freebsd-nq/sys/arm/allwinner/aw_thermal.c
Pawel Biernacki 8eea36ae5b Mark more nodes as CTLFLAG_MPSAFE or CTLFLAG_NEEDGIANT (13 of many)
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.

This is non-functional change that adds annotations to SYSCTL_NODE and
SYSCTL_PROC nodes using one of the soon-to-be-required flags.

Approved by:	kib (mentor, blanket)
Differential Revision:	https://reviews.freebsd.org/D23635
2020-02-24 10:45:22 +00:00

733 lines
18 KiB
C

/*-
* Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Allwinner thermal sensor controller
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/eventhandler.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/reboot.h>
#include <sys/module.h>
#include <sys/cpu.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>
#include <dev/extres/nvmem/nvmem.h>
#include <arm/allwinner/aw_sid.h>
#include "cpufreq_if.h"
#include "nvmem_if.h"
#define THS_CTRL0 0x00
#define THS_CTRL1 0x04
#define ADC_CALI_EN (1 << 17)
#define THS_CTRL2 0x40
#define SENSOR_ACQ1_SHIFT 16
#define SENSOR2_EN (1 << 2)
#define SENSOR1_EN (1 << 1)
#define SENSOR0_EN (1 << 0)
#define THS_INTC 0x44
#define THS_THERMAL_PER_SHIFT 12
#define THS_INTS 0x48
#define THS2_DATA_IRQ_STS (1 << 10)
#define THS1_DATA_IRQ_STS (1 << 9)
#define THS0_DATA_IRQ_STS (1 << 8)
#define SHUT_INT2_STS (1 << 6)
#define SHUT_INT1_STS (1 << 5)
#define SHUT_INT0_STS (1 << 4)
#define ALARM_INT2_STS (1 << 2)
#define ALARM_INT1_STS (1 << 1)
#define ALARM_INT0_STS (1 << 0)
#define THS_ALARM0_CTRL 0x50
#define ALARM_T_HOT_MASK 0xfff
#define ALARM_T_HOT_SHIFT 16
#define ALARM_T_HYST_MASK 0xfff
#define ALARM_T_HYST_SHIFT 0
#define THS_SHUTDOWN0_CTRL 0x60
#define SHUT_T_HOT_MASK 0xfff
#define SHUT_T_HOT_SHIFT 16
#define THS_FILTER 0x70
#define THS_CALIB0 0x74
#define THS_CALIB1 0x78
#define THS_DATA0 0x80
#define THS_DATA1 0x84
#define THS_DATA2 0x88
#define DATA_MASK 0xfff
#define A83T_CLK_RATE 24000000
#define A83T_ADC_ACQUIRE_TIME 23 /* 24Mhz/(23 + 1) = 1us */
#define A83T_THERMAL_PER 1 /* 4096 * (1 + 1) / 24Mhz = 341 us */
#define A83T_FILTER 0x5 /* Filter enabled, avg of 4 */
#define A83T_TEMP_BASE 2719000
#define A83T_TEMP_MUL 1000
#define A83T_TEMP_DIV 14186
#define A64_CLK_RATE 4000000
#define A64_ADC_ACQUIRE_TIME 400 /* 4Mhz/(400 + 1) = 100 us */
#define A64_THERMAL_PER 24 /* 4096 * (24 + 1) / 4Mhz = 25.6 ms */
#define A64_FILTER 0x6 /* Filter enabled, avg of 8 */
#define A64_TEMP_BASE 2170000
#define A64_TEMP_MUL 1000
#define A64_TEMP_DIV 8560
#define H3_CLK_RATE 4000000
#define H3_ADC_ACQUIRE_TIME 0x3f
#define H3_THERMAL_PER 401
#define H3_FILTER 0x6 /* Filter enabled, avg of 8 */
#define H3_TEMP_BASE 217
#define H3_TEMP_MUL 1000
#define H3_TEMP_DIV 8253
#define H3_TEMP_MINUS 1794000
#define H3_INIT_ALARM 90 /* degC */
#define H3_INIT_SHUT 105 /* degC */
#define H5_CLK_RATE 24000000
#define H5_ADC_ACQUIRE_TIME 479 /* 24Mhz/479 = 20us */
#define H5_THERMAL_PER 58 /* 4096 * (58 + 1) / 24Mhz = 10ms */
#define H5_FILTER 0x6 /* Filter enabled, avg of 8 */
#define H5_TEMP_BASE 233832448
#define H5_TEMP_MUL 124885
#define H5_TEMP_DIV 20
#define H5_TEMP_BASE_CPU 271581184
#define H5_TEMP_MUL_CPU 152253
#define H5_TEMP_BASE_GPU 289406976
#define H5_TEMP_MUL_GPU 166724
