68ba7e87e7
Security: CVE-2015-7973, CVE-2015-7974, CVE-2015-7975 Security: CVE-2015-7976, CVE-2015-7977, CVE-2015-7978 Security: CVE-2015-7979, CVE-2015-8138, CVE-2015-8139 Security: CVE-2015-8140, CVE-2015-8158 With hat: so
4086 lines
115 KiB
C
4086 lines
115 KiB
C
/*
|
|
* ntp_crypto.c - NTP version 4 public key routines
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#ifdef AUTOKEY
|
|
#include <stdio.h>
|
|
#include <stdlib.h> /* strtoul */
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "ntp_unixtime.h"
|
|
#include "ntp_string.h"
|
|
#include "ntp_random.h"
|
|
#include "ntp_assert.h"
|
|
#include "ntp_calendar.h"
|
|
#include "ntp_leapsec.h"
|
|
|
|
#include "openssl/asn1_mac.h"
|
|
#include "openssl/bn.h"
|
|
#include "openssl/err.h"
|
|
#include "openssl/evp.h"
|
|
#include "openssl/pem.h"
|
|
#include "openssl/rand.h"
|
|
#include "openssl/x509v3.h"
|
|
|
|
#ifdef KERNEL_PLL
|
|
#include "ntp_syscall.h"
|
|
#endif /* KERNEL_PLL */
|
|
|
|
/*
|
|
* calcomp - compare two calendar structures, ignoring yearday and weekday; like strcmp
|
|
* No, it's not a plotter. If you don't understand that, you're too young.
|
|
*/
|
|
static int calcomp(struct calendar *pjd1, struct calendar *pjd2)
|
|
{
|
|
int32_t diff; /* large enough to hold the signed difference between two uint16_t values */
|
|
|
|
diff = pjd1->year - pjd2->year;
|
|
if (diff < 0) return -1; else if (diff > 0) return 1;
|
|
/* same year; compare months */
|
|
diff = pjd1->month - pjd2->month;
|
|
if (diff < 0) return -1; else if (diff > 0) return 1;
|
|
/* same year and month; compare monthday */
|
|
diff = pjd1->monthday - pjd2->monthday;
|
|
if (diff < 0) return -1; else if (diff > 0) return 1;
|
|
/* same year and month and monthday; compare time */
|
|
diff = pjd1->hour - pjd2->hour;
|
|
if (diff < 0) return -1; else if (diff > 0) return 1;
|
|
diff = pjd1->minute - pjd2->minute;
|
|
if (diff < 0) return -1; else if (diff > 0) return 1;
|
|
diff = pjd1->second - pjd2->second;
|
|
if (diff < 0) return -1; else if (diff > 0) return 1;
|
|
/* identical */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Extension field message format
|
|
*
|
|
* These are always signed and saved before sending in network byte
|
|
* order. They must be converted to and from host byte order for
|
|
* processing.
|
|
*
|
|
* +-------+-------+
|
|
* | op | len | <- extension pointer
|
|
* +-------+-------+
|
|
* | associd |
|
|
* +---------------+
|
|
* | timestamp | <- value pointer
|
|
* +---------------+
|
|
* | filestamp |
|
|
* +---------------+
|
|
* | value len |
|
|
* +---------------+
|
|
* | |
|
|
* = value =
|
|
* | |
|
|
* +---------------+
|
|
* | signature len |
|
|
* +---------------+
|
|
* | |
|
|
* = signature =
|
|
* | |
|
|
* +---------------+
|
|
*
|
|
* The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
|
|
* Requests carry the association ID of the receiver; responses carry
|
|
* the association ID of the sender. Some messages include only the
|
|
* operation/length and association ID words and so have length 8
|
|
* octets. Ohers include the value structure and associated value and
|
|
* signature fields. These messages include the timestamp, filestamp,
|
|
* value and signature words and so have length at least 24 octets. The
|
|
* signature and/or value fields can be empty, in which case the
|
|
* respective length words are zero. An empty value with nonempty
|
|
* signature is syntactically valid, but semantically questionable.
|
|
*
|
|
* The filestamp represents the time when a cryptographic data file such
|
|
* as a public/private key pair is created. It follows every reference
|
|
* depending on that file and serves as a means to obsolete earlier data
|
|
* of the same type. The timestamp represents the time when the
|
|
* cryptographic data of the message were last signed. Creation of a
|
|
* cryptographic data file or signing a message can occur only when the
|
|
* creator or signor is synchronized to an authoritative source and
|
|
* proventicated to a trusted authority.
|
|
*
|
|
* Note there are several conditions required for server trust. First,
|
|
* the public key on the server certificate must be verified, which can
|
|
* involve a hike along the certificate trail to a trusted host. Next,
|
|
* the server trust must be confirmed by one of several identity
|
|
* schemes. Valid cryptographic values are signed with attached
|
|
* timestamp and filestamp. Individual packet trust is confirmed
|
|
* relative to these values by a message digest with keys generated by a
|
|
* reverse-order pseudorandom hash.
|
|
*
|
|
* State decomposition. These flags are lit in the order given. They are
|
|
* dim only when the association is demobilized.
|
|
*
|
|
* CRYPTO_FLAG_ENAB Lit upon acceptance of a CRYPTO_ASSOC message
|
|
* CRYPTO_FLAG_CERT Lit when a self-digned trusted certificate is
|
|
* accepted.
|
|
* CRYPTO_FLAG_VRFY Lit when identity is confirmed.
|
|
* CRYPTO_FLAG_PROV Lit when the first signature is verified.
|
|
* CRYPTO_FLAG_COOK Lit when a valid cookie is accepted.
|
|
* CRYPTO_FLAG_AUTO Lit when valid autokey values are accepted.
|
|
* CRYPTO_FLAG_SIGN Lit when the server signed certificate is
|
|
* accepted.
|
|
* CRYPTO_FLAG_LEAP Lit when the leapsecond values are accepted.
|
|
*/
|
|
/*
|
|
* Cryptodefines
|
|
*/
|
|
#define TAI_1972 10 /* initial TAI offset (s) */
|
|
#define MAX_LEAP 100 /* max UTC leapseconds (s) */
|
|
#define VALUE_LEN (6 * 4) /* min response field length */
|
|
#define MAX_VALLEN (65535 - VALUE_LEN)
|
|
#define YEAR (60 * 60 * 24 * 365) /* seconds in year */
|
|
|
|
/*
|
|
* Global cryptodata in host byte order
|
|
*/
|
|
u_int32 crypto_flags = 0x0; /* status word */
|
|
int crypto_nid = KEY_TYPE_MD5; /* digest nid */
|
|
char *sys_hostname = NULL;
|
|
char *sys_groupname = NULL;
|
|
static char *host_filename = NULL; /* host file name */
|
|
static char *ident_filename = NULL; /* group file name */
|
|
|
|
/*
|
|
* Global cryptodata in network byte order
|
|
*/
|
|
struct cert_info *cinfo = NULL; /* certificate info/value cache */
|
|
struct cert_info *cert_host = NULL; /* host certificate */
|
|
struct pkey_info *pkinfo = NULL; /* key info/value cache */
|
|
struct value hostval; /* host value */
|
|
struct value pubkey; /* public key */
|
|
struct value tai_leap; /* leapseconds values */
|
|
struct pkey_info *iffkey_info = NULL; /* IFF keys */
|
|
struct pkey_info *gqkey_info = NULL; /* GQ keys */
|
|
struct pkey_info *mvkey_info = NULL; /* MV keys */
|
|
|
|
/*
|
|
* Private cryptodata in host byte order
|
|
*/
|
|
static char *passwd = NULL; /* private key password */
|
|
static EVP_PKEY *host_pkey = NULL; /* host key */
|
|
static EVP_PKEY *sign_pkey = NULL; /* sign key */
|
|
static const EVP_MD *sign_digest = NULL; /* sign digest */
|
|
static u_int sign_siglen; /* sign key length */
|
|
static char *rand_file = NULL; /* random seed file */
|
|
|
|
/*
|
|
* Cryptotypes
|
|
*/
|
|
static int crypto_verify (struct exten *, struct value *,
|
|
struct peer *);
|
|
static int crypto_encrypt (const u_char *, u_int, keyid_t *,
|
|
struct value *);
|
|
static int crypto_alice (struct peer *, struct value *);
|
|
static int crypto_alice2 (struct peer *, struct value *);
|
|
static int crypto_alice3 (struct peer *, struct value *);
|
|
static int crypto_bob (struct exten *, struct value *);
|
|
static int crypto_bob2 (struct exten *, struct value *);
|
|
static int crypto_bob3 (struct exten *, struct value *);
|
|
static int crypto_iff (struct exten *, struct peer *);
|
|
static int crypto_gq (struct exten *, struct peer *);
|
|
static int crypto_mv (struct exten *, struct peer *);
|
|
static int crypto_send (struct exten *, struct value *, int);
|
|
static tstamp_t crypto_time (void);
|
|
static void asn_to_calendar (ASN1_TIME *, struct calendar*);
|
|
static struct cert_info *cert_parse (const u_char *, long, tstamp_t);
|
|
static int cert_sign (struct exten *, struct value *);
|
|
static struct cert_info *cert_install (struct exten *, struct peer *);
|
|
static int cert_hike (struct peer *, struct cert_info *);
|
|
static void cert_free (struct cert_info *);
|
|
static struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
|
|
static void bighash (BIGNUM *, BIGNUM *);
|
|
static struct cert_info *crypto_cert (char *);
|
|
static u_int exten_payload_size(const struct exten *);
|
|
|
|
#ifdef SYS_WINNT
|
|
int
|
|
readlink(char * link, char * file, int len) {
|
|
return (-1);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* session_key - generate session key
|
|
*
|
|
* This routine generates a session key from the source address,
|
|
* destination address, key ID and private value. The value of the
|
|
* session key is the MD5 hash of these values, while the next key ID is
|
|
* the first four octets of the hash.
|
|
*
|
|
* Returns the next key ID or 0 if there is no destination address.
|
|
*/
|
|
keyid_t
|
|
session_key(
|
|
sockaddr_u *srcadr, /* source address */
|
|
sockaddr_u *dstadr, /* destination address */
|
|
keyid_t keyno, /* key ID */
|
|
keyid_t private, /* private value */
|
|
u_long lifetime /* key lifetime */
|
|
)
|
|
{
|
|
EVP_MD_CTX ctx; /* message digest context */
|
|
u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
|
|
keyid_t keyid; /* key identifer */
|
|
u_int32 header[10]; /* data in network byte order */
|
|
u_int hdlen, len;
|
|
|
|
if (!dstadr)
|
|
return 0;
|
|
|
|
/*
|
|
* Generate the session key and key ID. If the lifetime is
|
|
* greater than zero, install the key and call it trusted.
|
|
*/
|
|
hdlen = 0;
|
|
switch(AF(srcadr)) {
|
|
case AF_INET:
|
|
header[0] = NSRCADR(srcadr);
|
|
header[1] = NSRCADR(dstadr);
|
|
header[2] = htonl(keyno);
|
|
header[3] = htonl(private);
|
|
hdlen = 4 * sizeof(u_int32);
|
|
break;
|
|
|
|
case AF_INET6:
|
|
memcpy(&header[0], PSOCK_ADDR6(srcadr),
|
|
sizeof(struct in6_addr));
|
|
memcpy(&header[4], PSOCK_ADDR6(dstadr),
|
|
sizeof(struct in6_addr));
|
|
header[8] = htonl(keyno);
|
|
header[9] = htonl(private);
|
|
hdlen = 10 * sizeof(u_int32);
|
|
break;
|
|
}
|
|
EVP_DigestInit(&ctx, EVP_get_digestbynid(crypto_nid));
|
|
EVP_DigestUpdate(&ctx, (u_char *)header, hdlen);
|
|
EVP_DigestFinal(&ctx, dgst, &len);
|
|
memcpy(&keyid, dgst, 4);
|
|
keyid = ntohl(keyid);
|
|
if (lifetime != 0) {
|
|
MD5auth_setkey(keyno, crypto_nid, dgst, len, NULL);
|
|
authtrust(keyno, lifetime);
|
|
}
|
|
DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
|
|
stoa(srcadr), stoa(dstadr), keyno,
|
|
private, keyid, lifetime));
|
|
|
|
return (keyid);
|
|
}
|
|
|
|
|
|
/*
|
|
* make_keylist - generate key list
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ERR protocol error
|
|
*
|
|
* This routine constructs a pseudo-random sequence by repeatedly
|
|
* hashing the session key starting from a given source address,
|
|
* destination address, private value and the next key ID of the
|
|
* preceeding session key. The last entry on the list is saved along
|
|
* with its sequence number and public signature.
|
|
*/
|
|
int
|
|
make_keylist(
|
|
struct peer *peer, /* peer structure pointer */
|
|
struct interface *dstadr /* interface */
|
|
)
|
|
{
|
|
EVP_MD_CTX ctx; /* signature context */
|
|
tstamp_t tstamp; /* NTP timestamp */
|
|
struct autokey *ap; /* autokey pointer */
|
|
struct value *vp; /* value pointer */
|
|
keyid_t keyid = 0; /* next key ID */
|
|
keyid_t cookie; /* private value */
|
|
long lifetime;
|
|
u_int len, mpoll;
|
|
int i;
|
|
|
|
if (!dstadr)
|
|
return XEVNT_ERR;
|
|
|
|
/*
|
|
* Allocate the key list if necessary.
|
|
*/
|
|
tstamp = crypto_time();
|
|
if (peer->keylist == NULL)
|
|
peer->keylist = eallocarray(NTP_MAXSESSION,
|
|
sizeof(keyid_t));
|
|
|
|
/*
|
|
* Generate an initial key ID which is unique and greater than
|
|
* NTP_MAXKEY.
|
|
*/
|
|
while (1) {
|
|
keyid = ntp_random() & 0xffffffff;
|
|
if (keyid <= NTP_MAXKEY)
|
|
continue;
|
|
|
|
if (authhavekey(keyid))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Generate up to NTP_MAXSESSION session keys. Stop if the
|
|
* next one would not be unique or not a session key ID or if
|
|
* it would expire before the next poll. The private value
|
|
* included in the hash is zero if broadcast mode, the peer
|
|
* cookie if client mode or the host cookie if symmetric modes.
|
|
*/
|
|
mpoll = 1 << min(peer->ppoll, peer->hpoll);
|
|
lifetime = min(1U << sys_automax, NTP_MAXSESSION * mpoll);
|
|
if (peer->hmode == MODE_BROADCAST)
|
|
cookie = 0;
|
|
else
|
|
cookie = peer->pcookie;
|
|
for (i = 0; i < NTP_MAXSESSION; i++) {
|
|
peer->keylist[i] = keyid;
|
|
peer->keynumber = i;
|
|
keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
|
|
cookie, lifetime + mpoll);
|
|
lifetime -= mpoll;
|
|
if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
|
|
lifetime < 0 || tstamp == 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Save the last session key ID, sequence number and timestamp,
|
|
* then sign these values for later retrieval by the clients. Be
|
|
* careful not to use invalid key media. Use the public values
|
|
* timestamp as filestamp.
|
|
*/
|
|
vp = &peer->sndval;
|
|
if (vp->ptr == NULL)
|
|
vp->ptr = emalloc(sizeof(struct autokey));
|
|
ap = (struct autokey *)vp->ptr;
|
|
ap->seq = htonl(peer->keynumber);
|
|
ap->key = htonl(keyid);
|
|
vp->tstamp = htonl(tstamp);
|
|
vp->fstamp = hostval.tstamp;
|
|
vp->vallen = htonl(sizeof(struct autokey));
|
|
vp->siglen = 0;
|
|
if (tstamp != 0) {
|
|
if (vp->sig == NULL)
|
|
vp->sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)vp, 12);
|
|
EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey));
|
|
if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
vp->siglen = htonl(len);
|
|
peer->flags |= FLAG_ASSOC;
|
|
}
|
|
}
|
|
DPRINTF(1, ("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
|
|
peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
|
|
ntohl(vp->fstamp), peer->hpoll));
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_recv - parse extension fields
|
|
*
|
|
* This routine is called when the packet has been matched to an
|
|
* association and passed sanity, format and MAC checks. We believe the
|
|
* extension field values only if the field has proper format and
|
|
* length, the timestamp and filestamp are valid and the signature has
|
|
* valid length and is verified. There are a few cases where some values
|
|
* are believed even if the signature fails, but only if the proventic
|
|
* bit is not set.
