freebsd-nq/sys/net/if.c

1049 lines
25 KiB
C

/*
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if.c 8.3 (Berkeley) 1/4/94
* $Id: if.c,v 1.57 1997/12/16 17:40:34 eivind Exp $
*/
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/radix.h>
/*
* System initialization
*/
static int ifconf __P((int, caddr_t));
static void ifinit __P((void *));
static void if_qflush __P((struct ifqueue *));
static void if_slowtimo __P((void *));
static void link_rtrequest __P((int, struct rtentry *, struct sockaddr *));
SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL)
MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
int ifqmaxlen = IFQ_MAXLEN;
struct ifnethead ifnet; /* depend on static init XXX */
/*
* Network interface utility routines.
*
* Routines with ifa_ifwith* names take sockaddr *'s as
* parameters.
*
* This routine assumes that it will be called at splimp() or higher.
*/
/* ARGSUSED*/
void
ifinit(dummy)
void *dummy;
{
register struct ifnet *ifp;
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next)
if (ifp->if_snd.ifq_maxlen == 0)
ifp->if_snd.ifq_maxlen = ifqmaxlen;
if_slowtimo(0);
}
int if_index = 0;
struct ifaddr **ifnet_addrs;
/*
* Attach an interface to the
* list of "active" interfaces.
*/
void
if_attach(ifp)
struct ifnet *ifp;
{
unsigned socksize, ifasize;
int namelen, masklen;
char workbuf[64];
register struct sockaddr_dl *sdl;
register struct ifaddr *ifa;
static int if_indexlim = 8;
static int inited;
if (!inited) {
TAILQ_INIT(&ifnet);
inited = 1;
}
TAILQ_INSERT_TAIL(&ifnet, ifp, if_link);
ifp->if_index = ++if_index;
/*
* XXX -
* The old code would work if the interface passed a pre-existing
* chain of ifaddrs to this code. We don't trust our callers to
* properly initialize the tailq, however, so we no longer allow
* this unlikely case.
*/
TAILQ_INIT(&ifp->if_addrhead);
LIST_INIT(&ifp->if_multiaddrs);
getmicrotime(&ifp->if_lastchange);
if (ifnet_addrs == 0 || if_index >= if_indexlim) {
unsigned n = (if_indexlim <<= 1) * sizeof(ifa);
struct ifaddr **q = (struct ifaddr **)
malloc(n, M_IFADDR, M_WAITOK);
bzero((caddr_t)q, n);
if (ifnet_addrs) {
bcopy((caddr_t)ifnet_addrs, (caddr_t)q, n/2);
free((caddr_t)ifnet_addrs, M_IFADDR);
}
ifnet_addrs = q;
}
/*
* create a Link Level name for this device
*/
namelen = sprintf(workbuf, "%s%d", ifp->if_name, ifp->if_unit);
#define _offsetof(t, m) ((int)((caddr_t)&((t *)0)->m))
masklen = _offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
socksize = masklen + ifp->if_addrlen;
#define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1)))
socksize = ROUNDUP(socksize);
if (socksize < sizeof(*sdl))
socksize = sizeof(*sdl);
ifasize = sizeof(*ifa) + 2 * socksize;
ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK);
if (ifa) {
bzero((caddr_t)ifa, ifasize);
sdl = (struct sockaddr_dl *)(ifa + 1);
sdl->sdl_len = socksize;
sdl->sdl_family = AF_LINK;
bcopy(workbuf, sdl->sdl_data, namelen);
sdl->sdl_nlen = namelen;
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = ifp->if_type;
ifnet_addrs[if_index - 1] = ifa;
ifa->ifa_ifp = ifp;
ifa->ifa_rtrequest = link_rtrequest;
ifa->ifa_addr = (struct sockaddr *)sdl;
sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
ifa->ifa_netmask = (struct sockaddr *)sdl;
sdl->sdl_len = masklen;
while (namelen != 0)
sdl->sdl_data[--namelen] = 0xff;
TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
}
}
/*
* Locate an interface based on a complete address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithaddr(addr)
register struct sockaddr *addr;
{
register struct ifnet *ifp;
register struct ifaddr *ifa;
#define equal(a1, a2) \
(bcmp((caddr_t)(a1), (caddr_t)(a2), ((struct sockaddr *)(a1))->sa_len) == 0)
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next)
for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (equal(addr, ifa->ifa_addr))
return (ifa);
if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr &&
equal(ifa->ifa_broadaddr, addr))
return (ifa);
}
return ((struct ifaddr *)0);
}
/*
* Locate the point to point interface with a given destination address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithdstaddr(addr)
register struct sockaddr *addr;
{
register struct ifnet *ifp;
register struct ifaddr *ifa;
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next)
if (ifp->if_flags & IFF_POINTOPOINT)
for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr))
return (ifa);
}
return ((struct ifaddr *)0);
}
/*
* Find an interface on a specific network. If many, choice
* is most specific found.