#define H5_INIT_CPU_ALARM 80 /* degC */
#define H5_INIT_CPU_SHUT 96 /* degC */
#define H5_INIT_GPU_ALARM 84 /* degC */
#define H5_INIT_GPU_SHUT 100 /* degC */
#define TEMP_C_TO_K 273
#define SENSOR_ENABLE_ALL (SENSOR0_EN|SENSOR1_EN|SENSOR2_EN)
#define SHUT_INT_ALL (SHUT_INT0_STS|SHUT_INT1_STS|SHUT_INT2_STS)
#define ALARM_INT_ALL (ALARM_INT0_STS)
#define MAX_SENSORS 3
#define MAX_CF_LEVELS 64
#define THROTTLE_ENABLE_DEFAULT 1
/* Enable thermal throttling */
static int aw_thermal_throttle_enable = THROTTLE_ENABLE_DEFAULT;
TUNABLE_INT("hw.aw_thermal.throttle_enable", &aw_thermal_throttle_enable);
struct aw_thermal_sensor {
const char *name;
const char *desc;
int init_alarm;
int init_shut;
};
struct aw_thermal_config {
struct aw_thermal_sensor sensors[MAX_SENSORS];
int nsensors;
uint64_t clk_rate;
uint32_t adc_acquire_time;
int adc_cali_en;
uint32_t filter;
uint32_t thermal_per;
int (*to_temp)(uint32_t, int);
uint32_t (*to_reg)(int, int);
int temp_base;
int temp_mul;
int temp_div;
int calib0, calib1;
uint32_t calib0_mask, calib1_mask;
};
static int
a83t_to_temp(uint32_t val, int sensor)
{
return ((A83T_TEMP_BASE - (val * A83T_TEMP_MUL)) / A83T_TEMP_DIV);
}
static const struct aw_thermal_config a83t_config = {
.nsensors = 3,
.sensors = {
[0] = {
.name = "cluster0",
.desc = "CPU cluster 0 temperature",
},
[1] = {
.name = "cluster1",
.desc = "CPU cluster 1 temperature",
},
[2] = {
.name = "gpu",
.desc = "GPU temperature",
},
},
.clk_rate = A83T_CLK_RATE,
.adc_acquire_time = A83T_ADC_ACQUIRE_TIME,
.adc_cali_en = 1,
.filter = A83T_FILTER,
.thermal_per = A83T_THERMAL_PER,
.to_temp = a83t_to_temp,
.calib0_mask = 0xffffffff,
.calib1_mask = 0xffff,
};
static int
a64_to_temp(uint32_t val, int sensor)
{
return ((A64_TEMP_BASE - (val * A64_TEMP_MUL)) / A64_TEMP_DIV);
}
static const struct aw_thermal_config a64_config = {
.nsensors = 3,
.sensors = {
[0] = {
.name = "cpu",
.desc = "CPU temperature",
},
[1] = {
.name = "gpu1",
.desc = "GPU temperature 1",
},
[2] = {
.name = "gpu2",
.desc = "GPU temperature 2",
},
},
.clk_rate = A64_CLK_RATE,
.adc_acquire_time = A64_ADC_ACQUIRE_TIME,
.adc_cali_en = 1,
.filter = A64_FILTER,
.thermal_per = A64_THERMAL_PER,
.to_temp = a64_to_temp,
.calib0_mask = 0xffffffff,
.calib1_mask = 0xffff,
};
static int
h3_to_temp(uint32_t val, int sensor)
{
return (H3_TEMP_BASE - ((val * H3_TEMP_MUL) / H3_TEMP_DIV));
}
static uint32_t
h3_to_reg(int val, int sensor)
{
return ((H3_TEMP_MINUS - (val * H3_TEMP_DIV)) / H3_TEMP_MUL);
}
static const struct aw_thermal_config h3_config = {
.nsensors = 1,
.sensors = {
[0] = {
.name = "cpu",
.desc = "CPU temperature",
.init_alarm = H3_INIT_ALARM,
.init_shut = H3_INIT_SHUT,
},
},
.clk_rate = H3_CLK_RATE,
.adc_acquire_time = H3_ADC_ACQUIRE_TIME,
.adc_cali_en = 1,
.filter = H3_FILTER,
.thermal_per = H3_THERMAL_PER,
.to_temp = h3_to_temp,
.to_reg = h3_to_reg,
.calib0_mask = 0xffff,
};
static int
h5_to_temp(uint32_t val, int sensor)
{
int tmp;
/* Temp is lower than 70 degrees */
if (val > 0x500) {
tmp = H5_TEMP_BASE - (val * H5_TEMP_MUL);
tmp >>= H5_TEMP_DIV;
return (tmp);
}
if (sensor == 0)
tmp = H5_TEMP_BASE_CPU - (val * H5_TEMP_MUL_CPU);
else if (sensor == 1)
tmp = H5_TEMP_BASE_GPU - (val * H5_TEMP_MUL_GPU);
else {
