David E. O'Brien 9a01a25516 unifdef -D__FreeBSD__ to remove the OpenBSD support
OpenBSD never accepted this driver, and instead wrote their
own minimal one (sys/dev/acpi/tpm.c for suspending the device).

Reviewed by:    stevek, emaste
Differential Revision:  D10321
2021-01-13 22:35:22 -08:00

1289 lines
30 KiB
C

/*
* Copyright (c) 2008, 2009 Michael Shalayeff
* Copyright (c) 2009, 2010 Hans-Joerg Hoexer
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* #define TPM_DEBUG */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/module.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <machine/md_var.h>
#include <isa/isareg.h>
#include <isa/isavar.h>
#include <dev/tpm/tpmvar.h>
#define TPM_BUFSIZ 1024
#define TPM_HDRSIZE 10
#define TPM_PARAM_SIZE 0x0001
#define IRQUNK -1
#define TPM_ACCESS 0x0000 /* access register */
#define TPM_ACCESS_ESTABLISHMENT 0x01 /* establishment */
#define TPM_ACCESS_REQUEST_USE 0x02 /* request using locality */
#define TPM_ACCESS_REQUEST_PENDING 0x04 /* pending request */
#define TPM_ACCESS_SEIZE 0x08 /* request locality seize */
#define TPM_ACCESS_SEIZED 0x10 /* locality has been seized */
#define TPM_ACCESS_ACTIVE_LOCALITY 0x20 /* locality is active */
#define TPM_ACCESS_VALID 0x80 /* bits are valid */
#define TPM_ACCESS_BITS \
"\020\01EST\02REQ\03PEND\04SEIZE\05SEIZED\06ACT\010VALID"
#define TPM_INTERRUPT_ENABLE 0x0008
#define TPM_GLOBAL_INT_ENABLE 0x80000000 /* enable ints */
#define TPM_CMD_READY_INT 0x00000080 /* cmd ready enable */
#define TPM_INT_EDGE_FALLING 0x00000018
#define TPM_INT_EDGE_RISING 0x00000010
#define TPM_INT_LEVEL_LOW 0x00000008
#define TPM_INT_LEVEL_HIGH 0x00000000
#define TPM_LOCALITY_CHANGE_INT 0x00000004 /* locality change enable */
#define TPM_STS_VALID_INT 0x00000002 /* int on TPM_STS_VALID is set */
#define TPM_DATA_AVAIL_INT 0x00000001 /* int on TPM_STS_DATA_AVAIL is set */
#define TPM_INTERRUPT_ENABLE_BITS \
"\020\040ENA\010RDY\03LOCH\02STSV\01DRDY"
#define TPM_INT_VECTOR 0x000c /* 8 bit reg for 4 bit irq vector */
#define TPM_INT_STATUS 0x0010 /* bits are & 0x87 from TPM_INTERRUPT_ENABLE */
#define TPM_INTF_CAPABILITIES 0x0014 /* capability register */
#define TPM_INTF_BURST_COUNT_STATIC 0x0100 /* TPM_STS_BMASK static */
#define TPM_INTF_CMD_READY_INT 0x0080 /* int on ready supported */
#define TPM_INTF_INT_EDGE_FALLING 0x0040 /* falling edge ints supported */
#define TPM_INTF_INT_EDGE_RISING 0x0020 /* rising edge ints supported */
#define TPM_INTF_INT_LEVEL_LOW 0x0010 /* level-low ints supported */
#define TPM_INTF_INT_LEVEL_HIGH 0x0008 /* level-high ints supported */
#define TPM_INTF_LOCALITY_CHANGE_INT 0x0004 /* locality-change int (mb 1) */
#define TPM_INTF_STS_VALID_INT 0x0002 /* TPM_STS_VALID int supported */
#define TPM_INTF_DATA_AVAIL_INT 0x0001 /* TPM_STS_DATA_AVAIL int supported (mb 1) */
#define TPM_CAPSREQ \
(TPM_INTF_DATA_AVAIL_INT|TPM_INTF_LOCALITY_CHANGE_INT|TPM_INTF_INT_LEVEL_LOW)
#define TPM_CAPBITS \
"\020\01IDRDY\02ISTSV\03ILOCH\04IHIGH\05ILOW\06IEDGE\07IFALL\010IRDY\011BCST"
#define TPM_STS 0x0018 /* status register */
#define TPM_STS_MASK 0x000000ff /* status bits */
