John Baldwin 058e24d34b Extend the ACPI power management support to wire a virtual power button up
to SIGTERM when ACPI is enabled.  Sending SIGTERM to the hypervisor when an
ACPI-aware OS is running will now trigger a soft-off allowing for a graceful
shutdown of the guest.
- Move constants for ACPI-related registers to acpi.h.
- Implement an SMI_CMD register with commands to enable and disable ACPI.
  Currently the only change when ACPI is enabled is to enable the virtual
  power button via SIGTERM.
- Implement a fixed-feature power button when ACPI is enabled by asserting
  PWRBTN_STS in PM1_EVT when SIGTERM is received.
- Add support for EVFILT_SIGNAL events to mevent.
- Implement support for the ACPI system command interrupt (SCI) and assert
  it when needed based on the values in PM1_EVT.  Mark the SCI as active-low
  and level triggered in the MADT and MP Table.
- Mark PCI interrupts in the MP Table as active-low in addition to level
  triggered.

Reviewed by:	neel
2013-12-28 04:01:05 +00:00

174 lines
4.3 KiB
C

/*-
* Copyright (c) 2012 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <machine/cpufunc.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <assert.h>
#include <pthread.h>
#include "acpi.h"
#include "inout.h"
/*
* The ACPI Power Management timer is a free-running 24- or 32-bit
* timer with a frequency of 3.579545MHz
*
* This implementation will be 32-bits
*/
#define PMTMR_FREQ 3579545 /* 3.579545MHz */
static pthread_mutex_t pmtmr_mtx;
static pthread_once_t pmtmr_once = PTHREAD_ONCE_INIT;
static uint64_t pmtmr_old;
static uint64_t pmtmr_tscf;
static uint64_t pmtmr_tsc_old;
static clockid_t clockid = CLOCK_UPTIME_FAST;
static struct timespec pmtmr_uptime_old;
#define timespecsub(vvp, uvp) \
do { \
(vvp)->tv_sec -= (uvp)->tv_sec; \
(vvp)->tv_nsec -= (uvp)->tv_nsec; \
if ((vvp)->tv_nsec < 0) { \
(vvp)->tv_sec--; \
(vvp)->tv_nsec += 1000000000; \
} \
} while (0)
static uint64_t
timespec_to_pmtmr(const struct timespec *tsnew, const struct timespec *tsold)
{
struct timespec tsdiff;
int64_t nsecs;
tsdiff = *tsnew;
timespecsub(&tsdiff, tsold);
nsecs = tsdiff.tv_sec * 1000000000 + tsdiff.tv_nsec;
assert(nsecs >= 0);
return (nsecs * PMTMR_FREQ / 1000000000 + pmtmr_old);
}
static uint64_t
tsc_to_pmtmr(uint64_t tsc_new, uint64_t tsc_old)
{
return ((tsc_new - tsc_old) * PMTMR_FREQ / pmtmr_tscf + pmtmr_old);
}
static void
pmtmr_init(void)
{
size_t len;
int smp_tsc, err;
struct timespec tsnew, tsold = { 0 };
len = sizeof(smp_tsc);
err = sysctlbyname("kern.timecounter.smp_tsc", &smp_tsc, &len, NULL, 0);
assert(err == 0);
if (smp_tsc) {
len = sizeof(pmtmr_tscf);
err = sysctlbyname("machdep.tsc_freq", &pmtmr_tscf, &len,
NULL, 0);
assert(err == 0);
pmtmr_tsc_old = rdtsc();
pmtmr_old = tsc_to_pmtmr(pmtmr_tsc_old, 0);
} else {
if (getenv("BHYVE_PMTMR_PRECISE") != NULL)
clockid = CLOCK_UPTIME;
err = clock_gettime(clockid, &tsnew);
assert(err == 0);
pmtmr_uptime_old = tsnew;
pmtmr_old = timespec_to_pmtmr(&tsnew, &tsold);
}
pthread_mutex_init(&pmtmr_mtx, NULL);
}
static uint32_t
pmtmr_val(void)
{
struct timespec tsnew;
uint64_t pmtmr_tsc_new;
uint64_t pmtmr_new;
int error;
pthread_once(&pmtmr_once, pmtmr_init);
pthread_mutex_lock(&pmtmr_mtx);
if (pmtmr_tscf) {
pmtmr_tsc_new = rdtsc();
pmtmr_new = tsc_to_pmtmr(pmtmr_tsc_new, pmtmr_tsc_old);
pmtmr_tsc_old = pmtmr_tsc_new;
} else {
error = clock_gettime(clockid, &tsnew);
assert(error == 0);
pmtmr_new = timespec_to_pmtmr(&tsnew, &pmtmr_uptime_old);
pmtmr_uptime_old = tsnew;
}
pmtmr_old = pmtmr_new;
pthread_mutex_unlock(&pmtmr_mtx);
return (pmtmr_new);
}
static int
pmtmr_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
assert(in == 1);
if (bytes != 4)
return (-1);
*eax = pmtmr_val();
return (0);
}
INOUT_PORT(pmtmr, IO_PMTMR, IOPORT_F_IN, pmtmr_handler);