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ERR protocol error
|
|
* XEVNT_LEN bad field format or length
|
|
*/
|
|
int
|
|
crypto_recv(
|
|
struct peer *peer, /* peer structure pointer */
|
|
struct recvbuf *rbufp /* packet buffer pointer */
|
|
)
|
|
{
|
|
const EVP_MD *dp; /* message digest algorithm */
|
|
u_int32 *pkt; /* receive packet pointer */
|
|
struct autokey *ap, *bp; /* autokey pointer */
|
|
struct exten *ep, *fp; /* extension pointers */
|
|
struct cert_info *xinfo; /* certificate info pointer */
|
|
int macbytes; /* length of MAC field, signed by intention */
|
|
int authlen; /* offset of MAC field */
|
|
associd_t associd; /* association ID */
|
|
tstamp_t fstamp = 0; /* filestamp */
|
|
u_int len; /* extension field length */
|
|
u_int code; /* extension field opcode */
|
|
u_int vallen = 0; /* value length */
|
|
X509 *cert; /* X509 certificate */
|
|
char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
|
|
keyid_t cookie; /* crumbles */
|
|
int hismode; /* packet mode */
|
|
int rval = XEVNT_OK;
|
|
const u_char *puch;
|
|
u_int32 temp32;
|
|
|
|
/*
|
|
* Initialize. Note that the packet has already been checked for
|
|
* valid format and extension field lengths. First extract the
|
|
* field length, command code and association ID in host byte
|
|
* order. These are used with all commands and modes. Then check
|
|
* the version number, which must be 2, and length, which must
|
|
* be at least 8 for requests and VALUE_LEN (24) for responses.
|
|
* Packets that fail either test sink without a trace. The
|
|
* association ID is saved only if nonzero.
|
|
*/
|
|
authlen = LEN_PKT_NOMAC;
|
|
hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
|
|
while ((macbytes = rbufp->recv_length - authlen) > (int)MAX_MAC_LEN) {
|
|
/* We can be reasonably sure that we can read at least
|
|
* the opcode and the size field here. More stringent
|
|
* checks follow up shortly.
|
|
*/
|
|
pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
|
|
ep = (struct exten *)pkt;
|
|
code = ntohl(ep->opcode) & 0xffff0000;
|
|
len = ntohl(ep->opcode) & 0x0000ffff;
|
|
// HMS: Why pkt[1] instead of ep->associd ?
|
|
associd = (associd_t)ntohl(pkt[1]);
|
|
rval = XEVNT_OK;
|
|
DPRINTF(1, ("crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
|
|
peer->crypto, authlen, len, code >> 16,
|
|
associd));
|
|
|
|
/*
|
|
* Check version number and field length. If bad,
|
|
* quietly ignore the packet.
|
|
*/
|
|
if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
|
|
sys_badlength++;
|
|
code |= CRYPTO_ERROR;
|
|
}
|
|
|
|
/* Check if the declared size fits into the remaining
|
|
* buffer. We *know* 'macbytes' > 0 here!
|
|
*/
|
|
if (len > (u_int)macbytes) {
|
|
DPRINTF(1, ("crypto_recv: possible attack detected, associd %d\n",
|
|
associd));
|
|
return XEVNT_LEN;
|
|
}
|
|
|
|
/* Check if the paylod of the extension fits into the
|
|
* declared frame.
|
|
*/
|
|
if (len >= VALUE_LEN) {
|
|
fstamp = ntohl(ep->fstamp);
|
|
vallen = ntohl(ep->vallen);
|
|
/*
|
|
* Bug 2761: I hope this isn't too early...
|
|
*/
|
|
if ( vallen == 0
|
|
|| len - VALUE_LEN < vallen)
|
|
return XEVNT_LEN;
|
|
}
|
|
switch (code) {
|
|
|
|
/*
|
|
* Install status word, host name, signature scheme and
|
|
* association ID. In OpenSSL the signature algorithm is
|
|
* bound to the digest algorithm, so the NID completely
|
|
* defines the signature scheme. Note the request and
|
|
* response are identical, but neither is validated by
|
|
* signature. The request is processed here only in
|
|
* symmetric modes. The server name field might be
|
|
* useful to implement access controls in future.
|
|
*/
|
|
case CRYPTO_ASSOC:
|
|
|
|
/*
|
|
* If our state machine is running when this
|
|
* message arrives, the other fellow might have
|
|
* restarted. However, this could be an
|
|
* intruder, so just clamp the poll interval and
|
|
* find out for ourselves. Otherwise, pass the
|
|
* extension field to the transmit side.
|
|
*/
|
|
if (peer->crypto & CRYPTO_FLAG_CERT) {
|
|
rval = XEVNT_ERR;
|
|
break;
|
|
}
|
|
if (peer->cmmd) {
|
|
if (peer->assoc != associd) {
|
|
rval = XEVNT_ERR;
|
|
break;
|
|
}
|
|
free(peer->cmmd); /* will be set again! */
|
|
}
|
|
fp = emalloc(len);
|
|
memcpy(fp, ep, len);
|
|
fp->associd = htonl(peer->associd);
|
|
peer->cmmd = fp;
|
|
/* fall through */
|
|
|
|
case CRYPTO_ASSOC | CRYPTO_RESP:
|
|
|
|
/*
|
|
* Discard the message if it has already been
|
|
* stored or the message has been amputated.
|
|
*/
|
|
if (peer->crypto) {
|
|
if (peer->assoc != associd)
|
|
rval = XEVNT_ERR;
|
|
break;
|
|
}
|
|
INSIST(len >= VALUE_LEN);
|
|
if (vallen == 0 || vallen > MAXHOSTNAME ||
|
|
len - VALUE_LEN < vallen) {
|
|
rval = XEVNT_LEN;
|
|
break;
|
|
}
|
|
DPRINTF(1, ("crypto_recv: ident host 0x%x %d server 0x%x %d\n",
|
|
crypto_flags, peer->associd, fstamp,
|
|
peer->assoc));
|
|
temp32 = crypto_flags & CRYPTO_FLAG_MASK;
|
|
|
|
/*
|
|
* If the client scheme is PC, the server scheme
|
|
* must be PC. The public key and identity are
|
|
* presumed valid, so we skip the certificate
|
|
* and identity exchanges and move immediately
|
|
* to the cookie exchange which confirms the
|
|
* server signature.
|
|
*/
|
|
if (crypto_flags & CRYPTO_FLAG_PRIV) {
|
|
if (!(fstamp & CRYPTO_FLAG_PRIV)) {
|
|
rval = XEVNT_KEY;
|
|
break;
|
|
}
|
|
fstamp |= CRYPTO_FLAG_CERT |
|
|
CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
|
|
|
|
/*
|
|
* It is an error if either peer supports
|
|
* identity, but the other does not.
|
|
*/
|
|
} else if (hismode == MODE_ACTIVE || hismode ==
|
|
MODE_PASSIVE) {
|
|
if ((temp32 && !(fstamp &
|
|
CRYPTO_FLAG_MASK)) ||
|
|
(!temp32 && (fstamp &
|
|
CRYPTO_FLAG_MASK))) {
|
|
rval = XEVNT_KEY;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Discard the message if the signature digest
|
|
* NID is not supported.
|
|
*/
|
|
temp32 = (fstamp >> 16) & 0xffff;
|
|
dp =
|
|
(const EVP_MD *)EVP_get_digestbynid(temp32);
|
|
if (dp == NULL) {
|
|
rval = XEVNT_MD;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Save status word, host name and message
|
|
* digest/signature type. If this is from a
|
|
* broadcast and the association ID has changed,
|
|
* request the autokey values.
|
|
*/
|
|
peer->assoc = associd;
|
|
if (hismode == MODE_SERVER)
|
|
fstamp |= CRYPTO_FLAG_AUTO;
|
|
if (!(fstamp & CRYPTO_FLAG_TAI))
|
|
fstamp |= CRYPTO_FLAG_LEAP;
|
|
RAND_bytes((u_char *)&peer->hcookie, 4);
|
|
peer->crypto = fstamp;
|
|
peer->digest = dp;
|
|
if (peer->subject != NULL)
|
|
free(peer->subject);
|
|
peer->subject = emalloc(vallen + 1);
|
|
memcpy(peer->subject, ep->pkt, vallen);
|
|
peer->subject[vallen] = '\0';
|
|
if (peer->issuer != NULL)
|
|
free(peer->issuer);
|
|
peer->issuer = estrdup(peer->subject);
|
|
snprintf(statstr, sizeof(statstr),
|
|
"assoc %d %d host %s %s", peer->associd,
|
|
peer->assoc, peer->subject,
|
|
OBJ_nid2ln(temp32));
|
|
record_crypto_stats(&peer->srcadr, statstr);
|
|
DPRINTF(1, ("crypto_recv: %s\n", statstr));
|
|
break;
|
|
|
|
/*
|
|
* Decode X509 certificate in ASN.1 format and extract
|
|
* the data containing, among other things, subject
|
|
* name and public key. In the default identification
|
|
* scheme, the certificate trail is followed to a self
|
|
* signed trusted certificate.
|
|
*/
|
|
case CRYPTO_CERT | CRYPTO_RESP:
|
|
|
|
/*
|
|
* Discard the message if empty or invalid.
|
|
*/
|
|
if (len < VALUE_LEN)
|
|
break;
|
|
|
|
if ((rval = crypto_verify(ep, NULL, peer)) !=
|
|
XEVNT_OK)
|
|
break;
|
|
|
|
/*
|
|
* Scan the certificate list to delete old
|
|
* versions and link the newest version first on
|
|
* the list. Then, verify the signature. If the
|
|
* certificate is bad or missing, just ignore
|
|
* it.
|
|
*/
|
|
if ((xinfo = cert_install(ep, peer)) == NULL) {
|
|
rval = XEVNT_CRT;
|
|
break;
|
|
}
|
|
if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
|
|
break;
|
|
|
|
/*
|
|
* We plug in the public key and lifetime from
|
|
* the first certificate received. However, note
|
|
* that this certificate might not be signed by
|
|
* the server, so we can't check the
|
|
* signature/digest NID.
|
|
*/
|
|
if (peer->pkey == NULL) {
|
|
puch = xinfo->cert.ptr;
|
|
cert = d2i_X509(NULL, &puch,
|
|
ntohl(xinfo->cert.vallen));
|
|
peer->pkey = X509_get_pubkey(cert);
|
|
X509_free(cert);
|
|
}
|
|
peer->flash &= ~TEST8;
|
|
temp32 = xinfo->nid;
|
|
snprintf(statstr, sizeof(statstr),
|
|
"cert %s %s 0x%x %s (%u) fs %u",
|
|
xinfo->subject, xinfo->issuer, xinfo->flags,
|
|
OBJ_nid2ln(temp32), temp32,
|
|
ntohl(ep->fstamp));
|
|
record_crypto_stats(&peer->srcadr, statstr);
|
|
DPRINTF(1, ("crypto_recv: %s\n", statstr));
|
|
break;
|
|
|
|
/*
|
|
* Schnorr (IFF) identity scheme. This scheme is
|
|
* designed for use with shared secret server group keys
|
|
* and where the certificate may be generated by a third
|
|
* party. The client sends a challenge to the server,
|
|
* which performs a calculation and returns the result.
|
|
* A positive result is possible only if both client and
|
|
* server contain the same secret group key.
|
|
*/
|
|
case CRYPTO_IFF | CRYPTO_RESP:
|
|
|
|
/*
|
|
* Discard the message if invalid.
|
|
*/
|
|
if ((rval = crypto_verify(ep, NULL, peer)) !=
|
|
XEVNT_OK)
|
|
break;
|
|
|
|
/*
|
|
* If the challenge matches the response, the
|
|
* server public key, signature and identity are
|
|
* all verified at the same time. The server is
|
|
* declared trusted, so we skip further
|
|
* certificate exchanges and move immediately to
|
|
* the cookie exchange.
|
|
*/
|
|
if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
|
|
break;
|
|
|
|
peer->crypto |= CRYPTO_FLAG_VRFY;
|
|
peer->flash &= ~TEST8;
|
|
snprintf(statstr, sizeof(statstr), "iff %s fs %u",
|
|
peer->issuer, ntohl(ep->fstamp));
|
|
record_crypto_stats(&peer->srcadr, statstr);
|
|
DPRINTF(1, ("crypto_recv: %s\n", statstr));
|
|
break;
|
|
|
|
/*
|
|
* Guillou-Quisquater (GQ) identity scheme. This scheme
|
|
* is designed for use with public certificates carrying
|
|
* the GQ public key in an extension field. The client
|
|
* sends a challenge to the server, which performs a
|
|
* calculation and returns the result. A positive result
|
|
* is possible only if both client and server contain
|
|
* the same group key and the server has the matching GQ
|
|
* private key.
|
|
*/
|
|
case CRYPTO_GQ | CRYPTO_RESP:
|
|
|
|
/*
|
|
* Discard the message if invalid
|
|
*/
|
|
if ((rval = crypto_verify(ep, NULL, peer)) !=
|
|
XEVNT_OK)
|
|
break;
|
|
|
|
/*
|
|
* If the challenge matches the response, the
|
|
* server public key, signature and identity are
|
|
* all verified at the same time. The server is
|
|
* declared trusted, so we skip further
|
|
* certificate exchanges and move immediately to
|
|
* the cookie exchange.
|
|
*/
|
|
if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
|
|
break;
|
|
|
|
peer->crypto |= CRYPTO_FLAG_VRFY;
|
|
peer->flash &= ~TEST8;
|
|
snprintf(statstr, sizeof(statstr), "gq %s fs %u",
|
|
peer->issuer, ntohl(ep->fstamp));
|
|
record_crypto_stats(&peer->srcadr, statstr);
|
|
DPRINTF(1, ("crypto_recv: %s\n", statstr));
|
|
break;
|
|
|
|
/*
|
|
* Mu-Varadharajan (MV) identity scheme. This scheme is
|
|
* designed for use with three levels of trust, trusted
|
|
* host, server and client. The trusted host key is
|
|
* opaque to servers and clients; the server keys are
|
|
* opaque to clients and each client key is different.
|
|
* Client keys can be revoked without requiring new key
|
|
* generations.
|
|
*/
|
|
case CRYPTO_MV | CRYPTO_RESP:
|
|
|
|
/*
|
|
* Discard the message if invalid.
|
|
*/
|
|
if ((rval = crypto_verify(ep, NULL, peer)) !=
|
|
XEVNT_OK)
|
|
break;
|
|
|
|
/*
|
|
* If the challenge matches the response, the
|
|
* server public key, signature and identity are
|
|
* all verified at the same time. The server is
|
|
* declared trusted, so we skip further
|
|
* certificate exchanges and move immediately to
|
|
* the cookie exchange.
|
|
*/
|
|
if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
|
|
break;
|
|
|
|
peer->crypto |= CRYPTO_FLAG_VRFY;
|
|
peer->flash &= ~TEST8;
|
|
snprintf(statstr, sizeof(statstr), "mv %s fs %u",
|
|
peer->issuer, ntohl(ep->fstamp));
|
|
record_crypto_stats(&peer->srcadr, statstr);
|
|
DPRINTF(1, ("crypto_recv: %s\n", statstr));
|
|
break;
|
|
|
|
|
|
/*
|
|
* Cookie response in client and symmetric modes. If the
|
|
* cookie bit is set, the working cookie is the EXOR of
|
|
* the current and new values.
|
|
*/
|
|
case CRYPTO_COOK | CRYPTO_RESP:
|
|
|
|
/*
|
|
* Discard the message if invalid or signature
|
|
* not verified with respect to the cookie
|
|
* values.
|
|
*/
|
|
if ((rval = crypto_verify(ep, &peer->cookval,
|
|
peer)) != XEVNT_OK)
|
|
break;
|
|
|
|
/*
|
|
* Decrypt the cookie, hunting all the time for
|
|
* errors.
|
|
*/
|
|
if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
|
|
u_int32 *cookiebuf = malloc(
|
|
RSA_size(host_pkey->pkey.rsa));
|
|
if (!cookiebuf) {
|
|
rval = XEVNT_CKY;
|
|
break;
|
|
}
|
|
|
|
if (RSA_private_decrypt(vallen,
|
|
(u_char *)ep->pkt,
|
|
(u_char *)cookiebuf,
|
|
host_pkey->pkey.rsa,
|
|
RSA_PKCS1_OAEP_PADDING) != 4) {
|
|
rval = XEVNT_CKY;
|
|
free(cookiebuf);
|
|
break;
|
|
} else {
|
|
cookie = ntohl(*cookiebuf);
|
|
free(cookiebuf);
|
|
}
|
|
} else {
|
|
rval = XEVNT_CKY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Install cookie values and light the cookie
|
|
* bit. If this is not broadcast client mode, we
|
|
* are done here.
|
|
*/
|
|
key_expire(peer);
|
|
if (hismode == MODE_ACTIVE || hismode ==
|
|
MODE_PASSIVE)
|
|
peer->pcookie = peer->hcookie ^ cookie;
|
|
else
|
|
peer->pcookie = cookie;
|
|
peer->crypto |= CRYPTO_FLAG_COOK;
|
|
peer->flash &= ~TEST8;
|
|
snprintf(statstr, sizeof(statstr),
|
|
"cook %x ts %u fs %u", peer->pcookie,
|
|
ntohl(ep->tstamp), ntohl(ep->fstamp));
|
|
record_crypto_stats(&peer->srcadr, statstr);
|
|
DPRINTF(1, ("crypto_recv: %s\n", statstr));
|
|
break;
|
|
|
|
/*
|
|
* Install autokey values in broadcast client and
|
|
* symmetric modes. We have to do this every time the
|
|
* sever/peer cookie changes or a new keylist is
|
|
* rolled. Ordinarily, this is automatic as this message
|
|
* is piggybacked on the first NTP packet sent upon
|
|
* either of these events. Note that a broadcast client
|
|
* or symmetric peer can receive this response without a
|
|
* matching request.
|
|
*/
|
|
case CRYPTO_AUTO | CRYPTO_RESP:
|
|
|
|
/*
|
|
* Discard the message if invalid or signature
|
|
* not verified with respect to the receive
|
|
* autokey values.
|
|
*/
|
|
if ((rval = crypto_verify(ep, &peer->recval,
|
|
peer)) != XEVNT_OK)
|
|
break;
|
|
|
|
/*
|
|
* Discard the message if a broadcast client and
|
|
* the association ID does not match. This might
|
|
* happen if a broacast server restarts the
|
|
* protocol. A protocol restart will occur at
|
|
* the next ASSOC message.
|
|
*/
|
|
if ((peer->cast_flags & MDF_BCLNT) &&
|
|
peer->assoc != associd)
|
|
break;
|
|
|
|
/*
|
|
* Install autokey values and light the
|
|
* autokey bit. This is not hard.
|
|
*/
|
|
if (ep->tstamp == 0)
|
|
break;
|
|
|
|
if (peer->recval.ptr == NULL)
|
|
peer->recval.ptr =
|
|
emalloc(sizeof(struct autokey));
|
|
bp = (struct autokey *)peer->recval.ptr;
|
|
peer->recval.tstamp = ep->tstamp;
|
|
peer->recval.fstamp = ep->fstamp;
|
|
ap = (struct autokey *)ep->pkt;
|
|
bp->seq = ntohl(ap->seq);
|
|
bp->key = ntohl(ap->key);
|
|
peer->pkeyid = bp->key;
|
|
peer->crypto |= CRYPTO_FLAG_AUTO;
|
|
peer->flash &= ~TEST8;
|
|
snprintf(statstr, sizeof(statstr),
|
|
"auto seq %d key %x ts %u fs %u", bp->seq,
|
|
bp->key, ntohl(ep->tstamp),
|
|
ntohl(ep->fstamp));
|
|
record_crypto_stats(&peer->srcadr, statstr);
|
|
DPRINTF(1, ("crypto_recv: %s\n", statstr));
|
|
break;
|
|
|
|
/*
|
|
* X509 certificate sign response. Validate the
|
|
* certificate signed by the server and install. Later
|
|
* this can be provided to clients of this server in
|
|
* lieu of the self signed certificate in order to
|
|
* validate the public key.
|
|
*/
|
|
case CRYPTO_SIGN | CRYPTO_RESP:
|
|
|
|
/*
|
|
* Discard the message if invalid.
|
|
*/
|
|
if ((rval = crypto_verify(ep, NULL, peer)) !=
|
|
XEVNT_OK)
|
|
break;
|
|
|
|
/*
|
|
* Scan the certificate list to delete old
|
|
* versions and link the newest version first on
|
|
* the list.