#define TPM_STS_BMASK 0x00ffff00 /* ro io burst size */
#define TPM_STS_VALID 0x00000080 /* ro other bits are valid */
#define TPM_STS_CMD_READY 0x00000040 /* rw chip/signal ready */
#define TPM_STS_GO 0x00000020 /* wo start the command */
#define TPM_STS_DATA_AVAIL 0x00000010 /* ro data available */
#define TPM_STS_DATA_EXPECT 0x00000008 /* ro more data to be written */
#define TPM_STS_RESP_RETRY 0x00000002 /* wo resend the response */
#define TPM_STS_BITS "\020\010VALID\07RDY\06GO\05DRDY\04EXPECT\02RETRY"
#define TPM_DATA 0x0024
#define TPM_ID 0x0f00
#define TPM_REV 0x0f04
#define TPM_SIZE 0x5000 /* five pages of the above */
#define TPM_ACCESS_TMO 2000 /* 2sec */
#define TPM_READY_TMO 2000 /* 2sec */
#define TPM_READ_TMO 120000 /* 2 minutes */
#define TPM_BURST_TMO 2000 /* 2sec */
#define TPM_LEGACY_BUSY 0x01
#define TPM_LEGACY_ABRT 0x01
#define TPM_LEGACY_DA 0x02
#define TPM_LEGACY_RE 0x04
#define TPM_LEGACY_LAST 0x04
#define TPM_LEGACY_BITS "\020\01BUSY\2DA\3RE\4LAST"
#define TPM_LEGACY_TMO (2*60) /* sec */
#define TPM_LEGACY_SLEEP 5 /* ticks */
#define TPM_LEGACY_DELAY 100
/* Set when enabling legacy interface in host bridge. */
int tpm_enabled;
#define TPMSOFTC(dev) \
((struct tpm_softc *)dev->si_drv1)
d_open_t tpmopen;
d_close_t tpmclose;
d_read_t tpmread;
d_write_t tpmwrite;
d_ioctl_t tpmioctl;
static struct cdevsw tpm_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_NEEDGIANT,
.d_open = tpmopen,
.d_close = tpmclose,
.d_read = tpmread,
.d_write = tpmwrite,
.d_ioctl = tpmioctl,
.d_name = "tpm",
};
const struct {
u_int32_t devid;
char name[32];
int flags;
#define TPM_DEV_NOINTS 0x0001
} tpm_devs[] = {
{ 0x000615d1, "IFX SLD 9630 TT 1.1", 0 },
{ 0x000b15d1, "IFX SLB 9635 TT 1.2", 0 },
{ 0x100214e4, "Broadcom BCM0102", TPM_DEV_NOINTS },
{ 0x00fe1050, "WEC WPCT200", 0 },
{ 0x687119fa, "SNS SSX35", 0 },
{ 0x2e4d5453, "STM ST19WP18", 0 },
{ 0x32021114, "ATML 97SC3203", TPM_DEV_NOINTS },
{ 0x10408086, "INTEL INTC0102", 0 },
{ 0, "", TPM_DEV_NOINTS },
};
int tpm_tis12_irqinit(struct tpm_softc *, int, int);
int tpm_tis12_init(struct tpm_softc *, int, const char *);
int tpm_tis12_start(struct tpm_softc *, int);
int tpm_tis12_read(struct tpm_softc *, void *, int, size_t *, int);
int tpm_tis12_write(struct tpm_softc *, void *, int);
int tpm_tis12_end(struct tpm_softc *, int, int);
void tpm_intr(void *);
int tpm_waitfor_poll(struct tpm_softc *, u_int8_t, int, void *);
int tpm_waitfor_int(struct tpm_softc *, u_int8_t, int, void *, int);
int tpm_waitfor(struct tpm_softc *, u_int8_t, int, void *);
int tpm_request_locality(struct tpm_softc *, int);
int tpm_getburst(struct tpm_softc *);
u_int8_t tpm_status(struct tpm_softc *);
int tpm_tmotohz(int);
int tpm_legacy_probe(bus_space_tag_t, bus_addr_t);
int tpm_legacy_init(struct tpm_softc *, int, const char *);
int tpm_legacy_start(struct tpm_softc *, int);
int tpm_legacy_read(struct tpm_softc *, void *, int, size_t *, int);
int tpm_legacy_write(struct tpm_softc *, void *, int);
int tpm_legacy_end(struct tpm_softc *, int, int);
/*
* FreeBSD specific code for probing and attaching TPM to device tree.
