(struct aac_srb) +
srbcmd->sg_map.SgCount * sizeof(struct aac_sg_entry64))) {
#ifdef __LP64__
struct aac_sg_entry64 *sgp =
(struct aac_sg_entry64 *)srbcmd->sg_map.SgEntry;
struct aac_sg_entry64 sg;
if ((error = copyin(sgp, &sg, sizeof(sg))) != 0)
goto out;
srb_sg_bytecount = sg.SgByteCount;
srb_sg_address = sg.SgAddress;
if (srb_sg_address > 0xffffffffull &&
!(sc->flags & AAC_FLAGS_SG_64BIT))
#endif
{
error = EINVAL;
goto out;
}
} else {
error = EINVAL;
goto out;
}
user_reply = (char *)arg + fibsize;
srbcmd->data_len = srb_sg_bytecount;
if (srbcmd->sg_map.SgCount == 1)
transfer_data = 1;
if (transfer_data) {
/*
* Create DMA tag for the passthr. data buffer and allocate it.
*/
if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
(sc->flags & AAC_FLAGS_SG_64BIT) ?
BUS_SPACE_MAXADDR_32BIT :
0x7fffffff, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
srb_sg_bytecount, /* size */
sc->aac_sg_tablesize, /* nsegments */
srb_sg_bytecount, /* maxsegsize */
0, /* flags */
NULL, NULL, /* No locking needed */
&cm->cm_passthr_dmat)) {
error = ENOMEM;
goto out;
}
if (bus_dmamem_alloc(cm->cm_passthr_dmat, (void **)&cm->cm_data,
BUS_DMA_NOWAIT, &cm->cm_datamap)) {
error = ENOMEM;
goto out;
}
/* fill some cm variables */
cm->cm_datalen = srb_sg_bytecount;
if (srbcmd->flags & AAC_SRB_FLAGS_DATA_IN)
cm->cm_flags |= AAC_CMD_DATAIN;
if (srbcmd->flags & AAC_SRB_FLAGS_DATA_OUT)
cm->cm_flags |= AAC_CMD_DATAOUT;
if (srbcmd->flags & AAC_SRB_FLAGS_DATA_OUT) {
if ((error = copyin((void *)(uintptr_t)srb_sg_address,
cm->cm_data, cm->cm_datalen)) != 0)
goto out;
/* sync required for bus_dmamem_alloc() alloc. mem.? */
bus_dmamap_sync(cm->cm_passthr_dmat, cm->cm_datamap,
BUS_DMASYNC_PREWRITE);
}
}
/* build the FIB */
fib->Header.Size = sizeof(struct aac_fib_header) +
sizeof(struct aac_srb);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC;
fib->Header.Command = (sc->flags & AAC_FLAGS_SG_64BIT) ?
ScsiPortCommandU64 : ScsiPortCommand;
cm->cm_sgtable = (struct aac_sg_table *)&srbcmd->sg_map;
/* send command */
if (transfer_data) {
bus_dmamap_load(cm->cm_passthr_dmat,
cm->cm_datamap, cm->cm_data,
cm->cm_datalen,
aacraid_map_command_sg, cm, 0);
} else {
aacraid_map_command_sg(cm, NULL, 0, 0);
}
/* wait for completion */
mtx_lock(&sc->aac_io_lock);
while (!(cm->cm_flags & AAC_CMD_COMPLETED))
msleep(cm, &sc->aac_io_lock, 0, "aacraid_ctlsrw2", 0);
mtx_unlock(&sc->aac_io_lock);
/* copy data */
if (transfer_data && (srbcmd->flags & AAC_SRB_FLAGS_DATA_IN)) {
if ((error = copyout(cm->cm_data,
(void *)(uintptr_t)srb_sg_address,
cm->cm_datalen)) != 0)
goto out;
/* sync required for bus_dmamem_alloc() allocated mem.? */
bus_dmamap_sync(cm->cm_passthr_dmat, cm->cm_datamap,
BUS_DMASYNC_POSTREAD);
}
/* status */
error = copyout(fib->data, user_reply, sizeof(struct aac_srb_response));
out:
if (cm && cm->cm_data) {
if (transfer_data)
bus_dmamap_unload(cm->cm_passthr_dmat, cm->cm_datamap);
bus_dmamem_free(cm->cm_passthr_dmat, cm->cm_data, cm->cm_datamap);
cm->cm_datamap = orig_map;
}
if (cm && cm->cm_passthr_dmat)
bus_dma_tag_destroy(cm->cm_passthr_dmat);
if (cm) {
mtx_lock(&sc->aac_io_lock);
aacraid_release_command(cm);
mtx_unlock(&sc->aac_io_lock);
}
return(error);