*/
struct ifaddr *
ifa_ifwithnet(addr)
struct sockaddr *addr;
{
register struct ifnet *ifp;
register struct ifaddr *ifa;
struct ifaddr *ifa_maybe = (struct ifaddr *) 0;
u_int af = addr->sa_family;
char *addr_data = addr->sa_data, *cplim;
/*
* AF_LINK addresses can be looked up directly by their index number,
* so do that if we can.
*/
if (af == AF_LINK) {
register struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
if (sdl->sdl_index && sdl->sdl_index <= if_index)
return (ifnet_addrs[sdl->sdl_index - 1]);
}
/*
* Scan though each interface, looking for ones that have
* addresses in this address family.
*/
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) {
for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next) {
register char *cp, *cp2, *cp3;
if (ifa->ifa_addr->sa_family != af)
next: continue;
if (ifp->if_flags & IFF_POINTOPOINT) {
/*
* This is a bit broken as it doesn't
* take into account that the remote end may
* be a single node in the network we are
* looking for.
* The trouble is that we don't know the
* netmask for the remote end.
*/
if (ifa->ifa_dstaddr != 0
&& equal(addr, ifa->ifa_dstaddr))
return (ifa);
} else {
/*
* if we have a special address handler,
* then use it instead of the generic one.
*/
if (ifa->ifa_claim_addr) {
if ((*ifa->ifa_claim_addr)(ifa, addr)) {
return (ifa);
} else {
continue;
}
}
/*
* Scan all the bits in the ifa's address.
* If a bit dissagrees with what we are
* looking for, mask it with the netmask
* to see if it really matters.
* (A byte at a time)
*/
if (ifa->ifa_netmask == 0)
continue;
cp = addr_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len
+ (char *)ifa->ifa_netmask;
while (cp3 < cplim)
if ((*cp++ ^ *cp2++) & *cp3++)
goto next; /* next address! */
/*
* If the netmask of what we just found
* is more specific than what we had before
* (if we had one) then remember the new one
* before continuing to search
* for an even better one.
*/
if (ifa_maybe == 0 ||
rn_refines((caddr_t)ifa->ifa_netmask,
(caddr_t)ifa_maybe->ifa_netmask))
ifa_maybe = ifa;
}
}
}
return (ifa_maybe);
}
/*
* Find an interface address specific to an interface best matching
* a given address.
*/
struct ifaddr *
ifaof_ifpforaddr(addr, ifp)
struct sockaddr *addr;
register struct ifnet *ifp;
{
register struct ifaddr *ifa;
register char *cp, *cp2, *cp3;
register char *cplim;
struct ifaddr *ifa_maybe = 0;
u_int af = addr->sa_family;
if (af >= AF_MAX)
return (0);
for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next) {
if (ifa->ifa_addr->sa_family != af)
continue;
if (ifa_maybe == 0)
ifa_maybe = ifa;
if (ifa->ifa_netmask == 0) {
if (equal(addr, ifa->ifa_addr) ||
(ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr)))
return (ifa);
continue;
}
if (ifp->if_flags & IFF_POINTOPOINT) {
if (equal(addr, ifa->ifa_dstaddr))
return (ifa);
} else {
cp = addr->sa_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
for (; cp3 < cplim; cp3++)
if ((*cp++ ^ *cp2++) & *cp3)
break;
if (cp3 == cplim)
return (ifa);
}
}
return (ifa_maybe);
}
#include <net/route.h>
/*
* Default action when installing a route with a Link Level gateway.