*/
#if 0
static void
tpm_identify(driver_t *driver, device_t parent)
{
BUS_ADD_CHILD(parent, ISA_ORDER_SPECULATIVE, "tpm", 0);
}
#endif
int
tpm_attach(device_t dev)
{
struct tpm_softc *sc = device_get_softc(dev);
int irq;
sc->mem_rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (sc->mem_res == NULL)
return ENXIO;
sc->sc_bt = rman_get_bustag(sc->mem_res);
sc->sc_bh = rman_get_bushandle(sc->mem_res);
sc->irq_rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq_res != NULL)
irq = rman_get_start(sc->irq_res);
else
irq = IRQUNK;
/* In case PnP probe this may contain some initialization. */
tpm_tis12_probe(sc->sc_bt, sc->sc_bh);
if (tpm_legacy_probe(sc->sc_bt, sc->sc_bh)) {
sc->sc_init = tpm_legacy_init;
sc->sc_start = tpm_legacy_start;
sc->sc_read = tpm_legacy_read;
sc->sc_write = tpm_legacy_write;
sc->sc_end = tpm_legacy_end;
} else {
sc->sc_init = tpm_tis12_init;
sc->sc_start = tpm_tis12_start;
sc->sc_read = tpm_tis12_read;
sc->sc_write = tpm_tis12_write;
sc->sc_end = tpm_tis12_end;
}
printf("%s", device_get_name(dev));
if ((sc->sc_init)(sc, irq, "tpm")) {
tpm_detach(dev);
return ENXIO;
}
if (sc->sc_init == tpm_tis12_init && sc->irq_res != NULL &&
bus_setup_intr(dev, sc->irq_res, INTR_TYPE_TTY, NULL,
tpm_intr, sc, &sc->intr_cookie) != 0) {
tpm_detach(dev);
printf(": cannot establish interrupt\n");
return 1;
}
sc->sc_cdev = make_dev(&tpm_cdevsw, device_get_unit(dev),
UID_ROOT, GID_WHEEL, 0600, "tpm");
sc->sc_cdev->si_drv1 = sc;
return 0;
}
int
tpm_detach(device_t dev)
{
struct tpm_softc * sc = device_get_softc(dev);
if(sc->intr_cookie){
bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
}
if(sc->mem_res){
bus_release_resource(dev, SYS_RES_MEMORY,
sc->mem_rid, sc->mem_res);
}
if(sc->irq_res){
bus_release_resource(dev, SYS_RES_IRQ,
sc->irq_rid, sc->irq_res);
}
if(sc->sc_cdev){
destroy_dev(sc->sc_cdev);
}
return 0;
}
/* Probe TPM using TIS 1.2 interface. */
int
tpm_tis12_probe(bus_space_tag_t bt, bus_space_handle_t bh)
{
u_int32_t r;
u_int8_t save, reg;
r = bus_space_read_4(bt, bh, TPM_INTF_CAPABILITIES);
if (r == 0xffffffff)
return 0;
#ifdef TPM_DEBUG
printf("tpm: caps=%b\n", r, TPM_CAPBITS);
#endif
if ((r & TPM_CAPSREQ) != TPM_CAPSREQ ||
!(r & (TPM_INTF_INT_EDGE_RISING | TPM_INTF_INT_LEVEL_LOW))) {
#ifdef TPM_DEBUG
printf("tpm: caps too low (caps=%b)\n", r, TPM_CAPBITS);
#endif
return 0;
}
save = bus_space_read_1(bt, bh, TPM_ACCESS);
bus_space_write_1(bt, bh, TPM_ACCESS, TPM_ACCESS_REQUEST_USE);
reg = bus_space_read_1(bt, bh, TPM_ACCESS);
if ((reg & TPM_ACCESS_VALID) && (reg & TPM_ACCESS_ACTIVE_LOCALITY) &&
bus_space_read_4(bt, bh, TPM_ID) != 0xffffffff)
return 1;
bus_space_write_1(bt, bh, TPM_ACCESS, save);
return 0;
}
/*
* Setup interrupt vector if one is provided and interrupts are know to
* work on that particular chip.
*/
int
tpm_tis12_irqinit(struct tpm_softc *sc, int irq, int idx)
{
u_int32_t r;
if ((irq == IRQUNK) || (tpm_devs[idx].flags & TPM_DEV_NOINTS)) {
sc->sc_vector = IRQUNK;
return 0;
}
/* Ack and disable all interrupts. */
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE) &
~TPM_GLOBAL_INT_ENABLE);
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INT_STATUS,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INT_STATUS));
/* Program interrupt vector. */
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_INT_VECTOR, irq);
sc->sc_vector = irq;
/* Program interrupt type. */
if (sc->sc_capabilities & TPM_INTF_INT_EDGE_RISING)
r = TPM_INT_EDGE_RISING;
else if (sc->sc_capabilities & TPM_INTF_INT_LEVEL_HIGH)
r = TPM_INT_LEVEL_HIGH;
else
r = TPM_INT_LEVEL_LOW;
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE, r);
return 0;
}
/* Setup TPM using TIS 1.2 interface. */
int
tpm_tis12_init(struct tpm_softc *sc, int irq, const char *name)
{
u_int32_t r;
int i;
r = bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTF_CAPABILITIES);
#ifdef TPM_DEBUG
printf(" caps=%b ", r, TPM_CAPBITS);
#endif
if ((r & TPM_CAPSREQ) != TPM_CAPSREQ ||
!(r & (TPM_INTF_INT_EDGE_RISING | TPM_INTF_INT_LEVEL_LOW))) {
printf(": capabilities too low (caps=%b)\n", r, TPM_CAPBITS);
return 1;
}
sc->sc_capabilities = r;
sc->sc_devid = bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_ID);
sc->sc_rev = bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_REV);
for (i = 0; tpm_devs[i].devid; i++)
if (tpm_devs[i].devid == sc->sc_devid)
break;
if (tpm_devs[i].devid)
printf(": %s rev 0x%x\n", tpm_devs[i].name, sc->sc_rev);
else
printf(": device 0x%08x rev 0x%x\n", sc->sc_devid, sc->sc_rev);
if (tpm_tis12_irqinit(sc, irq, i))
return 1;
if (tpm_request_locality(sc, 0))
return 1;
/* Abort whatever it thought it was doing. */
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_STS, TPM_STS_CMD_READY);
return 0;
}
int
tpm_request_locality(struct tpm_softc *sc, int l)
{
u_int32_t r;
int to, rv;
if (l != 0)
return EINVAL;
if ((bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_ACCESS) &
(TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) ==
(TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY))
return 0;
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_ACCESS,
TPM_ACCESS_REQUEST_USE);
to = tpm_tmotohz(TPM_ACCESS_TMO);
while ((r = bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_ACCESS) &
(TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) !=
(TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY) && to--) {
rv = tsleep(sc->sc_init, PRIBIO | PCATCH, "tpm_locality", 1);
if (rv && rv != EWOULDBLOCK) {
#ifdef TPM_DEBUG
printf("tpm_request_locality: interrupted %d\n", rv);
#endif
return rv;
}
}
if ((r & (TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) !=
(TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) {
#ifdef TPM_DEBUG
printf("tpm_request_locality: access %b\n", r, TPM_ACCESS_BITS);
#endif
return EBUSY;
}
return 0;
}
int
tpm_getburst(struct tpm_softc *sc)
{
int burst, to, rv;
to = tpm_tmotohz(TPM_BURST_TMO);
burst = 0;
while (burst == 0 && to--) {
/*
* Burst count has to be read from bits 8 to 23 without
* touching any other bits, eg. the actual status bits 0
* to 7.