|
|
*/
|
|
if ((xinfo = cert_install(ep, peer)) == NULL) {
|
|
rval = XEVNT_CRT;
|
|
break;
|
|
}
|
|
peer->crypto |= CRYPTO_FLAG_SIGN;
|
|
peer->flash &= ~TEST8;
|
|
temp32 = xinfo->nid;
|
|
snprintf(statstr, sizeof(statstr),
|
|
"sign %s %s 0x%x %s (%u) fs %u",
|
|
xinfo->subject, xinfo->issuer, xinfo->flags,
|
|
OBJ_nid2ln(temp32), temp32,
|
|
ntohl(ep->fstamp));
|
|
record_crypto_stats(&peer->srcadr, statstr);
|
|
DPRINTF(1, ("crypto_recv: %s\n", statstr));
|
|
break;
|
|
|
|
/*
|
|
* Install leapseconds values. While the leapsecond
|
|
* values epoch, TAI offset and values expiration epoch
|
|
* are retained, only the current TAI offset is provided
|
|
* via the kernel to other applications.
|
|
*/
|
|
case CRYPTO_LEAP | CRYPTO_RESP:
|
|
/*
|
|
* Discard the message if invalid. We can't
|
|
* compare the value timestamps here, as they
|
|
* can be updated by different servers.
|
|
*/
|
|
rval = crypto_verify(ep, NULL, peer);
|
|
if ((rval != XEVNT_OK ) ||
|
|
(vallen != 3*sizeof(uint32_t)) )
|
|
break;
|
|
|
|
/* Check if we can update the basic TAI offset
|
|
* for our current leap frame. This is a hack
|
|
* and ignores the time stamps in the autokey
|
|
* message.
|
|
*/
|
|
if (sys_leap != LEAP_NOTINSYNC)
|
|
leapsec_autokey_tai(ntohl(ep->pkt[0]),
|
|
rbufp->recv_time.l_ui, NULL);
|
|
tai_leap.tstamp = ep->tstamp;
|
|
tai_leap.fstamp = ep->fstamp;
|
|
crypto_update();
|
|
mprintf_event(EVNT_TAI, peer,
|
|
"%d seconds", ntohl(ep->pkt[0]));
|
|
peer->crypto |= CRYPTO_FLAG_LEAP;
|
|
peer->flash &= ~TEST8;
|
|
snprintf(statstr, sizeof(statstr),
|
|
"leap TAI offset %d at %u expire %u fs %u",
|
|
ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
|
|
ntohl(ep->pkt[2]), ntohl(ep->fstamp));
|
|
record_crypto_stats(&peer->srcadr, statstr);
|
|
DPRINTF(1, ("crypto_recv: %s\n", statstr));
|
|
break;
|
|
|
|
/*
|
|
* We come here in symmetric modes for miscellaneous
|
|
* commands that have value fields but are processed on
|
|
* the transmit side. All we need do here is check for
|
|
* valid field length. Note that ASSOC is handled
|
|
* separately.
|
|
*/
|
|
case CRYPTO_CERT:
|
|
case CRYPTO_IFF:
|
|
case CRYPTO_GQ:
|
|
case CRYPTO_MV:
|
|
case CRYPTO_COOK:
|
|
case CRYPTO_SIGN:
|
|
if (len < VALUE_LEN) {
|
|
rval = XEVNT_LEN;
|
|
break;
|
|
}
|
|
/* fall through */
|
|
|
|
/*
|
|
* We come here in symmetric modes for requests
|
|
* requiring a response (above plus AUTO and LEAP) and
|
|
* for responses. If a request, save the extension field
|
|
* for later; invalid requests will be caught on the
|
|
* transmit side. If an error or invalid response,
|
|
* declare a protocol error.
|
|
*/
|
|
default:
|
|
if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
|
|
rval = XEVNT_ERR;
|
|
} else if (peer->cmmd == NULL) {
|
|
fp = emalloc(len);
|
|
memcpy(fp, ep, len);
|
|
peer->cmmd = fp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The first error found terminates the extension field
|
|
* scan and we return the laundry to the caller.
|
|
*/
|
|
if (rval != XEVNT_OK) {
|
|
snprintf(statstr, sizeof(statstr),
|
|
"%04x %d %02x %s", htonl(ep->opcode),
|
|
associd, rval, eventstr(rval));
|
|
record_crypto_stats(&peer->srcadr, statstr);
|
|
DPRINTF(1, ("crypto_recv: %s\n", statstr));
|
|
return (rval);
|
|
}
|
|
authlen += (len + 3) / 4 * 4;
|
|
}
|
|
return (rval);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_xmit - construct extension fields
|
|
*
|
|
* This routine is called both when an association is configured and
|
|
* when one is not. The only case where this matters is to retrieve the
|
|
* autokey information, in which case the caller has to provide the
|
|
* association ID to match the association.
|
|
*
|
|
* Side effect: update the packet offset.
|
|
*
|
|
* Errors
|
|
* XEVNT_OK success
|
|
* XEVNT_CRT bad or missing certificate
|
|
* XEVNT_ERR protocol error
|
|
* XEVNT_LEN bad field format or length
|
|
* XEVNT_PER host certificate expired
|
|
*/
|
|
int
|
|
crypto_xmit(
|
|
struct peer *peer, /* peer structure pointer */
|
|
struct pkt *xpkt, /* transmit packet pointer */
|
|
struct recvbuf *rbufp, /* receive buffer pointer */
|
|
int start, /* offset to extension field */
|
|
struct exten *ep, /* extension pointer */
|
|
keyid_t cookie /* session cookie */
|
|
)
|
|
{
|
|
struct exten *fp; /* extension pointers */
|
|
struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
|
|
sockaddr_u *srcadr_sin; /* source address */
|
|
u_int32 *pkt; /* packet pointer */
|
|
u_int opcode; /* extension field opcode */
|
|
char certname[MAXHOSTNAME + 1]; /* subject name buffer */
|
|
char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
|
|
tstamp_t tstamp;
|
|
struct calendar tscal;
|
|
u_int vallen;
|
|
struct value vtemp;
|
|
associd_t associd;
|
|
int rval;
|
|
int len;
|
|
keyid_t tcookie;
|
|
|
|
/*
|
|
* Generate the requested extension field request code, length
|
|
* and association ID. If this is a response and the host is not
|
|
* synchronized, light the error bit and go home.
|
|
*/
|
|
pkt = (u_int32 *)xpkt + start / 4;
|
|
fp = (struct exten *)pkt;
|
|
opcode = ntohl(ep->opcode);
|
|
if (peer != NULL) {
|
|
srcadr_sin = &peer->srcadr;
|
|
if (!(opcode & CRYPTO_RESP))
|
|
peer->opcode = ep->opcode;
|
|
} else {
|
|
srcadr_sin = &rbufp->recv_srcadr;
|
|
}
|
|
associd = (associd_t) ntohl(ep->associd);
|
|
len = 8;
|
|
fp->opcode = htonl((opcode & 0xffff0000) | len);
|
|
fp->associd = ep->associd;
|
|
rval = XEVNT_OK;
|
|
tstamp = crypto_time();
|
|
switch (opcode & 0xffff0000) {
|
|
|
|
/*
|
|
* Send association request and response with status word and
|
|
* host name. Note, this message is not signed and the filestamp
|
|
* contains only the status word.
|
|
*/
|
|
case CRYPTO_ASSOC:
|
|
case CRYPTO_ASSOC | CRYPTO_RESP:
|
|
len = crypto_send(fp, &hostval, start);
|
|
fp->fstamp = htonl(crypto_flags);
|
|
break;
|
|
|
|
/*
|
|
* Send certificate request. Use the values from the extension
|
|
* field.
|
|
*/
|
|
case CRYPTO_CERT:
|
|
memset(&vtemp, 0, sizeof(vtemp));
|
|
vtemp.tstamp = ep->tstamp;
|
|
vtemp.fstamp = ep->fstamp;
|
|
vtemp.vallen = ep->vallen;
|
|
vtemp.ptr = (u_char *)ep->pkt;
|
|
len = crypto_send(fp, &vtemp, start);
|
|
break;
|
|
|
|
/*
|
|
* Send sign request. Use the host certificate, which is self-
|
|
* signed and may or may not be trusted.
|
|
*/
|
|
case CRYPTO_SIGN:
|
|
(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
|
|
if ((calcomp(&tscal, &(cert_host->first)) < 0)
|
|
|| (calcomp(&tscal, &(cert_host->last)) > 0))
|
|
rval = XEVNT_PER;
|
|
else
|
|
len = crypto_send(fp, &cert_host->cert, start);
|
|
break;
|
|
|
|
/*
|
|
* Send certificate response. Use the name in the extension
|
|
* field to find the certificate in the cache. If the request
|
|
* contains no subject name, assume the name of this host. This
|
|
* is for backwards compatibility. Private certificates are
|
|
* never sent.
|
|
*
|
|
* There may be several certificates matching the request. First
|
|
* choice is a self-signed trusted certificate; second choice is
|
|
* any certificate signed by another host. There is no third
|
|
* choice.
|
|
*/
|
|
case CRYPTO_CERT | CRYPTO_RESP:
|
|
vallen = exten_payload_size(ep); /* Must be <64k */
|
|
if (vallen == 0 || vallen >= sizeof(certname) ) {
|
|
rval = XEVNT_LEN;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Find all public valid certificates with matching
|
|
* subject. If a self-signed, trusted certificate is
|
|
* found, use that certificate. If not, use the last non
|
|
* self-signed certificate.
|
|
*/
|
|
memcpy(certname, ep->pkt, vallen);
|
|
certname[vallen] = '\0';
|
|
xp = yp = NULL;
|
|
for (cp = cinfo; cp != NULL; cp = cp->link) {
|
|
if (cp->flags & (CERT_PRIV | CERT_ERROR))
|
|
continue;
|
|
|
|
if (strcmp(certname, cp->subject) != 0)
|
|
continue;
|
|
|
|
if (strcmp(certname, cp->issuer) != 0)
|
|
yp = cp;
|
|
else if (cp ->flags & CERT_TRUST)
|
|
xp = cp;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Be careful who you trust. If the certificate is not
|
|
* found, return an empty response. Note that we dont
|
|
* enforce lifetimes here.
|
|
*
|
|
* The timestamp and filestamp are taken from the
|
|
* certificate value structure. For all certificates the
|
|
* timestamp is the latest signature update time. For
|
|
* host and imported certificates the filestamp is the
|
|
* creation epoch. For signed certificates the filestamp
|
|
* is the creation epoch of the trusted certificate at
|
|
* the root of the certificate trail. In principle, this
|
|
* allows strong checking for signature masquerade.
|
|
*/
|
|
if (xp == NULL)
|
|
xp = yp;
|
|
if (xp == NULL)
|
|
break;
|
|
|
|
if (tstamp == 0)
|
|
break;
|
|
|
|
len = crypto_send(fp, &xp->cert, start);
|
|
break;
|
|
|
|
/*
|
|
* Send challenge in Schnorr (IFF) identity scheme.
|
|
*/
|
|
case CRYPTO_IFF:
|
|
if (peer == NULL)
|
|
break; /* hack attack */
|
|
|
|
if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
|
|
len = crypto_send(fp, &vtemp, start);
|
|
value_free(&vtemp);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Send response in Schnorr (IFF) identity scheme.
|
|
*/
|
|
case CRYPTO_IFF | CRYPTO_RESP:
|
|
if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
|
|
len = crypto_send(fp, &vtemp, start);
|
|
value_free(&vtemp);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Send challenge in Guillou-Quisquater (GQ) identity scheme.
|
|
*/
|
|
case CRYPTO_GQ:
|
|
if (peer == NULL)
|
|
break; /* hack attack */
|
|
|
|
if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
|
|
len = crypto_send(fp, &vtemp, start);
|
|
value_free(&vtemp);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Send response in Guillou-Quisquater (GQ) identity scheme.
|
|
*/
|
|
case CRYPTO_GQ | CRYPTO_RESP:
|
|
if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
|
|
len = crypto_send(fp, &vtemp, start);
|
|
value_free(&vtemp);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Send challenge in MV identity scheme.
|
|
*/
|
|
case CRYPTO_MV:
|
|
if (peer == NULL)
|
|
break; /* hack attack */
|
|
|
|
if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
|
|
len = crypto_send(fp, &vtemp, start);
|
|
value_free(&vtemp);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Send response in MV identity scheme.
|
|
*/
|
|
case CRYPTO_MV | CRYPTO_RESP:
|
|
if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
|
|
len = crypto_send(fp, &vtemp, start);
|
|
value_free(&vtemp);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Send certificate sign response. The integrity of the request
|
|
* certificate has already been verified on the receive side.
|
|
* Sign the response using the local server key. Use the
|
|
* filestamp from the request and use the timestamp as the
|
|
* current time. Light the error bit if the certificate is
|
|
* invalid or contains an unverified signature.
|
|
*/
|
|
case CRYPTO_SIGN | CRYPTO_RESP:
|
|
if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
|
|
len = crypto_send(fp, &vtemp, start);
|
|
value_free(&vtemp);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Send public key and signature. Use the values from the public
|
|
* key.
|
|
*/
|
|
case CRYPTO_COOK:
|
|
len = crypto_send(fp, &pubkey, start);
|
|
break;
|
|
|
|
/*
|
|
* Encrypt and send cookie and signature. Light the error bit if
|
|
* anything goes wrong.
|
|
*/
|
|
case CRYPTO_COOK | CRYPTO_RESP:
|
|
vallen = ntohl(ep->vallen); /* Must be <64k */
|
|
if ( vallen == 0
|
|
|| (vallen >= MAX_VALLEN)
|
|
|| (opcode & 0x0000ffff) < VALUE_LEN + vallen) {
|
|
rval = XEVNT_LEN;
|
|
break;
|
|
}
|
|
if (peer == NULL)
|
|
tcookie = cookie;
|
|
else
|
|
tcookie = peer->hcookie;
|
|
if ((rval = crypto_encrypt((const u_char *)ep->pkt, vallen, &tcookie, &vtemp))
|
|
== XEVNT_OK) {
|
|
len = crypto_send(fp, &vtemp, start);
|
|
value_free(&vtemp);
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* Find peer and send autokey data and signature in broadcast
|
|
* server and symmetric modes. Use the values in the autokey
|
|
* structure. If no association is found, either the server has
|
|
* restarted with new associations or some perp has replayed an
|
|
* old message, in which case light the error bit.
|
|
*/
|
|
case CRYPTO_AUTO | CRYPTO_RESP:
|
|
if (peer == NULL) {
|
|
if ((peer = findpeerbyassoc(associd)) == NULL) {
|
|
rval = XEVNT_ERR;
|
|
break;
|
|
}
|
|
}
|
|
peer->flags &= ~FLAG_ASSOC;
|
|
len = crypto_send(fp, &peer->sndval, start);
|
|
break;
|
|
|
|
/*
|
|
* Send leapseconds values and signature. Use the values from
|
|
* the tai structure. If no table has been loaded, just send an
|
|
* empty request.
|
|
*/
|
|
case CRYPTO_LEAP | CRYPTO_RESP:
|
|
len = crypto_send(fp, &tai_leap, start);
|
|
break;
|
|
|
|
/*
|
|
* Default - Send a valid command for unknown requests; send
|
|
* an error response for unknown resonses.
|
|
*/
|
|
default:
|
|
if (opcode & CRYPTO_RESP)
|
|
rval = XEVNT_ERR;
|
|
}
|
|
|
|
/*
|
|
* In case of error, flame the log. If a request, toss the
|
|
* puppy; if a response, return so the sender can flame, too.
|
|
*/
|
|
if (rval != XEVNT_OK) {
|
|
u_int32 uint32;
|
|
|
|
uint32 = CRYPTO_ERROR;
|
|
opcode |= uint32;
|
|
fp->opcode |= htonl(uint32);
|
|
snprintf(statstr, sizeof(statstr),
|
|
"%04x %d %02x %s", opcode, associd, rval,
|
|
eventstr(rval));
|
|
record_crypto_stats(srcadr_sin, statstr);
|
|
DPRINTF(1, ("crypto_xmit: %s\n", statstr));
|
|
if (!(opcode & CRYPTO_RESP))
|
|
return (0);
|
|
}
|
|
DPRINTF(1, ("crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
|
|
crypto_flags, start, len, opcode >> 16, associd));
|
|
return (len);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_verify - verify the extension field value and signature
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ERR protocol error
|
|
* XEVNT_FSP bad filestamp
|
|
* XEVNT_LEN bad field format or length
|
|
* XEVNT_PUB bad or missing public key
|
|
* XEVNT_SGL bad signature length
|
|
* XEVNT_SIG signature not verified
|
|
* XEVNT_TSP bad timestamp
|
|
*/
|
|
static int
|
|
crypto_verify(
|
|
struct exten *ep, /* extension pointer */
|
|
struct value *vp, /* value pointer */
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
EVP_PKEY *pkey; /* server public key */
|
|
EVP_MD_CTX ctx; /* signature context */
|
|
tstamp_t tstamp, tstamp1 = 0; /* timestamp */
|
|
tstamp_t fstamp, fstamp1 = 0; /* filestamp */
|
|
u_int vallen; /* value length */
|
|
u_int siglen; /* signature length */
|
|
u_int opcode, len;
|
|
int i;
|
|
|
|
/*
|
|
* We are extremely parannoyed. We require valid opcode, length,
|
|
* association ID, timestamp, filestamp, public key, digest,
|
|
* signature length and signature, where relevant. Note that
|
|
* preliminary length checks are done in the main loop.
|
|
*/
|
|
len = ntohl(ep->opcode) & 0x0000ffff;
|
|
opcode = ntohl(ep->opcode) & 0xffff0000;
|
|
|
|
/*
|
|
* Check for valid value header, association ID and extension
|
|
* field length. Remember, it is not an error to receive an
|
|
* unsolicited response; however, the response ID must match
|
|
* the association ID.
|
|
*/
|
|
if (opcode & CRYPTO_ERROR)
|
|
return (XEVNT_ERR);
|
|
|
|
if (len < VALUE_LEN)
|
|
return (XEVNT_LEN);
|
|
|
|
if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
|
|
MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
|
|
if (ntohl(ep->associd) != peer->assoc)
|
|
return (XEVNT_ERR);
|
|
} else {
|
|
if (ntohl(ep->associd) != peer->associd)
|
|
return (XEVNT_ERR);
|
|
}
|
|
|
|
/*
|
|
* We have a valid value header. Check for valid value and
|
|
* signature field lengths. The extension field length must be
|
|
* long enough to contain the value header, value and signature.
|
|
* Note both the value and signature field lengths are rounded
|
|
* up to the next word (4 octets).