}
/*
* Request an AIF from the controller (new comm. type1)
*/
static void
aac_request_aif(struct aac_softc *sc)
{
struct aac_command *cm;
struct aac_fib *fib;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
if (aacraid_alloc_command(sc, &cm)) {
sc->aif_pending = 1;
return;
}
sc->aif_pending = 0;
/* build the FIB */
fib = cm->cm_fib;
fib->Header.Size = sizeof(struct aac_fib);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC;
/* set AIF marker */
fib->Header.Handle = 0x00800000;
fib->Header.Command = AifRequest;
((struct aac_aif_command *)fib->data)->command = AifReqEvent;
aacraid_map_command_sg(cm, NULL, 0, 0);
}
#if __FreeBSD_version >= 702000
/*
* cdevpriv interface private destructor.
*/
static void
aac_cdevpriv_dtor(void *arg)
{
struct aac_softc *sc;
sc = arg;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_lock(&Giant);
device_unbusy(sc->aac_dev);
mtx_unlock(&Giant);
}
#else
static int
aac_close(struct cdev *dev, int flags, int fmt, struct thread *td)
{
struct aac_softc *sc;
sc = dev->si_drv1;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
return 0;
}
#endif
/*
* Handle an AIF sent to us by the controller; queue it for later reference.
* If the queue fills up, then drop the older entries.
*/
static void
aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
{
struct aac_aif_command *aif;
struct aac_container *co, *co_next;
struct aac_fib_context *ctx;
struct aac_fib *sync_fib;
struct aac_mntinforesp mir;
int next, current, found;
int count = 0, changed = 0, i = 0;
u_int32_t channel, uid;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
aif = (struct aac_aif_command*)&fib->data[0];
aacraid_print_aif(sc, aif);
/* Is it an event that we should care about? */
switch (aif->command) {
case AifCmdEventNotify:
switch (aif->data.EN.type) {
case AifEnAddContainer:
case AifEnDeleteContainer:
/*
* A container was added or deleted, but the message
* doesn't tell us anything else! Re-enumerate the
* containers and sort things out.
*/
aac_alloc_sync_fib(sc, &sync_fib);
do {
/*
* Ask the controller for its containers one at
* a time.
* XXX What if the controller's list changes
* midway through this enumaration?
* XXX This should be done async.
*/
if (aac_get_container_info(sc, sync_fib, i,
&mir, &uid) != 0)
continue;
if (i == 0)
count = mir.MntRespCount;
/*
* Check the container against our list.
* co->co_found was already set to 0 in a
* previous run.
*/
if ((mir.Status == ST_OK) &&
(mir.MntTable[0].VolType != CT_NONE)) {
found = 0;
TAILQ_FOREACH(co,
&sc->aac_container_tqh,
co_link) {
if (co->co_mntobj.ObjectId ==
mir.MntTable[0].ObjectId) {
co->co_found = 1;
found = 1;
break;
}
}
/*
* If the container matched, continue
* in the list.
*/
if (found) {
i++;
continue;
}
/*
* This is a new container. Do all the
* appropriate things to set it up.
*/
aac_add_container(sc, &mir, 1, uid);
changed = 1;
}
i++;
} while ((i < count) && (i < AAC_MAX_CONTAINERS));
aac_release_sync_fib(sc);
/*
* Go through our list of containers and see which ones
* were not marked 'found'. Since the controller didn't
* list them they must have been deleted. Do the
* appropriate steps to destroy the device. Also reset
* the co->co_found field.