*/
burst = bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_STS + 1);
burst |= bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_STS + 2)
<< 8;
#ifdef TPM_DEBUG
printf("tpm_getburst: read %d\n", burst);
#endif
if (burst)
return burst;
rv = tsleep(sc, PRIBIO | PCATCH, "tpm_getburst", 1);
if (rv && rv != EWOULDBLOCK) {
return 0;
}
}
return 0;
}
u_int8_t
tpm_status(struct tpm_softc *sc)
{
u_int8_t status;
status = bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_STS) &
TPM_STS_MASK;
return status;
}
int
tpm_tmotohz(int tmo)
{
struct timeval tv;
tv.tv_sec = tmo / 1000;
tv.tv_usec = 1000 * (tmo % 1000);
return tvtohz(&tv);
}
/* Save TPM state on suspend. */
int
tpm_suspend(device_t dev)
{
struct tpm_softc *sc = device_get_softc(dev);
int why = 1;
u_int8_t command[] = {
0, 193, /* TPM_TAG_RQU_COMMAND */
0, 0, 0, 10, /* Length in bytes */
0, 0, 0, 156 /* TPM_ORD_SaveStates */
};
/*
* Power down: We have to issue the SaveStates command.
*/
sc->sc_write(sc, &command, sizeof(command));
sc->sc_read(sc, &command, sizeof(command), NULL, TPM_HDRSIZE);
#ifdef TPM_DEBUG
printf("tpm_suspend: power down: %d -> %d\n", sc->sc_suspend, why);
#endif
sc->sc_suspend = why;
return 0;
}
/*
* Handle resume event. Actually nothing to do as the BIOS is supposed
* to restore the previously saved state.
*/
int
tpm_resume(device_t dev)
{
struct tpm_softc *sc = device_get_softc(dev);
int why = 0;
#ifdef TPM_DEBUG
printf("tpm_resume: resume: %d -> %d\n", sc->sc_suspend, why);
#endif
sc->sc_suspend = why;
return 0;
}
/* Dispatch suspend and resume events. */
/* Wait for given status bits using polling. */
int
tpm_waitfor_poll(struct tpm_softc *sc, u_int8_t mask, int tmo, void *c)
{
int rv;
/*
* Poll until either the requested condition or a time out is
* met.
*/
while (((sc->sc_stat = tpm_status(sc)) & mask) != mask && tmo--) {
rv = tsleep(c, PRIBIO | PCATCH, "tpm_poll", 1);
if (rv && rv != EWOULDBLOCK) {
#ifdef TPM_DEBUG
printf("tpm_waitfor_poll: interrupted %d\n", rv);
#endif
return rv;
}
}
return 0;
}
/* Wait for given status bits using interrupts. */
int
tpm_waitfor_int(struct tpm_softc *sc, u_int8_t mask, int tmo, void *c,
int inttype)
{
int rv, to;
/* Poll and return when condition is already met. */
sc->sc_stat = tpm_status(sc);
if ((sc->sc_stat & mask) == mask)
return 0;
/*
* Enable interrupt on tpm chip. Note that interrupts on our
* level (SPL_TTY) are disabled (see tpm{read,write} et al) and
* will not be delivered to the cpu until we call tsleep(9) below.
*/
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE) |
inttype);
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE) |
TPM_GLOBAL_INT_ENABLE);
/*
* Poll once more to remedy the race between previous polling
* and enabling interrupts on the tpm chip.