printf("Unknown sensor %d\n", sensor);
return (val);
}
tmp >>= H5_TEMP_DIV;
return (tmp);
}
static uint32_t
h5_to_reg(int val, int sensor)
{
int tmp;
if (val < 70) {
tmp = H5_TEMP_BASE - (val << H5_TEMP_DIV);
tmp /= H5_TEMP_MUL;
} else {
if (sensor == 0) {
tmp = H5_TEMP_BASE_CPU - (val << H5_TEMP_DIV);
tmp /= H5_TEMP_MUL_CPU;
} else if (sensor == 1) {
tmp = H5_TEMP_BASE_GPU - (val << H5_TEMP_DIV);
tmp /= H5_TEMP_MUL_GPU;
} else {
printf("Unknown sensor %d\n", sensor);
return (val);
}
}
return ((uint32_t)tmp);
}
static const struct aw_thermal_config h5_config = {
.nsensors = 2,
.sensors = {
[0] = {
.name = "cpu",
.desc = "CPU temperature",
.init_alarm = H5_INIT_CPU_ALARM,
.init_shut = H5_INIT_CPU_SHUT,
},
[1] = {
.name = "gpu",
.desc = "GPU temperature",
.init_alarm = H5_INIT_GPU_ALARM,
.init_shut = H5_INIT_GPU_SHUT,
},
},
.clk_rate = H5_CLK_RATE,
.adc_acquire_time = H5_ADC_ACQUIRE_TIME,
.filter = H5_FILTER,
.thermal_per = H5_THERMAL_PER,
.to_temp = h5_to_temp,
.to_reg = h5_to_reg,
.calib0_mask = 0xffffffff,
};
static struct ofw_compat_data compat_data[] = {
{ "allwinner,sun8i-a83t-ths", (uintptr_t)&a83t_config },
{ "allwinner,sun8i-h3-ths", (uintptr_t)&h3_config },
{ "allwinner,sun50i-a64-ths", (uintptr_t)&a64_config },
{ "allwinner,sun50i-h5-ths", (uintptr_t)&h5_config },
{ NULL, (uintptr_t)NULL }
};
#define THS_CONF(d) \
(void *)ofw_bus_search_compatible((d), compat_data)->ocd_data
struct aw_thermal_softc {
device_t dev;
struct resource *res[2];
struct aw_thermal_config *conf;
struct task cf_task;
int throttle;
int min_freq;
struct cf_level levels[MAX_CF_LEVELS];
eventhandler_tag cf_pre_tag;
clk_t clk_apb;
clk_t clk_ths;
};
static struct resource_spec aw_thermal_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
#define RD4(sc, reg) bus_read_4((sc)->res[0], (reg))
#define WR4(sc, reg, val) bus_write_4((sc)->res[0], (reg), (val))
static int
aw_thermal_init(struct aw_thermal_softc *sc)
{
phandle_t node;
uint32_t calib[2];
int error;
node = ofw_bus_get_node(sc->dev);
if (nvmem_get_cell_len(node, "ths-calib") > sizeof(calib)) {
device_printf(sc->dev, "ths-calib nvmem cell is too large\n");
return (ENXIO);
}
error = nvmem_read_cell_by_name(node, "ths-calib",
(void *)&calib, nvmem_get_cell_len(node, "ths-calib"));
/* Read calibration settings from EFUSE */
if (error != 0) {
device_printf(sc->dev, "Cannot read THS efuse\n");
return (error);
}
calib[0] &= sc->conf->calib0_mask;
calib[1] &= sc->conf->calib1_mask;
/* Write calibration settings to thermal controller */
if (calib[0] != 0)
WR4(sc, THS_CALIB0, calib[0]);
if (calib[1] != 0)
WR4(sc, THS_CALIB1, calib[1]);
/* Configure ADC acquire time (CLK_IN/(N+1)) and enable sensors */
WR4(sc, THS_CTRL1, ADC_CALI_EN);
WR4(sc, THS_CTRL0, sc->conf->adc_acquire_time);
WR4(sc, THS_CTRL2, sc->conf->adc_acquire_time << SENSOR_ACQ1_SHIFT);
/* Set thermal period */
WR4(sc, THS_INTC, sc->conf->thermal_per << THS_THERMAL_PER_SHIFT);
/* Enable average filter */
WR4(sc, THS_FILTER, sc->conf->filter);
/* Enable interrupts */
WR4(sc, THS_INTS, RD4(sc, THS_INTS));
WR4(sc, THS_INTC, RD4(sc, THS_INTC) | SHUT_INT_ALL | ALARM_INT_ALL);
/* Enable sensors */
WR4(sc, THS_CTRL2, RD4(sc, THS_CTRL2) | SENSOR_ENABLE_ALL);
return (0);
}
static int