*/
co = TAILQ_FIRST(&sc->aac_container_tqh);
while (co != NULL) {
if (co->co_found == 0) {
co_next = TAILQ_NEXT(co, co_link);
TAILQ_REMOVE(&sc->aac_container_tqh, co,
co_link);
free(co, M_AACRAIDBUF);
changed = 1;
co = co_next;
} else {
co->co_found = 0;
co = TAILQ_NEXT(co, co_link);
}
}
/* Attach the newly created containers */
if (changed) {
if (sc->cam_rescan_cb != NULL)
sc->cam_rescan_cb(sc, 0,
AAC_CAM_TARGET_WILDCARD);
}
break;
case AifEnEnclosureManagement:
switch (aif->data.EN.data.EEE.eventType) {
case AIF_EM_DRIVE_INSERTION:
case AIF_EM_DRIVE_REMOVAL:
channel = aif->data.EN.data.EEE.unitID;
if (sc->cam_rescan_cb != NULL)
sc->cam_rescan_cb(sc,
((channel>>24) & 0xF) + 1,
(channel & 0xFFFF));
break;
}
break;
case AifEnAddJBOD:
case AifEnDeleteJBOD:
case AifRawDeviceRemove:
channel = aif->data.EN.data.ECE.container;
if (sc->cam_rescan_cb != NULL)
sc->cam_rescan_cb(sc, ((channel>>24) & 0xF) + 1,
AAC_CAM_TARGET_WILDCARD);
break;
default:
break;
}
default:
break;
}
/* Copy the AIF data to the AIF queue for ioctl retrieval */
current = sc->aifq_idx;
next = (current + 1) % AAC_AIFQ_LENGTH;
if (next == 0)
sc->aifq_filled = 1;
bcopy(fib, &sc->aac_aifq[current], sizeof(struct aac_fib));
/* modify AIF contexts */
if (sc->aifq_filled) {
for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
if (next == ctx->ctx_idx)
ctx->ctx_wrap = 1;
else if (current == ctx->ctx_idx && ctx->ctx_wrap)
ctx->ctx_idx = next;
}
}
sc->aifq_idx = next;
/* On the off chance that someone is sleeping for an aif... */
if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
wakeup(sc->aac_aifq);
/* Wakeup any poll()ers */
selwakeuppri(&sc->rcv_select, PRIBIO);
return;
}
/*
* Return the Revision of the driver to userspace and check to see if the
* userspace app is possibly compatible. This is extremely bogus since
* our driver doesn't follow Adaptec's versioning system. Cheat by just
* returning what the card reported.
*/
static int
aac_rev_check(struct aac_softc *sc, caddr_t udata)
{
struct aac_rev_check rev_check;
struct aac_rev_check_resp rev_check_resp;
int error = 0;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
/*
* Copyin the revision struct from userspace
*/
if ((error = copyin(udata, (caddr_t)&rev_check,
sizeof(struct aac_rev_check))) != 0) {
return error;
}
fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "Userland revision= %d\n",
rev_check.callingRevision.buildNumber);
/*
* Doctor up the response struct.