*/
sc->sc_stat = tpm_status(sc);
if ((sc->sc_stat & mask) == mask) {
rv = 0;
goto out;
}
to = tpm_tmotohz(tmo);
#ifdef TPM_DEBUG
printf("tpm_waitfor_int: sleeping for %d ticks on %p\n", to, c);
#endif
/*
* tsleep(9) enables interrupts on the cpu and returns after
* wake up with interrupts disabled again. Note that interrupts
* generated by the tpm chip while being at SPL_TTY are not lost
* but held and delivered as soon as the cpu goes below SPL_TTY.
*/
rv = tsleep(c, PRIBIO | PCATCH, "tpm_intr", to);
sc->sc_stat = tpm_status(sc);
#ifdef TPM_DEBUG
printf("tpm_waitfor_int: woke up with rv %d stat %b\n", rv,
sc->sc_stat, TPM_STS_BITS);
#endif
if ((sc->sc_stat & mask) == mask)
rv = 0;
/* Disable interrupts on tpm chip again. */
out: bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE) &
~TPM_GLOBAL_INT_ENABLE);
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE) &
~inttype);
return rv;
}
/*
* Wait on given status bits, uses interrupts where possible, otherwise polls.
*/
int
tpm_waitfor(struct tpm_softc *sc, u_int8_t b0, int tmo, void *c)
{
u_int8_t b;
int re, to, rv;
#ifdef TPM_DEBUG
printf("tpm_waitfor: b0 %b\n", b0, TPM_STS_BITS);
#endif
/*
* If possible, use interrupts, otherwise poll.
*
* We use interrupts for TPM_STS_VALID and TPM_STS_DATA_AVAIL (if
* the tpm chips supports them) as waiting for those can take
* really long. The other TPM_STS* are not needed very often
* so we do not support them.
*/
if (sc->sc_vector != IRQUNK) {
b = b0;
/*
* Wait for data ready. This interrupt only occurs
* when both TPM_STS_VALID and TPM_STS_DATA_AVAIL are asserted.
* Thus we don't have to bother with TPM_STS_VALID
* separately and can just return.
*
* This only holds for interrupts! When using polling
* both flags have to be waited for, see below.
*/
if ((b & TPM_STS_DATA_AVAIL) && (sc->sc_capabilities &
TPM_INTF_DATA_AVAIL_INT))
return tpm_waitfor_int(sc, b, tmo, c,
TPM_DATA_AVAIL_INT);
/* Wait for status valid bit. */
if ((b & TPM_STS_VALID) && (sc->sc_capabilities &
TPM_INTF_STS_VALID_INT)) {
rv = tpm_waitfor_int(sc, b, tmo, c, TPM_STS_VALID_INT);
if (rv != 0)
return rv;
else
b = b0 & ~TPM_STS_VALID;
}
/*
* When all flags are taken care of, return. Otherwise
* use polling for eg. TPM_STS_CMD_READY.
*/
if (b == 0)
return 0;
}
re = 3;
restart:
/*
* If requested wait for TPM_STS_VALID before dealing with
* any other flag. Eg. when both TPM_STS_DATA_AVAIL and TPM_STS_VALID
* are requested, wait for the latter first.
*/
b = b0;
if (b0 & TPM_STS_VALID)
b = TPM_STS_VALID;
to = tpm_tmotohz(tmo);
again:
if ((rv = tpm_waitfor_poll(sc, b, to, c)) != 0)
return rv;
if ((b & sc->sc_stat) == TPM_STS_VALID) {
/* Now wait for other flags. */
b = b0 & ~TPM_STS_VALID;
to++;
goto again;
}
if ((sc->sc_stat & b) != b) {
#ifdef TPM_DEBUG
printf("tpm_waitfor: timeout: stat=%b b=%b\n",
sc->sc_stat, TPM_STS_BITS, b, TPM_STS_BITS);
#endif
if (re-- && (b0 & TPM_STS_VALID)) {
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_STS,
TPM_STS_RESP_RETRY);
goto restart;
}
return EIO;
}
return 0;
}
/* Start transaction. */
int
tpm_tis12_start(struct tpm_softc *sc, int flag)
{
int rv;
if (flag == UIO_READ) {
rv = tpm_waitfor(sc, TPM_STS_DATA_AVAIL | TPM_STS_VALID,
TPM_READ_TMO, sc->sc_read);
return rv;
}
/* Own our (0th) locality. */
if ((rv = tpm_request_locality(sc, 0)) != 0)
return rv;
sc->sc_stat = tpm_status(sc);
if (sc->sc_stat & TPM_STS_CMD_READY) {
#ifdef TPM_DEBUG
printf("tpm_tis12_start: UIO_WRITE status %b\n", sc->sc_stat,