* Lookup an appropriate real ifa to point to.
* This should be moved to /sys/net/link.c eventually.
*/
static void
link_rtrequest(cmd, rt, sa)
int cmd;
register struct rtentry *rt;
struct sockaddr *sa;
{
register struct ifaddr *ifa;
struct sockaddr *dst;
struct ifnet *ifp;
if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) ||
((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0))
return;
ifa = ifaof_ifpforaddr(dst, ifp);
if (ifa) {
IFAFREE(rt->rt_ifa);
rt->rt_ifa = ifa;
ifa->ifa_refcnt++;
if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
ifa->ifa_rtrequest(cmd, rt, sa);
}
}
/*
* Mark an interface down and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_down(ifp)
register struct ifnet *ifp;
{
register struct ifaddr *ifa;
ifp->if_flags &= ~IFF_UP;
getmicrotime(&ifp->if_lastchange);
for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next)
pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
if_qflush(&ifp->if_snd);
rt_ifmsg(ifp);
}
/*
* Mark an interface up and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_up(ifp)
register struct ifnet *ifp;
{
register struct ifaddr *ifa;
ifp->if_flags |= IFF_UP;
getmicrotime(&ifp->if_lastchange);
for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next)
pfctlinput(PRC_IFUP, ifa->ifa_addr);
rt_ifmsg(ifp);
}
/*
* Flush an interface queue.
*/
static void
if_qflush(ifq)
register struct ifqueue *ifq;
{
register struct mbuf *m, *n;
n = ifq->ifq_head;
while ((m = n) != 0) {
n = m->m_act;
m_freem(m);
}
ifq->ifq_head = 0;
ifq->ifq_tail = 0;
ifq->ifq_len = 0;
}
/*
* Handle interface watchdog timer routines. Called
* from softclock, we decrement timers (if set) and
* call the appropriate interface routine on expiration.
*/
static void
if_slowtimo(arg)
void *arg;
{
register struct ifnet *ifp;
int s = splimp();
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) {
if (ifp->if_timer == 0 || --ifp->if_timer)
continue;
if (ifp->if_watchdog)
(*ifp->if_watchdog)(ifp);
}
splx(s);
timeout(if_slowtimo, (void *)0, hz / IFNET_SLOWHZ);
}
/*
* Map interface name to
* interface structure pointer.
*/
struct ifnet *
ifunit(name)
register char *name;
{
register char *cp;
register struct ifnet *ifp;
int unit;
unsigned len;
char *ep, c;
for (cp = name; cp < name + IFNAMSIZ && *cp; cp++)
if (*cp >= '0' && *cp <= '9')
break;
if (*cp == '\0' || cp == name + IFNAMSIZ)
return ((struct ifnet *)0);
/*
* Save first char of unit, and pointer to it,
* so we can put a null there to avoid matching
* initial substrings of interface names.
*/
len = cp - name + 1;
c = *cp;
ep = cp;
for (unit = 0; *cp >= '0' && *cp <= '9'; )
unit = unit * 10 + *cp++ - '0';
if (*cp != '\0')
return 0; /* no trailing garbage allowed */
*ep = 0;
for (ifp = ifnet.tqh_first; ifp; ifp = ifp->if_link.tqe_next) {
if (bcmp(ifp->if_name, name, len))
continue;
if (unit == ifp->if_unit)
break;
}
*ep = c;
return (ifp);
}
/*
* Interface ioctls.