*/
rev_check_resp.possiblyCompatible = 1;
rev_check_resp.adapterSWRevision.external.comp.major =
AAC_DRIVER_MAJOR_VERSION;
rev_check_resp.adapterSWRevision.external.comp.minor =
AAC_DRIVER_MINOR_VERSION;
rev_check_resp.adapterSWRevision.external.comp.type =
AAC_DRIVER_TYPE;
rev_check_resp.adapterSWRevision.external.comp.dash =
AAC_DRIVER_BUGFIX_LEVEL;
rev_check_resp.adapterSWRevision.buildNumber =
AAC_DRIVER_BUILD;
return(copyout((caddr_t)&rev_check_resp, udata,
sizeof(struct aac_rev_check_resp)));
}
/*
* Pass the fib context to the caller
*/
static int
aac_open_aif(struct aac_softc *sc, caddr_t arg)
{
struct aac_fib_context *fibctx, *ctx;
int error = 0;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
fibctx = malloc(sizeof(struct aac_fib_context), M_AACRAIDBUF, M_NOWAIT|M_ZERO);
if (fibctx == NULL)
return (ENOMEM);
mtx_lock(&sc->aac_io_lock);
/* all elements are already 0, add to queue */
if (sc->fibctx == NULL)
sc->fibctx = fibctx;
else {
for (ctx = sc->fibctx; ctx->next; ctx = ctx->next)
;
ctx->next = fibctx;
fibctx->prev = ctx;
}
/* evaluate unique value */
fibctx->unique = (*(u_int32_t *)&fibctx & 0xffffffff);
ctx = sc->fibctx;
while (ctx != fibctx) {
if (ctx->unique == fibctx->unique) {
fibctx->unique++;
ctx = sc->fibctx;
} else {
ctx = ctx->next;
}
}
error = copyout(&fibctx->unique, (void *)arg, sizeof(u_int32_t));
mtx_unlock(&sc->aac_io_lock);
if (error)
aac_close_aif(sc, (caddr_t)ctx);
return error;
}
/*
* Close the caller's fib context
*/
static int
aac_close_aif(struct aac_softc *sc, caddr_t arg)
{
struct aac_fib_context *ctx;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_lock(&sc->aac_io_lock);
for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
if (ctx->unique == *(uint32_t *)&arg) {
if (ctx == sc->fibctx)
sc->fibctx = NULL;
else {
ctx->prev->next = ctx->next;
if (ctx->next)
ctx->next->prev = ctx->prev;
}
break;
}
}
if (ctx)
free(ctx, M_AACRAIDBUF);
mtx_unlock(&sc->aac_io_lock);
return 0;
}
/*
* Pass the caller the next AIF in their queue
*/
static int
aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
{
struct get_adapter_fib_ioctl agf;
struct aac_fib_context *ctx;
int error;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_lock(&sc->aac_io_lock);
if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
if (agf.AdapterFibContext == ctx->unique)
break;
}
if (!ctx) {
mtx_unlock(&sc->aac_io_lock);
return (EFAULT);
}
error = aac_return_aif(sc, ctx, agf.AifFib);
if (error == EAGAIN && agf.Wait) {
fwprintf(sc, HBA_FLAGS_DBG_AIF_B, "aac_getnext_aif(): waiting for AIF");
sc->aac_state |= AAC_STATE_AIF_SLEEPER;
while (error == EAGAIN) {
mtx_unlock(&sc->aac_io_lock);
error = tsleep(sc->aac_aifq, PRIBIO |
PCATCH, "aacaif", 0);
mtx_lock(&sc->aac_io_lock);
if (error == 0)
error = aac_return_aif(sc, ctx, agf.AifFib);
}
sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
}
}
mtx_unlock(&sc->aac_io_lock);
return(error);
}
/*
* Hand the next AIF off the top of the queue out to userspace.
*/
static int
aac_return_aif(struct aac_softc *sc, struct aac_fib_context *ctx, caddr_t uptr)
{
int current, error;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
current = ctx->ctx_idx;
if (current == sc->aifq_idx && !ctx->ctx_wrap) {
/* empty */
return (EAGAIN);
}
error =
copyout(&sc->aac_aifq[current], (void *)uptr, sizeof(struct aac_fib));
if (error)
device_printf(sc->aac_dev,
"aac_return_aif: copyout returned %d\n", error);
else {
ctx->ctx_wrap = 0;
ctx->ctx_idx = (current + 1) % AAC_AIFQ_LENGTH;
}
return(error);
}
static int
aac_get_pci_info(struct aac_softc *sc, caddr_t uptr)
{
struct aac_pci_info {
u_int32_t bus;
u_int32_t slot;
} pciinf;
int error;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
pciinf.bus = pci_get_bus(sc->aac_dev);
pciinf.slot = pci_get_slot(sc->aac_dev);
error = copyout((caddr_t)&pciinf, uptr,
sizeof(struct aac_pci_info));
return (error);
}
static int
aac_supported_features(struct aac_softc *sc, caddr_t uptr)
{
struct aac_features f;
int error;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
if ((error = copyin(uptr, &f, sizeof (f))) != 0)
return (error);
/*
* When the management driver receives FSACTL_GET_FEATURES ioctl with
* ALL zero in the featuresState, the driver will return the current
* state of all the supported features, the data field will not be
* valid.