TPM_STS_BITS);
#endif
return 0;
}
#ifdef TPM_DEBUG
printf("tpm_tis12_start: UIO_WRITE readying chip\n");
#endif
/* Abort previous and restart. */
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_STS, TPM_STS_CMD_READY);
if ((rv = tpm_waitfor(sc, TPM_STS_CMD_READY, TPM_READY_TMO,
sc->sc_write))) {
#ifdef TPM_DEBUG
printf("tpm_tis12_start: UIO_WRITE readying failed %d\n", rv);
#endif
return rv;
}
#ifdef TPM_DEBUG
printf("tpm_tis12_start: UIO_WRITE readying done\n");
#endif
return 0;
}
int
tpm_tis12_read(struct tpm_softc *sc, void *buf, int len, size_t *count,
int flags)
{
u_int8_t *p = buf;
size_t cnt;
int rv, n, bcnt;
#ifdef TPM_DEBUG
printf("tpm_tis12_read: len %d\n", len);
#endif
cnt = 0;
while (len > 0) {
if ((rv = tpm_waitfor(sc, TPM_STS_DATA_AVAIL | TPM_STS_VALID,
TPM_READ_TMO, sc->sc_read)))
return rv;
bcnt = tpm_getburst(sc);
n = MIN(len, bcnt);
#ifdef TPM_DEBUG
printf("tpm_tis12_read: fetching %d, burst is %d\n", n, bcnt);
#endif
for (; n--; len--) {
*p++ = bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_DATA);
cnt++;
}
if ((flags & TPM_PARAM_SIZE) == 0 && cnt >= 6)
break;
}
#ifdef TPM_DEBUG
printf("tpm_tis12_read: read %zd bytes, len %d\n", cnt, len);
#endif
if (count)
*count = cnt;
return 0;
}
int
tpm_tis12_write(struct tpm_softc *sc, void *buf, int len)
{
u_int8_t *p = buf;
size_t cnt;
int rv, r;
#ifdef TPM_DEBUG
printf("tpm_tis12_write: sc %p buf %p len %d\n", sc, buf, len);
#endif
if ((rv = tpm_request_locality(sc, 0)) != 0)
return rv;
cnt = 0;
while (cnt < len - 1) {
for (r = tpm_getburst(sc); r > 0 && cnt < len - 1; r--) {
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_DATA, *p++);
cnt++;
}
if ((rv = tpm_waitfor(sc, TPM_STS_VALID, TPM_READ_TMO, sc))) {
#ifdef TPM_DEBUG
printf("tpm_tis12_write: failed burst rv %d\n", rv);
#endif
return rv;
}
sc->sc_stat = tpm_status(sc);
if (!(sc->sc_stat & TPM_STS_DATA_EXPECT)) {
#ifdef TPM_DEBUG
printf("tpm_tis12_write: failed rv %d stat=%b\n", rv,
sc->sc_stat, TPM_STS_BITS);
#endif
return EIO;
}
}
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_DATA, *p++);
cnt++;
if ((rv = tpm_waitfor(sc, TPM_STS_VALID, TPM_READ_TMO, sc))) {
#ifdef TPM_DEBUG
printf("tpm_tis12_write: failed last byte rv %d\n", rv);
#endif
return rv;
}
if ((sc->sc_stat & TPM_STS_DATA_EXPECT) != 0) {
#ifdef TPM_DEBUG
printf("tpm_tis12_write: failed rv %d stat=%b\n", rv,
sc->sc_stat, TPM_STS_BITS);
#endif
return EIO;
}
#ifdef TPM_DEBUG
printf("tpm_tis12_write: wrote %d byte\n", cnt);
#endif
return 0;
}
/* Finish transaction. */
int
tpm_tis12_end(struct tpm_softc *sc, int flag, int err)
{
int rv = 0;
if (flag == UIO_READ) {
if ((rv = tpm_waitfor(sc, TPM_STS_VALID, TPM_READ_TMO,
sc->sc_read)))
return rv;
/* Still more data? */
sc->sc_stat = tpm_status(sc);
if (!err && ((sc->sc_stat & TPM_STS_DATA_AVAIL) == TPM_STS_DATA_AVAIL)) {
#ifdef TPM_DEBUG
printf("tpm_tis12_end: read failed stat=%b\n",
sc->sc_stat, TPM_STS_BITS);
#endif
rv = EIO;
}
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_STS,
TPM_STS_CMD_READY);
/* Release our (0th) locality. */
bus_space_write_1(sc->sc_bt, sc->sc_bh,TPM_ACCESS,
TPM_ACCESS_ACTIVE_LOCALITY);
} else {
/* Hungry for more? */
sc->sc_stat = tpm_status(sc);
if (!err && (sc->sc_stat & TPM_STS_DATA_EXPECT)) {
#ifdef TPM_DEBUG
printf("tpm_tis12_end: write failed stat=%b\n",
sc->sc_stat, TPM_STS_BITS);
#endif
rv = EIO;
}
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_STS,
err ? TPM_STS_CMD_READY : TPM_STS_GO);
}
return rv;
}
void