|
|
*/
|
|
vallen = ntohl(ep->vallen);
|
|
if ( vallen == 0
|
|
|| vallen > MAX_VALLEN)
|
|
return (XEVNT_LEN);
|
|
|
|
i = (vallen + 3) / 4;
|
|
siglen = ntohl(ep->pkt[i++]);
|
|
if ( siglen > MAX_VALLEN
|
|
|| len - VALUE_LEN < ((vallen + 3) / 4) * 4
|
|
|| len - VALUE_LEN - ((vallen + 3) / 4) * 4
|
|
< ((siglen + 3) / 4) * 4)
|
|
return (XEVNT_LEN);
|
|
|
|
/*
|
|
* Check for valid timestamp and filestamp. If the timestamp is
|
|
* zero, the sender is not synchronized and signatures are
|
|
* not possible. If nonzero the timestamp must not precede the
|
|
* filestamp. The timestamp and filestamp must not precede the
|
|
* corresponding values in the value structure, if present.
|
|
*/
|
|
tstamp = ntohl(ep->tstamp);
|
|
fstamp = ntohl(ep->fstamp);
|
|
if (tstamp == 0)
|
|
return (XEVNT_TSP);
|
|
|
|
if (tstamp < fstamp)
|
|
return (XEVNT_TSP);
|
|
|
|
if (vp != NULL) {
|
|
tstamp1 = ntohl(vp->tstamp);
|
|
fstamp1 = ntohl(vp->fstamp);
|
|
if (tstamp1 != 0 && fstamp1 != 0) {
|
|
if (tstamp < tstamp1)
|
|
return (XEVNT_TSP);
|
|
|
|
if ((tstamp < fstamp1 || fstamp < fstamp1))
|
|
return (XEVNT_FSP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At the time the certificate message is validated, the public
|
|
* key in the message is not available. Thus, don't try to
|
|
* verify the signature.
|
|
*/
|
|
if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
|
|
return (XEVNT_OK);
|
|
|
|
/*
|
|
* Check for valid signature length, public key and digest
|
|
* algorithm.
|
|
*/
|
|
if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
|
|
pkey = sign_pkey;
|
|
else
|
|
pkey = peer->pkey;
|
|
if (siglen == 0 || pkey == NULL || peer->digest == NULL)
|
|
return (XEVNT_ERR);
|
|
|
|
if (siglen != (u_int)EVP_PKEY_size(pkey))
|
|
return (XEVNT_SGL);
|
|
|
|
/*
|
|
* Darn, I thought we would never get here. Verify the
|
|
* signature. If the identity exchange is verified, light the
|
|
* proventic bit. What a relief.
|
|
*/
|
|
EVP_VerifyInit(&ctx, peer->digest);
|
|
/* XXX: the "+ 12" needs to be at least documented... */
|
|
EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12);
|
|
if (EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen,
|
|
pkey) <= 0)
|
|
return (XEVNT_SIG);
|
|
|
|
if (peer->crypto & CRYPTO_FLAG_VRFY)
|
|
peer->crypto |= CRYPTO_FLAG_PROV;
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_encrypt - construct vp (encrypted cookie and signature) from
|
|
* the public key and cookie.
|
|
*
|
|
* Returns:
|
|
* XEVNT_OK success
|
|
* XEVNT_CKY bad or missing cookie
|
|
* XEVNT_PUB bad or missing public key
|
|
*/
|
|
static int
|
|
crypto_encrypt(
|
|
const u_char *ptr, /* Public Key */
|
|
u_int vallen, /* Length of Public Key */
|
|
keyid_t *cookie, /* server cookie */
|
|
struct value *vp /* value pointer */
|
|
)
|
|
{
|
|
EVP_PKEY *pkey; /* public key */
|
|
EVP_MD_CTX ctx; /* signature context */
|
|
tstamp_t tstamp; /* NTP timestamp */
|
|
u_int32 temp32;
|
|
u_char *puch;
|
|
|
|
/*
|
|
* Extract the public key from the request.
|
|
*/
|
|
pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, vallen);
|
|
if (pkey == NULL) {
|
|
msyslog(LOG_ERR, "crypto_encrypt: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
return (XEVNT_PUB);
|
|
}
|
|
|
|
/*
|
|
* Encrypt the cookie, encode in ASN.1 and sign.
|
|
*/
|
|
memset(vp, 0, sizeof(struct value));
|
|
tstamp = crypto_time();
|
|
vp->tstamp = htonl(tstamp);
|
|
vp->fstamp = hostval.tstamp;
|
|
vallen = EVP_PKEY_size(pkey);
|
|
vp->vallen = htonl(vallen);
|
|
vp->ptr = emalloc(vallen);
|
|
puch = vp->ptr;
|
|
temp32 = htonl(*cookie);
|
|
if (RSA_public_encrypt(4, (u_char *)&temp32, puch,
|
|
pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING) <= 0) {
|
|
msyslog(LOG_ERR, "crypto_encrypt: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
free(vp->ptr);
|
|
EVP_PKEY_free(pkey);
|
|
return (XEVNT_CKY);
|
|
}
|
|
EVP_PKEY_free(pkey);
|
|
if (tstamp == 0)
|
|
return (XEVNT_OK);
|
|
|
|
vp->sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
|
|
EVP_SignUpdate(&ctx, vp->ptr, vallen);
|
|
if (EVP_SignFinal(&ctx, vp->sig, &vallen, sign_pkey)) {
|
|
INSIST(vallen <= sign_siglen);
|
|
vp->siglen = htonl(vallen);
|
|
}
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_ident - construct extension field for identity scheme
|
|
*
|
|
* This routine determines which identity scheme is in use and
|
|
* constructs an extension field for that scheme.
|
|
*
|
|
* Returns
|
|
* CRYTPO_IFF IFF scheme
|
|
* CRYPTO_GQ GQ scheme
|
|
* CRYPTO_MV MV scheme
|
|
* CRYPTO_NULL no available scheme
|
|
*/
|
|
u_int
|
|
crypto_ident(
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
char filename[MAXFILENAME];
|
|
const char * scheme_name;
|
|
u_int scheme_id;
|
|
|
|
/*
|
|
* We come here after the group trusted host has been found; its
|
|
* name defines the group name. Search the key cache for all
|
|
* keys matching the same group name in order IFF, GQ and MV.
|
|
* Use the first one available.
|
|
*/
|
|
scheme_name = NULL;
|
|
if (peer->crypto & CRYPTO_FLAG_IFF) {
|
|
scheme_name = "iff";
|
|
scheme_id = CRYPTO_IFF;
|
|
} else if (peer->crypto & CRYPTO_FLAG_GQ) {
|
|
scheme_name = "gq";
|
|
scheme_id = CRYPTO_GQ;
|
|
} else if (peer->crypto & CRYPTO_FLAG_MV) {
|
|
scheme_name = "mv";
|
|
scheme_id = CRYPTO_MV;
|
|
}
|
|
|
|
if (scheme_name != NULL) {
|
|
snprintf(filename, sizeof(filename), "ntpkey_%spar_%s",
|
|
scheme_name, peer->ident);
|
|
peer->ident_pkey = crypto_key(filename, NULL,
|
|
&peer->srcadr);
|
|
if (peer->ident_pkey != NULL)
|
|
return scheme_id;
|
|
}
|
|
|
|
msyslog(LOG_NOTICE,
|
|
"crypto_ident: no identity parameters found for group %s",
|
|
peer->ident);
|
|
|
|
return CRYPTO_NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_args - construct extension field from arguments
|
|
*
|
|
* This routine creates an extension field with current timestamps and
|
|
* specified opcode, association ID and optional string. Note that the
|
|
* extension field is created here, but freed after the crypto_xmit()
|
|
* call in the protocol module.
|
|
*
|
|
* Returns extension field pointer (no errors)
|
|
*
|
|
* XXX: opcode and len should really be 32-bit quantities and
|
|
* we should make sure that str is not too big.
|
|
*/
|
|
struct exten *
|
|
crypto_args(
|
|
struct peer *peer, /* peer structure pointer */
|
|
u_int opcode, /* operation code */
|
|
associd_t associd, /* association ID */
|
|
char *str /* argument string */
|
|
)
|
|
{
|
|
tstamp_t tstamp; /* NTP timestamp */
|
|
struct exten *ep; /* extension field pointer */
|
|
u_int len; /* extension field length */
|
|
size_t slen = 0;
|
|
|
|
tstamp = crypto_time();
|
|
len = sizeof(struct exten);
|
|
if (str != NULL) {
|
|
slen = strlen(str);
|
|
INSIST(slen < MAX_VALLEN);
|
|
len += slen;
|
|
}
|
|
ep = emalloc_zero(len);
|
|
if (opcode == 0)
|
|
return (ep);
|
|
|
|
REQUIRE(0 == (len & ~0x0000ffff));
|
|
REQUIRE(0 == (opcode & ~0xffff0000));
|
|
|
|
ep->opcode = htonl(opcode + len);
|
|
ep->associd = htonl(associd);
|
|
ep->tstamp = htonl(tstamp);
|
|
ep->fstamp = hostval.tstamp;
|
|
ep->vallen = 0;
|
|
if (str != NULL) {
|
|
ep->vallen = htonl(slen);
|
|
memcpy((char *)ep->pkt, str, slen);
|
|
}
|
|
return (ep);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_send - construct extension field from value components
|
|
*
|
|
* The value and signature fields are zero-padded to a word boundary.
|
|
* Note: it is not polite to send a nonempty signature with zero
|
|
* timestamp or a nonzero timestamp with an empty signature, but those
|
|
* rules are not enforced here.
|
|
*
|
|
* XXX This code won't work on a box with 16-bit ints.
|
|
*/
|
|
int
|
|
crypto_send(
|
|
struct exten *ep, /* extension field pointer */
|
|
struct value *vp, /* value pointer */
|
|
int start /* buffer offset */
|
|
)
|
|
{
|
|
u_int len, vallen, siglen, opcode;
|
|
u_int i, j;
|
|
|
|
/*
|
|
* Calculate extension field length and check for buffer
|
|
* overflow. Leave room for the MAC.
|
|
*/
|
|
len = 16; /* XXX Document! */
|
|
vallen = ntohl(vp->vallen);
|
|
INSIST(vallen <= MAX_VALLEN);
|
|
len += ((vallen + 3) / 4 + 1) * 4;
|
|
siglen = ntohl(vp->siglen);
|
|
len += ((siglen + 3) / 4 + 1) * 4;
|
|
if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
|
|
return (0);
|
|
|
|
/*
|
|
* Copy timestamps.
|
|
*/
|
|
ep->tstamp = vp->tstamp;
|
|
ep->fstamp = vp->fstamp;
|
|
ep->vallen = vp->vallen;
|
|
|
|
/*
|
|
* Copy value. If the data field is empty or zero length,
|
|
* encode an empty value with length zero.
|
|
*/
|
|
i = 0;
|
|
if (vallen > 0 && vp->ptr != NULL) {
|
|
j = vallen / 4;
|
|
if (j * 4 < vallen)
|
|
ep->pkt[i + j++] = 0;
|
|
memcpy(&ep->pkt[i], vp->ptr, vallen);
|
|
i += j;
|
|
}
|
|
|
|
/*
|
|
* Copy signature. If the signature field is empty or zero
|
|
* length, encode an empty signature with length zero.
|
|
*/
|
|
ep->pkt[i++] = vp->siglen;
|
|
if (siglen > 0 && vp->sig != NULL) {
|
|
j = siglen / 4;
|
|
if (j * 4 < siglen)
|
|
ep->pkt[i + j++] = 0;
|
|
memcpy(&ep->pkt[i], vp->sig, siglen);
|
|
/* i += j; */ /* We don't use i after this */
|
|
}
|
|
opcode = ntohl(ep->opcode);
|
|
ep->opcode = htonl((opcode & 0xffff0000) | len);
|
|
ENSURE(len <= MAX_VALLEN);
|
|
return (len);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_update - compute new public value and sign extension fields
|
|
*
|
|
* This routine runs periodically, like once a day, and when something
|
|
* changes. It updates the timestamps on three value structures and one
|
|
* value structure list, then signs all the structures:
|
|
*
|
|
* hostval host name (not signed)
|
|
* pubkey public key
|
|
* cinfo certificate info/value list
|
|
* tai_leap leap values
|
|
*
|
|
* Filestamps are proventic data, so this routine runs only when the
|
|
* host is synchronized to a proventicated source. Thus, the timestamp
|
|
* is proventic and can be used to deflect clogging attacks.
|
|
*
|
|
* Returns void (no errors)
|
|
*/
|
|
void
|
|
crypto_update(void)
|
|
{
|
|
EVP_MD_CTX ctx; /* message digest context */
|
|
struct cert_info *cp; /* certificate info/value */
|
|
char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
|
|
u_int32 *ptr;
|
|
u_int len;
|
|
leap_result_t leap_data;
|
|
|
|
hostval.tstamp = htonl(crypto_time());
|
|
if (hostval.tstamp == 0)
|
|
return;
|
|
|
|
/*
|
|
* Sign public key and timestamps. The filestamp is derived from
|
|
* the host key file extension from wherever the file was
|
|
* generated.
|
|
*/
|
|
if (pubkey.vallen != 0) {
|
|
pubkey.tstamp = hostval.tstamp;
|
|
pubkey.siglen = 0;
|
|
if (pubkey.sig == NULL)
|
|
pubkey.sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12);
|
|
EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen));
|
|
if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
pubkey.siglen = htonl(len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sign certificates and timestamps. The filestamp is derived
|
|
* from the certificate file extension from wherever the file
|
|
* was generated. Note we do not throw expired certificates
|
|
* away; they may have signed younger ones.
|
|
*/
|
|
for (cp = cinfo; cp != NULL; cp = cp->link) {
|
|
cp->cert.tstamp = hostval.tstamp;
|
|
cp->cert.siglen = 0;
|
|
if (cp->cert.sig == NULL)
|
|
cp->cert.sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12);
|
|
EVP_SignUpdate(&ctx, cp->cert.ptr,
|
|
ntohl(cp->cert.vallen));
|
|
if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
cp->cert.siglen = htonl(len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sign leapseconds values and timestamps. Note it is not an
|
|
* error to return null values.
|
|
*/
|
|
tai_leap.tstamp = hostval.tstamp;
|
|
tai_leap.fstamp = hostval.fstamp;
|
|
|
|
/* Get the leap second era. We might need a full lookup early
|
|
* after start, when the cache is not yet loaded.
|
|
*/
|
|
leapsec_frame(&leap_data);
|
|
if ( ! memcmp(&leap_data.ebase, &leap_data.ttime, sizeof(vint64))) {
|
|
time_t now = time(NULL);
|
|
uint32_t nowntp = (uint32_t)now + JAN_1970;
|
|
leapsec_query(&leap_data, nowntp, &now);
|
|
}
|
|
|
|
/* Create the data block. The protocol does not work without. */
|
|
len = 3 * sizeof(u_int32);
|
|
if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len) {
|
|
free(tai_leap.ptr);
|
|
tai_leap.ptr = emalloc(len);
|
|
tai_leap.vallen = htonl(len);
|
|
}
|
|
ptr = (u_int32 *)tai_leap.ptr;
|
|
if (leap_data.tai_offs > 10) {
|
|
/* create a TAI / leap era block. The end time is a
|
|
* fake -- maybe we can do better.
|
|
*/
|
|
ptr[0] = htonl(leap_data.tai_offs);
|
|
ptr[1] = htonl(leap_data.ebase.d_s.lo);
|
|
if (leap_data.ttime.d_s.hi >= 0)
|
|
ptr[2] = htonl(leap_data.ttime.D_s.lo + 7*86400);
|
|
else
|
|
ptr[2] = htonl(leap_data.ebase.D_s.lo + 25*86400);
|
|
} else {
|
|
/* no leap era available */
|
|
memset(ptr, 0, len);
|
|
}
|
|
if (tai_leap.sig == NULL)
|
|
tai_leap.sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12);
|
|
EVP_SignUpdate(&ctx, tai_leap.ptr, len);
|
|
if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
tai_leap.siglen = htonl(len);
|
|
}
|
|
crypto_flags |= CRYPTO_FLAG_TAI;
|
|
|
|
snprintf(statstr, sizeof(statstr), "signature update ts %u",
|
|
ntohl(hostval.tstamp));
|
|
record_crypto_stats(NULL, statstr);
|
|
DPRINTF(1, ("crypto_update: %s\n", statstr));
|
|
}
|
|
|
|
/*
|
|
* crypto_update_taichange - eventually trigger crypto_update
|
|
*
|
|
* This is called when a change in 'sys_tai' is detected. This will
|
|
* happen shortly after a leap second is detected, but unhappily also
|
|
* early after system start; also, the crypto stuff might be unused and
|
|
* an unguarded call to crypto_update() causes a crash.
|
|
*
|
|
* This function makes sure that there already *is* a valid crypto block
|
|
* for the use with autokey, and only calls 'crypto_update()' if it can
|
|
* succeed.
|
|
*
|
|
* Returns void (no errors)
|
|
*/
|
|
void
|
|
crypto_update_taichange(void)
|
|
{
|
|
static const u_int len = 3 * sizeof(u_int32);
|
|
|
|
/* check if the signing digest algo is available */
|
|
if (sign_digest == NULL || sign_pkey == NULL)
|
|
return;
|
|
|
|
/* check size of TAI extension block */
|
|
if (tai_leap.ptr == NULL || ntohl(tai_leap.vallen) != len)
|
|
return;
|
|
|
|
/* crypto_update should at least not crash here! */
|
|
crypto_update();
|
|
}
|
|
|
|
/*
|
|
* value_free - free value structure components.
|
|
*
|
|
* Returns void (no errors)
|
|
*/
|
|
void
|
|
value_free(
|
|
struct value *vp /* value structure */
|
|
)
|
|
{
|
|
if (vp->ptr != NULL)
|
|
free(vp->ptr);
|
|
if (vp->sig != NULL)
|
|
free(vp->sig);
|
|
memset(vp, 0, sizeof(struct value));
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_time - returns current NTP time.
|
|
*
|
|
* Returns NTP seconds if in synch, 0 otherwise
|
|
*/
|
|
tstamp_t
|
|
crypto_time()
|
|
{
|
|
l_fp tstamp; /* NTP time */
|
|
|
|
L_CLR(&tstamp);
|
|
if (sys_leap != LEAP_NOTINSYNC)
|
|
get_systime(&tstamp);
|
|
return (tstamp.l_ui);
|
|
}
|
|
|
|
|
|
/*
|
|
* asn_to_calendar - convert ASN1_TIME time structure to struct calendar.