*/
int
ifioctl(so, cmd, data, p)
struct socket *so;
int cmd;
caddr_t data;
struct proc *p;
{
register struct ifnet *ifp;
register struct ifreq *ifr;
int error;
switch (cmd) {
case SIOCGIFCONF:
case OSIOCGIFCONF:
return (ifconf(cmd, data));
}
ifr = (struct ifreq *)data;
ifp = ifunit(ifr->ifr_name);
if (ifp == 0)
return (ENXIO);
switch (cmd) {
case SIOCGIFFLAGS:
ifr->ifr_flags = ifp->if_flags;
break;
case SIOCGIFMETRIC:
ifr->ifr_metric = ifp->if_metric;
break;
case SIOCGIFMTU:
ifr->ifr_mtu = ifp->if_mtu;
break;
case SIOCGIFPHYS:
ifr->ifr_phys = ifp->if_physical;
break;
case SIOCSIFFLAGS:
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return (error);
if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
int s = splimp();
if_down(ifp);
splx(s);
}
if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
int s = splimp();
if_up(ifp);
splx(s);
}
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
(ifr->ifr_flags &~ IFF_CANTCHANGE);
if (ifp->if_ioctl)
(void) (*ifp->if_ioctl)(ifp, cmd, data);
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFMETRIC:
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return (error);
ifp->if_metric = ifr->ifr_metric;
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFPHYS:
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return error;
if (!ifp->if_ioctl)
return EOPNOTSUPP;
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
return(error);
case SIOCSIFMTU:
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
/*
* 72 was chosen below because it is the size of a TCP/IP
* header (40) + the minimum mss (32).
*/
if (ifr->ifr_mtu < 72 || ifr->ifr_mtu > 65535)
return (EINVAL);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
return(error);
case SIOCADDMULTI:
case SIOCDELMULTI:
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return (error);
/* Don't allow group membership on non-multicast interfaces. */
if ((ifp->if_flags & IFF_MULTICAST) == 0)
return EOPNOTSUPP;
/* Don't let users screw up protocols' entries. */
if (ifr->ifr_addr.sa_family != AF_LINK)
return EINVAL;
if (cmd == SIOCADDMULTI) {
struct ifmultiaddr *ifma;
error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
} else {
error = if_delmulti(ifp, &ifr->ifr_addr);
}
if (error == 0)
getmicrotime(&ifp->if_lastchange);
return error;
case SIOCSIFMEDIA:
case SIOCSIFGENERIC:
error = suser(p->p_ucred, &p->p_acflag);
if (error)
return (error);
if (ifp->if_ioctl == 0)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
return error;
case SIOCGIFMEDIA:
case SIOCGIFGENERIC:
if (ifp->if_ioctl == 0)
return (EOPNOTSUPP);
return ((*ifp->if_ioctl)(ifp, cmd, data));
default:
if (so->so_proto == 0)
return (EOPNOTSUPP);
#ifndef COMPAT_43
return ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd,
data,
ifp, p));
#else
{
int ocmd = cmd;
switch (cmd) {
case SIOCSIFDSTADDR:
case SIOCSIFADDR:
case SIOCSIFBRDADDR:
case SIOCSIFNETMASK:
#if BYTE_ORDER != BIG_ENDIAN
if (ifr->ifr_addr.sa_family == 0 &&
ifr->ifr_addr.sa_len < 16) {
ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
ifr->ifr_addr.sa_len = 16;
}
#else
if (ifr->ifr_addr.sa_len == 0)
ifr->ifr_addr.sa_len = 16;
#endif
break;
case OSIOCGIFADDR:
cmd = SIOCGIFADDR;
break;
case OSIOCGIFDSTADDR:
cmd = SIOCGIFDSTADDR;
break;
case OSIOCGIFBRDADDR:
cmd = SIOCGIFBRDADDR;
break;
case OSIOCGIFNETMASK:
cmd = SIOCGIFNETMASK;
}
error = ((*so->so_proto->pr_usrreqs->pru_control)(so,
cmd,
data,
ifp, p));
switch (ocmd) {
case OSIOCGIFADDR:
case OSIOCGIFDSTADDR:
case OSIOCGIFBRDADDR:
case OSIOCGIFNETMASK:
*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
}
return (error);
}
#endif
}
return (0);
}
/*
* Set/clear promiscuous mode on interface ifp based on the truth value
* of pswitch. The calls are reference counted so that only the first
* "on" request actually has an effect, as does the final "off" request.
* Results are undefined if the "off" and "on" requests are not matched.
*/
int
ifpromisc(ifp, pswitch)
struct ifnet *ifp;
int pswitch;
{
struct ifreq ifr;
int error;
if (pswitch) {
/*
* If the device is not configured up, we cannot put it in
* promiscuous mode.