tpm_intr(void *v)
{
struct tpm_softc *sc = v;
u_int32_t r;
#ifdef TPM_DEBUG
static int cnt = 0;
#endif
r = bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INT_STATUS);
#ifdef TPM_DEBUG
if (r != 0)
printf("tpm_intr: int=%b (%d)\n", r, TPM_INTERRUPT_ENABLE_BITS,
cnt);
else
cnt++;
#endif
if (!(r & (TPM_CMD_READY_INT | TPM_LOCALITY_CHANGE_INT |
TPM_STS_VALID_INT | TPM_DATA_AVAIL_INT)))
return;
if (r & TPM_STS_VALID_INT)
wakeup(sc);
if (r & TPM_CMD_READY_INT)
wakeup(sc->sc_write);
if (r & TPM_DATA_AVAIL_INT)
wakeup(sc->sc_read);
if (r & TPM_LOCALITY_CHANGE_INT)
wakeup(sc->sc_init);
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INT_STATUS, r);
return;
}
/* Read single byte using legacy interface. */
static inline u_int8_t
tpm_legacy_in(bus_space_tag_t iot, bus_space_handle_t ioh, int reg)
{
bus_space_write_1(iot, ioh, 0, reg);
return bus_space_read_1(iot, ioh, 1);
}
#if 0
/* Write single byte using legacy interface. */
static inline void
tpm_legacy_out(bus_space_tag_t iot, bus_space_handle_t ioh, int reg, u_int8_t v)
{
bus_space_write_1(iot, ioh, 0, reg);
bus_space_write_1(iot, ioh, 1, v);
}
#endif
/* Probe for TPM using legacy interface. */
int
tpm_legacy_probe(bus_space_tag_t iot, bus_addr_t iobase)
{
bus_space_handle_t ioh;
u_int8_t r, v;
int i, rv = 0;
char id[8];
if (!tpm_enabled || iobase == -1)
return 0;
if (bus_space_map(iot, iobase, 2, 0, &ioh))
return 0;
v = bus_space_read_1(iot, ioh, 0);
if (v == 0xff) {
bus_space_unmap(iot, ioh, 2);
return 0;
}
r = bus_space_read_1(iot, ioh, 1);
for (i = sizeof(id); i--; )
id[i] = tpm_legacy_in(iot, ioh, TPM_ID + i);
#ifdef TPM_DEBUG
printf("tpm_legacy_probe %.4s %d.%d.%d.%d\n",
&id[4], id[0], id[1], id[2], id[3]);
#endif
/*
* The only chips using the legacy interface we are aware of are
* by Atmel. For other chips more signature would have to be added.
*/
if (!bcmp(&id[4], "ATML", 4))
rv = 1;
if (!rv) {
bus_space_write_1(iot, ioh, r, 1);
bus_space_write_1(iot, ioh, v, 0);
}
bus_space_unmap(iot, ioh, 2);
return rv;
}
/* Setup TPM using legacy interface. */
int
tpm_legacy_init(struct tpm_softc *sc, int irq, const char *name)
{
char id[8];
u_int8_t ioh, iol;
int i;
if ((i = bus_space_map(sc->sc_batm, tpm_enabled, 2, 0, &sc->sc_bahm))) {
printf(": cannot map tpm registers (%d)\n", i);
tpm_enabled = 0;
return 1;
}
for (i = sizeof(id); i--; )
id[i] = tpm_legacy_in(sc->sc_bt, sc->sc_bh, TPM_ID + i);
printf(": %.4s %d.%d @0x%x\n", &id[4], id[0], id[1], tpm_enabled);
iol = tpm_enabled & 0xff;
ioh = tpm_enabled >> 16;
tpm_enabled = 0;
return 0;
}
/* Start transaction. */
int
tpm_legacy_start(struct tpm_softc *sc, int flag)
{
struct timeval tv;
u_int8_t bits, r;
int to, rv;
bits = flag == UIO_READ ? TPM_LEGACY_DA : 0;
tv.tv_sec = TPM_LEGACY_TMO;
tv.tv_usec = 0;
to = tvtohz(&tv) / TPM_LEGACY_SLEEP;
while (((r = bus_space_read_1(sc->sc_batm, sc->sc_bahm, 1)) &
(TPM_LEGACY_BUSY|bits)) != bits && to--) {
rv = tsleep(sc, PRIBIO | PCATCH, "legacy_tpm_start",
TPM_LEGACY_SLEEP);
if (rv && rv != EWOULDBLOCK)
return rv;
}
if ((r & (TPM_LEGACY_BUSY|bits)) != bits)
return EIO;
return 0;
}
int
tpm_legacy_read(struct tpm_softc *sc, void *buf, int len, size_t *count,
int flags)
{
u_int8_t *p;
size_t cnt;
int to, rv;
cnt = rv = 0;
for (p = buf; !rv && len > 0; len--) {
for (to = 1000;
!(bus_space_read_1(sc->sc_batm, sc->sc_bahm, 1) &
TPM_LEGACY_DA); DELAY(1))
if (!to--)
return EIO;
DELAY(TPM_LEGACY_DELAY);
*p++ = bus_space_read_1(sc->sc_batm, sc->sc_bahm, 0);
cnt++;
}
*count = cnt;