|
|
*
|
|
*/
|
|
static
|
|
void
|
|
asn_to_calendar (
|
|
ASN1_TIME *asn1time, /* pointer to ASN1_TIME structure */
|
|
struct calendar *pjd /* pointer to result */
|
|
)
|
|
{
|
|
size_t len; /* length of ASN1_TIME string */
|
|
char v[24]; /* writable copy of ASN1_TIME string */
|
|
unsigned long temp; /* result from strtoul */
|
|
|
|
/*
|
|
* Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
|
|
* Or YYYYMMDDHHMMSSZ.
|
|
* Note that the YY, MM, DD fields start with one, the HH, MM,
|
|
* SS fields start with zero and the Z character is ignored.
|
|
* Also note that two-digit years less than 50 map to years greater than
|
|
* 100. Dontcha love ASN.1? Better than MIL-188.
|
|
*/
|
|
len = asn1time->length;
|
|
REQUIRE(len < sizeof(v));
|
|
(void)strncpy(v, (char *)(asn1time->data), len);
|
|
REQUIRE(len >= 13);
|
|
temp = strtoul(v+len-3, NULL, 10);
|
|
pjd->second = temp;
|
|
v[len-3] = '\0';
|
|
|
|
temp = strtoul(v+len-5, NULL, 10);
|
|
pjd->minute = temp;
|
|
v[len-5] = '\0';
|
|
|
|
temp = strtoul(v+len-7, NULL, 10);
|
|
pjd->hour = temp;
|
|
v[len-7] = '\0';
|
|
|
|
temp = strtoul(v+len-9, NULL, 10);
|
|
pjd->monthday = temp;
|
|
v[len-9] = '\0';
|
|
|
|
temp = strtoul(v+len-11, NULL, 10);
|
|
pjd->month = temp;
|
|
v[len-11] = '\0';
|
|
|
|
temp = strtoul(v, NULL, 10);
|
|
/* handle two-digit years */
|
|
if (temp < 50UL)
|
|
temp += 100UL;
|
|
if (temp < 150UL)
|
|
temp += 1900UL;
|
|
pjd->year = temp;
|
|
|
|
pjd->yearday = pjd->weekday = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
|
|
*
|
|
* Returns void (no errors)
|
|
*/
|
|
static void
|
|
bighash(
|
|
BIGNUM *bn, /* BIGNUM * from */
|
|
BIGNUM *bk /* BIGNUM * to */
|
|
)
|
|
{
|
|
EVP_MD_CTX ctx; /* message digest context */
|
|
u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
|
|
u_char *ptr; /* a BIGNUM as binary string */
|
|
u_int len;
|
|
|
|
len = BN_num_bytes(bn);
|
|
ptr = emalloc(len);
|
|
BN_bn2bin(bn, ptr);
|
|
EVP_DigestInit(&ctx, EVP_md5());
|
|
EVP_DigestUpdate(&ctx, ptr, len);
|
|
EVP_DigestFinal(&ctx, dgst, &len);
|
|
BN_bin2bn(dgst, len, bk);
|
|
free(ptr);
|
|
}
|
|
|
|
|
|
/*
|
|
***********************************************************************
|
|
* *
|
|
* The following routines implement the Schnorr (IFF) identity scheme *
|
|
* *
|
|
***********************************************************************
|
|
*
|
|
* The Schnorr (IFF) identity scheme is intended for use when
|
|
* certificates are generated by some other trusted certificate
|
|
* authority and the certificate cannot be used to convey public
|
|
* parameters. There are two kinds of files: encrypted server files that
|
|
* contain private and public values and nonencrypted client files that
|
|
* contain only public values. New generations of server files must be
|
|
* securely transmitted to all servers of the group; client files can be
|
|
* distributed by any means. The scheme is self contained and
|
|
* independent of new generations of host keys, sign keys and
|
|
* certificates.
|
|
*
|
|
* The IFF values hide in a DSA cuckoo structure which uses the same
|
|
* parameters. The values are used by an identity scheme based on DSA
|
|
* cryptography and described in Stimson p. 285. The p is a 512-bit
|
|
* prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
|
|
* and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
|
|
* private random group key b (0 < b < q) and public key v = g^b, then
|
|
* sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
|
|
* Alice challenges Bob to confirm identity using the protocol described
|
|
* below.
|
|
*
|
|
* How it works
|
|
*
|
|
* The scheme goes like this. Both Alice and Bob have the public primes
|
|
* p, q and generator g. The TA gives private key b to Bob and public
|
|
* key v to Alice.
|
|
*
|
|
* Alice rolls new random challenge r (o < r < q) and sends to Bob in
|
|
* the IFF request message. Bob rolls new random k (0 < k < q), then
|
|
* computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
|
|
* to Alice in the response message. Besides making the response
|
|
* shorter, the hash makes it effectivey impossible for an intruder to
|
|
* solve for b by observing a number of these messages.
|
|
*
|
|
* Alice receives the response and computes g^y v^r mod p. After a bit
|
|
* of algebra, this simplifies to g^k. If the hash of this result
|
|
* matches hash(x), Alice knows that Bob has the group key b. The signed
|
|
* response binds this knowledge to Bob's private key and the public key
|
|
* previously received in his certificate.
|
|
*
|
|
* crypto_alice - construct Alice's challenge in IFF scheme
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ID bad or missing group key
|
|
* XEVNT_PUB bad or missing public key
|
|
*/
|
|
static int
|
|
crypto_alice(
|
|
struct peer *peer, /* peer pointer */
|
|
struct value *vp /* value pointer */
|
|
)
|
|
{
|
|
DSA *dsa; /* IFF parameters */
|
|
BN_CTX *bctx; /* BIGNUM context */
|
|
EVP_MD_CTX ctx; /* signature context */
|
|
tstamp_t tstamp;
|
|
u_int len;
|
|
|
|
/*
|
|
* The identity parameters must have correct format and content.
|
|
*/
|
|
if (peer->ident_pkey == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_alice: scheme unavailable");
|
|
return (XEVNT_ID);
|
|
}
|
|
|
|
if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_alice: defective key");
|
|
return (XEVNT_PUB);
|
|
}
|
|
|
|
/*
|
|
* Roll new random r (0 < r < q).
|
|
*/
|
|
if (peer->iffval != NULL)
|
|
BN_free(peer->iffval);
|
|
peer->iffval = BN_new();
|
|
len = BN_num_bytes(dsa->q);
|
|
BN_rand(peer->iffval, len * 8, -1, 1); /* r mod q*/
|
|
bctx = BN_CTX_new();
|
|
BN_mod(peer->iffval, peer->iffval, dsa->q, bctx);
|
|
BN_CTX_free(bctx);
|
|
|
|
/*
|
|
* Sign and send to Bob. The filestamp is from the local file.
|
|
*/
|
|
memset(vp, 0, sizeof(struct value));
|
|
tstamp = crypto_time();
|
|
vp->tstamp = htonl(tstamp);
|
|
vp->fstamp = htonl(peer->ident_pkey->fstamp);
|
|
vp->vallen = htonl(len);
|
|
vp->ptr = emalloc(len);
|
|
BN_bn2bin(peer->iffval, vp->ptr);
|
|
if (tstamp == 0)
|
|
return (XEVNT_OK);
|
|
|
|
vp->sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
|
|
EVP_SignUpdate(&ctx, vp->ptr, len);
|
|
if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
vp->siglen = htonl(len);
|
|
}
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_bob - construct Bob's response to Alice's challenge
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ERR protocol error
|
|
* XEVNT_ID bad or missing group key
|
|
*/
|
|
static int
|
|
crypto_bob(
|
|
struct exten *ep, /* extension pointer */
|
|
struct value *vp /* value pointer */
|
|
)
|
|
{
|
|
DSA *dsa; /* IFF parameters */
|
|
DSA_SIG *sdsa; /* DSA signature context fake */
|
|
BN_CTX *bctx; /* BIGNUM context */
|
|
EVP_MD_CTX ctx; /* signature context */
|
|
tstamp_t tstamp; /* NTP timestamp */
|
|
BIGNUM *bn, *bk, *r;
|
|
u_char *ptr;
|
|
u_int len; /* extension field value length */
|
|
|
|
/*
|
|
* If the IFF parameters are not valid, something awful
|
|
* happened or we are being tormented.
|
|
*/
|
|
if (iffkey_info == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
|
|
return (XEVNT_ID);
|
|
}
|
|
dsa = iffkey_info->pkey->pkey.dsa;
|
|
|
|
/*
|
|
* Extract r from the challenge.
|
|
*/
|
|
len = exten_payload_size(ep);
|
|
if (len == 0 || len > MAX_VALLEN)
|
|
return (XEVNT_LEN);
|
|
if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
|
|
msyslog(LOG_ERR, "crypto_bob: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
return (XEVNT_ERR);
|
|
}
|
|
|
|
/*
|
|
* Bob rolls random k (0 < k < q), computes y = k + b r mod q
|
|
* and x = g^k mod p, then sends (y, hash(x)) to Alice.
|
|
*/
|
|
bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
|
|
sdsa = DSA_SIG_new();
|
|
BN_rand(bk, len * 8, -1, 1); /* k */
|
|
BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */
|
|
BN_add(bn, bn, bk);
|
|
BN_mod(bn, bn, dsa->q, bctx); /* k + b r mod q */
|
|
sdsa->r = BN_dup(bn);
|
|
BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */
|
|
bighash(bk, bk);
|
|
sdsa->s = BN_dup(bk);
|
|
BN_CTX_free(bctx);
|
|
BN_free(r); BN_free(bn); BN_free(bk);
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
DSA_print_fp(stdout, dsa, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Encode the values in ASN.1 and sign. The filestamp is from
|
|
* the local file.
|
|
*/
|
|
len = i2d_DSA_SIG(sdsa, NULL);
|
|
if (len == 0) {
|
|
msyslog(LOG_ERR, "crypto_bob: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
DSA_SIG_free(sdsa);
|
|
return (XEVNT_ERR);
|
|
}
|
|
if (len > MAX_VALLEN) {
|
|
msyslog(LOG_ERR, "crypto_bob: signature is too big: %u",
|
|
len);
|
|
DSA_SIG_free(sdsa);
|
|
return (XEVNT_LEN);
|
|
}
|
|
memset(vp, 0, sizeof(struct value));
|
|
tstamp = crypto_time();
|
|
vp->tstamp = htonl(tstamp);
|
|
vp->fstamp = htonl(iffkey_info->fstamp);
|
|
vp->vallen = htonl(len);
|
|
ptr = emalloc(len);
|
|
vp->ptr = ptr;
|
|
i2d_DSA_SIG(sdsa, &ptr);
|
|
DSA_SIG_free(sdsa);
|
|
if (tstamp == 0)
|
|
return (XEVNT_OK);
|
|
|
|
/* XXX: more validation to make sure the sign fits... */
|
|
vp->sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
|
|
EVP_SignUpdate(&ctx, vp->ptr, len);
|
|
if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
vp->siglen = htonl(len);
|
|
}
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_iff - verify Bob's response to Alice's challenge
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_FSP bad filestamp
|
|
* XEVNT_ID bad or missing group key
|
|
* XEVNT_PUB bad or missing public key
|
|
*/
|
|
int
|
|
crypto_iff(
|
|
struct exten *ep, /* extension pointer */
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
DSA *dsa; /* IFF parameters */
|
|
BN_CTX *bctx; /* BIGNUM context */
|
|
DSA_SIG *sdsa; /* DSA parameters */
|
|
BIGNUM *bn, *bk;
|
|
u_int len;
|
|
const u_char *ptr;
|
|
int temp;
|
|
|
|
/*
|
|
* If the IFF parameters are not valid or no challenge was sent,
|
|
* something awful happened or we are being tormented.
|
|
*/
|
|
if (peer->ident_pkey == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
|
|
return (XEVNT_ID);
|
|
}
|
|
if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
|
|
msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
|
|
ntohl(ep->fstamp));
|
|
return (XEVNT_FSP);
|
|
}
|
|
if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_iff: defective key");
|
|
return (XEVNT_PUB);
|
|
}
|
|
if (peer->iffval == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
|
|
return (XEVNT_ID);
|
|
}
|
|
|
|
/*
|
|
* Extract the k + b r and g^k values from the response.
|
|
*/
|
|
bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
|
|
len = ntohl(ep->vallen);
|
|
ptr = (u_char *)ep->pkt;
|
|
if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
|
|
BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
|
|
msyslog(LOG_ERR, "crypto_iff: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
return (XEVNT_ERR);
|
|
}
|
|
|
|
/*
|
|
* Compute g^(k + b r) g^(q - b)r mod p.
|
|
*/
|
|
BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx);
|
|
BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx);
|
|
BN_mod_mul(bn, bn, bk, dsa->p, bctx);
|
|
|
|
/*
|
|
* Verify the hash of the result matches hash(x).
|
|
*/
|
|
bighash(bn, bn);
|
|
temp = BN_cmp(bn, sdsa->s);
|
|
BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
|
|
BN_free(peer->iffval);
|
|
peer->iffval = NULL;
|
|
DSA_SIG_free(sdsa);
|
|
if (temp == 0)
|
|
return (XEVNT_OK);
|
|
|
|
msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
|
|
return (XEVNT_ID);
|
|
}
|
|
|
|
|
|
/*
|
|
***********************************************************************
|
|
* *
|
|
* The following routines implement the Guillou-Quisquater (GQ) *
|
|
* identity scheme *
|
|
* *
|
|
***********************************************************************
|
|
*
|
|
* The Guillou-Quisquater (GQ) identity scheme is intended for use when
|
|
* the certificate can be used to convey public parameters. The scheme
|
|
* uses a X509v3 certificate extension field do convey the public key of
|
|
* a private key known only to servers. There are two kinds of files:
|
|
* encrypted server files that contain private and public values and
|
|
* nonencrypted client files that contain only public values. New
|
|
* generations of server files must be securely transmitted to all
|
|
* servers of the group; client files can be distributed by any means.
|
|
* The scheme is self contained and independent of new generations of
|
|
* host keys and sign keys. The scheme is self contained and independent
|
|
* of new generations of host keys and sign keys.
|
|
*
|
|
* The GQ parameters hide in a RSA cuckoo structure which uses the same
|
|
* parameters. The values are used by an identity scheme based on RSA
|
|
* cryptography and described in Stimson p. 300 (with errors). The 512-
|
|
* bit public modulus is n = p q, where p and q are secret large primes.
|
|
* The TA rolls private random group key b as RSA exponent. These values
|
|
* are known to all group members.
|
|
*
|
|
* When rolling new certificates, a server recomputes the private and
|
|
* public keys. The private key u is a random roll, while the public key
|
|
* is the inverse obscured by the group key v = (u^-1)^b. These values
|
|
* replace the private and public keys normally generated by the RSA
|
|
* scheme. Alice challenges Bob to confirm identity using the protocol
|
|
* described below.
|
|
*
|
|
* How it works
|
|
*
|
|
* The scheme goes like this. Both Alice and Bob have the same modulus n
|
|
* and some random b as the group key. These values are computed and
|
|
* distributed in advance via secret means, although only the group key
|
|
* b is truly secret. Each has a private random private key u and public
|
|
* key (u^-1)^b, although not necessarily the same ones. Bob and Alice
|
|
* can regenerate the key pair from time to time without affecting
|
|
* operations. The public key is conveyed on the certificate in an
|
|
* extension field; the private key is never revealed.
|
|
*
|
|
* Alice rolls new random challenge r and sends to Bob in the GQ
|
|
* request message. Bob rolls new random k, then computes y = k u^r mod
|
|
* n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
|
|
* message. Besides making the response shorter, the hash makes it
|
|
* effectivey impossible for an intruder to solve for b by observing
|
|
* a number of these messages.
|
|
*
|
|
* Alice receives the response and computes y^b v^r mod n. After a bit
|
|
* of algebra, this simplifies to k^b. If the hash of this result
|
|
* matches hash(x), Alice knows that Bob has the group key b. The signed
|
|
* response binds this knowledge to Bob's private key and the public key
|
|
* previously received in his certificate.
|
|
*
|
|
* crypto_alice2 - construct Alice's challenge in GQ scheme
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ID bad or missing group key
|
|
* XEVNT_PUB bad or missing public key
|
|
*/
|
|
static int
|
|
crypto_alice2(
|
|
struct peer *peer, /* peer pointer */
|
|
struct value *vp /* value pointer */
|
|
)
|
|
{
|
|
RSA *rsa; /* GQ parameters */
|
|
BN_CTX *bctx; /* BIGNUM context */
|
|
EVP_MD_CTX ctx; /* signature context */
|
|
tstamp_t tstamp;
|
|
u_int len;
|
|
|
|
/*
|
|
* The identity parameters must have correct format and content.
|
|
*/
|
|
if (peer->ident_pkey == NULL)
|
|
return (XEVNT_ID);
|
|
|
|
if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_alice2: defective key");
|
|
return (XEVNT_PUB);
|
|
}
|
|
|
|
/*
|
|
* Roll new random r (0 < r < n).
|
|
*/
|
|
if (peer->iffval != NULL)
|
|
BN_free(peer->iffval);
|
|
peer->iffval = BN_new();
|
|
len = BN_num_bytes(rsa->n);
|
|
BN_rand(peer->iffval, len * 8, -1, 1); /* r mod n */
|
|
bctx = BN_CTX_new();
|
|
BN_mod(peer->iffval, peer->iffval, rsa->n, bctx);
|
|
BN_CTX_free(bctx);
|
|
|
|
/*
|
|
* Sign and send to Bob. The filestamp is from the local file.
|
|
*/
|
|
memset(vp, 0, sizeof(struct value));
|
|
tstamp = crypto_time();
|
|
vp->tstamp = htonl(tstamp);
|
|
vp->fstamp = htonl(peer->ident_pkey->fstamp);
|
|
vp->vallen = htonl(len);
|
|
vp->ptr = emalloc(len);
|
|
BN_bn2bin(peer->iffval, vp->ptr);
|
|
if (tstamp == 0)
|
|
return (XEVNT_OK);
|
|
|
|
vp->sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
|
|
EVP_SignUpdate(&ctx, vp->ptr, len);
|
|
if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
vp->siglen = htonl(len);
|
|
}
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_bob2 - construct Bob's response to Alice's challenge
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ERR protocol error
|
|
* XEVNT_ID bad or missing group key
|
|
*/
|
|
static int
|
|
crypto_bob2(
|
|
struct exten *ep, /* extension pointer */
|
|
struct value *vp /* value pointer */
|
|
)
|
|
{
|
|
RSA *rsa; /* GQ parameters */
|
|
DSA_SIG *sdsa; /* DSA parameters */
|
|
BN_CTX *bctx; /* BIGNUM context */
|
|
EVP_MD_CTX ctx; /* signature context */
|
|
tstamp_t tstamp; /* NTP timestamp */
|
|
BIGNUM *r, *k, *g, *y;
|
|
u_char *ptr;
|
|
u_int len;
|
|
int s_len;
|
|
|
|
/*
|
|
* If the GQ parameters are not valid, something awful
|
|
* happened or we are being tormented.