* When the management driver receives FSACTL_GET_FEATURES ioctl with
* a specific bit set in the featuresState, the driver will return the
* current state of this specific feature and whatever data that are
* associated with the feature in the data field or perform whatever
* action needed indicates in the data field.
*/
if (f.feat.fValue == 0) {
f.feat.fBits.largeLBA =
(sc->flags & AAC_FLAGS_LBA_64BIT) ? 1 : 0;
f.feat.fBits.JBODSupport = 1;
/* TODO: In the future, add other features state here as well */
} else {
if (f.feat.fBits.largeLBA)
f.feat.fBits.largeLBA =
(sc->flags & AAC_FLAGS_LBA_64BIT) ? 1 : 0;
/* TODO: Add other features state and data in the future */
}
error = copyout(&f, uptr, sizeof (f));
return (error);
}
/*
* Give the userland some information about the container. The AAC arch
* expects the driver to be a SCSI passthrough type driver, so it expects
* the containers to have b:t:l numbers. Fake it.
*/
static int
aac_query_disk(struct aac_softc *sc, caddr_t uptr)
{
struct aac_query_disk query_disk;
struct aac_container *co;
int error, id;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_lock(&sc->aac_io_lock);
error = copyin(uptr, (caddr_t)&query_disk,
sizeof(struct aac_query_disk));
if (error) {
mtx_unlock(&sc->aac_io_lock);
return (error);
}
id = query_disk.ContainerNumber;
if (id == -1) {
mtx_unlock(&sc->aac_io_lock);
return (EINVAL);
}
TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
if (co->co_mntobj.ObjectId == id)
break;
}
if (co == NULL) {
query_disk.Valid = 0;
query_disk.Locked = 0;
query_disk.Deleted = 1; /* XXX is this right? */
} else {
query_disk.Valid = 1;
query_disk.Locked = 1;
query_disk.Deleted = 0;
query_disk.Bus = device_get_unit(sc->aac_dev);
query_disk.Target = 0;
query_disk.Lun = 0;
query_disk.UnMapped = 0;
}
error = copyout((caddr_t)&query_disk, uptr,
sizeof(struct aac_query_disk));
mtx_unlock(&sc->aac_io_lock);
return (error);
}
static void
aac_container_bus(struct aac_softc *sc)
{
struct aac_sim *sim;
device_t child;
sim =(struct aac_sim *)malloc(sizeof(struct aac_sim),
M_AACRAIDBUF, M_NOWAIT | M_ZERO);
if (sim == NULL) {
device_printf(sc->aac_dev,
"No memory to add container bus\n");
panic("Out of memory?!");
}
child = device_add_child(sc->aac_dev, "aacraidp", -1);
if (child == NULL) {
device_printf(sc->aac_dev,
"device_add_child failed for container bus\n");
free(sim, M_AACRAIDBUF);
panic("Out of memory?!");
}
sim->TargetsPerBus = AAC_MAX_CONTAINERS;
sim->BusNumber = 0;
sim->BusType = CONTAINER_BUS;
sim->InitiatorBusId = -1;
sim->aac_sc = sc;
sim->sim_dev = child;
sim->aac_cam = NULL;
device_set_ivars(child, sim);
device_set_desc(child, "Container Bus");
TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, sim, sim_link);
/*
device_set_desc(child, aac_describe_code(aac_container_types,
mir->MntTable[0].VolType));
*/
bus_generic_attach(sc->aac_dev);
}
static void
aac_get_bus_info(struct aac_softc *sc)
{
struct aac_fib *fib;
struct aac_ctcfg *c_cmd;
struct aac_ctcfg_resp *c_resp;
struct aac_vmioctl *vmi;
struct aac_vmi_businf_resp *vmi_resp;
struct aac_getbusinf businfo;
struct aac_sim *caminf;