return 0;
}
int
tpm_legacy_write(struct tpm_softc *sc, void *buf, int len)
{
u_int8_t *p;
int n;
for (p = buf, n = len; n--; DELAY(TPM_LEGACY_DELAY)) {
if (!n && len != TPM_BUFSIZ) {
bus_space_write_1(sc->sc_batm, sc->sc_bahm, 1,
TPM_LEGACY_LAST);
DELAY(TPM_LEGACY_DELAY);
}
bus_space_write_1(sc->sc_batm, sc->sc_bahm, 0, *p++);
}
return 0;
}
/* Finish transaction. */
int
tpm_legacy_end(struct tpm_softc *sc, int flag, int rv)
{
struct timeval tv;
u_int8_t r;
int to;
if (rv || flag == UIO_READ)
bus_space_write_1(sc->sc_batm, sc->sc_bahm, 1, TPM_LEGACY_ABRT);
else {
tv.tv_sec = TPM_LEGACY_TMO;
tv.tv_usec = 0;
to = tvtohz(&tv) / TPM_LEGACY_SLEEP;
while(((r = bus_space_read_1(sc->sc_batm, sc->sc_bahm, 1)) &
TPM_LEGACY_BUSY) && to--) {
rv = tsleep(sc, PRIBIO | PCATCH, "legacy_tpm_end",
TPM_LEGACY_SLEEP);
if (rv && rv != EWOULDBLOCK)
return rv;
}
if (r & TPM_LEGACY_BUSY)
return EIO;
if (r & TPM_LEGACY_RE)
return EIO; /* XXX Retry the loop? */
}
return rv;
}
int
tpmopen(struct cdev *dev, int flag, int mode, struct thread *td)
{
struct tpm_softc *sc = TPMSOFTC(dev);
if (!sc)
return ENXIO;
if (sc->sc_flags & TPM_OPEN)
return EBUSY;
sc->sc_flags |= TPM_OPEN;
return 0;
}
int
tpmclose(struct cdev *dev, int flag, int mode, struct thread *td)
{
struct tpm_softc *sc = TPMSOFTC(dev);
if (!sc)
return ENXIO;
if (!(sc->sc_flags & TPM_OPEN))
return EINVAL;
sc->sc_flags &= ~TPM_OPEN;
return 0;
}
int
tpmread(struct cdev *dev, struct uio *uio, int flags)
{
struct tpm_softc *sc = TPMSOFTC(dev);
u_int8_t buf[TPM_BUFSIZ], *p;
size_t cnt;
int n, len, rv, s;
if (!sc)
return ENXIO;
s = spltty();
if ((rv = (sc->sc_start)(sc, UIO_READ))) {
splx(s);
return rv;
}
#ifdef TPM_DEBUG
printf("tpmread: getting header\n");
#endif
if ((rv = (sc->sc_read)(sc, buf, TPM_HDRSIZE, &cnt, 0))) {
(sc->sc_end)(sc, UIO_READ, rv);
splx(s);
return rv;
}
len = (buf[2] << 24) | (buf[3] << 16) | (buf[4] << 8) | buf[5];
#ifdef TPM_DEBUG
printf("tpmread: len %d, io count %d\n", len, uio->uio_resid);
#endif
if (len > uio->uio_resid) {
rv = EIO;
(sc->sc_end)(sc, UIO_READ, rv);
#ifdef TPM_DEBUG
printf("tpmread: bad residual io count 0x%x\n", uio->uio_resid);
#endif
splx(s);
return rv;
}
/* Copy out header. */
if ((rv = uiomove((caddr_t)buf, cnt, uio))) {
(sc->sc_end)(sc, UIO_READ, rv);
splx(s);
return rv;
}
/* Get remaining part of the answer (if anything is left). */
for (len -= cnt, p = buf, n = sizeof(buf); len > 0; p = buf, len -= n,
n = sizeof(buf)) {
n = MIN(n, len);
#ifdef TPM_DEBUG
printf("tpmread: n %d len %d\n", n, len);
#endif
if ((rv = (sc->sc_read)(sc, p, n, NULL, TPM_PARAM_SIZE))) {
(sc->sc_end)(sc, UIO_READ, rv);
splx(s);
return rv;
}
p += n;
if ((rv = uiomove((caddr_t)buf, p - buf, uio))) {
(sc->sc_end)(sc, UIO_READ, rv);
splx(s);
return rv;
}
}
rv = (sc->sc_end)(sc, UIO_READ, rv);
splx(s);
return rv;
}
int
tpmwrite(struct cdev *dev, struct uio *uio, int flags)
{
struct tpm_softc *sc = TPMSOFTC(dev);
u_int8_t buf[TPM_BUFSIZ];
int n, rv, s;
if (!sc)
return ENXIO;
s = spltty();
#ifdef TPM_DEBUG
printf("tpmwrite: io count %d\n", uio->uio_resid);
#endif
n = MIN(sizeof(buf), uio->uio_resid);
if ((rv = uiomove((caddr_t)buf, n, uio))) {
splx(s);
return rv;
}
if ((rv = (sc->sc_start)(sc, UIO_WRITE))) {
splx(s);
return rv;
}
if ((rv = (sc->sc_write(sc, buf, n)))) {
splx(s);
return rv;
}
rv = (sc->sc_end)(sc, UIO_WRITE, rv);
splx(s);
return rv;
}
int
tpmioctl(struct cdev *dev, u_long cmd, caddr_t data, int flags,
struct thread *td)
{
return ENOTTY;
}