|
|
*/
|
|
if (gqkey_info == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
|
|
return (XEVNT_ID);
|
|
}
|
|
rsa = gqkey_info->pkey->pkey.rsa;
|
|
|
|
/*
|
|
* Extract r from the challenge.
|
|
*/
|
|
len = exten_payload_size(ep);
|
|
if (len == 0 || len > MAX_VALLEN)
|
|
return (XEVNT_LEN);
|
|
if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
|
|
msyslog(LOG_ERR, "crypto_bob2: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
return (XEVNT_ERR);
|
|
}
|
|
|
|
/*
|
|
* Bob rolls random k (0 < k < n), computes y = k u^r mod n and
|
|
* x = k^b mod n, then sends (y, hash(x)) to Alice.
|
|
*/
|
|
bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
|
|
sdsa = DSA_SIG_new();
|
|
BN_rand(k, len * 8, -1, 1); /* k */
|
|
BN_mod(k, k, rsa->n, bctx);
|
|
BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */
|
|
BN_mod_mul(y, k, y, rsa->n, bctx); /* k u^r mod n */
|
|
sdsa->r = BN_dup(y);
|
|
BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */
|
|
bighash(g, g);
|
|
sdsa->s = BN_dup(g);
|
|
BN_CTX_free(bctx);
|
|
BN_free(r); BN_free(k); BN_free(g); BN_free(y);
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
RSA_print_fp(stdout, rsa, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Encode the values in ASN.1 and sign. The filestamp is from
|
|
* the local file.
|
|
*/
|
|
len = s_len = i2d_DSA_SIG(sdsa, NULL);
|
|
if (s_len <= 0) {
|
|
msyslog(LOG_ERR, "crypto_bob2: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
DSA_SIG_free(sdsa);
|
|
return (XEVNT_ERR);
|
|
}
|
|
memset(vp, 0, sizeof(struct value));
|
|
tstamp = crypto_time();
|
|
vp->tstamp = htonl(tstamp);
|
|
vp->fstamp = htonl(gqkey_info->fstamp);
|
|
vp->vallen = htonl(len);
|
|
ptr = emalloc(len);
|
|
vp->ptr = ptr;
|
|
i2d_DSA_SIG(sdsa, &ptr);
|
|
DSA_SIG_free(sdsa);
|
|
if (tstamp == 0)
|
|
return (XEVNT_OK);
|
|
|
|
vp->sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
|
|
EVP_SignUpdate(&ctx, vp->ptr, len);
|
|
if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
vp->siglen = htonl(len);
|
|
}
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_gq - verify Bob's response to Alice's challenge
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ERR protocol error
|
|
* XEVNT_FSP bad filestamp
|
|
* XEVNT_ID bad or missing group keys
|
|
* XEVNT_PUB bad or missing public key
|
|
*/
|
|
int
|
|
crypto_gq(
|
|
struct exten *ep, /* extension pointer */
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
RSA *rsa; /* GQ parameters */
|
|
BN_CTX *bctx; /* BIGNUM context */
|
|
DSA_SIG *sdsa; /* RSA signature context fake */
|
|
BIGNUM *y, *v;
|
|
const u_char *ptr;
|
|
long len;
|
|
u_int temp;
|
|
|
|
/*
|
|
* If the GQ parameters are not valid or no challenge was sent,
|
|
* something awful happened or we are being tormented. Note that
|
|
* the filestamp on the local key file can be greater than on
|
|
* the remote parameter file if the keys have been refreshed.
|
|
*/
|
|
if (peer->ident_pkey == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
|
|
return (XEVNT_ID);
|
|
}
|
|
if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
|
|
msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
|
|
ntohl(ep->fstamp));
|
|
return (XEVNT_FSP);
|
|
}
|
|
if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_gq: defective key");
|
|
return (XEVNT_PUB);
|
|
}
|
|
if (peer->iffval == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
|
|
return (XEVNT_ID);
|
|
}
|
|
|
|
/*
|
|
* Extract the y = k u^r and hash(x = k^b) values from the
|
|
* response.
|
|
*/
|
|
bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
|
|
len = ntohl(ep->vallen);
|
|
ptr = (u_char *)ep->pkt;
|
|
if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
|
|
BN_CTX_free(bctx); BN_free(y); BN_free(v);
|
|
msyslog(LOG_ERR, "crypto_gq: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
return (XEVNT_ERR);
|
|
}
|
|
|
|
/*
|
|
* Compute v^r y^b mod n.
|
|
*/
|
|
if (peer->grpkey == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_gq: missing group key");
|
|
return (XEVNT_ID);
|
|
}
|
|
BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx);
|
|
/* v^r mod n */
|
|
BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */
|
|
BN_mod_mul(y, v, y, rsa->n, bctx); /* v^r y^b mod n */
|
|
|
|
/*
|
|
* Verify the hash of the result matches hash(x).
|
|
*/
|
|
bighash(y, y);
|
|
temp = BN_cmp(y, sdsa->s);
|
|
BN_CTX_free(bctx); BN_free(y); BN_free(v);
|
|
BN_free(peer->iffval);
|
|
peer->iffval = NULL;
|
|
DSA_SIG_free(sdsa);
|
|
if (temp == 0)
|
|
return (XEVNT_OK);
|
|
|
|
msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
|
|
return (XEVNT_ID);
|
|
}
|
|
|
|
|
|
/*
|
|
***********************************************************************
|
|
* *
|
|
* The following routines implement the Mu-Varadharajan (MV) identity *
|
|
* scheme *
|
|
* *
|
|
***********************************************************************
|
|
*
|
|
* The Mu-Varadharajan (MV) cryptosystem was originally intended when
|
|
* servers broadcast messages to clients, but clients never send
|
|
* messages to servers. There is one encryption key for the server and a
|
|
* separate decryption key for each client. It operated something like a
|
|
* pay-per-view satellite broadcasting system where the session key is
|
|
* encrypted by the broadcaster and the decryption keys are held in a
|
|
* tamperproof set-top box.
|
|
*
|
|
* The MV parameters and private encryption key hide in a DSA cuckoo
|
|
* structure which uses the same parameters, but generated in a
|
|
* different way. The values are used in an encryption scheme similar to
|
|
* El Gamal cryptography and a polynomial formed from the expansion of
|
|
* product terms (x - x[j]), as described in Mu, Y., and V.
|
|
* Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
|
|
* 223-231. The paper has significant errors and serious omissions.
|
|
*
|
|
* Let q be the product of n distinct primes s1[j] (j = 1...n), where
|
|
* each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
|
|
* that q and each s1[j] divide p - 1 and p has M = n * m + 1
|
|
* significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
|
|
* = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
|
|
* project into Zp* as exponents of g. Sometimes we have to compute an
|
|
* inverse b^-1 of random b in Zq, but for that purpose we require
|
|
* gcd(b, q) = 1. We expect M to be in the 500-bit range and n
|
|
* relatively small, like 30. These are the parameters of the scheme and
|
|
* they are expensive to compute.
|
|
*
|
|
* We set up an instance of the scheme as follows. A set of random
|
|
* values x[j] mod q (j = 1...n), are generated as the zeros of a
|
|
* polynomial of order n. The product terms (x - x[j]) are expanded to
|
|
* form coefficients a[i] mod q (i = 0...n) in powers of x. These are
|
|
* used as exponents of the generator g mod p to generate the private
|
|
* encryption key A. The pair (gbar, ghat) of public server keys and the
|
|
* pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
|
|
* to construct the decryption keys. The devil is in the details.
|
|
*
|
|
* This routine generates a private server encryption file including the
|
|
* private encryption key E and partial decryption keys gbar and ghat.
|
|
* It then generates public client decryption files including the public
|
|
* keys xbar[j] and xhat[j] for each client j. The partial decryption
|
|
* files are used to compute the inverse of E. These values are suitably
|
|
* blinded so secrets are not revealed.
|
|
*
|
|
* The distinguishing characteristic of this scheme is the capability to
|
|
* revoke keys. Included in the calculation of E, gbar and ghat is the
|
|
* product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
|
|
* subsequently removed from the product and E, gbar and ghat
|
|
* recomputed, the jth client will no longer be able to compute E^-1 and
|
|
* thus unable to decrypt the messageblock.
|
|
*
|
|
* How it works
|
|
*
|
|
* The scheme goes like this. Bob has the server values (p, E, q, gbar,
|
|
* ghat) and Alice has the client values (p, xbar, xhat).
|
|
*
|
|
* Alice rolls new random nonce r mod p and sends to Bob in the MV
|
|
* request message. Bob rolls random nonce k mod q, encrypts y = r E^k
|
|
* mod p and sends (y, gbar^k, ghat^k) to Alice.
|
|
*
|
|
* Alice receives the response and computes the inverse (E^k)^-1 from
|
|
* the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
|
|
* decrypts y and verifies it matches the original r. The signed
|
|
* response binds this knowledge to Bob's private key and the public key
|
|
* previously received in his certificate.
|
|
*
|
|
* crypto_alice3 - construct Alice's challenge in MV scheme
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ID bad or missing group key
|
|
* XEVNT_PUB bad or missing public key
|
|
*/
|
|
static int
|
|
crypto_alice3(
|
|
struct peer *peer, /* peer pointer */
|
|
struct value *vp /* value pointer */
|
|
)
|
|
{
|
|
DSA *dsa; /* MV parameters */
|
|
BN_CTX *bctx; /* BIGNUM context */
|
|
EVP_MD_CTX ctx; /* signature context */
|
|
tstamp_t tstamp;
|
|
u_int len;
|
|
|
|
/*
|
|
* The identity parameters must have correct format and content.
|
|
*/
|
|
if (peer->ident_pkey == NULL)
|
|
return (XEVNT_ID);
|
|
|
|
if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_alice3: defective key");
|
|
return (XEVNT_PUB);
|
|
}
|
|
|
|
/*
|
|
* Roll new random r (0 < r < q).
|
|
*/
|
|
if (peer->iffval != NULL)
|
|
BN_free(peer->iffval);
|
|
peer->iffval = BN_new();
|
|
len = BN_num_bytes(dsa->p);
|
|
BN_rand(peer->iffval, len * 8, -1, 1); /* r mod p */
|
|
bctx = BN_CTX_new();
|
|
BN_mod(peer->iffval, peer->iffval, dsa->p, bctx);
|
|
BN_CTX_free(bctx);
|
|
|
|
/*
|
|
* Sign and send to Bob. The filestamp is from the local file.
|
|
*/
|
|
memset(vp, 0, sizeof(struct value));
|
|
tstamp = crypto_time();
|
|
vp->tstamp = htonl(tstamp);
|
|
vp->fstamp = htonl(peer->ident_pkey->fstamp);
|
|
vp->vallen = htonl(len);
|
|
vp->ptr = emalloc(len);
|
|
BN_bn2bin(peer->iffval, vp->ptr);
|
|
if (tstamp == 0)
|
|
return (XEVNT_OK);
|
|
|
|
vp->sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
|
|
EVP_SignUpdate(&ctx, vp->ptr, len);
|
|
if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
vp->siglen = htonl(len);
|
|
}
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_bob3 - construct Bob's response to Alice's challenge
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ERR protocol error
|
|
*/
|
|
static int
|
|
crypto_bob3(
|
|
struct exten *ep, /* extension pointer */
|
|
struct value *vp /* value pointer */
|
|
)
|
|
{
|
|
DSA *dsa; /* MV parameters */
|
|
DSA *sdsa; /* DSA signature context fake */
|
|
BN_CTX *bctx; /* BIGNUM context */
|
|
EVP_MD_CTX ctx; /* signature context */
|
|
tstamp_t tstamp; /* NTP timestamp */
|
|
BIGNUM *r, *k, *u;
|
|
u_char *ptr;
|
|
u_int len;
|
|
|
|
/*
|
|
* If the MV parameters are not valid, something awful
|
|
* happened or we are being tormented.
|
|
*/
|
|
if (mvkey_info == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
|
|
return (XEVNT_ID);
|
|
}
|
|
dsa = mvkey_info->pkey->pkey.dsa;
|
|
|
|
/*
|
|
* Extract r from the challenge.
|
|
*/
|
|
len = exten_payload_size(ep);
|
|
if (len == 0 || len > MAX_VALLEN)
|
|
return (XEVNT_LEN);
|
|
if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
|
|
msyslog(LOG_ERR, "crypto_bob3: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
return (XEVNT_ERR);
|
|
}
|
|
|
|
/*
|
|
* Bob rolls random k (0 < k < q), making sure it is not a
|
|
* factor of q. He then computes y = r A^k and sends (y, gbar^k,
|
|
* and ghat^k) to Alice.
|
|
*/
|
|
bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
|
|
sdsa = DSA_new();
|
|
sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new();
|
|
while (1) {
|
|
BN_rand(k, BN_num_bits(dsa->q), 0, 0);
|
|
BN_mod(k, k, dsa->q, bctx);
|
|
BN_gcd(u, k, dsa->q, bctx);
|
|
if (BN_is_one(u))
|
|
break;
|
|
}
|
|
BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A^k r */
|
|
BN_mod_mul(sdsa->p, u, r, dsa->p, bctx);
|
|
BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */
|
|
BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */
|
|
BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
DSA_print_fp(stdout, sdsa, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Encode the values in ASN.1 and sign. The filestamp is from
|
|
* the local file.
|
|
*/
|
|
memset(vp, 0, sizeof(struct value));
|
|
tstamp = crypto_time();
|
|
vp->tstamp = htonl(tstamp);
|
|
vp->fstamp = htonl(mvkey_info->fstamp);
|
|
len = i2d_DSAparams(sdsa, NULL);
|
|
if (len == 0) {
|
|
msyslog(LOG_ERR, "crypto_bob3: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
DSA_free(sdsa);
|
|
return (XEVNT_ERR);
|
|
}
|
|
vp->vallen = htonl(len);
|
|
ptr = emalloc(len);
|
|
vp->ptr = ptr;
|
|
i2d_DSAparams(sdsa, &ptr);
|
|
DSA_free(sdsa);
|
|
if (tstamp == 0)
|
|
return (XEVNT_OK);
|
|
|
|
vp->sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
|
|
EVP_SignUpdate(&ctx, vp->ptr, len);
|
|
if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
vp->siglen = htonl(len);
|
|
}
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_mv - verify Bob's response to Alice's challenge
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_ERR protocol error
|
|
* XEVNT_FSP bad filestamp
|
|
* XEVNT_ID bad or missing group key
|
|
* XEVNT_PUB bad or missing public key
|
|
*/
|
|
int
|
|
crypto_mv(
|
|
struct exten *ep, /* extension pointer */
|
|
struct peer *peer /* peer structure pointer */
|
|
)
|
|
{
|
|
DSA *dsa; /* MV parameters */
|
|
DSA *sdsa; /* DSA parameters */
|
|
BN_CTX *bctx; /* BIGNUM context */
|
|
BIGNUM *k, *u, *v;
|
|
u_int len;
|
|
const u_char *ptr;
|
|
int temp;
|
|
|
|
/*
|
|
* If the MV parameters are not valid or no challenge was sent,
|
|
* something awful happened or we are being tormented.
|
|
*/
|
|
if (peer->ident_pkey == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
|
|
return (XEVNT_ID);
|
|
}
|
|
if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
|
|
msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
|
|
ntohl(ep->fstamp));
|
|
return (XEVNT_FSP);
|
|
}
|
|
if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_mv: defective key");
|
|
return (XEVNT_PUB);
|
|
}
|
|
if (peer->iffval == NULL) {
|
|
msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
|
|
return (XEVNT_ID);
|
|
}
|
|
|
|
/*
|
|
* Extract the y, gbar and ghat values from the response.
|
|
*/
|
|
bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
|
|
len = ntohl(ep->vallen);
|
|
ptr = (u_char *)ep->pkt;
|
|
if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
|
|
msyslog(LOG_ERR, "crypto_mv: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
return (XEVNT_ERR);
|
|
}
|
|
|
|
/*
|
|
* Compute (gbar^xhat ghat^xbar) mod p.
|
|
*/
|
|
BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx);
|
|
BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx);
|
|
BN_mod_mul(u, u, v, dsa->p, bctx);
|
|
BN_mod_mul(u, u, sdsa->p, dsa->p, bctx);
|
|
|
|
/*
|
|
* The result should match r.
|
|
*/
|
|
temp = BN_cmp(u, peer->iffval);
|
|
BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
|
|
BN_free(peer->iffval);
|
|
peer->iffval = NULL;
|
|
DSA_free(sdsa);
|
|
if (temp == 0)
|
|
return (XEVNT_OK);
|
|
|
|
msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
|
|
return (XEVNT_ID);
|
|
}
|
|
|
|
|
|
/*
|
|
***********************************************************************
|
|
* *
|
|
* The following routines are used to manipulate certificates *
|
|
* *
|
|
***********************************************************************
|
|
*/
|
|
/*
|
|
* cert_sign - sign x509 certificate equest and update value structure.
|
|
*
|
|
* The certificate request includes a copy of the host certificate,
|
|
* which includes the version number, subject name and public key of the
|
|
* host. The resulting certificate includes these values plus the
|
|
* serial number, issuer name and valid interval of the server. The
|
|
* valid interval extends from the current time to the same time one
|
|
* year hence. This may extend the life of the signed certificate beyond
|
|
* that of the signer certificate.
|
|
*
|
|
* It is convenient to use the NTP seconds of the current time as the
|
|
* serial number. In the value structure the timestamp is the current
|
|
* time and the filestamp is taken from the extension field. Note this
|
|
* routine is called only when the client clock is synchronized to a
|
|
* proventic source, so timestamp comparisons are valid.
|
|
*
|
|
* The host certificate is valid from the time it was generated for a
|
|
* period of one year. A signed certificate is valid from the time of
|
|
* signature for a period of one year, but only the host certificate (or
|
|
* sign certificate if used) is actually used to encrypt and decrypt
|
|
* signatures. The signature trail is built from the client via the
|
|
* intermediate servers to the trusted server. Each signature on the
|
|
* trail must be valid at the time of signature, but it could happen
|
|
* that a signer certificate expire before the signed certificate, which
|
|
* remains valid until its expiration.