device_t child;
int i, error;
mtx_lock(&sc->aac_io_lock);
aac_alloc_sync_fib(sc, &fib);
c_cmd = (struct aac_ctcfg *)&fib->data[0];
bzero(c_cmd, sizeof(struct aac_ctcfg));
c_cmd->Command = VM_ContainerConfig;
c_cmd->cmd = CT_GET_SCSI_METHOD;
c_cmd->param = 0;
error = aac_sync_fib(sc, ContainerCommand, 0, fib,
sizeof(struct aac_ctcfg));
if (error) {
device_printf(sc->aac_dev, "Error %d sending "
"VM_ContainerConfig command\n", error);
aac_release_sync_fib(sc);
mtx_unlock(&sc->aac_io_lock);
return;
}
c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
if (c_resp->Status != ST_OK) {
device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
c_resp->Status);
aac_release_sync_fib(sc);
mtx_unlock(&sc->aac_io_lock);
return;
}
sc->scsi_method_id = c_resp->param;
vmi = (struct aac_vmioctl *)&fib->data[0];
bzero(vmi, sizeof(struct aac_vmioctl));
vmi->Command = VM_Ioctl;
vmi->ObjType = FT_DRIVE;
vmi->MethId = sc->scsi_method_id;
vmi->ObjId = 0;
vmi->IoctlCmd = GetBusInfo;
error = aac_sync_fib(sc, ContainerCommand, 0, fib,
sizeof(struct aac_vmi_businf_resp));
if (error) {
device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
error);
aac_release_sync_fib(sc);
mtx_unlock(&sc->aac_io_lock);
return;
}
vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
if (vmi_resp->Status != ST_OK) {
device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
vmi_resp->Status);
aac_release_sync_fib(sc);
mtx_unlock(&sc->aac_io_lock);
return;
}
bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
aac_release_sync_fib(sc);
mtx_unlock(&sc->aac_io_lock);
for (i = 0; i < businfo.BusCount; i++) {
if (businfo.BusValid[i] != AAC_BUS_VALID)
continue;
caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
M_AACRAIDBUF, M_NOWAIT | M_ZERO);
if (caminf == NULL) {
device_printf(sc->aac_dev,
"No memory to add passthrough bus %d\n", i);
break;
}
child = device_add_child(sc->aac_dev, "aacraidp", -1);
if (child == NULL) {
device_printf(sc->aac_dev,
"device_add_child failed for passthrough bus %d\n",
i);
free(caminf, M_AACRAIDBUF);
break;
}
caminf->TargetsPerBus = businfo.TargetsPerBus;
caminf->BusNumber = i+1;
caminf->BusType = PASSTHROUGH_BUS;
caminf->InitiatorBusId = businfo.InitiatorBusId[i];
caminf->aac_sc = sc;
caminf->sim_dev = child;
caminf->aac_cam = NULL;
device_set_ivars(child, caminf);
device_set_desc(child, "SCSI Passthrough Bus");
TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
}
}
/*
* Check to see if the kernel is up and running. If we are in a
* BlinkLED state, return the BlinkLED code.
*/
static u_int32_t
aac_check_adapter_health(struct aac_softc *sc, u_int8_t *bled)
{
u_int32_t ret;
ret = AAC_GET_FWSTATUS(sc);
if (ret & AAC_UP_AND_RUNNING)
ret = 0;
else if (ret & AAC_KERNEL_PANIC && bled)
*bled = (ret >> 16) & 0xff;
return (ret);
}
/*
* Once do an IOP reset, basically have to re-initialize the card as
* if coming up from a cold boot, and the driver is responsible for
* any IO that was outstanding to the adapter at the time of the IOP
* RESET. And prepare the driver for IOP RESET by making the init code
* modular with the ability to call it from multiple places.