aw_thermal_gettemp(struct aw_thermal_softc *sc, int sensor)
{
uint32_t val;
val = RD4(sc, THS_DATA0 + (sensor * 4));
return (sc->conf->to_temp(val, sensor));
}
static int
aw_thermal_getshut(struct aw_thermal_softc *sc, int sensor)
{
uint32_t val;
val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4));
val = (val >> SHUT_T_HOT_SHIFT) & SHUT_T_HOT_MASK;
return (sc->conf->to_temp(val, sensor));
}
static void
aw_thermal_setshut(struct aw_thermal_softc *sc, int sensor, int temp)
{
uint32_t val;
val = RD4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4));
val &= ~(SHUT_T_HOT_MASK << SHUT_T_HOT_SHIFT);
val |= (sc->conf->to_reg(temp, sensor) << SHUT_T_HOT_SHIFT);
WR4(sc, THS_SHUTDOWN0_CTRL + (sensor * 4), val);
}
static int
aw_thermal_gethyst(struct aw_thermal_softc *sc, int sensor)
{
uint32_t val;
val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
val = (val >> ALARM_T_HYST_SHIFT) & ALARM_T_HYST_MASK;
return (sc->conf->to_temp(val, sensor));
}
static int
aw_thermal_getalarm(struct aw_thermal_softc *sc, int sensor)
{
uint32_t val;
val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
val = (val >> ALARM_T_HOT_SHIFT) & ALARM_T_HOT_MASK;
return (sc->conf->to_temp(val, sensor));
}
static void
aw_thermal_setalarm(struct aw_thermal_softc *sc, int sensor, int temp)
{
uint32_t val;
val = RD4(sc, THS_ALARM0_CTRL + (sensor * 4));
val &= ~(ALARM_T_HOT_MASK << ALARM_T_HOT_SHIFT);
val |= (sc->conf->to_reg(temp, sensor) << ALARM_T_HOT_SHIFT);
WR4(sc, THS_ALARM0_CTRL + (sensor * 4), val);
}
static int
aw_thermal_sysctl(SYSCTL_HANDLER_ARGS)
{
struct aw_thermal_softc *sc;
int sensor, val;
sc = arg1;
sensor = arg2;
val = aw_thermal_gettemp(sc, sensor) + TEMP_C_TO_K;
return sysctl_handle_opaque(oidp, &val, sizeof(val), req);
}
static void
aw_thermal_throttle(struct aw_thermal_softc *sc, int enable)
{
device_t cf_dev;
int count, error;
if (enable == sc->throttle)
return;
if (enable != 0) {
/* Set the lowest available frequency */
cf_dev = devclass_get_device(devclass_find("cpufreq"), 0);
if (cf_dev == NULL)
return;
count = MAX_CF_LEVELS;
error = CPUFREQ_LEVELS(cf_dev, sc->levels, &count);
if (error != 0 || count == 0)
return;
sc->min_freq = sc->levels[count - 1].total_set.freq;
error = CPUFREQ_SET(cf_dev, &sc->levels[count - 1],
CPUFREQ_PRIO_USER);
if (error != 0)
return;
}
sc->throttle = enable;
}
static void
aw_thermal_cf_task(void *arg, int pending)
{
struct aw_thermal_softc *sc;
sc = arg;
aw_thermal_throttle(sc, 1);
}
static void
aw_thermal_cf_pre_change(void *arg, const struct cf_level *level, int *status)
{
struct aw_thermal_softc *sc;
int temp_cur, temp_alarm;
sc = arg;
if (aw_thermal_throttle_enable == 0 || sc->throttle == 0 ||
level->total_set.freq == sc->min_freq)
return;
temp_cur = aw_thermal_gettemp(sc, 0);
temp_alarm = aw_thermal_getalarm(sc, 0);
if (temp_cur < temp_alarm)
aw_thermal_throttle(sc, 0);
else
*status = ENXIO;
}
static void
aw_thermal_intr(void *arg)
{
struct aw_thermal_softc *sc;
device_t dev;
uint32_t ints;
dev = arg;
sc = device_get_softc(dev);
ints = RD4(sc, THS_INTS);
WR4(sc, THS_INTS, ints);
if ((ints & SHUT_INT_ALL) != 0) {
device_printf(dev,
"WARNING - current temperature exceeds safe limits\n");
shutdown_nice(RB_POWEROFF);
}