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_CRT bad or missing certificate
|
|
* XEVNT_PER host certificate expired
|
|
* XEVNT_PUB bad or missing public key
|
|
* XEVNT_VFY certificate not verified
|
|
*/
|
|
static int
|
|
cert_sign(
|
|
struct exten *ep, /* extension field pointer */
|
|
struct value *vp /* value pointer */
|
|
)
|
|
{
|
|
X509 *req; /* X509 certificate request */
|
|
X509 *cert; /* X509 certificate */
|
|
X509_EXTENSION *ext; /* certificate extension */
|
|
ASN1_INTEGER *serial; /* serial number */
|
|
X509_NAME *subj; /* distinguished (common) name */
|
|
EVP_PKEY *pkey; /* public key */
|
|
EVP_MD_CTX ctx; /* message digest context */
|
|
tstamp_t tstamp; /* NTP timestamp */
|
|
struct calendar tscal;
|
|
u_int len;
|
|
const u_char *cptr;
|
|
u_char *ptr;
|
|
int i, temp;
|
|
|
|
/*
|
|
* Decode ASN.1 objects and construct certificate structure.
|
|
* Make sure the system clock is synchronized to a proventic
|
|
* source.
|
|
*/
|
|
tstamp = crypto_time();
|
|
if (tstamp == 0)
|
|
return (XEVNT_TSP);
|
|
|
|
len = exten_payload_size(ep);
|
|
if (len == 0 || len > MAX_VALLEN)
|
|
return (XEVNT_LEN);
|
|
cptr = (void *)ep->pkt;
|
|
if ((req = d2i_X509(NULL, &cptr, len)) == NULL) {
|
|
msyslog(LOG_ERR, "cert_sign: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
return (XEVNT_CRT);
|
|
}
|
|
/*
|
|
* Extract public key and check for errors.
|
|
*/
|
|
if ((pkey = X509_get_pubkey(req)) == NULL) {
|
|
msyslog(LOG_ERR, "cert_sign: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
X509_free(req);
|
|
return (XEVNT_PUB);
|
|
}
|
|
|
|
/*
|
|
* Generate X509 certificate signed by this server. If this is a
|
|
* trusted host, the issuer name is the group name; otherwise,
|
|
* it is the host name. Also copy any extensions that might be
|
|
* present.
|
|
*/
|
|
cert = X509_new();
|
|
X509_set_version(cert, X509_get_version(req));
|
|
serial = ASN1_INTEGER_new();
|
|
ASN1_INTEGER_set(serial, tstamp);
|
|
X509_set_serialNumber(cert, serial);
|
|
X509_gmtime_adj(X509_get_notBefore(cert), 0L);
|
|
X509_gmtime_adj(X509_get_notAfter(cert), YEAR);
|
|
subj = X509_get_issuer_name(cert);
|
|
X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
|
|
hostval.ptr, strlen((const char *)hostval.ptr), -1, 0);
|
|
subj = X509_get_subject_name(req);
|
|
X509_set_subject_name(cert, subj);
|
|
X509_set_pubkey(cert, pkey);
|
|
temp = X509_get_ext_count(req);
|
|
for (i = 0; i < temp; i++) {
|
|
ext = X509_get_ext(req, i);
|
|
INSIST(X509_add_ext(cert, ext, -1));
|
|
}
|
|
X509_free(req);
|
|
|
|
/*
|
|
* Sign and verify the client certificate, but only if the host
|
|
* certificate has not expired.
|
|
*/
|
|
(void)ntpcal_ntp_to_date(&tscal, tstamp, NULL);
|
|
if ((calcomp(&tscal, &(cert_host->first)) < 0)
|
|
|| (calcomp(&tscal, &(cert_host->last)) > 0)) {
|
|
X509_free(cert);
|
|
return (XEVNT_PER);
|
|
}
|
|
X509_sign(cert, sign_pkey, sign_digest);
|
|
if (X509_verify(cert, sign_pkey) <= 0) {
|
|
msyslog(LOG_ERR, "cert_sign: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
X509_free(cert);
|
|
return (XEVNT_VFY);
|
|
}
|
|
len = i2d_X509(cert, NULL);
|
|
|
|
/*
|
|
* Build and sign the value structure. We have to sign it here,
|
|
* since the response has to be returned right away. This is a
|
|
* clogging hazard.
|
|
*/
|
|
memset(vp, 0, sizeof(struct value));
|
|
vp->tstamp = htonl(tstamp);
|
|
vp->fstamp = ep->fstamp;
|
|
vp->vallen = htonl(len);
|
|
vp->ptr = emalloc(len);
|
|
ptr = vp->ptr;
|
|
i2d_X509(cert, (unsigned char **)(intptr_t)&ptr);
|
|
vp->siglen = 0;
|
|
if (tstamp != 0) {
|
|
vp->sig = emalloc(sign_siglen);
|
|
EVP_SignInit(&ctx, sign_digest);
|
|
EVP_SignUpdate(&ctx, (u_char *)vp, 12);
|
|
EVP_SignUpdate(&ctx, vp->ptr, len);
|
|
if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
|
|
INSIST(len <= sign_siglen);
|
|
vp->siglen = htonl(len);
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
X509_print_fp(stdout, cert);
|
|
#endif
|
|
X509_free(cert);
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* cert_install - install certificate in certificate cache
|
|
*
|
|
* This routine encodes an extension field into a certificate info/value
|
|
* structure. It searches the certificate list for duplicates and
|
|
* expunges whichever is older. Finally, it inserts this certificate
|
|
* first on the list.
|
|
*
|
|
* Returns certificate info pointer if valid, NULL if not.
|
|
*/
|
|
struct cert_info *
|
|
cert_install(
|
|
struct exten *ep, /* cert info/value */
|
|
struct peer *peer /* peer structure */
|
|
)
|
|
{
|
|
struct cert_info *cp, *xp, **zp;
|
|
|
|
/*
|
|
* Parse and validate the signed certificate. If valid,
|
|
* construct the info/value structure; otherwise, scamper home
|
|
* empty handed.
|
|
*/
|
|
if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
|
|
(tstamp_t)ntohl(ep->fstamp))) == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* Scan certificate list looking for another certificate with
|
|
* the same subject and issuer. If another is found with the
|
|
* same or older filestamp, unlink it and return the goodies to
|
|
* the heap. If another is found with a later filestamp, discard
|
|
* the new one and leave the building with the old one.
|
|
*
|
|
* Make a note to study this issue again. An earlier certificate
|
|
* with a long lifetime might be overtaken by a later
|
|
* certificate with a short lifetime, thus invalidating the
|
|
* earlier signature. However, we gotta find a way to leak old
|
|
* stuff from the cache, so we do it anyway.
|
|
*/
|
|
zp = &cinfo;
|
|
for (xp = cinfo; xp != NULL; xp = xp->link) {
|
|
if (strcmp(cp->subject, xp->subject) == 0 &&
|
|
strcmp(cp->issuer, xp->issuer) == 0) {
|
|
if (ntohl(cp->cert.fstamp) <=
|
|
ntohl(xp->cert.fstamp)) {
|
|
cert_free(cp);
|
|
cp = xp;
|
|
} else {
|
|
*zp = xp->link;
|
|
cert_free(xp);
|
|
xp = NULL;
|
|
}
|
|
break;
|
|
}
|
|
zp = &xp->link;
|
|
}
|
|
if (xp == NULL) {
|
|
cp->link = cinfo;
|
|
cinfo = cp;
|
|
}
|
|
cp->flags |= CERT_VALID;
|
|
crypto_update();
|
|
return (cp);
|
|
}
|
|
|
|
|
|
/*
|
|
* cert_hike - verify the signature using the issuer public key
|
|
*
|
|
* Returns
|
|
* XEVNT_OK success
|
|
* XEVNT_CRT bad or missing certificate
|
|
* XEVNT_PER host certificate expired
|
|
* XEVNT_VFY certificate not verified
|
|
*/
|
|
int
|
|
cert_hike(
|
|
struct peer *peer, /* peer structure pointer */
|
|
struct cert_info *yp /* issuer certificate */
|
|
)
|
|
{
|
|
struct cert_info *xp; /* subject certificate */
|
|
X509 *cert; /* X509 certificate */
|
|
const u_char *ptr;
|
|
|
|
/*
|
|
* Save the issuer on the new certificate, but remember the old
|
|
* one.
|
|
*/
|
|
if (peer->issuer != NULL)
|
|
free(peer->issuer);
|
|
peer->issuer = estrdup(yp->issuer);
|
|
xp = peer->xinfo;
|
|
peer->xinfo = yp;
|
|
|
|
/*
|
|
* If subject Y matches issuer Y, then the certificate trail is
|
|
* complete. If Y is not trusted, the server certificate has yet
|
|
* been signed, so keep trying. Otherwise, save the group key
|
|
* and light the valid bit. If the host certificate is trusted,
|
|
* do not execute a sign exchange. If no identity scheme is in
|
|
* use, light the identity and proventic bits.
|
|
*/
|
|
if (strcmp(yp->subject, yp->issuer) == 0) {
|
|
if (!(yp->flags & CERT_TRUST))
|
|
return (XEVNT_OK);
|
|
|
|
/*
|
|
* If the server has an an identity scheme, fetch the
|
|
* identity credentials. If not, the identity is
|
|
* verified only by the trusted certificate. The next
|
|
* signature will set the server proventic.
|
|
*/
|
|
peer->crypto |= CRYPTO_FLAG_CERT;
|
|
peer->grpkey = yp->grpkey;
|
|
if (peer->ident == NULL || !(peer->crypto &
|
|
CRYPTO_FLAG_MASK))
|
|
peer->crypto |= CRYPTO_FLAG_VRFY;
|
|
}
|
|
|
|
/*
|
|
* If X exists, verify signature X using public key Y.
|
|
*/
|
|
if (xp == NULL)
|
|
return (XEVNT_OK);
|
|
|
|
ptr = (u_char *)xp->cert.ptr;
|
|
cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
|
|
if (cert == NULL) {
|
|
xp->flags |= CERT_ERROR;
|
|
return (XEVNT_CRT);
|
|
}
|
|
if (X509_verify(cert, yp->pkey) <= 0) {
|
|
X509_free(cert);
|
|
xp->flags |= CERT_ERROR;
|
|
return (XEVNT_VFY);
|
|
}
|
|
X509_free(cert);
|
|
|
|
/*
|
|
* Signature X is valid only if it begins during the
|
|
* lifetime of Y.
|
|
*/
|
|
if ((calcomp(&(xp->first), &(yp->first)) < 0)
|
|
|| (calcomp(&(xp->first), &(yp->last)) > 0)) {
|
|
xp->flags |= CERT_ERROR;
|
|
return (XEVNT_PER);
|
|
}
|
|
xp->flags |= CERT_SIGN;
|
|
return (XEVNT_OK);
|
|
}
|
|
|
|
|
|
/*
|
|
* cert_parse - parse x509 certificate and create info/value structures.
|
|
*
|
|
* The server certificate includes the version number, issuer name,
|
|
* subject name, public key and valid date interval. If the issuer name
|
|
* is the same as the subject name, the certificate is self signed and
|
|
* valid only if the server is configured as trustable. If the names are
|
|
* different, another issuer has signed the server certificate and
|
|
* vouched for it. In this case the server certificate is valid if
|
|
* verified by the issuer public key.
|
|
*
|
|
* Returns certificate info/value pointer if valid, NULL if not.
|
|
*/
|
|
struct cert_info * /* certificate information structure */
|
|
cert_parse(
|
|
const u_char *asn1cert, /* X509 certificate */
|
|
long len, /* certificate length */
|
|
tstamp_t fstamp /* filestamp */
|
|
)
|
|
{
|
|
X509 *cert; /* X509 certificate */
|
|
X509_EXTENSION *ext; /* X509v3 extension */
|
|
struct cert_info *ret; /* certificate info/value */
|
|
BIO *bp;
|
|
char pathbuf[MAXFILENAME];
|
|
const u_char *ptr;
|
|
char *pch;
|
|
int temp, cnt, i;
|
|
struct calendar fscal;
|
|
|
|
/*
|
|
* Decode ASN.1 objects and construct certificate structure.
|
|
*/
|
|
ptr = asn1cert;
|
|
if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
|
|
msyslog(LOG_ERR, "cert_parse: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
return (NULL);
|
|
}
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
X509_print_fp(stdout, cert);
|
|
#endif
|
|
|
|
/*
|
|
* Extract version, subject name and public key.
|
|
*/
|
|
ret = emalloc_zero(sizeof(*ret));
|
|
if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
|
|
msyslog(LOG_ERR, "cert_parse: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
cert_free(ret);
|
|
X509_free(cert);
|
|
return (NULL);
|
|
}
|
|
ret->version = X509_get_version(cert);
|
|
X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
|
|
sizeof(pathbuf));
|
|
pch = strstr(pathbuf, "CN=");
|
|
if (NULL == pch) {
|
|
msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
|
|
pathbuf);
|
|
cert_free(ret);
|
|
X509_free(cert);
|
|
return (NULL);
|
|
}
|
|
ret->subject = estrdup(pch + 3);
|
|
|
|
/*
|
|
* Extract remaining objects. Note that the NTP serial number is
|
|
* the NTP seconds at the time of signing, but this might not be
|
|
* the case for other authority. We don't bother to check the
|
|
* objects at this time, since the real crunch can happen only
|
|
* when the time is valid but not yet certificated.
|
|
*/
|
|
ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm);
|
|
ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
|
|
ret->serial =
|
|
(u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
|
|
X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
|
|
sizeof(pathbuf));
|
|
if ((pch = strstr(pathbuf, "CN=")) == NULL) {
|
|
msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
|
|
pathbuf);
|
|
cert_free(ret);
|
|
X509_free(cert);
|
|
return (NULL);
|
|
}
|
|
ret->issuer = estrdup(pch + 3);
|
|
asn_to_calendar(X509_get_notBefore(cert), &(ret->first));
|
|
asn_to_calendar(X509_get_notAfter(cert), &(ret->last));
|
|
|
|
/*
|
|
* Extract extension fields. These are ad hoc ripoffs of
|
|
* currently assigned functions and will certainly be changed
|
|
* before prime time.
|
|
*/
|
|
cnt = X509_get_ext_count(cert);
|
|
for (i = 0; i < cnt; i++) {
|
|
ext = X509_get_ext(cert, i);
|
|
temp = OBJ_obj2nid(ext->object);
|
|
switch (temp) {
|
|
|
|
/*
|
|
* If a key_usage field is present, we decode whether
|
|
* this is a trusted or private certificate. This is
|
|
* dorky; all we want is to compare NIDs, but OpenSSL
|
|
* insists on BIO text strings.
|
|
*/
|
|
case NID_ext_key_usage:
|
|
bp = BIO_new(BIO_s_mem());
|
|
X509V3_EXT_print(bp, ext, 0, 0);
|
|
BIO_gets(bp, pathbuf, sizeof(pathbuf));
|
|
BIO_free(bp);
|
|
if (strcmp(pathbuf, "Trust Root") == 0)
|
|
ret->flags |= CERT_TRUST;
|
|
else if (strcmp(pathbuf, "Private") == 0)
|
|
ret->flags |= CERT_PRIV;
|
|
DPRINTF(1, ("cert_parse: %s: %s\n",
|
|
OBJ_nid2ln(temp), pathbuf));
|
|
break;
|
|
|
|
/*
|
|
* If a NID_subject_key_identifier field is present, it
|
|
* contains the GQ public key.
|
|
*/
|
|
case NID_subject_key_identifier:
|
|
ret->grpkey = BN_bin2bn(&ext->value->data[2],
|
|
ext->value->length - 2, NULL);
|
|
/* fall through */
|
|
default:
|
|
DPRINTF(1, ("cert_parse: %s\n",
|
|
OBJ_nid2ln(temp)));
|
|
break;
|
|
}
|
|
}
|
|
if (strcmp(ret->subject, ret->issuer) == 0) {
|
|
|
|
/*
|
|
* If certificate is self signed, verify signature.
|
|
*/
|
|
if (X509_verify(cert, ret->pkey) <= 0) {
|
|
msyslog(LOG_NOTICE,
|
|
"cert_parse: signature not verified %s",
|
|
ret->subject);
|
|
cert_free(ret);
|
|
X509_free(cert);
|
|
return (NULL);
|
|
}
|
|
} else {
|
|
|
|
/*
|
|
* Check for a certificate loop.
|
|
*/
|
|
if (strcmp((const char *)hostval.ptr, ret->issuer) == 0) {
|
|
msyslog(LOG_NOTICE,
|
|
"cert_parse: certificate trail loop %s",
|
|
ret->subject);
|
|
cert_free(ret);
|
|
X509_free(cert);
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Verify certificate valid times. Note that certificates cannot
|
|
* be retroactive.
|
|
*/
|
|
(void)ntpcal_ntp_to_date(&fscal, fstamp, NULL);
|
|
if ((calcomp(&(ret->first), &(ret->last)) > 0)
|
|
|| (calcomp(&(ret->first), &fscal) < 0)) {
|
|
msyslog(LOG_NOTICE,
|
|
"cert_parse: invalid times %s first %u-%02u-%02uT%02u:%02u:%02u last %u-%02u-%02uT%02u:%02u:%02u fstamp %u-%02u-%02uT%02u:%02u:%02u",
|
|
ret->subject,
|
|
ret->first.year, ret->first.month, ret->first.monthday,
|
|
ret->first.hour, ret->first.minute, ret->first.second,
|
|
ret->last.year, ret->last.month, ret->last.monthday,
|
|
ret->last.hour, ret->last.minute, ret->last.second,
|
|
fscal.year, fscal.month, fscal.monthday,
|
|
fscal.hour, fscal.minute, fscal.second);
|
|
cert_free(ret);
|
|
X509_free(cert);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Build the value structure to sign and send later.
|
|
*/
|
|
ret->cert.fstamp = htonl(fstamp);
|
|
ret->cert.vallen = htonl(len);
|
|
ret->cert.ptr = emalloc(len);
|
|
memcpy(ret->cert.ptr, asn1cert, len);
|
|
X509_free(cert);
|
|
return (ret);
|
|
}
|
|
|
|
|
|
/*
|
|
* cert_free - free certificate information structure
|
|
*/
|
|
void
|
|
cert_free(
|
|
struct cert_info *cinf /* certificate info/value structure */
|
|
)
|
|
{
|
|
if (cinf->pkey != NULL)
|
|
EVP_PKEY_free(cinf->pkey);
|
|
if (cinf->subject != NULL)
|
|
free(cinf->subject);
|
|
if (cinf->issuer != NULL)
|
|
free(cinf->issuer);
|
|
if (cinf->grpkey != NULL)
|
|
BN_free(cinf->grpkey);
|
|
value_free(&cinf->cert);
|
|
free(cinf);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_key - load cryptographic parameters and keys
|
|
*
|
|
* This routine searches the key cache for matching name in the form
|
|
* ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
|
|
* and <name> is the host/group name. If not found, it tries to load a
|
|
* PEM-encoded file of the same name and extracts the filestamp from
|
|
* the first line of the file name. It returns the key pointer if valid,
|
|
* NULL if not.