*/
static int
aac_reset_adapter(struct aac_softc *sc)
{
struct aac_command *cm;
struct aac_fib *fib;
struct aac_pause_command *pc;
u_int32_t status, reset_mask, waitCount, max_msix_orig;
int msi_enabled_orig;
fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
mtx_assert(&sc->aac_io_lock, MA_OWNED);
if (sc->aac_state & AAC_STATE_RESET) {
device_printf(sc->aac_dev, "aac_reset_adapter() already in progress\n");
return (EINVAL);
}
sc->aac_state |= AAC_STATE_RESET;
/* disable interrupt */
AAC_ACCESS_DEVREG(sc, AAC_DISABLE_INTERRUPT);
/*
* Abort all pending commands:
* a) on the controller
*/
while ((cm = aac_dequeue_busy(sc)) != NULL) {
cm->cm_flags |= AAC_CMD_RESET;
/* is there a completion handler? */
if (cm->cm_complete != NULL) {
cm->cm_complete(cm);
} else {
/* assume that someone is sleeping on this
* command
*/
wakeup(cm);
}
}
/* b) in the waiting queues */
while ((cm = aac_dequeue_ready(sc)) != NULL) {
cm->cm_flags |= AAC_CMD_RESET;
/* is there a completion handler? */
if (cm->cm_complete != NULL) {
cm->cm_complete(cm);
} else {
/* assume that someone is sleeping on this
* command
*/
wakeup(cm);
}
}
/* flush drives */
if (aac_check_adapter_health(sc, NULL) == 0) {
mtx_unlock(&sc->aac_io_lock);
(void) aacraid_shutdown(sc->aac_dev);
mtx_lock(&sc->aac_io_lock);
}
/* execute IOP reset */
if (sc->aac_support_opt2 & AAC_SUPPORTED_MU_RESET) {
AAC_MEM0_SETREG4(sc, AAC_IRCSR, AAC_IRCSR_CORES_RST);
/* We need to wait for 5 seconds before accessing the MU again
* 10000 * 100us = 1000,000us = 1000ms = 1s
*/
waitCount = 5 * 10000;
while (waitCount) {
DELAY(100); /* delay 100 microseconds */
waitCount--;
}
} else if ((aacraid_sync_command(sc,
AAC_IOP_RESET_ALWAYS, 0, 0, 0, 0, &status, &reset_mask)) != 0) {
/* call IOP_RESET for older firmware */
if ((aacraid_sync_command(sc,
AAC_IOP_RESET, 0, 0, 0, 0, &status, NULL)) != 0) {
if (status == AAC_SRB_STS_INVALID_REQUEST)
device_printf(sc->aac_dev, "IOP_RESET not supported\n");
else
/* probably timeout */
device_printf(sc->aac_dev, "IOP_RESET failed\n");
/* unwind aac_shutdown() */
aac_alloc_sync_fib(sc, &fib);
pc = (struct aac_pause_command *)&fib->data[0];
pc->Command = VM_ContainerConfig;
pc->Type = CT_PAUSE_IO;
pc->Timeout = 1;
pc->Min = 1;
pc->NoRescan = 1;
(void) aac_sync_fib(sc, ContainerCommand, 0, fib,
sizeof (struct aac_pause_command));
aac_release_sync_fib(sc);
goto finish;
}
} else if (sc->aac_support_opt2 & AAC_SUPPORTED_DOORBELL_RESET) {
AAC_MEM0_SETREG4(sc, AAC_SRC_IDBR, reset_mask);
/*
* We need to wait for 5 seconds before accessing the doorbell
* again, 10000 * 100us = 1000,000us = 1000ms = 1s
*/
waitCount = 5 * 10000;
while (waitCount) {
DELAY(100); /* delay 100 microseconds */
waitCount--;
}
}
/*
* Initialize the adapter.
*/
max_msix_orig = sc->aac_max_msix;
msi_enabled_orig = sc->msi_enabled;
sc->msi_enabled = FALSE;
if (aac_check_firmware(sc) != 0)
goto finish;
if (!(sc->flags & AAC_FLAGS_SYNC_MODE)) {
sc->aac_max_msix = max_msix_orig;
if (msi_enabled_orig) {
sc->msi_enabled = msi_enabled_orig;
AAC_ACCESS_DEVREG(sc, AAC_ENABLE_MSIX);
}
mtx_unlock(&sc->aac_io_lock);
aac_init(sc);
mtx_lock(&sc->aac_io_lock);
}
finish:
sc->aac_state &= ~AAC_STATE_RESET;
AAC_ACCESS_DEVREG(sc, AAC_ENABLE_INTERRUPT);
aacraid_startio(sc);
return (0);
}