*/
if ((ifp->if_flags & IFF_UP) == 0)
return (ENETDOWN);
if (ifp->if_pcount++ != 0)
return (0);
ifp->if_flags |= IFF_PROMISC;
log(LOG_INFO, "%s%d: promiscuous mode enabled\n",
ifp->if_name, ifp->if_unit);
} else {
if (--ifp->if_pcount > 0)
return (0);
ifp->if_flags &= ~IFF_PROMISC;
}
ifr.ifr_flags = ifp->if_flags;
error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
if (error == 0)
rt_ifmsg(ifp);
return error;
}
/*
* Return interface configuration
* of system. List may be used
* in later ioctl's (above) to get
* other information.
*/
/*ARGSUSED*/
static int
ifconf(cmd, data)
int cmd;
caddr_t data;
{
register struct ifconf *ifc = (struct ifconf *)data;
register struct ifnet *ifp = ifnet.tqh_first;
register struct ifaddr *ifa;
struct ifreq ifr, *ifrp;
int space = ifc->ifc_len, error = 0;
ifrp = ifc->ifc_req;
for (; space > sizeof (ifr) && ifp; ifp = ifp->if_link.tqe_next) {
char workbuf[64];
int ifnlen;
ifnlen = sprintf(workbuf, "%s%d", ifp->if_name, ifp->if_unit);
if(ifnlen + 1 > sizeof ifr.ifr_name) {
error = ENAMETOOLONG;
} else {
strcpy(ifr.ifr_name, workbuf);
}
if ((ifa = ifp->if_addrhead.tqh_first) == 0) {
bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr));
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr));
if (error)
break;
space -= sizeof (ifr), ifrp++;
} else
for ( ; space > sizeof (ifr) && ifa;
ifa = ifa->ifa_link.tqe_next) {
register struct sockaddr *sa = ifa->ifa_addr;
#ifdef COMPAT_43
if (cmd == OSIOCGIFCONF) {
struct osockaddr *osa =
(struct osockaddr *)&ifr.ifr_addr;
ifr.ifr_addr = *sa;
osa->sa_family = sa->sa_family;
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr));
ifrp++;
} else
#endif
if (sa->sa_len <= sizeof(*sa)) {
ifr.ifr_addr = *sa;
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr));
ifrp++;
} else {
space -= sa->sa_len - sizeof(*sa);
if (space < sizeof (ifr))
break;
error = copyout((caddr_t)&ifr, (caddr_t)ifrp,
sizeof (ifr.ifr_name));
if (error == 0)
error = copyout((caddr_t)sa,
(caddr_t)&ifrp->ifr_addr, sa->sa_len);
ifrp = (struct ifreq *)
(sa->sa_len + (caddr_t)&ifrp->ifr_addr);
}
if (error)
break;
space -= sizeof (ifr);
}
}
ifc->ifc_len -= space;
return (error);
}
/*
* Just like if_promisc(), but for all-multicast-reception mode.
*/
int
if_allmulti(ifp, onswitch)
struct ifnet *ifp;
int onswitch;
{
int error = 0;
int s = splimp();
if (onswitch) {
if (ifp->if_amcount++ == 0) {
ifp->if_flags |= IFF_ALLMULTI;
error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, 0);
}
} else {
if (ifp->if_amcount > 1) {
ifp->if_amcount--;
} else {
ifp->if_amcount = 0;
ifp->if_flags &= ~IFF_ALLMULTI;
error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, 0);
}
}
splx(s);
if (error == 0)
rt_ifmsg(ifp);
return error;
}
/*
* Add a multicast listenership to the interface in question.
* The link layer provides a routine which converts
*/
int
if_addmulti(ifp, sa, retifma)
struct ifnet *ifp; /* interface to manipulate */
struct sockaddr *sa; /* address to add */
struct ifmultiaddr **retifma;
{
struct sockaddr *llsa, *dupsa;
int error, s;
struct ifmultiaddr *ifma;
/*
* If the matching multicast address already exists
* then don't add a new one, just add a reference
*/
for (ifma = ifp->if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next) {
if (equal(sa, ifma->ifma_addr)) {
ifma->ifma_refcount++;
if (retifma)
*retifma = ifma;
return 0;
}
}
/*
* Give the link layer a chance to accept/reject it, and also
* find out which AF_LINK address this maps to, if it isn't one
* already.