if ((ints & ALARM_INT_ALL) != 0)
taskqueue_enqueue(taskqueue_thread, &sc->cf_task);
}
static int
aw_thermal_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (THS_CONF(dev) == NULL)
return (ENXIO);
device_set_desc(dev, "Allwinner Thermal Sensor Controller");
return (BUS_PROBE_DEFAULT);
}
static int
aw_thermal_attach(device_t dev)
{
struct aw_thermal_softc *sc;
hwreset_t rst;
int i, error;
void *ih;
sc = device_get_softc(dev);
sc->dev = dev;
rst = NULL;
ih = NULL;
sc->conf = THS_CONF(dev);
TASK_INIT(&sc->cf_task, 0, aw_thermal_cf_task, sc);
if (bus_alloc_resources(dev, aw_thermal_spec, sc->res) != 0) {
device_printf(dev, "cannot allocate resources for device\n");
return (ENXIO);
}
if (clk_get_by_ofw_name(dev, 0, "apb", &sc->clk_apb) == 0) {
error = clk_enable(sc->clk_apb);
if (error != 0) {
device_printf(dev, "cannot enable apb clock\n");
goto fail;
}
}
if (clk_get_by_ofw_name(dev, 0, "ths", &sc->clk_ths) == 0) {
error = clk_set_freq(sc->clk_ths, sc->conf->clk_rate, 0);
if (error != 0) {
device_printf(dev, "cannot set ths clock rate\n");
goto fail;
}
error = clk_enable(sc->clk_ths);
if (error != 0) {
device_printf(dev, "cannot enable ths clock\n");
goto fail;
}
}
if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst) == 0) {
error = hwreset_deassert(rst);
if (error != 0) {
device_printf(dev, "cannot de-assert reset\n");
goto fail;
}
}
error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_MISC | INTR_MPSAFE,
NULL, aw_thermal_intr, dev, &ih);
if (error != 0) {
device_printf(dev, "cannot setup interrupt handler\n");
goto fail;
}
for (i = 0; i < sc->conf->nsensors; i++) {
if (sc->conf->sensors[i].init_alarm > 0)
aw_thermal_setalarm(sc, i,
sc->conf->sensors[i].init_alarm);
if (sc->conf->sensors[i].init_shut > 0)
aw_thermal_setshut(sc, i,
sc->conf->sensors[i].init_shut);
}
if (aw_thermal_init(sc) != 0)
goto fail;
for (i = 0; i < sc->conf->nsensors; i++)
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, sc->conf->sensors[i].name,
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
sc, i, aw_thermal_sysctl, "IK0",
sc->conf->sensors[i].desc);
if (bootverbose)
for (i = 0; i < sc->conf->nsensors; i++) {
device_printf(dev,
"%s: alarm %dC hyst %dC shut %dC\n",
sc->conf->sensors[i].name,
aw_thermal_getalarm(sc, i),
aw_thermal_gethyst(sc, i),
aw_thermal_getshut(sc, i));
}
sc->cf_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
aw_thermal_cf_pre_change, sc, EVENTHANDLER_PRI_FIRST);
return (0);
fail:
if (ih != NULL)
bus_teardown_intr(dev, sc->res[1], ih);
if (rst != NULL)
hwreset_release(rst);
if (sc->clk_apb != NULL)
clk_release(sc->clk_apb);
if (sc->clk_ths != NULL)
clk_release(sc->clk_ths);
bus_release_resources(dev, aw_thermal_spec, sc->res);
return (ENXIO);
}
static device_method_t aw_thermal_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, aw_thermal_probe),
DEVMETHOD(device_attach, aw_thermal_attach),
DEVMETHOD_END
};
static driver_t aw_thermal_driver = {
"aw_thermal",
aw_thermal_methods,
sizeof(struct aw_thermal_softc),
};
static devclass_t aw_thermal_devclass;
DRIVER_MODULE(aw_thermal, simplebus, aw_thermal_driver, aw_thermal_devclass,
0, 0);
MODULE_VERSION(aw_thermal, 1);
MODULE_DEPEND(aw_thermal, aw_sid, 1, 1, 1);
SIMPLEBUS_PNP_INFO(compat_data);