|
|
*/
|
|
static struct pkey_info *
|
|
crypto_key(
|
|
char *cp, /* file name */
|
|
char *passwd1, /* password */
|
|
sockaddr_u *addr /* IP address */
|
|
)
|
|
{
|
|
FILE *str; /* file handle */
|
|
struct pkey_info *pkp; /* generic key */
|
|
EVP_PKEY *pkey = NULL; /* public/private key */
|
|
tstamp_t fstamp;
|
|
char filename[MAXFILENAME]; /* name of key file */
|
|
char linkname[MAXFILENAME]; /* filestamp buffer) */
|
|
char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
|
|
char *ptr;
|
|
|
|
/*
|
|
* Search the key cache for matching key and name.
|
|
*/
|
|
for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
|
|
if (strcmp(cp, pkp->name) == 0)
|
|
return (pkp);
|
|
}
|
|
|
|
/*
|
|
* Open the key file. If the first character of the file name is
|
|
* not '/', prepend the keys directory string. If something goes
|
|
* wrong, abandon ship.
|
|
*/
|
|
if (*cp == '/')
|
|
strlcpy(filename, cp, sizeof(filename));
|
|
else
|
|
snprintf(filename, sizeof(filename), "%s/%s", keysdir,
|
|
cp);
|
|
str = fopen(filename, "r");
|
|
if (str == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* Read the filestamp, which is contained in the first line.
|
|
*/
|
|
if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
|
|
msyslog(LOG_ERR, "crypto_key: empty file %s",
|
|
filename);
|
|
fclose(str);
|
|
return (NULL);
|
|
}
|
|
if ((ptr = strrchr(ptr, '.')) == NULL) {
|
|
msyslog(LOG_ERR, "crypto_key: no filestamp %s",
|
|
filename);
|
|
fclose(str);
|
|
return (NULL);
|
|
}
|
|
if (sscanf(++ptr, "%u", &fstamp) != 1) {
|
|
msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
|
|
filename);
|
|
fclose(str);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Read and decrypt PEM-encoded private key. If it fails to
|
|
* decrypt, game over.
|
|
*/
|
|
pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
|
|
fclose(str);
|
|
if (pkey == NULL) {
|
|
msyslog(LOG_ERR, "crypto_key: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
exit (-1);
|
|
}
|
|
|
|
/*
|
|
* Make a new entry in the key cache.
|
|
*/
|
|
pkp = emalloc(sizeof(struct pkey_info));
|
|
pkp->link = pkinfo;
|
|
pkinfo = pkp;
|
|
pkp->pkey = pkey;
|
|
pkp->name = estrdup(cp);
|
|
pkp->fstamp = fstamp;
|
|
|
|
/*
|
|
* Leave tracks in the cryptostats.
|
|
*/
|
|
if ((ptr = strrchr(linkname, '\n')) != NULL)
|
|
*ptr = '\0';
|
|
snprintf(statstr, sizeof(statstr), "%s mod %d", &linkname[2],
|
|
EVP_PKEY_size(pkey) * 8);
|
|
record_crypto_stats(addr, statstr);
|
|
|
|
DPRINTF(1, ("crypto_key: %s\n", statstr));
|
|
#ifdef DEBUG
|
|
if (debug > 1) {
|
|
if (pkey->type == EVP_PKEY_DSA)
|
|
DSA_print_fp(stdout, pkey->pkey.dsa, 0);
|
|
else if (pkey->type == EVP_PKEY_RSA)
|
|
RSA_print_fp(stdout, pkey->pkey.rsa, 0);
|
|
}
|
|
#endif
|
|
return (pkp);
|
|
}
|
|
|
|
|
|
/*
|
|
***********************************************************************
|
|
* *
|
|
* The following routines are used only at initialization time *
|
|
* *
|
|
***********************************************************************
|
|
*/
|
|
/*
|
|
* crypto_cert - load certificate from file
|
|
*
|
|
* This routine loads an X.509 RSA or DSA certificate from a file and
|
|
* constructs a info/cert value structure for this machine. The
|
|
* structure includes a filestamp extracted from the file name. Later
|
|
* the certificate can be sent to another machine on request.
|
|
*
|
|
* Returns certificate info/value pointer if valid, NULL if not.
|
|
*/
|
|
static struct cert_info * /* certificate information */
|
|
crypto_cert(
|
|
char *cp /* file name */
|
|
)
|
|
{
|
|
struct cert_info *ret; /* certificate information */
|
|
FILE *str; /* file handle */
|
|
char filename[MAXFILENAME]; /* name of certificate file */
|
|
char linkname[MAXFILENAME]; /* filestamp buffer */
|
|
char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
|
|
tstamp_t fstamp; /* filestamp */
|
|
long len;
|
|
char *ptr;
|
|
char *name, *header;
|
|
u_char *data;
|
|
|
|
/*
|
|
* Open the certificate file. If the first character of the file
|
|
* name is not '/', prepend the keys directory string. If
|
|
* something goes wrong, abandon ship.
|
|
*/
|
|
if (*cp == '/')
|
|
strlcpy(filename, cp, sizeof(filename));
|
|
else
|
|
snprintf(filename, sizeof(filename), "%s/%s", keysdir,
|
|
cp);
|
|
str = fopen(filename, "r");
|
|
if (str == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* Read the filestamp, which is contained in the first line.
|
|
*/
|
|
if ((ptr = fgets(linkname, sizeof(linkname), str)) == NULL) {
|
|
msyslog(LOG_ERR, "crypto_cert: empty file %s",
|
|
filename);
|
|
fclose(str);
|
|
return (NULL);
|
|
}
|
|
if ((ptr = strrchr(ptr, '.')) == NULL) {
|
|
msyslog(LOG_ERR, "crypto_cert: no filestamp %s",
|
|
filename);
|
|
fclose(str);
|
|
return (NULL);
|
|
}
|
|
if (sscanf(++ptr, "%u", &fstamp) != 1) {
|
|
msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s",
|
|
filename);
|
|
fclose(str);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Read PEM-encoded certificate and install.
|
|
*/
|
|
if (!PEM_read(str, &name, &header, &data, &len)) {
|
|
msyslog(LOG_ERR, "crypto_cert: %s",
|
|
ERR_error_string(ERR_get_error(), NULL));
|
|
fclose(str);
|
|
return (NULL);
|
|
}
|
|
fclose(str);
|
|
free(header);
|
|
if (strcmp(name, "CERTIFICATE") != 0) {
|
|
msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
|
|
name);
|
|
free(name);
|
|
free(data);
|
|
return (NULL);
|
|
}
|
|
free(name);
|
|
|
|
/*
|
|
* Parse certificate and generate info/value structure. The
|
|
* pointer and copy nonsense is due something broken in Solaris.
|
|
*/
|
|
ret = cert_parse(data, len, fstamp);
|
|
free(data);
|
|
if (ret == NULL)
|
|
return (NULL);
|
|
|
|
if ((ptr = strrchr(linkname, '\n')) != NULL)
|
|
*ptr = '\0';
|
|
snprintf(statstr, sizeof(statstr), "%s 0x%x len %lu",
|
|
&linkname[2], ret->flags, len);
|
|
record_crypto_stats(NULL, statstr);
|
|
DPRINTF(1, ("crypto_cert: %s\n", statstr));
|
|
return (ret);
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_setup - load keys, certificate and identity parameters
|
|
*
|
|
* This routine loads the public/private host key and certificate. If
|
|
* available, it loads the public/private sign key, which defaults to
|
|
* the host key. The host key must be RSA, but the sign key can be
|
|
* either RSA or DSA. If a trusted certificate, it loads the identity
|
|
* parameters. In either case, the public key on the certificate must
|
|
* agree with the sign key.
|
|
*
|
|
* Required but missing files and inconsistent data and errors are
|
|
* fatal. Allowing configuration to continue would be hazardous and
|
|
* require really messy error checks.
|
|
*/
|
|
void
|
|
crypto_setup(void)
|
|
{
|
|
struct pkey_info *pinfo; /* private/public key */
|
|
char filename[MAXFILENAME]; /* file name buffer */
|
|
char hostname[MAXFILENAME]; /* host name buffer */
|
|
char *randfile;
|
|
char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
|
|
l_fp seed; /* crypto PRNG seed as NTP timestamp */
|
|
u_int len;
|
|
int bytes;
|
|
u_char *ptr;
|
|
|
|
/*
|
|
* Check for correct OpenSSL version and avoid initialization in
|
|
* the case of multiple crypto commands.
|
|
*/
|
|
if (crypto_flags & CRYPTO_FLAG_ENAB) {
|
|
msyslog(LOG_NOTICE,
|
|
"crypto_setup: spurious crypto command");
|
|
return;
|
|
}
|
|
ssl_check_version();
|
|
|
|
/*
|
|
* Load required random seed file and seed the random number
|
|
* generator. Be default, it is found as .rnd in the user home
|
|
* directory. The root home directory may be / or /root,
|
|
* depending on the system. Wiggle the contents a bit and write
|
|
* it back so the sequence does not repeat when we next restart.
|
|
*/
|
|
if (!RAND_status()) {
|
|
if (rand_file == NULL) {
|
|
RAND_file_name(filename, sizeof(filename));
|
|
randfile = filename;
|
|
} else if (*rand_file != '/') {
|
|
snprintf(filename, sizeof(filename), "%s/%s",
|
|
keysdir, rand_file);
|
|
randfile = filename;
|
|
} else
|
|
randfile = rand_file;
|
|
|
|
if ((bytes = RAND_load_file(randfile, -1)) == 0) {
|
|
msyslog(LOG_ERR,
|
|
"crypto_setup: random seed file %s missing",
|
|
randfile);
|
|
exit (-1);
|
|
}
|
|
arc4random_buf(&seed, sizeof(l_fp));
|
|
RAND_seed(&seed, sizeof(l_fp));
|
|
RAND_write_file(randfile);
|
|
DPRINTF(1, ("crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
|
|
SSLeay(), randfile, bytes));
|
|
}
|
|
|
|
/*
|
|
* Initialize structures.
|
|
*/
|
|
gethostname(hostname, sizeof(hostname));
|
|
if (host_filename != NULL)
|
|
strlcpy(hostname, host_filename, sizeof(hostname));
|
|
if (passwd == NULL)
|
|
passwd = estrdup(hostname);
|
|
memset(&hostval, 0, sizeof(hostval));
|
|
memset(&pubkey, 0, sizeof(pubkey));
|
|
memset(&tai_leap, 0, sizeof(tai_leap));
|
|
|
|
/*
|
|
* Load required host key from file "ntpkey_host_<hostname>". If
|
|
* no host key file is not found or has invalid password, life
|
|
* as we know it ends. The host key also becomes the default
|
|
* sign key.
|
|
*/
|
|
snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
|
|
pinfo = crypto_key(filename, passwd, NULL);
|
|
if (pinfo == NULL) {
|
|
msyslog(LOG_ERR,
|
|
"crypto_setup: host key file %s not found or corrupt",
|
|
filename);
|
|
exit (-1);
|
|
}
|
|
if (pinfo->pkey->type != EVP_PKEY_RSA) {
|
|
msyslog(LOG_ERR,
|
|
"crypto_setup: host key is not RSA key type");
|
|
exit (-1);
|
|
}
|
|
host_pkey = pinfo->pkey;
|
|
sign_pkey = host_pkey;
|
|
hostval.fstamp = htonl(pinfo->fstamp);
|
|
|
|
/*
|
|
* Construct public key extension field for agreement scheme.
|
|
*/
|
|
len = i2d_PublicKey(host_pkey, NULL);
|
|
ptr = emalloc(len);
|
|
pubkey.ptr = ptr;
|
|
i2d_PublicKey(host_pkey, &ptr);
|
|
pubkey.fstamp = hostval.fstamp;
|
|
pubkey.vallen = htonl(len);
|
|
|
|
/*
|
|
* Load optional sign key from file "ntpkey_sign_<hostname>". If
|
|
* available, it becomes the sign key.
|
|
*/
|
|
snprintf(filename, sizeof(filename), "ntpkey_sign_%s", hostname);
|
|
pinfo = crypto_key(filename, passwd, NULL);
|
|
if (pinfo != NULL)
|
|
sign_pkey = pinfo->pkey;
|
|
|
|
/*
|
|
* Load required certificate from file "ntpkey_cert_<hostname>".
|
|
*/
|
|
snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
|
|
cinfo = crypto_cert(filename);
|
|
if (cinfo == NULL) {
|
|
msyslog(LOG_ERR,
|
|
"crypto_setup: certificate file %s not found or corrupt",
|
|
filename);
|
|
exit (-1);
|
|
}
|
|
cert_host = cinfo;
|
|
sign_digest = cinfo->digest;
|
|
sign_siglen = EVP_PKEY_size(sign_pkey);
|
|
if (cinfo->flags & CERT_PRIV)
|
|
crypto_flags |= CRYPTO_FLAG_PRIV;
|
|
|
|
/*
|
|
* The certificate must be self-signed.
|
|
*/
|
|
if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
|
|
msyslog(LOG_ERR,
|
|
"crypto_setup: certificate %s is not self-signed",
|
|
filename);
|
|
exit (-1);
|
|
}
|
|
hostval.ptr = estrdup(cinfo->subject);
|
|
hostval.vallen = htonl(strlen(cinfo->subject));
|
|
sys_hostname = hostval.ptr;
|
|
ptr = (u_char *)strchr(sys_hostname, '@');
|
|
if (ptr != NULL)
|
|
sys_groupname = estrdup((char *)++ptr);
|
|
if (ident_filename != NULL)
|
|
strlcpy(hostname, ident_filename, sizeof(hostname));
|
|
|
|
/*
|
|
* Load optional IFF parameters from file
|
|
* "ntpkey_iffkey_<hostname>".
|
|
*/
|
|
snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
|
|
hostname);
|
|
iffkey_info = crypto_key(filename, passwd, NULL);
|
|
if (iffkey_info != NULL)
|
|
crypto_flags |= CRYPTO_FLAG_IFF;
|
|
|
|
/*
|
|
* Load optional GQ parameters from file
|
|
* "ntpkey_gqkey_<hostname>".
|
|
*/
|
|
snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
|
|
hostname);
|
|
gqkey_info = crypto_key(filename, passwd, NULL);
|
|
if (gqkey_info != NULL)
|
|
crypto_flags |= CRYPTO_FLAG_GQ;
|
|
|
|
/*
|
|
* Load optional MV parameters from file
|
|
* "ntpkey_mvkey_<hostname>".
|
|
*/
|
|
snprintf(filename, sizeof(filename), "ntpkey_mvkey_%s",
|
|
hostname);
|
|
mvkey_info = crypto_key(filename, passwd, NULL);
|
|
if (mvkey_info != NULL)
|
|
crypto_flags |= CRYPTO_FLAG_MV;
|
|
|
|
/*
|
|
* We met the enemy and he is us. Now strike up the dance.
|
|
*/
|
|
crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
|
|
snprintf(statstr, sizeof(statstr), "setup 0x%x host %s %s",
|
|
crypto_flags, hostname, OBJ_nid2ln(cinfo->nid));
|
|
record_crypto_stats(NULL, statstr);
|
|
DPRINTF(1, ("crypto_setup: %s\n", statstr));
|
|
}
|
|
|
|
|
|
/*
|
|
* crypto_config - configure data from the crypto command.
|
|
*/
|
|
void
|
|
crypto_config(
|
|
int item, /* configuration item */
|
|
char *cp /* item name */
|
|
)
|
|
{
|
|
int nid;
|
|
|
|
DPRINTF(1, ("crypto_config: item %d %s\n", item, cp));
|
|
|
|
switch (item) {
|
|
|
|
/*
|
|
* Set host name (host).
|
|
*/
|
|
case CRYPTO_CONF_PRIV:
|
|
if (NULL != host_filename)
|
|
free(host_filename);
|
|
host_filename = estrdup(cp);
|
|
break;
|
|
|
|
/*
|
|
* Set group name (ident).
|
|
*/
|
|
case CRYPTO_CONF_IDENT:
|
|
if (NULL != ident_filename)
|
|
free(ident_filename);
|
|
ident_filename = estrdup(cp);
|
|
break;
|
|
|
|
/*
|
|
* Set private key password (pw).
|
|
*/
|
|
case CRYPTO_CONF_PW:
|
|
if (NULL != passwd)
|
|
free(passwd);
|
|
passwd = estrdup(cp);
|
|
break;
|
|
|
|
/*
|
|
* Set random seed file name (randfile).
|
|
*/
|
|
case CRYPTO_CONF_RAND:
|
|
if (NULL != rand_file)
|
|
free(rand_file);
|
|
rand_file = estrdup(cp);
|
|
break;
|
|
|
|
/*
|
|
* Set message digest NID.
|
|
*/
|
|
case CRYPTO_CONF_NID:
|
|
nid = OBJ_sn2nid(cp);
|
|
if (nid == 0)
|
|
msyslog(LOG_ERR,
|
|
"crypto_config: invalid digest name %s", cp);
|
|
else
|
|
crypto_nid = nid;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the payload size (internal value length) of an extension packet.
|
|
* If the inner value size does not match the outer packet size (that
|
|
* is, the value would end behind the frame given by the opcode/size
|
|
* field) the function will effectively return UINT_MAX. If the frame is
|
|
* too short to hold a variable-sized value, the return value is zero.
|
|
*/
|
|
static u_int
|
|
exten_payload_size(
|
|
const struct exten * ep)
|
|
{
|
|
typedef const u_char *BPTR;
|
|
|
|
size_t extn_size;
|
|
size_t data_size;
|
|
size_t head_size;
|
|
|
|
data_size = 0;
|
|
if (NULL != ep) {
|
|
head_size = (BPTR)(&ep->vallen + 1) - (BPTR)ep;
|
|
extn_size = (uint16_t)(ntohl(ep->opcode) & 0x0000ffff);
|
|
if (extn_size >= head_size) {
|
|
data_size = (uint32_t)ntohl(ep->vallen);
|
|
if (data_size > extn_size - head_size)
|
|
data_size = ~(size_t)0u;
|
|
}
|
|
}
|
|
return (u_int)data_size;
|
|
}
|
|
# else /* !AUTOKEY follows */
|
|
int ntp_crypto_bs_pubkey;
|
|
# endif /* !AUTOKEY */
|