*/
if (ifp->if_resolvemulti) {
error = ifp->if_resolvemulti(ifp, &llsa, sa);
if (error) return error;
} else {
llsa = 0;
}
MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma, M_IFMADDR, M_WAITOK);
MALLOC(dupsa, struct sockaddr *, sa->sa_len, M_IFMADDR, M_WAITOK);
bcopy(sa, dupsa, sa->sa_len);
ifma->ifma_addr = dupsa;
ifma->ifma_lladdr = llsa;
ifma->ifma_ifp = ifp;
ifma->ifma_refcount = 1;
ifma->ifma_protospec = 0;
rt_newmaddrmsg(RTM_NEWMADDR, ifma);
/*
* Some network interfaces can scan the address list at
* interrupt time; lock them out.
*/
s = splimp();
LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
splx(s);
*retifma = ifma;
if (llsa != 0) {
for (ifma = ifp->if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next) {
if (equal(ifma->ifma_addr, llsa))
break;
}
if (ifma) {
ifma->ifma_refcount++;
} else {
MALLOC(ifma, struct ifmultiaddr *, sizeof *ifma,
M_IFMADDR, M_WAITOK);
MALLOC(dupsa, struct sockaddr *, llsa->sa_len,
M_IFMADDR, M_WAITOK);
bcopy(llsa, dupsa, llsa->sa_len);
ifma->ifma_addr = dupsa;
ifma->ifma_ifp = ifp;
ifma->ifma_refcount = 1;
s = splimp();
LIST_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
splx(s);
}
}
/*
* We are certain we have added something, so call down to the
* interface to let them know about it.
*/
s = splimp();
ifp->if_ioctl(ifp, SIOCADDMULTI, 0);
splx(s);
return 0;
}
/*
* Remove a reference to a multicast address on this interface. Yell
* if the request does not match an existing membership.
*/
int
if_delmulti(ifp, sa)
struct ifnet *ifp;
struct sockaddr *sa;
{
struct ifmultiaddr *ifma;
int s;
for (ifma = ifp->if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next)
if (equal(sa, ifma->ifma_addr))
break;
if (ifma == 0)
return ENOENT;
if (ifma->ifma_refcount > 1) {
ifma->ifma_refcount--;
return 0;
}
rt_newmaddrmsg(RTM_DELMADDR, ifma);
sa = ifma->ifma_lladdr;
s = splimp();
LIST_REMOVE(ifma, ifma_link);
splx(s);
free(ifma->ifma_addr, M_IFMADDR);
free(ifma, M_IFMADDR);
if (sa == 0)
return 0;
/*
* Now look for the link-layer address which corresponds to
* this network address. It had been squirreled away in
* ifma->ifma_lladdr for this purpose (so we don't have
* to call ifp->if_resolvemulti() again), and we saved that
* value in sa above. If some nasty deleted the
* link-layer address out from underneath us, we can deal because
* the address we stored was is not the same as the one which was
* in the record for the link-layer address. (So we don't complain
* in that case.)
*/
for (ifma = ifp->if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next)
if (equal(sa, ifma->ifma_addr))
break;
if (ifma == 0)
return 0;
if (ifma->ifma_refcount > 1) {
ifma->ifma_refcount--;
return 0;
}
s = splimp();
LIST_REMOVE(ifma, ifma_link);
splx(s);
free(ifma->ifma_addr, M_IFMADDR);
free(sa, M_IFMADDR);
free(ifma, M_IFMADDR);
return 0;
}
struct ifmultiaddr *
ifmaof_ifpforaddr(sa, ifp)
struct sockaddr *sa;
struct ifnet *ifp;
{
struct ifmultiaddr *ifma;
for (ifma = ifp->if_multiaddrs.lh_first; ifma;
ifma = ifma->ifma_link.le_next)
if (equal(ifma->ifma_addr, sa))
break;
return ifma;
}
SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");